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Chapter 1

Introduction

1.1 Background

When designing and building any kind of system or even just interacting with an
existing one, the need to make predictions about its behavior may arise. Depending
on the situation and what is at stake, different levels of confidence in those predictions
will be required. Various techniques are available in different fields like testing or
simulation. When a system is particularly critical however, formal verification of its
behavior becomes attractive because it can give the strongest guarantees.

To be able to perform verification, the system in question has to be modeled
in some formal language. The model may be discrete, like the states of an electric
controller being modeled as states of an automaton. It may be continuous like a
differential equation modeling the change of temperature in a reactor. The system
may also have parts that are best modeled as discrete and others that are best modeled
as continuous. Such a hybrid system is then best modeled using a formalism that
accommodates for this.

We will be using hybrid automata for this task. They can be used to model a
wide range of hybrid systems, such as networking setups, docking spacecraft or
even the human heart [BHS17; Alt+18; And+17]. These models can then be analysed.
Reachability analysis is one technique to prove that a model fulfills a specification.
The specification must be expressed in terms of the states of the model. One may
specify which states must be reached, which are allowed to be reached and which
must not be reached. The set of reachable states is then computed and compared
against the specification.

Depending on the type of hybrid automaton, the problem of computing the
set of reachable states may be undecidable. To overcome this, an over or under
approximation is computed and the behavior is only analysed for a bounded time
frame. With an over approximation one can prove that a set of states definitely
will not be reached while one can conversely show with an under approximation
that a set of states will definitely be reached. We will work exclusively with over
approximations. Properties like the absence of collisions can be modeled and verified
like this.

To compute the set of reachable states both discrete an continuous successor states
must be computed, i.e. states that are reachable from already known to be reachable
states by either a discrete or continuous change. The method for computing the
continuous successors that we will focus on is flowpipe construction. Its result also
allows for the operations needed to compute discrete successors. This is described
for example in [Fre16, Sec.2.2, 2.3].
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1.2 Compositional Hybrid Systems

Hybrid systems often have multiple parts that are separate from each other but do
interact in certain ways. This occurs, for example, when a controller with a controlled
plant of some form is modeled. The system may also be comprised of many similar
parts or agents. We will use such a system for examples from now on.

1.2.1 Example System

Assume we use robots in a production environment. A robot has continuous state
like its position and battery level. To perform tasks it will likely have to go through
multiple steps such as collecting materials, putting them into a machine and taking
the product somewhere to store. These steps would be modeled as discrete states, or
locations as they are called in hybrid automata.

We may then be interested in verifying that the robot completes its task in a certain
amount of time and that its battery does not run out before it could reach a charging
station. This specification can be given as states that should not be reached. The
battery level should never drop to zero and, given we introduced a clock, the time
taken should be smaller than some deadline until the goal state is reached.

The single robot we described so far would probably best be modeled as a single
hybrid automaton. If we add multiple robots that interact with each other, we get
a compositional hybrid system that is modeled by multiple hybrid automata. As
we will see later, the hybrid automata modeling the robots implicitly define a single,
compositional, hybrid automaton describing their combined behavior.

There are then different ways in which the robots may interact. The simplest is
through discrete events like waiting on each other to finish a task or stop occupying
a machine. This kind of interaction is what our work is focused on. They may also
depend on each other’s state at discrete points. For example by checking the location
of other robots. This is modeled by shared variables. We will later briefly look at
how this case can sometimes be reduced to the previous one. If their dependency is
continuous, like their temperatures affecting each other, it is difficult to analyse them
in any other way than explicitly constructing their composed model.

1.3 Related Work

The simplest way to analyse a compositional hybrid automaton is to explicitly
construct its parallel composition, i.e. an automaton whose state space is the cartesian
product of the state spaces of the composed automata (except for shared variables).
The discrete part of this is similar to constructing the product automaton of multiple
automata and thus also becomes exponentially more complex with the number of au-
tomata involved. One can then use existing algorithms to analyse the single resulting
automaton. This construction has been implemented in the transformation tool Hyst
[BBJ15]. The tool also offers the optimization of removing locations that are not
connected to an initial location.

