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Nomenclature
αi wind direction

βκ shadowing factor

δu velocity deficit

κ wake grow factor

λ scale parameter weibull distribution

Ccapital total capital costs [e]

Co&m annual operation & maintenance costs [%]

CPRV present residual value of the wind farm [e]

Ct(u) thrust function

D rotor diameter [m]

d perturbation [%]

k shape parameter weibull distribution

Kenergy price of energy on the market [e/kWh]

l lifetime [years]

P (u) power function in MW

ploss plant performance loss [%]

rrate discount rate [%]

u wind speed [m/s]

ucutin cut-in speed [m/s]

ucutout cut-out speed [m/s]

z hub height [m]

z0 surface roughness [m]
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1 Introduction
The climate change is one of the biggest environmental struggles at the time of hu-
manity. The industrial revolution has left its traces and now it is up to us humans
to counteract against climatic problems. We already have made big steps in reducing
CO2 emissions but it is still a long way until the whole world has switched to renewable
so called green energy.
The sun and the wind are resources that will most likely be available longer as our
species will live on this planet. That is the reason why solar and wind energy are the
leading forms of renewable energy. Wind energy produced by wind farms are more
practicable in regions of our western world because solar energy can only be efficiently
used in certain parts of the world and also not during the night.
Therefore wind farms have the potential to become the worlds leading energy source.
They are subdivided in onshore and offshore wind farms. The difference between them
is that onshore wind farms are built up on the countryside whereas offshore wind farms
are built up on the underwater landmass close to the coast. Both variants have their
advantages and disadvantages.
Onshore wind farms are characterized by their lower capital and maintenance costs
and easier access to the produced energy. Offshore wind farms on the other hand have
higher capital and maintenance costs because they are built in the sea, which is more
difficult to access. Also the produced energy has a bigger distance to the countryside
where the energy is needed. But on longer view the offshore variant has some great
advantages. On the sea, dominates a much stronger wind compared to the wind at
the countryside which increases the total power output. Also there are no obstacles
through mountains, hills etc., that interfere the wind which leads again to a higher
energy production. There is also more space available on the sea so that bigger wind
farms can be build. Another positive effect outsourcing the wind farm to the sea is
that the wind farms have no bad visual impact or acoustic noise or even can not cause
damages to human life.
In this thesis we will focus on offshore wind farms and we will investigate if and which
uncertainties setting up such a wind farm can generate a miscalculating of the whole
project. The investigation of uncertain model inputs will show us the impact of them
regarding to specific quantities of interest and will tell us which of the uncertainties
have to be focused on to plan future projects more precisely.
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2 Background
Wind energy is an active area of research and very relevant today. Much of it is focused
on solving the wind farm layout optimization problem. It deals with the wind farm
design aiming to find the optimal positions of the turbines within the wind farm so
that the power production is maximized.
The transformation of wind power into electrical power is done by wind turbines which
are usually grouped into wind farms in order to have lower installation and mainte-
nance costs. But the grouping of turbines leads to a reduction in the power production
because of the presence of wake effects within the wind farm. When wind passes the
turbine blades, the turbine blades are rotating and the turbine generates power from
the wind. The sideeffect is that the rotating blades cause a wake of turbulence, that
reduces the wind speed behind this turbine and therefore also reduces the power pro-
duction by the turbines affected by the wake. That means that the wind speed behind
a turbine is lower than the wind speed in the unperturbed wind stream. In large wind
farms wake effects lead to significant power losses. That is why positioning the tur-
bines to minimize the power loss and thus maximize the expected power output has
an important economic purpose [20].
In a previous bachelor thesis a wake model named PARK was implemented which sim-
ulates the annual energy production (AEP) of an offshore wind farm [7]. Furthermore
in a master thesis a first approach were done to make a uncertainty quantification on
a few input parameter of the PARK wake model [25].
In this thesis the uncertainty quantification of the PARK wake model is enhanced
by more sampling methods for the uncertainty quantification and more uncertainty
parameters, to obtain more meaningful results by analyzing the significance of the
uncertainties that arise in an offshore wind farm.
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3 Offshore Wind Farm Modeling
In this section the modeling of an offshore wind farm will be presented which is divided
in four sub-models. At first the wind model will be presented where is shown how we
translate the raw wind data into a mathematical model. This representation of the
wind will then be used by the next sub-model, the wake model. After that the power
generation model will be presented which uses the wake model for the calculation of
the gross annual energy production (AEP). Then the cost models will be introduced
that consider the different quantity of interests of our offshore model. In Figure 1
the brief structure of the offshore model is shown which should help as an orientation
and for an understanding of this section. The gray rectangles stand for the different
sub-models. Each sub-model has it’s own input parameters which are encircled with
the green ellipses. The red ellipses are representing the outputs.

wind data

Ct curvewake effect

power curve

wind model wake model

surface roughness

power generation model gross AEP cost model

plant performance loss

economic parameters

NPV

IRR

LCOE

net AEP

Figure 1: Structure of the offshore model. Gray rectangles representing the four sub-
models with their specific inputs (green ellipses) and their outputs (red el-
lipses).

3.1 Wind Model
The wind data is important to calculate the generated power converted by the turbines.
It is used as an input for the wind model and reflects the real worlds climate conditions
for a specific area and time period.

3.1.1 Wind Data Processing

Typically the wind data consists of thousands measurements about the wind direction
and the wind speed. Figure 2 shows a wind direction distribution over a time period
of seven years at the FINO3 research platform which is located 45 sea miles (80 kilo-
metres) west of Sylt in the North Sea. The wind directions are divided into 12, 32 and
360 sectors, standing for the cardinal points and representing the probability by the
size of each sector.
The wind speed distribution is assumed as a weibull distribution as defined in equa-
tion (1) and is calculated by the raw wind data as described in Heiming [7] with the
maximum likelihood estimation which is a method of estimating the parameters of a
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statistical model with given observations, by finding the parameter values that rep-
resents the observations the most. In Figure 3 the wind speed distribution for the
sector α ∈ [225◦, 255◦) for the same time period as for the wind direction distribution
is shown.
For the wind representation the weibull distribution parameters λ and k are provided
for each wind direction which means that each wind direction has its own probability
and its own wind speed distribution. The probabilities for wind direction and wind
speed are combined to a speed-direction probability for the computation by using the
probability of the wind direction and multiplying it with the probability for the con-
sidered wind speed, so that the positioning of the turbines have a big impact to the
accuracy of the calculated wake effect.

Figure 2: Combined wind direction distribution at the FINO3 research platform over
the years of July 2010 to June 2017, clustered into 12, 32 and 360 direction
sectors. Source: Heiming[7]

3.1.2 Weibull Distribution

The weibull distribution is a continuous probability distribution and has a lot of ap-
plications e.g. the approximation of the frequencies of different wind speeds as can be
seen in Figure 3. The probability density function in general is defined as follows:

f(x;λ, k) =

(
k
λ

)
·
(
x
λ

)k−1
· exp

(
− (x · λ)k

)
x ≥ 0,

0 x < 0
The parameter λ > 0 and k > 0 are the scale- and shape parameter of the distri-

bution. The advantage of the weibull distribution is that the probability distribution
of the different wind speed levels of measured wind data can be approximated very
well with these two parameters, higher speeds are less likely and that the probability
of negative wind speeds is equal to zero [7].
In our model each wind direction sector αi, i ∈ {1, 2, . . . , Ndirections}, has its own
weibull distribution, which will be estimated with the maximum likelihood estimation
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Figure 3: Approximated wind speed distribution as a weibull distribution using the
maximum likelihood estimation. The measured data is from the FINO3
research platform over the years of July 2010 to June 2017 for the wind
direction sector αi ∈ [225◦, 255◦). The measured wind speed distribution is
illustrated with the histogram.

[7] where the parameter λ and k will be determined, so that the probability fαi
(u) for

every wind speed u can be represented as:

fαi
(u) =

(
k

λ

)
·
(
u

λ

)k−1
· exp

(
− (u · λ)k

)
(1)

It is important to note, that this wind model by itself is not deterministic as the
wind source is modeled by a distribution. When we refer to the overall model as
deterministic, this implies that the input parameters are not perturbed on purpose.