In [Fre05] and later [FZK04] abstractions of hybrid automata that preserve com-
posability are explored. Then assume-guarantee reasoning is employed. As it is a
form of compositional proof, it uses the property that results from the analysis of one
component of a system can be used to find properties of the entire system.

The SpaceEx tool implements an analysis algorithm that accepts compositional
hybrid automata as input without explicitly constructing the whole composition up
front [Fre16, Sec.7].
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1.4 Our Approach

Our goal is to design and implement an algorithm for the analysis of compositional
hybrid automata that scales well with the number of automata involved. To be able to
avoid combining their state spaces, we require that the synchronization between the
automata is discrete. The main contribution lies in the composition and adaption of
the continuous and discrete successor computations for single automata to obtain the
successor states for the composed automaton. We implemented various optimizations
of the handling of the discrete synchronization.

We consider, and try to avoid, two problems that may impede scalability. The
growth of the number of locations and edges of the composed automaton and
the growth of its dimension. We do this by exploring only the reachable parts
of the composed automaton and by keeping the computations for each component
separated from the others as much as possible.

The former problem may occur because the size of the composition of hybrid au-
tomata may be exponential in the number of automata. For example, the composition
of n automata with 2 locations each has up to 2n locations, if done naively. We combat
this by lazily constructing the locations and edges that are discovered during the
analysis and therefore constructing only the reachable subset of the control graph.

The severity of the latter problem depends on how well the underlying flowpipe
construction scales with the dimension of the automaton. To avoid constructing a
high dimensional flowpipe, we construct the flowpipe of each automaton separately
and apply synchronizations explicitly. In [SNÁ17] it has been shown that reducing
the dimension is an effective approach to speeding up computations.

The implementation builds upon flowpipe construction, but the algorithm could
be adapted to be used with any over approximation of the set of reachable states
that allows for the necessary operations and queries. That includes many variations
of flowpipe construction but conceivably also different more precise and efficient
procedures for rectangular hybrid automata or even fully discrete automata. The
implementation is part of the HyPro library [Sch19] and uses the flowpipe construc-
tion algorithm implemented there.

1.5 Outline of the Thesis

First, in Chapter 2, we will describe the existing methods for reachability analysis
of hybrid automata that our work depends on. To do so, we cover the fundamental
concepts and definitions of hybrid automata and their composition in Section 2.1.
Using those, we describe the reachability algorithm we will be extending and some of
its properties in Section 2.2. The last Section, 2.3, contains the details of the algorithm’s
two main operations.

In Chapter 3, we describe our compositional algorithm in detail. We expand on
its general structure and characteristics in sections 3.1 and 3.2. Following the same
structure as before, Section 3.3 is a description of the adapted main operations of our
algorithm.

To explore the strength and weaknesses of the developed algorithm, we apply it
to two models in Chapter 4. The first, presented in Section 4.1, is a swarm of robots
exhibiting emergent behavior. The next Section , 4.2, explores a simple translation of
a hybrid Petri net to hybrid automata.
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Finally, in Chapter 5 we discuss directions for further work and improvements to
our approach, some of which arose from our observations in Chapter 4. We conclude
the thesis with a summary of our findings.
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Chapter 2

Flowpipe Construction for Hybrid
Automata

After introducing a few notational conventions we will use, we describe the basic
concept of hybrid automata and then present the reachability algorithm that our
compositional algorithm builds on.

Notation 1 (Intervals). For S ∈ {R, N} and l, u ∈ S we use the usual interval
notation.

• [l, u] := {s ∈ S | l ≤ s ≤ u}

• [l, u) := {s ∈ S | l ≤ s < u}

• (l, u] := {s ∈ S | l < s ≤ u}

• (l, u) := {s ∈ S | l < s < u}

Notation 2 (Tuples). Let n, m ∈N with n ≤ m and let Si be a set for all i ∈ [1, m]. Then
s ∈ S := S1 × . . .× Sn is a tuple. Analogously to (S1× . . .× Sn)× (Sn+1× . . .× Sm) =
S1 × . . .× Sm we use ((s1, . . . , sn), (sn+1, . . . , sm)) = (s1, . . . , sn+m) and group values
to signify their relationship. Additionally we use x = (x) for any object x.

Notation 3 (Vectors). Any tuple s may be interpreted as a column vector. We do
this when the distinction between column and row vectors is relevant for arithmetic.
When we then also write s elementwise, we use the transposition operator T to signify
the column orientation, as in s = (s1, . . . , sn)T.

Notation 4 (Singleton Sets). For any object x that is not a set we use x as the singleton
set {x} in set operations. For example {1, 2} ∪ 3 = {1, 2, 3} and {1, 2} ∩ 2 = {2}.

Notation 5 (Multisets). We use 〈 and 〉 in place of { and } to denote a multiset. So
〈1, 2, 3, 2〉 contains 1 and 3 once and 2 twice and 〈i mod 3 | i ∈ [0, 5] ⊆ N〉 =
〈0, 1, 2, 0, 1, 2〉.

Notation 6 (Quotient Sets). For a set S and an equivalence relation ∼, we use
S�∼ := {[s] | s ∈ S} where [s] := {s′ ∈ S | s′ ∼ s} is the equivalence class of s ∈ S.
When ∼ is applied to sets S, S′, then S ∼ S′ holds if and only if s ∈ S implies that
s′ ∈ S′ exists with s ∼ s′ and vice versa.

Notation 7 (Powerset). For a set S we denote its power set by Pow(S) := {S′ | S′ ⊆ S}.
Another notation that is commonly used by other authors is 2S.

Notation 8 (Objects and their Representation). When denoting a mathematical object
X, we will use X̂ to distinctly denote its representation. For different kinds of objects
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we will define the relationship between abstract object and representation of the form
X := f (X̂) for some function f .

If X̂ is defined in a context, we implicitly use X := f (X̂). If X is defined in a
context, we implicitly use X̂ ∈ {X̂′ | f (X̂′) = X}. We may for example define
X̂ := A ∈ Rn×n, n ∈ N with X : Rn → Rn, v 7→ Av. Here f maps matrices to their
natural function equivalent.

2.1 Hybrid Automata

First we need definitions of hybrid automata, their semantics and their parallel
composition. The definitions presented here are based on [Hen96].

2.1.1 Fundamental Definitions

Definition 1 (Hybrid Automaton).
A hybrid automaton H is a tuple (VarH, LabH, LocH, EdgeH, InitH, FlowH). We addi-

tionally define StH := ValH × LocH where ValH := Rd for the states space dimension
d ∈N. The components are then defined as

• VarH ⊆N, a set of d variables represented by indices from N ,

• LocH, a finite set of locations,

• LabH, a finite set of edge labels,

• EdgeH ⊆ Loc2
H × LabH × Pow(Val2H), a set of edges between the locations with

a label and a set of pairs of valuations.

• InitH ⊆ StH, a set of initial states,

• Inv : LocH → Pow(ValH), assigning to each location ` ∈ LocH a set of valuations
InvH(`) ⊆ ValH,

• FlowH : LocH → Pow(Map(R≥0, ValH)), assigning to each location ` ∈ LocH a
set of functions FlowH(`) ⊆ Map(R≥0, ValH).

The last component cond ∈ Pow(Val2H) of an edge is often given as a guard and
a reset. The guard constrains the valuations that enable the edge to be taken. The
reset then describes how the enabling valuations are transformed before entering the
target location.

It may be helpful to note that while we, for now, use the very general definition
of FlowH given above, in practice the flow is often given in syntactical forms like
systems of differential equations with limitations like linearity [Alt15, Sec.5] [Fre16,
Sec.3.2].

Definition 2 (Discrete Successors). Let H be a hybrid automaton, s1 := (v1, `1) ∈ StH ,
s2 := (v2, `2) ∈ StH states and e := (`′1, `′2, lab, cond) ∈ EdgeH an edge. Then e−→ is the
discrete successor relation via e and s1

e−→s2 holds if and only if `1 = `′1, `2 = `′2 and
(v1, v2) ∈ cond and v2 ∈ InvH(`2). We also define α−→ :=

⋃
e∈EdgeH

e−→ to be the discrete
successor relation via any edge.