3.2 Wake Model
The wake model is important to calculate the velocity deficits within a wind farm
caused by the mast and blades of the turbines that reduce the wind speed behind each
turbine. In this thesis we focus on one wake model called the PARK wake model which
was developed by Jensen [9] and Katic et al. [10] in 1986. Starting from that Samorani
[20] has also worked on the PARK model. The presentation of the wake model is based
on the work of Heiming [7].
The wake model does not consider the different wind speeds on different vertical levels
so that the wind measurements from the FINO3 research platform are not adapted
to the height of the turbines. The previous presented wind data are measured in a
height of 100 m so that the discrepancy between the turbine’s height and the measured
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z

D

Figure 4: Turbine measurements: D represents the rotor diameter and z is standing
for the hub height of the mast. Source: Heiming [7]

wind data is not that big. For example the height of the turbines at the Horns Rev1
wind farm is 70 m. This is an example for the need of considering uncertainties in
our mathematical models which will be presented in Section 4. Also in the model the
velocity deficit inside the wake only changes in stream direction of the wind, i.e. the
velocity deficit only depends on the distance x from the perturbing turbine which is
illustrated in Figure 5. Therefore, it is not suitable for the calculation of a flow field
with an exact velocity distribution. The model is designed for the far wake case and
is only valid for distances of the turbines of three rotor diameters or more. The wake
radius grows with a factor κ so the wake diameter Dw = Dw(x) grows linearly by 2κ
(see Figure 5). The scalar κ is defined as follows [20]:

κ = 0.5
ln z

z0

(2)

where z is the hub height of the turbine (see Figure 4) and z0 is called surface
roughness. The surface roughness depends on the site ground. It can be assumed as
constant for most cases. But there is also a formula presented in [12] to compute the
surface roughness depending on the sea state based on the the waves caused by the
wind velocity. Heiming [7] assumed z0 to be constant in his thesis and set it to a
typical value of 0.03 m for offshore sites.
The equation for the velocity deficit at any point inside the wake of a turbine inside
the free stream with velocity u0 is

6



x

D Dw = D + 2κx

u0

u0

uw

Figure 5: Visualization of the wake as described in PARK. The unperturbed free stream
u0 hits the turbine and its blades and generates the wake and the resulting
wind speed uw. The wake grows linear with the factor 2κ. D represents the
rotor diameter of the turbine, Dw is the width of the generated wake and x
stands for the distance from the turbine. Source: Heiming [7]

δu(x) = 1− uw

u0
=

1−
√

1− Ct(u0)
(1 + 2κx

D
)2

(2)=
1−

√
1− Ct(u0)

(1 + x
D·ln(z/z0))2 , (3)

where Ct(u) is the thrust coefficient of the turbine (see Figure 7), D is the rotor
diameter (see Figure 4) and uw describes the velocity inside the wake. For detailed
description see Heiming [7]. As the above derivation is only valid for the wake of a
turbine in the free stream, we now have to generalize it to get the velocity deficit at a
turbine inside the wake of another turbine that is not necessarily inside the free stream.
A few things have to be changed so the above requirements are met: We call the

wake generating turbine i and the wake affected turbine j. The incident velocity of
turbine i then is uinci

. If turbine j is fully affected by the wake, we can use the above
formulation. However if turbine j is only partially affected, we need to introduce a
shadowing factor βκ ∈ [0, 1] as presented by Choi and Shan [2]:

βκ = AIntersection

ATurbine
,

where AIntersection is the circular intersection of the wake cross section with the tur-
bine’s circular area ATurbine (see Figure 6). The equation for the velocity deficit has
changed as follows:

1− uw

uinci

=
βκ
(
1−

√
1− Ct(uinci

)
)

(
1 + 2κx

D

)2 .
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Turbine 0

Turbine 1

Figure 6: Intersection of wake effect on other turbine. Source: Heiming [7]

As this formulation depends on the incident velocity at turbine i, we need to trans-
form it to make it dependent on the free stream velocity u0:

δuij
= 1− uw,i

u0
= 1−

uincj

u0
= u0

uinci

βκ
(
1−

√
1− Ct(uinci

)
)

(
1 + 2κx

D

)2

 .
For the case of two interacting wakes the velocity deficits are added as follows:

δ2
uj

= δ2
u1j

+ δ2
u2j

⇔
(

1−
uincj

u0

)2
=
(

1− uw,1

u0

)2
+
(

1− uw,2

u0

)2
,

with uw,1 and uw,2 representing the velocities inside the two wakes. In a more general
case with an arbitrary number of interacting wakes we can compute

δuj
=

√√√√ N∑
i=1

δ2
uij
,

where N is the number of interacting wakes and δuij
represents the velocity deficits

of the single wakes i affecting turbine j.

3.3 Power Generation Model
The turbines are converting the wind’s kinetic energy into electrical energy. When wind
passes the turbine blades, the turbine blades are rotating and the turbine generates
power from the wind. There are different types of wind turbines. The most common
type is a horizontal axis wind turbine which has three blades and is installed on top of
a tower, set against the wind direction. Horizontal axis wind turbines are characterized
by their hub height z, which is the height from bottom to the top of the tower, where
the turbine is placed and their rotor diameter D (see Figure 4). This type is also
used in the wake model. A turbine has also a few more attributes. Important for our
model are the cut-in speed ucutin and the cut-out speed ucutout. These values specify
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the range of wind speed, in which the turbine is generating power. If the wind speed is
lower than ucutin there is not enough wind for efficient power production, and for wind
speeds larger than ucutout the turbine may become damaged. Typically the cut-in speed
is about 3 to 4 m/s and the cut-out speed about 25 m/s. Furthermore, the turbine’s
performance can be described by curves which are specifying the power output with
the power curve P (u) and a Ct curve Ct(u) specifying the thrust coefficient, both
depending on the wind speed u (see Figure 7). There are often several curves for
different air density values. In this work it is assumed that the density is constant at
1.225 kg/m3, which is the air density at a temperature of 15 ◦C at sea level.
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Figure 7: Thrust coefficent Ct and power production of the turbine Vestas V80 with
cut-in speed of 4 m/s and cut-out speed of 25 m/s (dashed vertical lines).

3.4 Gross annual Energy Production (AEP)
In this section the mathematical model for the calculation of the gross AEP will be pre-
sented. With the wind speed distribution described as the weibull distribution fαi

(u)
for each wind sector αi, the calculated velocity deficits δu and the power curve P (u)
for each wind speed u the gross AEP can be calculated. This is the most important
value for the cost models:

EAEPgross = (8760h+ 6h) · P

≈ (8760h+ 6h) ·
Ndirections∑

i=1
wαi
·
Nspeeds∑
j=0

wj · fαi
(uj) ·

Nturbines∑
k=1

Pαi
(uincj,k

),
(4)

where P describes the mean power for a given wind distribution in MW. This must
be projected to the length of one year to get the AEP measured in MWh that is why
P is multiplied by (8760h+ 6h), where 8760 is the number of hours in a year and the
additional six hours is a correction to get the mean number of hours per year with a
leap years respected. This complies to 365,25 days per year.
The expected power value P for all directions is
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P :=
∫ 2π

0
Pαdα

≈
Ndirections∑

i=1
wαi
· Pαi

with Ndirections describing the number of wind directions and wαi
standing for the

weight for direction αi. Pαi
is the expected power value of a wind farm for all wind

speeds u in one wind direction αi which is given by

Pαi
:= E[Pαi

(u)]

=
∫ ∞

0
Pαi

(u) · fαi
(u)du

=
∫ ucutout

ucutin
Pαi

(u) · fαi
(u)du

≈
Nspeeds∑
j=1

wj · Pαi
(uj) · fαi

(uj)

where fαi
(uj) describes the probability density function (see equation (1)) of the

wind speed distribution, ucutin and ucutout are the turbine’s cut-in and cut-out speed
respectively, wj is the weight for speed j and

Pαi
(u) =

Nturbines∑
k=1

Pαi
(uinck

)

denotes the total power output of the wind farm at wind speed u and direction α.
Pαi

(u) is the power production of one turbine at wind speed u and uinck
is the incident

wind speed at turbine k at wind direction αi and wind speed uinc. The incident wind
speed is computed by

uinc = (1− δu)u0,

where u0 is the unperturbed free stream speed and δu is the velocity deficit at a
turbine rotor with perturbed wind inside another turbine’s wake. The calculation of
the velocity deficit was described in section 3.2.

3.5 Cost Model
There are different quantity of interests for the evaluation of wind farms which can later
be used as objective functions to optimize a wind farm by minimizing or maximizing
the quantities of interest [22]. In this thesis the quantity of interest can be measured
by cost models which calculate different indicators that point out the economic benefit
of a wind farm. The quantities of interest of our model are illustrated with the red
ellipses in Figure 1. In the following the net AEP calculation will be presented followed
by the calculation of the levelized cost of energy, net present value and the internal
rate of return.
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3.5.1 Net annual Energy Production (AEP)

The net AEP results by reducing the gross AEP with a constant factor which includes
availability losses as a result of turbine and grid downtime of the wind farm, electrical
efficiency due to line losses and curtailment of grid and ramp-rate which can be sum-
marized to the plant performance losses ploss. The calculation for the net AEP can be
formulated as:

EAEPnet = EAEPgross · (1− ploss). (5)

3.5.2 Levelized Cost of Electricity (LCOE)

The LCOE represents the price of electricity per kWh over the whole lifetime of a wind
farm. The less the cost of electricity is the worthwhile gets the whole project. The
formula of the LCOE by Lackner and Elkinton [11] can be represented as:

KLCOE =
Ccapital ·

(1 + rrate)` · rrate

(1 + rrate)` − 1 + Co&m

EAEPnet
, (6)

where Ccapital is representing the total capital costs for turbines, cabling, substation,
decommission etc., Co&m are the annual operation and maintenance costs and discount
rate rrate including debt, taxes and insurance over the lifetime ` in years.