Definition 3 (Continuous Successors). Let H be a hybrid automaton, s1 := (v1, `1) ∈
StH, s2 := (v2, `2) ∈ StH states and r ∈ R≥0. Then r−→ is the continuous successor
relation of duration r and s1

r−→s2 holds if and only if
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to_machine
ẋ = 1

3
ẏ = 1
ḃ = −1
x ≤ 1∧ y ≤ 3

x := 0, y := 0
t := 0, b := 100

wait
ṫ = 1
ḃ = − 1

2
t ≤ 10

to_shelf
ẋ = − 1

3
ẏ = −1
ḃ = −1
x ≥ 0∧ y ≥ 0

start_machine
x = 1, y = 3

t := 0
abort

t ≥ 10

done

store_product
x = 0, y = 0

FIGURE 2.1: Hybrid Automaton modeling a single production robot.

• `1 = `2 and

• f : R≥0 → ValH ∈ FlowH(`1) exists with

– f (0) = v1, f (r) = v2 and
– f (ε) ∈ InvH(`1) for all ε ∈ [0, r].

We also define τ−→ :=
⋃

r∈R≥0

r−→ to be the continuous successor relation of any
duration.

Finally the general successor relation is −→ := α−→∪ τ−→ and a step from s ∈ StH to
s′ ∈ StH via the discrete or continuous successor relation is also called a jump or time
step respectively.

Definition 4 (Trajectory). A trajectory of a hybrid automaton H is a sequence (si, ζi)i≥0
with si ∈ StH, ζi ∈ EdgeH ∪R≥0 and si

ζi−→si+1 for all i ≥ 0.

• The trajectory is initial if and only if s0 ∈ InitH.

• A state s ∈ StH is reachable by (si, ζi)i≥0 in i ∈N steps and r ∈ R≥0 time if and
only if si = s and r = ∑i

j=0 d(ζ j) where

d(ζi) :=

{
ζi, if ζi ∈ R≥0,
0, if ζi ∈ EdgeH.

• The set of reachable states of H is the set RH of states of H that are reachable by
an initial trajectory of H.

Example 1 (Hybrid Automaton). In Figure 2.1 you can see a hybrid automaton
modeling the production robot we described in Section 1.2.1. Its single initial state
is ((0, 0, 0, 100), to_machine), assuming the variables are indexed in the order they
are mentioned. Note that when a variable is omitted, it is implicitly declared to not
change in flow and resets and to not be constrained in guards and invariants. The
flow here allows each variable to change at a constant rate, i.e.

FlowH(to_machine) = { fv ∈ Map(R≥0, ValH) | v = (vx, vy, vt, vb) ∈ ValH,

fv(t) = (vx +
1
3

t, vy + t, vt, vb − t) for t ∈ R≥0}.
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The invariant is {(vx, vy, vt, vb) ∈ ValH | vx ≤ 1, vy ≤ 3}. The invariant and the jump
condition {((vx, vy, vt, vb), (v′x, v′y, v′t, v′b)) ∈ Val2H | vx = 1, vy = 3, v′t = 0} force a
jump to the “wait” location once the position (1, 3) is reached. Also, the value of the
clock variable t is set to zero.

The robot then waits an unspecified amount of time until the machine is “done”,
but at most 10 time units, at which point the production is aborted. Then the robot
moves back to the shelf at position (0, 0), stores the product and repeats the cycle.

Example 2 (Trajectory). A prefix of an initial trajectory of the hybrid automaton from
Figure 2.1 is

((0, 0, 0, 100), to_m)
3−→((1, 3, 0, 97), to_m)

start_m−−−→((1, 3, 0, 97), wait) 6−→((1, 3, 6, 94), wait)

done−−→((1, 3, 6, 94), to_s) 3−→((0, 0, 6, 91), to_s)
store_p−−−→((0, 0, 6, 91), to_m).

Note that we can use labels here to identify edges because they are unique in this
case. It is also worth noting that time steps can be split up into any number of shorter
time steps here.

2.1.2 Composition

We will now define the parallel composition of hybrid automata. To do this we first
introduce two extension functions on hybrid automata.

Definition 5 (Identity Jump Extension). Let H be a hybrid automaton. Let IdEdgeH :=
{eI(H, `) | ` ∈ LocH} with eI(H, `) := (`, `, I, cond), cond := {(v, v) | v ∈ ValH} and
I /∈ LabH . The identity jump extension of H is the hybrid automaton EJ(H), which is
identical to H except for EdgeEJ(H) := EdgeH ∪ IdEdgeH.