3.5.3 Net Present Value (NPV)

The NPV by Gonzales et al. [6] is a indicator for the today’s monetary value of a
project. The higher the value the better is the project. In general a negative value is a
bad indicator for the calculated project. A positive value is better but have not a big
power of expression without comparing the value with another project or alternative
settings of the considered project. The NPV can be calculated as follows:

CNPV = CPRV − Ccapital +
∑̀
t=1

EAEPnet ·Kenergy − Co&m

(1 + rrate)t
, (7)

where CPRV is the present residual value of the wind farm after the lifetime l in years,
Ccapital includes the total capital costs for turbines, cabling, substation, decomission
etc., Co&m are the annual operation and maintenance costs with respect to the discount
rate rrate and Kenergy represents the price of energy on the market. Usually EAEPnet,
Kenergy and Co&m are time-dependent, but because we are working with averaged values
(e.g. the wind data is aggregated from several years), we assume them to be constant
in time.
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3.5.4 Internal Rate of Return

The internal rate of return rIRR is also a measure for the profitability of an investment
for a project. The rIRR is the discount rate rrate in (see equation (7)) which makes the
net present value CNPV of all cash flows of the considered project equal to zero. If the
rIRR is greater than the real discount rate rrate plus risk deficits it can be said that
the considered project is worth to be done in an economical view. The rIRR can be
calculated with a lot of numerical methods e.g. with the interpolation method where
a rate rIRR have to be estimated first and then have to be modified with certain rules
until the required accuracy of rIRR is reached.
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4 Offshore Wind Farm Modeling with Uncertainties
In this section the offshore model presented in Section 3.2 will be modified to a stochas-
tic offshore model considering uncertainties regarding the input parameters. The pre-
sented formulas and functions of our four sub-models have to be transformed for the
uncertainty quantification. How this is achieved will be presented in the next subsec-
tions.

4.1 Uncertain Input Parameters
As I will be mentioning in Section 5.2 we have to examine the uncertain input param-
eters of our offshore model. They include measured data which can be affected with
a certain error. To examine these parameters we have to perturb them with random
variables [21].
For this investigation we have listed some uncertainties with their predicted bounds

Uncertainty Max deviation 3σ Analogical normal distribution
1 Wind speed 5% ξwind ∼ N (1, 0.016̄)
2 Wake Effect 5% ξwake ∼ N (1, 0.016̄)

Ct Curve 5% ξct ∼ N (1, 0.016̄)
Surface roughness 5% ξrough ∼ N (1, 0.016̄)

3 Power Curve 5% ξpower ∼ N (1, 0.016̄)
4 Plant performance losses 5% ξloss ∼ N (1, 0.016̄)

Capital costs 5% ξcapital ∼ N (1, 0.016̄)
Annual O&M costs 5% ξo&m ∼ N (1, 0.016̄)
Discount rate 5% ξrate ∼ N (1, 0.016̄)
Energy price on market 5% ξenergy ∼ N (1, 0.016̄)

Table 1: Ten uncertain input parameter which will be perturbed by a random variable ξ
of its corresponding normal distributionN (µ, σ). The parameter σ is obtained
by the max deviation value d which is given in %. This value indicates that in
the worst case the input parameter values will be perturbed by ±d% which is
achieved with the right determination of the normal distribution. A value of
d% corresponds to the normal distribution parameter σ = d

300 so that 99.73%
of the generated random variables are in a range of ±d% if they are multiplied
with the base case input value.

of inaccuracy. In Table 1 the parameters are listed and are divided into four categories
respectively standing for the four sub-models of our offshore model. The parameters
are derived from the uncertainties from [3]. The values of the maximum deviation for
the parameters lead to a perturbation of the base case values of the input parameters
which are the unperturbed values that are measured and estimated for the determinis-
tic models. For example the error affection of 5% for a specific parameter value means
that in the worst case the uncertain parameter value vary about ±5% to the original
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base case value. That means that for the investigation the base case parameter values
will be perturbed with random variables ξi of their corresponding normal distribution
N (µ, σ). A value of d% corresponds to a normal distribution with mean µ = 1 and
a sigma σ with the value of d

300 . That leads to a perturbation of the input value of
±d% if the base case input value is multiplied with the generated random variable.
The determination of σ due to the fact that a value of 3σ covers 99, 73% of all possible
occurring random variables of a specific distribution (see Figure 8). With the choice of
normal distributed random variables, the base case values of the input parameters are
with the highest probability while larger deviations get more unlikely as we assume
that values closer to the base case values are more likely than larger deviations from
the base case values.

−3σ −2σ −σ µ σ 2σ 3σ
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0.2

0.3

0.4 ±1σ = 68, 27%
±2σ = 95, 45%
±3σ = 99, 73%
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x

P
D
F
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)

Figure 8: Normal distribution N (0, 1) with coverage of generated values.

4.2 Offshore Model with Uncertainties
The above defined random variables are now included into the formulas and functions
of our offshore model.

4.2.1 Perturbed Wind data

One of the main input of our offshore model is the wind data. In Section 3.1 the wind
data processing and the approximation of the wind data to a specific wind speed distri-
bution is shown. Our input for the wake model consists information about the weibull
distribution parameters λ and k and the probability for every considered direction.
Lets assume that the measurements of our raw wind data is error affected by a fixed
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factor. Therefore that the wind data will be processed beforehand to the specified
input which includes weibull distribution parameters and probabilities for each wind
direction we have to find out how to perturb the weibull distribution parameters to
purpose a error on the measured raw wind data.
Lets assume that we processed our wind data to a weibull distribution with λ = λ0
and k = k0. When we perturb our raw wind data with a perturbation factor d, we can
show that this leads to a new weibull distribution with perturbed weibull parameters
λ̃ = d · λ0 and k̃ = k0 (see Figure 9).

Proof. We consider the maximum likelihood estimation (see Heiming [7]) for the pa-
rameter λ and k and raw wind data x1, x2, . . . , xn:

k−1 =
∑n
i=1 x

k
i ln xi∑n

i=1 x
k
i

− 1
n

n∑
i=1

ln xi (8)

λ =
(

1
n

n∑
i=1

xki

)1/k

(9)

Now we perturb our raw wind data with the factor d which leads to perturbed raw
wind data x̃i = d · xi and show that this only influences the parameter λ:

k̃−1 =
∑n
i=1 x̃

k
i ln x̃i∑n

i=1 x̃
k
i

− 1
n

n∑
i=1

ln x̃i

=
∑n
i=1(d · xi)k ln(d · xi)∑n

i=1(d · xi)k
− 1
n

n∑
i=1

ln(d · xi)

=
∑n
i=1 d

kxki (ln d+ ln xi)∑n
i=1 d

kxki
− 1
n

n∑
i=1

(ln d+ ln xi)

=
∑n
i=1 x

k
i ln d+ xki ln xi∑n

i=1 x
k
i

− 1
n

(
n∑
i=1

(ln xi) + n ln d
)

=
∑n
i=1 x

k
i ln xi∑n

i=1 x
k
i

+
∑n
i=1 x

k
i ln d∑n

i=1 x
k
i

− ln d− 1
n

n∑
i=1

ln xi

=
∑n
i=1 x

k
i ln xi∑n

i=1 x
k
i

− 1
n

n∑
i=1

ln xi

= k−1

(10)

Such that the parameter k̃ = k.
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λ̃ =
(

1
n

n∑
i=1

x̃ki

)1/k

=
(

1
n

n∑
i=1

(d · xi)k
)1/k

=
(

1
n

n∑
i=1

dkxki

)1/k

= d

(
1
n

n∑
i=1

xki

)1/k

= d · λ

(11)

Finally, the parameter λ̃ results from λ multiplied by the factor d. Same results for
estimated weibull parameter of the perturbed wind data can be found in [23].

4.2.2 Uncertain Wind Model

Due to inaccurate measurements, imprecise long-term predictions, interannual vari-
ability, and further interferences [3], the distribution of the wind speed u is a highly
uncertain parameter. Therefore we perturb the raw data of the wind speed with a
normally distributed random variable ξwind such that perturbed probability density
functions of the weibull distribution are obtained, see Figure 9. In Section 4.2.1 is
shown that a perturbation d of the wind speed corresponds to the perturbation d of
the weibull parameter λ, such that the resulting probability for each wind speed u can
be formulated as random variable, compare with equation (1):

f̃αi

(
u, ξwind

)
=
(

k

λ · ξwind

)
·
(

u

λ · ξwind

)k−1

· exp
(
− (u · λ · ξwind)k

)
(12)

where λ > 0 is the scale parameter and k > 0 is the shape parameter of the weibull
distribution which are determined with the maximum likelihood estimation using the
unperturbed wind speed data.

4.2.3 Uncertain Wake Model

The predicted wake effect is perturbed due to uncertainty in the model inputs (in-
cluding wind direction), and that associated with the wake model performance. Fur-
thermore we need to include uncertainty concerning any proposed neighboring sites
(layout, turbine type) [3]. Therefore we perturb the velocity deficit of a wake with a
normally distributed random variable ξwake. Furthermore, the wake model depends on
the Ct curve and the surface roughness z0. Due to imprecise measurements of the Ct
curve, we perturb this parameter with the a normally distributed random variable ξct,
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Figure 9: Fitted weibull distribution with maximum likelihood estimation (MLE) for
wind speed distribution over the years of July 2010 to June 2017 for one
wind direction sector αi ∈ [225◦ − 255◦) measured at the FINO3 research
platform. Red and green plots representing the fitted weibull distribution
with MLE after perturbing the wind speed data with a factor of ±6%, ±12%
and ±18%. The random variable ξwind(u) represents weibull distribution
between the highest red plot (MLE fit -18%) and the lowest green plot (MLE
fit +18%) with a probability of 99.73%.

see Figure 10. The value of Ct(u0) ·ξct must not be grater than or equal to one because
in formula (13) can be seen that this would lead to an undefined value (root from
negative number) for the velocity deficit so that the perturbation of the uncertain Ct
curve is truncated so that it can not be equal to one. The surface roughness depends
on the topography and flora [24], i.e. for offshore wind farms it depends on the wave
field, wind speed, upstream fetch and water depth [13]. Thus, also this parameter z0
should be stochastic and is therefore perturbed with a normally distributed random
variable ξrough. Altogether, the velocity deficit behind a turbine at any point x from
equation (3) changes as follows:

δ̃u(x) =
1−

√
1− Ct(u0) · ξct

(1 + x
D·ln(z/z0·ξrough))2 · ξwake, (13)

4.2.4 Uncertain Power Generation Model

The turbine performance is perturbed due to material fatigue which leads to uncer-
tainty in the power curve. Furthermore, there is uncertainty on the performance under
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site conditions for which the power curve might not be valid. This also includes the
impact of atmospheric stability and uncertainty associated with icing losses as well
as other environmental losses, e.g. blade soiling, blade degradation, weather effects.
Altogether we perturb the power curve by the normally distributed random variable
ξpower (see Figure 10) such that the power curve changes as follows:

P̃
(
u, ξpower

)
= P (u) · ξpower. (14)
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Figure 10: Perturbed Ct and power curve of of the turbine Vestas V80 with cut-in
speed of 4 m/s and cut-out speed of 25 m/s (dashed vertical lines). The
red tube illustrates the Ct and power curve with a perturbation of ±10%.

4.2.5 Uncertain gross Annual Energy Production (AEP)

The uncertain gross AEP depends on the probability density function (12) for the wind
distribution, on the uncertain velocity deficit function (13) and on the uncertain power
function (14) so that formula (4) for the gross AEP changes as follows:

ẼAEPgross = (8760h+ 6h) · P

≈ (8766h) ·
Ndirections∑

i=1
wαi
·
Nspeeds∑
j=0

wj · f̃αi
(uj, ξwind)

·
Nturbines∑
k=1

P̃αi
(uincj,k,ξpower,ξct,ξrough,ξwake)

(15)

4.2.6 Uncertain net Annual Energy Production (AEP)

The net AEP depends from the availability losses ploss which consider the grid and
turbine downtime. Because these influences highly depend on external circumstances
this parameter should be modeled stochastic. Thus, we perturb the availability losses
from (5) with the normally distributed random variable ξloss, which results into the
following formula:

ẼAEPnet = ẼAEPgross · (1− ploss · ξloss). (16)
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Note, that the perturbation of the random variable ξloss is chosen with 2.18 % as the
same value as the availability losses ploss, compare Table 5 and 1. This means, that for
a deviation of 3σ the losses vanish and thus the net annual energy production equals
to the gross annual energy production. Of course we need to ensure, that a value of
higher than 3σ can never be reached. Thus, finally ξloss is modeled as a truncated
normally distributed random variable because it should not be possible to calculate
a higher AEP with a uncertain power loss than it would be without considering the
power loss.

4.2.7 Uncertain Levelized Cost of Electricity

The capital costs Ccapital mainly depend on the price of steel. But because of the long
planning stage of several years for a wind farm the calculation depends on long-term
predictions for the steel price which is very volatile. Therefore we perturb the capital
costs with a normally distributed random variable ξcapital. The same argument holds
for the discount rate rrate, which is in an early planning stage very unsure such that
this parameter is perturbed with a normally distributed random variable ξrate. The
costs for annual operation and maintenance Co&m also underlie the volatile behavior
of the price of steel (for the material), and other political decisions like payroll taxes.
Therefore also this parameter is perturbed with a normally distributed random variable
ξo&m. Altogether, the the levelized cost of electricity from (6) changes as follows:

K̃LCOE =
Ccapital · ξcapital ·

(1 + r̃rate)` · r̃rate

(1 + r̃rate)` − 1 + Co&m · ξo&m

ẼAEPnet
, (17)

with perturbed discount rate r̃rate = rrate · ξrate.

4.2.8 Uncertain Net Present Value

The net present value depends on the selling price of energy per kWh Kenergy which is
in many countries a value which is defined by political laws. In Germany, for example,
this value changes every quarter of a year. In an early planning stage this parameter
is very unsure such that it is perturbed with a normally distributed random variable
ξenergy. This changes the calculation of the net present value from (7) as follows:

C̃NPV = CPRV − Ccapital · ξcapital +
∑̀
t=1

ẼAEPnet ·Kenergy · ξenergy − Co&m · ξo&m

(1 + r̃rate)t
. (18)

4.2.9 Uncertain Internal Rate of Return

The perturbed internal rate of return r̃IRR is the discount rate r which makes the
uncertain net present value (18) equal to zero. This value should be greater than the
discount rate rrate plus risk deficits for a profitable project.
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5 Uncertainty Quantification (UQ)
In this section furthermore some techniques from the field of UQ are presented. The
random variable generation is explained which is important for the sampling methods
in Section 5.4.
Uncertainty quantification is the combination of probability theory and statistical prac-
tice with the ’real world’. It involves one or more mathematical models which repre-
sents scenarios from the real world and investigates uncertainties of the models itself
or model inputs for those models. It is a method to delimit risks beforehand in order
to prevent losses because of miscalculations in e.g. financial planning of a project [8].
Like mentioned before there are different sources of uncertainties. One source are
the model errors or discrepancies itself which occur because of the approximation of
physical, biological, economic or social processes. Components of those models are
simplified such that the power of representation of those models are just representa-
tive up to a certain degree. Another source of risks are the input uncertainties. These
uncertainties occur when a model has nonphysical parameters whose values must be
determined using measured data where measuring inaccuracy can appear. Numeri-
cal errors are also a source of uncertainties which arise in computer algorithms using
numerical approximations. They include round off, discretization or approximation
errors, bugs or coding errors and other unpredictable scenarios [21].
In this thesis the input parameters of our offshore model will be considered and ex-
amined to make an uncertainty quantification on our quantity of interest. So we will
perturb the input parameters used in our offshore model to make statements about
risks in planning an offshore wind farm.

5.1 Fundamentals of Probability and Statistics
Before we come to the operative part of uncertainty quantification we have to define
some probability and statistic basics.

5.1.1 Probability Basics

Probability Space A probability space (Ω,Σ, P ) is made of three components:

Ω : sample space is the set of all possible results from an experiment

Σ : σ-field of subset of Ω that contains all events of interest

P : Σ→ [0, 1]: measure that gives the events probability values
(i) P (∅) = 0
(ii) P (Ω) = 1
(iii) if Ai ∈ Σ and Ai ∪ Aj = ∅ and i 6= j, then P (⋃∞i=1 Ai) = ∑∞

i=1 P (Ai).
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Figure 11: Cumulative distribution function of normal distribution with mean µ = 0
and variance σ2 = 1.

Random Variable A random variable X is a function X : Ω→ R with the property
that {ω ∈ Ω|X(ω) ≤ x} ∈ Σ for each x ∈ R. The value x = X(ω), for an event ω ∈ Ω
is called realization of X.

Cumulative Distribution Function The cumulative distribution function (see Fig-
ure 11) FX : R→ [0, 1] describes the probability of a random variable X given by

FX(x) = P (X ≤ x) = P ({ω ∈ Ω|X(ω) ≤ x}). (19)

Probability Density Function The probability density function is the distribution of
a random variable X (see Figure 12). If the cumulative distribution function of X is
continuous it can be expressed as

FX(x) =
∫ ∞
−∞

fX(s)ds, x ∈ R, (20)

where the derivative fX = dFX

dx
, mapping R to [0,∞) is called the probability density

function of X.

Law of Large Numbers and Central Limit Theorem The law of large numbers
and central limit theorem are fundamental in the probability theory. The main idea
of them is that for a large number of attempts of a random experiment, the average
defined by

X̄n = 1
n

n∑
i=1

Xi, (21)

21



−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

x

P
D
F
(x
)

Figure 12: Probability density function of the normal distribution with mean µ = 0
and variance σ2 = 1, also written as N (0, 1).

where Xi are random variables, converges to the mean µ. So it can be said that
X̄n

a.s.−−→ µ, for sufficiently large n. For detailed explanation look up Smith [21, p.86].

5.1.2 Statistics for Uncertainty Quantification

To evaluate our results later on we have to use some statistics. A data set with n
entries of a quantity of interest where every entry is represented as xi for 1 ≤ i ≤ n
can be evaluated with the following formulas which make statements about the data
set:

Mean µ
µ = 1

n

n∑
i=1

xi (22)

The mean µ describes the expected value of the data set.

Standard Deviation σ

σ =
√√√√ 1
n− 1

n∑
i=1

(xi − µ)2 (23)

The standard deviation is a measure for the spread of the entries of the data set. A
big value indicates that most of the entries are far away from the mean µ.

Variance σ2

σ2 = 1
n− 1

n∑
i=1

(xi − µ)2 (24)
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The variance σ2 is the square of the standard deviation σ and states different to the
standard deviation not the wideness of the spread but the strength of the spread
referred to the data set.