So this extension adds a self loop that does not change the state of H to each
location. We also call such self loops stutter jumps, including ones that are part
of the original automaton. We will see below that these edges are necessary for
synchronization with other automata.

Definition 6 (Variable Extension). Let H be a hybrid automaton and Var′ ⊆ N a
set of variables represented by indices. Let Varadd := Var′ \ VarH be the additional
variables. We assume w.l.o.g. that VarH ∪Var′ = {x1, . . . , xn, . . . , xm} for some n, m ∈
N and VarH = {x1, . . . , xn}, Varadd = {xn+1, . . . , xm}. The variable extension of H to
VarH ∪Var′ is the hybrid automaton EV(H, Var′) := H′ with state space dimension
|Var′ ∪VarH |, ValH′ , StH′ as in Definition 1 and

• VarH′ := VarH ∪Var′, LocH′ := LocH, LabH′ := LabH,

• EdgeH′ := {(`1, `2, lab, ext(cond)) | (`1, `2, lab, cond) ∈ EdgeH}

where ext(cond) :=
⋃

(v,v′)∈cond

(v×Rm−n)× (v′ ×Rm−n).

• InitH′ :=
⋃

(v,`)∈InitH

v×Rm−n × `,

• InvH′(`) := InvH(`)×Rm−n for all ` ∈ LocH,

• FlowH′(`) :=
⋃

f∈FlowH(`)

{ fv : R≥0 → ValH′ | v ∈ Rm−n, fv(t) = ( f (t), v)}.
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to_machine
. . .

ḃ = −1

b := 100, . . .

wait
. . .

ḃ = − 1
2

to_shelf
. . .

ḃ = −1

start_machine
. . .

abort
. . .

done

store_product
. . .

charging
ḃ2 = 5

b1 ≥ 0

b2 ∈ [0, 100]

recover
. . .

ḃ2 = −1
b1 ≥ 0

start_recovery
b1 ≤ 0, b2 ≥ 50

b1 := 10

FIGURE 2.2: The automaton from Figure 2.1 with a backup automaton
that checks its battery status, modeled using a shared variable.

Intuitively, the extension simply does not constrain the additional variables.

Definition 7 (Parallel Composition). Let H1, H2 be hybrid automata and let H′1 :=
EV(EJ(H1), VarH2), H′2 := EV(EJ(H2), VarH1). Then their parallel composition is the
hybrid automaton H1||H2 with

• VarH1||H2
= VarH1 ∪VarH2 ,

• LocH1||H2
= LocH1 × LocH2 ,

• LabH1||H2
= LabH1 ∪ LabH2 ,

• EdgeH1||H2
⊆ Loc2

H1||H2
× LabH1||H2

× Pow(Val2H1||H2
) with

((`1, `2), (`′1, `′2), lab, cond) ∈ EdgeH1||H2
if and only if there are

– (`1, `′1, lab1, cond1) ∈ EdgeH′1
and

– (`2, `′2, lab2, cond2) ∈ EdgeH′2

with cond = cond1 ∩ cond2 and

– lab = lab1 = lab2 ∈ LabH1 ∩ LabH2 or
– lab = lab1 ∈ LabH1 , lab2 = I,
– lab = lab2 ∈ LabH2 , lab1 = I.

• InitH1||H2
= InitH′1

∩ InitH′2
,

• InvH1||H2
((`1, `2)) = InvH′1

(`1) ∩ InvH′2
(`2) for all (`1, `2) ∈ LocH1||H2

,

• FlowH1||H2
((`1, `2)) = FlowH′1

(`1) ∩ FlowH′2
(`2) for all (`1, `2) ∈ LocH1||H2

.

This definition of parallel composition allows for synchronization in multiple
ways. Notably, it does not allow behavior to be extended, i.e. the set of reachable
states of the composition RH1||H2

, projected accordingly, is always a subset of RH1 and
RH2 .
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to_machine
. . .

ḃ = −1
b1 ≥ 0

b := 100, . . .

wait
. . .

ḃ = − 1
2

b1 ≥ 0

to_shelf
. . .