Minimum xmin and Maximum xmax

xmin = min{xi|1 ≤ i ≤ n}
xmax = max{xi|1 ≤ i ≤ n}

(25)

The minimum xmin and maximum xmax represents the smallest and the biggest value
of the data set.

Range R
R = xmax − xmin (26)

The range R describes the distance between the smallest and biggest value of the data
set.
All of these statistical measures are referred from [18].

5.1.3 Boxplot

A boxplot is a graphical representation of data which visualize statistical character-
istics of a considered data set. In Figure 13 a boxplot can be seen where statistical
characteristics are shown. The boxplot is made of a box, two antennas or arms and
points outside of the antennas. The box’s width is determined by the lower and upper
quartile and stands for the inter quartile range (IQR) where 50% of the data in the
data set are located. The lower or 0.25 quartile q0.25 indicates the bound where 25%
of the data is below or equal to the quartile value and the upper or 0.75 quartile q0.75
indicates the bound where 75% of the data is equal or over to the quartile value. The
vertical line inside the box stands for the median of the data set which means that 50%
of the data is smaller or equal to this value. The fact that 50% of the data is located
inside the box means that the rest of the data is located outside the box. The range of
the data is represented with the limitation of the lower and upper whisker wlower and
wupper or if outliers are shown between the first and last outlier. The bounds wlower
and wupper are calculated as follows:

wlower = q0.25 − 1.5 · IQR
wupper = q0.75 + 1.5 · IQR

(27)

With this representation the distribution of the data set is nicely visualized and can
be easily compared with other distributions on the same plot.
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Figure 13: Boxplot representation with outliers, upper and lower whisker, upper and
lower quartile and median.

5.2 Input Parameters
An investigation of a deterministic model, which does not consider variations of the
input parameters, is often termed base case scenario, since the values of these input
parameters are assumed or measured values. An effective model should consider risks
in these input parameters. In the most cases scientists investigate the base case, the
best case, and the worst case scenario for the values of the input parameters. But this
approach has some disadvantages, e.g. it can be difficult to find the best and worst
case scenarios for each input parameter. Also the input parameters may not be at their
best or worst levels at the same time which also can lead to unpredictable outputs.
One have to increase the number of possible cases, but it is not practical to go through
all possible values of each input parameter [18]. So sample methods will be used to
manage this (see Section 5.4) by filling up the probability space to cover as much as
possible cases to see which influence the uncertain model inputs have regarding to the
quantities of interest.

5.3 Inverse Transform Method (ITM)
To perturb the input parameter of our offshore model we need random numbers to
change the input according to a specified distribution. The random number generation
is usually split into two stages:

1. Generation of uniform distributed random variables in the interval of [0, 1].

2. Conversation of uniform distributed random variables into random variables of
a specific probability distribution.

The inverse transform method can use independent and identically distributed ran-
dom variables to generate random variables of any other desired distribution. To gen-
erate a random variable X with a cumulative distribution function F the inverse of F
have to be evaluated with a random variable Y of the uniform distribution U(0, 1)[14].
The generalized inverse of F , F−1 is defined by:

X = F−1(Y ) := min{x|F (x) ≥ Y }. (28)
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Proof.
F (x) = P (X ≤ x) = P (F−1(Y ) ≤ x) = P (Y ≤ F (x)) = F (x)

In Figure 18, 19 and 20 the inverse transform method from independent and iden-
tically distributed random variables to the normally distributed random variables is
shown.

5.4 Sampling Methods

Input model

UQ
sampling methodRV

Output

generates

perturbs

computes

Figure 14: One sample step of uncertainty quantification with mathematical model.

To make an uncertainty quantification on the input parameters of the PARK wake
model we have to perturb them like mentioned in Section 5.3. Then we use the per-
turbed input parameters in our simulation model to get an individual outcome for
every perturbation.
With the use of the law of large numbers and the central limit theorem we can then
predict the impact of each input parameter on the quantities of interest. Therefore it
is necessary to use sampling methods which generate random variables from probabil-
ity distributions which perturb the input parameters in every sample step according
to the random variable which was generated as described in Figure 14. Every input
parameter has its own specific distribution, for example the normal distribution (see
Figure 12). The size of samples highly affect the accuracy of the results so that with
a larger number of samples more accurate results will be computed.
The sampling methods which will be presented in the following are the Monte Carlo
sampling method, the Quasi Monte Carlo sampling method and the Latin Hypercube
sampling method. Each method have their advantages and disadvantages according
to the generation of random numbers.

5.4.1 Monte Carlo Sampling

The Monte Carlo sampling method is based on repeated random sampling and statis-
tical analysis of the results [18]. This sampling method generates the random variables
with the help of a random number generator. These random values then will be trans-
formed to random variables of a probability distribution. By perturbing the input
parameters in every sample step according to their specific distributions we get, after
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Figure 15: 2D - C++ random number generator (Mersenne Twister Engine) with 1000
sample points.

a sufficient number of samples, a resulting distribution which can be analyzed (see Sec-
tion 5.1.2). If one input parameter is considered it is easy to fill the whole probability
space of the distribution. But for the multidimensional case it gets more difficult to fill
the whole multidimensional room as illustrated in Figure 15. In the Figure are 1000
random sample points and there are still areas which are not considered. The samples
are not distributed very evenly and therefore an even larger number of samples is re-
quired to also consider the empty spaces. Since Monte Carlo sampling method is very
simple there are improved sampling methods which try to reduce the size of samples.

5.4.2 Quasi-Monte Carlo Sampling

One of the improved sampling methods is the quasi-Monte Carlo sampling method.
It relies on the foundation of the Monte Carlo sampling method which generates the
random variables with the help of a low discrepancy sequences. These sequence values
then will be transformed to random variables of a probability distribution e.g. with the
inverse transform method described in section 5.3. A random number generator, as for
the traditional Monte Carlo method, produces independent and identically distributed
random numbers. In Figure 18(a) a normalized histogram of the generated numbers
shows a significant discrepancy between the generated numbers and underlines that
the generated numbers are not distributed very evenly.
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Figure 16: 2D - Sobol sequence with 1000 sample points.

step 0 1 2 3 4 5 . . .
value 0 0.5 0.75 0.25 0.875 0.375 . . .

Table 2: 1D - Sobol sequence number generation.

The aim of low discrepancy sequences for the quasi-Monte Carlo method is to reduce
the discrepancy of the generated numbers to reduce in this way the size of samples.
Morokoff and Caflisch [15] have investigated different approaches of low discrepancy
sequences which can be used as the needed numbers for the transformation into the
specific random variables.
These low discrepancy sequences have the characteristic that they are an infinite se-
quence of values such that for every number of generated values the sequence stays
uniformly distributed. Morokoff and Caflisch examined three different low discrepancy
sequences. The Halton, Sobol and Faure sequence. The result was that Halton se-
quences are the best for up to around six dimensions and for higher dimensions the
Sobol sequence was better. The Faure sequence was for the most part of validation
outperformed by the other two techniques. We want to consider the Sobol sequence
in this thesis with the reason that we want to be able to perturb more than six input
parameters.
The Sobol sequence can briefly be explained as an infinite sequence of uniformly dis-
tributed values in [0, 1). The sequence generates new values by filling the empty spaces
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as shown e.g. for the one dimensional case in Table 2 or for the two dimensional case
in Figure 16. It can be seen that the 1000 points are spread more evenly and with a
certain scheme, so that there are less and smaller areas that are not filled compared
to the traditional Monte Carlo method. For a detailed explanation of the generation
of the sequence see Bratley and Fox [1].

5.4.3 Latin Hypercube Sampling
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Figure 17: 2D - Latin Hypercube sampling with 1000 sample points.

The Latin Hypercube sampling method is also an improved sampling method with
the same approach as the quasi-Monte Carlo sampling method. The aim here is also
to have a low discrepancy between the values generated by random number generator.
The difference to the quasi-Monte Carlo sampling method is that the Latin Hyper-
cube sampling method has to know the number of samples beforehand and calculates
the generated numbers based on the sample size. This has the advantage, that the
generated numbers can be more evenly distributed than with the Sobol sequence as
illustrated in Figure 17. It has to be mentioned that the Latin Hypercube sampling
method has many implementations. In this thesis the Improved Distributed Hyper-
cube sampling is used because of it’s evenly distributed numbers in even more than
one dimension. But there are also disadvantages because the numbers for the Latin
Hypercube sampling method have to be computed beforehand and have to be stored
which increases the the computational time before it comes to the actual simulation.
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seconds
Generated numbers Latin Hypercube sampling Sobol sequence

8 0.000 012 0.000 001
16 0.000 050 0.000 001
32 0.000 309 0.000 001
64 0.002 102 0.000 002
128 0.015 182 0.000 005
256 0.115 596 0.000 012
512 0.893 315 0.000 022
1024 7.039 090 0.000 042
2048 44.882 800 0.000 090
4096 265.766 000 0.000 157
8192 2441.780 000 0.000 307

Table 3: Duration in seconds in dependency of generated 2-D Latin Hypercube sam-
pling numbers and 2-D Sobol sequence numbers. For comparison: One calcu-
lation step of the annual energy production (AEP) averaged needs 0.726141
seconds but because of parallel computation the calculation depends linear
on the number of threads. For example the calculation of the AEP with four
threads effectively needs 0.181535 seconds. The used CPU is a 1,8 GHz Intel
Core i5 of the second generation.

For example in Table 3 the computation time for the two dimensional case compared to
the Sobol sequence numbers is shown. The duration of two dimensional Latin Hyper-
cube sampling method numbers is quadratic compared to a almost linear computation
time of two dimensional Sobol sequence numbers. In [17] the Improved Distributed
Hypercube sampling is presented and it is said that the algorithm requires an array of
the dimension D ·N ·N with N for the number of Latin Hypercube sampling method
numbers and D for the duplication factor which is set to the value of one in our im-
plementation. Moreover, the program is inherently quadratic in N in the computation
time. The computation of the i-th point requires a consideration of the value of the
coordinates used up by the previous points, and the distances from each of those points
to the candidates for the next point. In Section 6.3 the three sample methods will be
compared with regard to the random variable generation.

5.5 Random Variable Generation
To generate the random variables for the UQ part it is necessary to use random numbers
as discribed in Section 5.3. As the offshore model’s simulation program is programmed
in C++ there are standard implementations for that. C++ provides random number
generators and also methods and classes to use them for probability distributions.
They has been used for the Monte Carlo sampling method as it uses random numbers.
The use of truly random numbers in a computer program is impossible because of
its precise and deterministic behavior. Random numbers generated by computers are
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called pseudo random numbers which are computer generated sequences that are imi-
tating the randomness in a acceptable and not bad way [16]. They are implemented in
a way that the outcome is simulating independent and identically distributed random
numbers (see Figure 18(a)). To generate random variables of a specific distribution the
standard implementation of C++ uses either the inverse transform method or other
methods as the Box Muller method or the rejection method. In the case of normal
distributed random variables C++ uses by default the Box Muller method where two
uniform distributed random variables will be transformed to two standard normal dis-
tributed random variables which is described in detail in [16].
The quasi-Monte Carlo sampling method and Latin Hypercube sampling method as
described in Section 5.4 have to use quasi random numbers. These numbers are char-
acterized by their truly even distributed numbers illustrated in Figure 19(a) and in
Figure 20(a). They have a very low discrepancy according to their spacing.
In my investigation I found out that the random variable generation for normal dis-
tributed random variables (which are in our case the most important random variables
for UQ) with the use of quasi random numbers with the Box Muller and the rejection
method leads to the damage of the low discrepancy of the random variables and the
result was that is was not better as with the use of pseudo random numbers (see Fig-
ure 18(b)). The solution for this problem is the use of the inverse transform method.
But out of that another problem occurred because the inverse transform method needs
the inverse of the cumulative distribution function of the normal distribution (see
Section 5.3). The problem here is that there is no analytically determinable inverse
function F−1 for the cumulative distribution function of the normal distribution. The
solution was provided by the inverse error function erf−1(x). Hence that the cumula-
tive distribution function F of the normal distribution and the error function erf(x)
have a similarity, F of the standard normal distribution can be represented as

F (x) = 1√
2π

∫ x

−∞
e

−t2
2 dt = 1

2

(
1 + erf

(
x√
2

))
(29)

that yields
F−1(x) =

√
2 erf−1(2x− 1). (30)

If x is an independent and identically distributed random variable then y = F−1(x) is
a standard normal distributed random variable, with zero mean and unit variance [4].
To get a normal distributed random variable ŷ with different mean µ and variance σ2

the standard normal distributed random variable y has to be used as follows:

ŷ = µ+ y · σ. (31)

In Figure 19(b) for the quasi-Monte Carlo sampling method with Sobol sequences or in
Figure 20(b) for the Latin Hypercube sampling method can be seen that the solution
is correct as the erf−1(x) preserves the beneficial properties of the low-discrepancy
sequences which is explained in detail in [5].
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Figure 18: Inverse Transform Method with C++ random number generator. In Figure
(a) relation between probability density function of Uniform distribution
and frequencies of C++ random number generator numbers. In Figure (b)
result after transforming with erf−1(x) compared to probability density
function of normal distribution with 4096 samples.

erf−1(x) Sobol sequence numbers

PDF: Normal distribution
Sobol sequence numbers
PDF: Uniform distribution

ITM
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Figure 19: Inverse Transform Method with Sobol Sequence. In Figure (a) relation be-
tween probability density function of Uniform distribution and frequencies
of Sobol Sequence numbers. In Figure (b) result after transforming with
erf−1(x) compared to probability density function of normal distribution
with 4096 samples.
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Figure 20: Inverse Transform Method with Latin Hypercube Sampling. In Figure (a)
relation between probability density function of Uniform distribution and
frequencies of Latin Hypercube Sampling numbers. In Figure (b) result
after transforming with erf−1(x) compared to probability density function
of normal distribution with 4096 samples.
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6 Implementation
In this section a brief description about the implementation is presented which includes
basic information about the code and the program structure. The implementation is
based on the simulation program of Heiming [7] and Wolters [25].
The code is implemented in C++ and uses JSON files as the input for the variable
properties of the simulation program. The JSON input files can be generated with
standalone programs which convert raw data into JSON files. The input files are
separated into a turbine file which contains the needed turbine parameter of the wind
farm, a position file which provides all positions of the respective turbines, a wind
data file which describes the distribution of the wind speed in the form of the weibull
distribution for all wind directions and the probability for the specific wind direction, a
file which sets up the distribution for the uncertain parameters and which distribution
for each parameter should be used and a settings file for site and program settings.

6.1 Program Structure
In Figure 21 the program structure of the offshore model simulation is illustrated. The
simulation program is made of four (or five including the optimizer class) main classes:

1*

1

1

1

uses

1 1

Turbine WakeModel UQ

MC QMC LHS None

DataOptimizer

future work

Figure 21: UML class diagram

• The Data class reads the input parameters from the JSON files and provides
them for the other classes. The data is accessible with a data pointer for the
other classes so that the input parameters are not take up so much memory with
redundant data.
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• The Turbine class is providing the attributes and curves of the turbine.

• The WakeModel class is using the referenced Data object to generate the Turbine
objects which are used for the calculation of the quantities of interest which are
also implemented in this class.

• The uncertainty quantification (UQ) class is an abstract class which provides
the fundamental attributes and methods for the sample methods. It also has a
reference to the Data object. In the class diagram can be seen that the UQ class
has an association to the WakeModel class. The reason for that is that the sample
method is creating in each sample iteration a WakeModel object initialized with a
perturbed Data object, which was copied before from the referenced Data object
per copy constructor, to calculate the result of the selected quantity of interest.
After that the WakeModel and copied Data object will be deleted and in the
next iteration this process will be repeated.

• Hence this work is a preparation for the last step of the wind farm layout op-
timization problem: An Optimizer class has to be added which perturbs the
positions of the turbines to find the optimal wind farm layout in relation to the
selected quantity of interest.

6.2 Accuracy of gross annual Energy Production (AEP) calculation
In Figure 22 the impact on the accuracy of the number of speed classes NSpeeds are
illustrated. The more speed classes will be used for the numerical integration of the
wind speed distribution fαi

(u) the higher the accuracy for the gross AEP calculation
becomes. We consider the gross AEP because it is used by all quantities of interest of
the cost model. The accuracy of the integration with 16 quadrature points leads to a
accuracy of at least 99%. For the integration of the wind speed’s weibull distribution
we use the trapezoidal quadrature rule which generally can be formulated as follows:∫ b

a
f(x)dx ≈ b− a

2N

N∑
k=1

(f(xk+1) + f(xk))

In Figure 23 we can see the accuracy regarding to the calculation of the AEP in
dependency to the number of wind sectors. It can be seen that with more wind
direction sectors more precise results can be achieved. The number of wind sectors
can have a big influence to the computation time because the integration of the wind
direction is one of the outer integration loops in the simulation.

6.3 Precision of Inverse Transform Method
The precision of the generation of normal distributed random variables with the inverse
transform method (see Section 5.3) depends on the size of samples and can be read off in
Table 4 and is illustrated in Figure 24. The precision is measured with the root-mean-
squared-error (RMSE) which is a statistical measure for the difference of measured and
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Figure 22: Accuracy of annual energy production calculation with the integration of
two different weibull distributions (determined from the wind data of the
FINO3 research platform) with one turbine and one direction with the
trapezoidal quadrature rule with increasing number of quadrature points.
The reference value of the AEP is the integration with 217 = 131072 quadra-
ture points.

reference values. In our case the measured values are the relative frequencies of the
generated random variables compared to the values of the probability density function
of the normal distribution. The root-mean-squared-error is given as follows:

RMSE =
√√√√ 1
n

n∑
i=1

(xreference,i − xmesured,i)2 (32)

It can be seen in Table 4 that the random variable generation with the Sobol sequence
and the Latin Hypercube sampling are very similar. Moreover these methods have a
better precision with 512 samples regarding to the generation of normal distributed
random variables than pseudo random numbers with the random number generator of
C++ with 8192 samples. It also can be seen that the convergence rate with the random
number generator leads to a convergence of about c· 1√

N
with c ≈ 7 and the convergence

rate of the other two methods leads to ĉ · 1
N

with ĉ ≈ 30. That means the standard
Monte Carlo method has a convergence rate of O( 1√

N
) whereas the quasi-Monte Carlo

method and the Latin Hypercube method have a rate of O( 1
N

).
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Figure 23: Accuracy of gross annual energy production calculation with increasing
number of wind sectors. Reference value is annual energy production calcu-
lation with 4096 wind sectors and 64 quadrature points of the wind speed
distribution.