ḃ = −1
b1 ≥ 0

start_machine
. . .

abort
. . .

done

store_product
. . .

start_recovery
b1 ≤ 0, b1 := 10 start_recovery

b1 ≤ 0, b1 := 10
start_recovery

b1 ≤ 0, b1 := 10

charging
ḃ2 = 5

b2 ∈ [0, 100]

recover
. . .

ḃ2 = −1

start_recovery
b2 ≥ 50

FIGURE 2.3: The automata from Figure 2.2 transformed to not share
variables.

Label Synchronization

As mentioned in Section 1.4, we limit our analysis to compositional hybrid automata
H := H1||Hn, n ∈ N whose synchronization is discrete. We also require that the
automata do not read or write each other’s variables. Formally this means that
VarHi ∩VarHj = ∅ holds for all i, j ∈ [1, n]. It is however worth mentioning another
type of synchronization that may be transformed to meet this requirement.

Jump Condition Synchronization

Definition 8 (Unconstrained Variables). Let H be a hybrid automaton and xi the i-th
variable in VarH . The variable xi is unconstrained by H if there is a hybrid automaton
H′ with VarH′ = VarH \ xi such that EV(H′, xi) = H.

Let H1, H2 be hybrid automata. The behavior of H1||H2 can be simulated by
H′1||H′2 with VarH′1

∩VarH′2
= ∅ if H1 and H2 can be modified such that every variable

x ∈ Varshared := VarH1 ∩VarH2 is unconstrained by either H1 or H2.
To achieve this, constraints over shared variables on edges can be removed and

replaced by self loops with those constraints on every location of the other automaton.
These self loops use same label as the changed edge so that they synchronize. Global
invariants, i.e. invariants that are the same in all locations, can simply be moved to
the other automaton.

These transformations are only possible if the constraints on the shared variables
can be separated from those on other variables. Since we do not pursue this further,
we will give an example and spare further formal definitions.

Example 3 (Simulating Jump Condition Synchronization). In Figure 2.2 we see two
automata that share a variable. The recovery robot has the constraint b1 ≤ 0 and
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reset b1 := 10 on its edge that models starting the recovery. To force the start of the
recovery it adds the invariant b1 ≥ 0 in every location.

The invariant can simply be moved to the other automaton. Since the constraints
b1 ≤ 0 and b2 ≥ 50 can be separated from each other, we can also replace the b1 ≤ 0
constraint and b1 := 10 reset by self loops on each location of the other automaton
with the start_recovery label. The result is shown in Figure 2.3.

2.1.3 Linear Hybrid Automata

Definition 1 is very general and does not specify any constraints on how a hybrid
automaton may be given syntactically. Thus we need a more concrete definition to
be able to perform analysis on hybrid automata. To that end, we now define Linear
Hybrid Automata (LHA).

Definition 9 (Linear Hybrid Automata). A linear hybrid automaton is a hybrid
automaton H with state space dimension d ∈N and the following properties.

• Each edge e := (`, `′, lab, cond) ∈ EdgeH is given by ê := (`, `′, lab, ĉond). The
jump condition is given as guard and reset ĉond := (Ĝ, R̂). The guard is
given by m ∈ N linear constraints Ĝ := (AG, bG) with AG ∈ Rm×d, bG ∈ Rm.
These constraints represent G := {v ∈ ValH | AGv ≤ bG}. The reset is given
as an affine transformation R̂ := (AR, bR) with AR ∈ Rd×d, bR ∈ Rd. The
transformation represents the function R : ValH → ValH , v 7→ ARv + bR. Finally
ĉond represents cond := {(v, R(v)) ∈ Val2H | v ∈ G}.

• Initial states InitH are given as ÎnitH := {ÎnitH(1), . . . , ÎnitH(n)}, n ∈ N where
for each i ∈ [1, n] there is a location ` ∈ LocH , an m ∈N and m linear constraints
(A, b), A ∈ Rm×d, b ∈ Rm, such that ÎnitH(i) := (A, b, `). Similarly to before
they represent the set InitH(i) := {(v, `) ∈ StH | Av ≤ b}. Naturally the initial
states are then InitH :=

⋃n
i=1 InitH(i).

• For every ` ∈ LocH, InvH(`) is given as ÎnvH(`) := (AI, bI) with AI ∈ Rm×d,
bI ∈ Rm, m ∈N representing InvH(`) := {v ∈ ValH | AIv ≤ bI}.