Samples Sobol sequence numbers Random number
generator numbers

Latin Hypercube
sampling numbers

128 0.285738 0.646411 0.277768
256 0.128956 0.465927 0.127106
512 0.065717 0.363601 0.0611908
1024 0.0307469 0.237796 0.0299242
2048 0.0152109 0.141674 0.0157462
4096 0.00679491 0.0983468 0.00610846
8192 0.00347264 0.0729508 0.00335724

Table 4: Precision measured with the root-mean-squared error in dependency of sample
size.
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Figure 24: Precision of inverse transform method according to normal distribution
with pseudo-random and quasi-random numbers, measured with root-mean-
squared error in dependency of sample size. The standard Monte Carlo
method has a convergence rate of O( 1√

N
) whereas the quasi-Monte Carlo

method and the Latin Hypercube method have a rate of O( 1
N

).
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7 Results
In this section we will examine the sensitivity of our uncertain input parameters con-
cerning our uncertain quantities of interest described in Section 4 using the techniques
from Section 5. The results of all four outputs will be analyzed and the influence of
the input variables on the computed net annual energy production, levelized cost of
electricity, net present value and internal rate of return will be determined.
Before we can analyze the uncertainties, it is necessary to introduce some of the no-
tation used by the variance based sensitivity analysis described by Saltelli et al. [19].
This notation is especially designed to express how the uncertainty in the model output
can be linked to uncertainties in the inputs.
The previously derived stochastic model will in the following be resembled by Y, while
the model inputs will be referred to as ξi. The uncertainty propagation of ξi through
Y is best described in the context of this notation by the sensitivity measure:

Si = varξi
(Eξ∼i

(Y|ξi))
var(Y) , (33)

which is technically the first order sensitivity coefficient that measures e.g. the additive
effect of ξi on the model output. Si can also be interpreted in terms of expected
reduction of variance. This interpretation allows an easier understanding of the factors
involed in the computation of Si:

• var(Y): variance of the output with all inputs modeled as random variables

• varξi
(Eξ∼i

(Y|ξi)): expected reduction in variance that would be obtained if ξi
could be fixed

7.1 Horns Rev 1
We consider the wind farm Horns Rev 1 with it’s 80 Vestas V80 offshore wind turbines.
The positioning of the turbines can be seen in Figure 25. The wind data is provided
from the FINO3 research platform over the years of July 2010 to June 2017 and in
Table 5 our used base case input parameters for the simulation can be seen. It has
to be mentioned that the values in the upper section of the table are real properties
of the Horns Rev 1 wind farm but the economical parameters in the second section of
the table are roughly estimated because they contain sensitive information which we
can not provide yet.
We perturbed the input parameters as presented in Table 1 in Section 4. That means
that every base case input parameter will be perturbed every sample step by a normally
distributed random variable with mean µ = 1 and standard deviation σ = 0.016̄ to
obtain a perturbation of ±5% for each uncertain parameter. The perturbation of ±5%
may not be realistic in real world because every uncertainty may vary with its real
perturbation, but since we do not have the real information of the perturbation values
it makes sense to make the uncertainty quantification with the same perturbation value
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for all input parameter to see a normalized influence on the model.
In the next subsections we will present the results and how significant the influence
of each uncertainty is regarding to the quantities of interest. In the simulation we
used the quasi-Monte Carlo sampling with 4096 samples, twelve wind direction sectors
and 64 quadrature points for the integration of the wind speed distribution. For each
quantity of interest we prepared a boxplot representation with the results and a table
which is presenting the values of the variance based sensitivity analysis for each used
uncertainty.
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Figure 25: Turbine positions and wake effect of wind farm Horns Rev 1.

Parameter Value
Rotor diameter D 80 m
Hub height z 70 m
Cut-in speed ucutin 4 m/s
Cut-out speed ucutout 25 m/s
Surface roughness z0 0.2 · 10−3 m
Power curve P (u) see Figure 7
Ct curve Ct(u) see Figure 7
Positions see Figure 25
Plant performance loss ploss 7.00 %
Total capital costs Ccapital 278 000 000 €
Annual operation and maintenance costs CO&M 24 000 000 €
Discount rate rrate 2.75 %
Project lifetime ` 20 years
Present residual value CPRV 0 €
Selling energy price Kenergy 0.10 €/kWh

Table 5: Parameters for the Horns Rev wind farm.

39



7.1.1 Net Annual Energy Production (net AEP)

In Figure 26 the results regarding to the net annual energy production for all influenc-
ing uncertainty parameters, i.e. wind speed, wake effect, Ct curve, surface roughness,
power curve and power loss are shown, since the other four uncertainties do not in-
fluence the net AEP calculation. The result for each uncertain parameter is shown
in a separate boxplot. It can be seen that the wind speed has the largest impact on
the net annual energy production in comparison to the other uncertainties. The top-
most boxplot represents the model output for the case that the six uncertainties are
perturbed at the same time. The result can be compared with the boxplots for the
case of the perturbation of the single uncertainties. We can see that the simultaneous
perturbation of the parameters leads to a bigger spread of the results comparing to
the perturbation of a single parameter.
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Power curve

Surface roughness
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Figure 26: Test with six uncertainty parameters wind speed, wake effect, Ct curve,
surface roughness, power curve and power loss at the same time (all uncer-
tainties simultaneously) compared to single perturbation of the uncertainty
parameters computed with the quasi-Monte Carlo method with 4096 sam-
ples.

Table 6 shows the results in terms of the variance based sensitivity analysis. As
already seen in the boxplot, the results clearly indicate that ξwind has the biggest
influence on the variance of the model output with a sensitivity coefficient of Swind =
61.15%. The second highest sensitivity is linked to the uncertain power curve with
Spower = 37.39%. All remaining coefficients are below 2% and thus have a rather
negligible influence on the variance of the model output. The uncertain parameter
ξrough representing the uncertain surface roughness has, at least with a perturbation of
±5%, almost no influence on the variance of the output. Furthermore the uncertain
wake effect ξwake only has a sensitivity of Swake = 00.48% and the uncertain Ct curve
has with the same perturbation a higher sensitivity with Sct = 01.19% although the
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Ct curve is used to calculate the wake effect.

var(Y) = 3.1712 · 108

Uncertainty varξi
(Eξ∼i

(Y|ξi)) Si

ξwind 1.939 · 108 61.15%
ξwake 1.5299 · 106 00.48%
ξct 3.7875 · 106 01.19%
ξrough 1.5781 · 104 00.01%
ξpower 1.1856 · 108 37.39%
ξloss 6.8761 · 105 00.21%

Table 6: Results of variances based sensitivity analysis of net annual energy production
calculation with 4096 samples quasi-Monte Carlo Method.
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7.1.2 Levelized Cost of Electricity

In Figure 27 the resulting boxplots for the levelized cost of electricity for all influenc-
ing uncertainty parameters, i.e. wind speed, wake effect, Ct curve, surface roughness,
power curve, power loss capital costs, operation and maintenance costs and discount
rate are shown, since the the energy price do not influence the levelized cost of elec-
tricity calculation. Also here can be seen that for the case that all uncertainties are
perturbed simultaneously leads to the biggest spread and that for the single case again
the wind speed has the biggest deviation. After that the power curve have the biggest
influence on the result. As for this quantity of interest there are also three economical
parameters involved, it can be seen that the annual operation and maintenance costs
have the biggest sensitivity of them.
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Figure 27: Test with nine uncertainty parameters wind speed, wake effect, Ct curve,
surface roughness, power curve, power loss, capital costs, O&M costs and
discount rate at the same time (simultaneously) compared to single effects of
the uncertainty parameters computed with the quasi-Monte Carlo method
with 4096 samples.

In Table 7 the results in terms of the variance based sensitivity analysis support
our statements from above and this time it can be seen that the biggest sensitivities
are from the uncertainties ξwind with sensitivity Swind = 51.13%, followed by ξpower
with sensitivity Spower = 31.05%, ξo&m with sensitivity So&m = 10.11% and ξcapital with
sensitivity Scapital = 05.88%. The other uncertainties have a negligibly low sensitivity
in comparison to the four mentioned uncertainties because they are all below 2%. As
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for the uncertain net annual energy production, the wake effect ξwake has a very low
influence concerning this quantity of interest with a sensitivity of Swake = 00.51%
whereas the uncertain Ct curve has a sensitivity of Sct = 01.11%.

var(Y) = 3.7517 · 10−6

Uncertainty varξi
(Eξ∼i

(Y|ξi)) Si

ξwind 1.9184 · 10−6 51.13%
ξwake 1.9239 · 10−8 00.51%
ξct 4.1659 · 10−8 01.11%
ξrough 3.5824 · 10−9 00.10%
ξpower 1.1649 · 10−6 31.05%
ξloss 1.2366 · 10−6 00.28%
ξcapital 2.2074 · 10−7 05.88%
ξo&m 3.7909 · 10−7 10.11%
ξrate 1.8181 · 10−8 00.48%

Table 7: Results of variances based sensitivity analysis of levelized cost of energy
(LCOE) calculation with 4096 samples quasi-Monte Carlo Method.
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7.1.3 Net Present Value

In Figure 28 the results regarding to the net present value for all influencing uncer-
tainty parameters, i.e. wind speed, wake effect, Ct curve, surface roughness, power
curve, power loss capital costs, operation and maintenance costs, discount rate and en-
ergy price are shown. The result for each uncertain parameter is shown in a separate
boxplot. It can be seen that the wind speed has the largest impact on the net present
value in comparison to the other single uncertainties. The topmost boxplot represents
the model output for the case that the ten uncertainties are perturbed at the same
time. The result can be compared with the boxplots for the case of the perturbation
of the single uncertainties. Again, we can see that the simultaneous perturbation of
the parameters leads to a bigger spread of the results comparing to the perturbation
of a single parameter. The parameter energy price and power curve are behave al-
most similar because both are multiplied in the same term for the net present value
calculation.
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Figure 28: Test with ten uncertainty parameters wind speed, wake effect, Ct curve,
surface roughness, power curve, power loss, capital costs, O&M costs, dis-
count rate and energy price at the same time (simultaneously) compared to
single effects of the uncertainty parameters computed with the quasi-Monte
Carlo method with 4096 samples.

Table 8 shows the results in terms of the variance based sensitivity analysis. As
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already seen in the boxplot, the results clearly indicate that ξwind has the biggest
influence on the variance of the model output with a sensitivity coefficient of Swind =
41.59%. The second highest sensitivity is linked to the two uncertainties of the power
curve with Spower = 25.46% and the energy price with Senergy = 25.45%. This time
the uncertainty ξo&m has a lower influence on the output with So&m = 03.43% and the
uncertain capital costs lead to a sensitivity Scapital = 01.99% All remaining coefficients
are below 1% and thus have a rather negligible influence on the variance of the model
output. As for the uncertain net AEP calculation the uncertain parameter ξrough
representing the uncertain surface roughness has, at least with a perturbation of ±5%,
almost no influence on the variance of the output. As for the other two analysis before,
the wake effect ξwake have a very low influence concerning this quantity of interest with
a sensitivity of Swake = 00.33% whereas the uncertain Ct curve, which is used in the
calculation for the wake effect, has a sensitivity of Sct = 00.81%.

var(Y) = 1.0807 · 1015

Uncertainty varξi
(Eξ∼i

(Y|ξi)) Si

ξwind 4.4940 · 1014 41.59%
ξwake 3.5298 · 1012 00.33%
ξct 8.7789 · 1012 00.81%
ξrough 3.3726 · 1010 00.00%
ξpower 2.7508 · 1014 25.46%
ξloss 1.5913 · 1012 00.15%
ξcapital 2.1487 · 1013 01.99%
ξo&m 3.7106 · 1013 03.43%
ξrate 7.2907 · 1012 00.68%
ξenergy 2.7501 · 1014 25.45%

Table 8: Results of variances based sensitivity analysis of net present value (NPV)
calculation with 4096 samples quasi-Monte Carlo Method.
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7.1.4 Internal Rate of Return

Figure 29 represents the results regarding to the internal rate of return for all influenc-
ing uncertainty parameters, i.e. wind speed, wake effect, Ct curve, surface roughness,
power curve, power loss capital costs, operation and maintenance costs and energy
price, since the discount rate do not influence the internal rate of return mainly be-
cause the discount rate will be determined by the algorithm of this quantity of interest
which makes the net present value equal to zero. The result for each uncertain pa-
rameter is shown in a separate boxplot. It can be seen that the wind speed has the
largest impact on the net annual energy production in comparison to the other single
uncertainties. The topmost boxplot represents the model output for the case that the
ten uncertainties are perturbed at the same time. The result can be compared with
the boxplots for the case of the perturbation of the single uncertainties. We can see
that the simultaneous perturbation of the parameters leads to a bigger spread of the
results comparing to the perturbation of a single parameter, as expected.
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Figure 29: Test with nine uncertainty parameters wind speed, wake effect, Ct curve,
surface roughness, power curve power loss, capital costs, o&m costs and
energy price at the same time (simultaneously) compared to single effects of
the uncertainty parameters computed with the quasi-Monte Carlo method
with 4096 samples.

Table 9 shows the results in terms of the variance based sensitivity analysis. As
already seen in the boxplot, the results clearly indicate that ξwind has the biggest

46



influence on the variance of the model output with a sensitivity coefficient of Swind =
38.77%. The second highest sensitivity is linked to the uncertain power curve with
Spower = 23.66% and furthermore to the uncertain parameter of the energy price with
almost the same result with Senergy = 23.68%. This time the uncertainty ξcapital has
a higher influence on the output with Scapital = 09.51%. The the uncertain annual
operation and maintenance costs have a sensitivity of So&m = 03.20%. All remaining
coefficients are below 1% and thus have a rather negligible influence on the variance of
the model output. As for the uncertain net AEP calculation the uncertain parameter
ξrough representing the uncertain surface roughness has, at least with a perturbation
of ±5%, almost no influence on the variance of the output. As for all quantities of
interest, the wake effect ξwake have a very low sensitivity of Swake = 00.31% and again
the uncertain Ct curve have a higher sensitivity of Sct = 00.76%.

var(Y) = 8.6264 · 10−1

Uncertainty varξi
(Eξ∼i

(Y|ξi)) Si

ξwind 3.3445 · 10−1 38.77%
ξwake 2.6961 · 10−3 00.31%
ξct 6.5709 · 10−3 00.76%
ξrough 5.3411 · 10−5 00.01%
ξpower 2.0413 · 10−1 23.66%
ξloss 1.2298 · 10−3 00.14%
ξcapital 8.2068 · 10−2 09.51%
ξo&m 2.7643 · 10−2 03.20%
ξenergy 2.0425 · 10−1 23.68%

Table 9: Results of variances based sensitivity analysis of IRR calculation with 4096
samples quasi-Monte Carlo Method.

7.1.5 Summary of the Results

In this subsection we summarize the most relevant results:

• The perturbation of all uncertain input parameters simultaneously leads always
to the biggest spread of outcomes, which was expected.

• For the single case the uncertain wind speed ξwind has the biggest sensitivity
concerning all quantities of interest.

• For the single case the uncertain power curve ξpower and if considered the uncer-
tain energy price ξenergy have also big sensitivities regarding to all quantities of
interest.
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• The uncertainties which are affecting the wake effect, i.e. the uncertain Ct curve
ξct and the uncertain surface roughness ξrough and the uncertainty of the wake
effect ξwake itself have a very low sensitivity regarding to the quantities of interest.

• The uncertain surface roughness ξrough has almost no influence on the quantities
of interest with a sensitivity of Srough ≈ 0% for the net annual energy production,
net present value and internal rate of return.
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8 Conclusion
In this thesis the uncertainty quantification of offshore wind farm models was inves-
tigated. At first the wind model was presented and its modeling from the measured
raw wind data into wind direction sectors and wind speed distributions as weibull dis-
tributions. After that the wake model was explained and the turbine properties were
introduced to calculate the gross annual energy production. With these models it was
possible for us to compute results for our quantity of interest, which are a measure to
make statements for a specific constellation of an offshore wind farm.
From there we declared the uncertain input parameter of the offshore wind farm model
and achieve an offshore wind farm model which is considering uncertainties. The mod-
els and formulas were transformed by the declared uncertainties and the deterministic
model became a stochastic model in that way that the input parameter get perturbed
by normally distributed random variables.
To make an uncertainty quantification on the model’s input parameters we used the
technique of Monte Carlo sampling. This method was developed to cover an n-
dimensional space with the use of random values to obtain numerical results. In every
sample step of this thesis, random variables were used as input parameters so that
within a certain number of samples the whole needed outcome space of the random
variables was covered. We presented this technique but because of bad performance
we introduced two modifications of this technique to obtain a better performance by
decreasing the number of samples for meaningful results. Also we showed how to use
the sample methods to transform them to normally distributed random variables which
is one of the most common distributions in uncertainty quantification.
In the results section we showed how to use our stochastic model in combination with
the uncertainty quantification techniques and plotted the results in a comprehensible
boxplot format. Furthermore we introduced the so called variance based sensitivity
analysis which made it easy to compute the influence of each uncertainty regarding to
the quantities of interest. It turned out that the most significant uncertainty is the
wind speed because in every considered quantity of interest it was the parameter with
the biggest sensitivity. It also turned out that the uncertainties which are affecting
the wake effect, i.e. the Ct curve and the surface roughness and the uncertainty of the
wake effect itself have a very low sensitivity regarding to the quantities of interest.
As an outlook this means that the research has to be focused more on a precise pre-
diction of the wind conditions and the climate conditions in future as the wind speed
has the biggest influence on the quantities of interest. Also it would be interesting to
make the investigation of this thesis with real world values as the economic parameter
are roughly estimated and all the uncertainties are all perturbed with the same value
which may not be realistic in real world because every uncertainty may vary with its
real perturbation.
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