• The flow FlowH(`) is given for each location ` ∈ LocH as F̂lowH(`) := AF ∈ Rd×d,
encoding the linear differential equation ẋ = AFx where x is a vector of the
variables from VarH . The flow is then FlowH(`) := { fv ∈ Map(R≥0, ValH) | v ∈
ValH, fv(t) = eAFtv for t ∈ R≥0}.

We may use the matrices and vectors mentioned above without further qualifi-
cation if the automaton H and location ` or edge e are unambiguously given by the
context.

Note that affine dynamics of the form ẋ = Ax + b can be simulated in a linear
hybrid automaton H by adding an extra variable y /∈ VarH, setting its derivative to
zero in all locations, not changing it on any jump and setting it to one initially. It can
then be used in place of the constants from b.

2.2 Reachability Algorithm

After introducing hybrid automata, we now state the reachability algorithm that we
will later extend in Chapter 3. To show its soundness for linear hybrid automata we
first review some properties of their trajectories.
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2.2.1 Alternating Trajectories

Definition 10 (Alternating Trajectory). Let H be a hybrid automaton. A trajectory
(si, ζi)i≥0 of H is alternating if and only if ζi ∈ R≥0 for all even i and ζi ∈ EdgeH for
all odd i.

Theorem 1 (Mergable Time Steps).
Let H be a linear hybrid automaton and (vi, `)

t1−→(vi+1, `)
t2−→(vi+2, `) for some vi, vi+1, vi+2 ∈

ValH, ` ∈ LocH. Then (vi, `)
t1+t2−−→(vi+2, `) also holds.

Proof. (vi, `)
t1−→(vi+1, `) and (vi+1, `)

t2−→(vi+2, `) imply that f , g ∈ FlowH(`) exist with

• f (0) = vi, g(0) = vi+1,

• f (t1) = vi+1, g(t2) = vi+2,

• f (ε) ∈ InvH(`) for ε ∈ [0, t1] and g(ε′) ∈ InvH(`) for ε′ ∈ [0, t2].

For t ∈ R≥0 we obtain f (t) = eAFtvi and g(t) = eAFtvi+1 from Definition 9. From this
follows

f (t1 + t) = eAF(t+t1)vi = eAFteAFt1 vi = eAFt f (t1) = eAFtvi+1 = g(t).

This gives us all requirements for (vi)
t1+t2−−→(vi+2).

• f (0) = vi,

• f (t1 + t2) = g(t2) = vi+2,

• for ε ∈ [0, t1] : f (ε) ∈ InvH(`),

• for ε ∈ [t1, t1 + t2] : f (ε) = f (t1 + ε′) = g(ε′) with ε′ ∈ [0, t2] thus

for ε ∈ [t1, t1 + t2] : f (t) ∈ InvH(`).

Theorem 2 (Alternating Reachability). Let H be a linear hybrid automaton. Then each
reachable state s ∈ StH is reachable by an alternating trajectory, i.e. there is an alternating
initial trajectory (si, ζi)i≥0 with si = s for some i ≥ 0.

Proof. Since s is reachable there exists an initial trajectory (s′i, ζ ′i)i≥0 with s′i = s for
some i ≥ 0. That (s′i, ζ ′i)i≥0 can be transformed to an alternating trajectory while still
reaching s follows from Theorem 1 and

si
α−→si+1

α−→si+2 ⇒ si
α−→si+1

0−→si+1
α−→si+2 (2.1)

2.2.2 General Reachability Algorithm

After introducing the theory required to prove its soundness, we now discuss the
reachability algorithm itself. Given a linear hybrid automaton H, the goal is to
compute its set of reachable states RH. The algorithm uses two operators on sets of
states S ⊆ StH.

• T+(S) := {s′ ∈ StH | s ∈ S, s τ−→s′}.

• D+(S) := {s′ ∈ StH | s ∈ S, s α−→s′}.
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We compute sets Si iteratively from for i ∈N from i = 0 by

Si :=

{
T+(InitH), if i = 0,
T+(D+(Si−1)), otherwise.

(2.2)

Theorem 3. The set
⋃∞

i=0 Si computed by Equation 2.2 is the set of reachable states RH of H.

Proof. We prove that for i ∈N the set Si contains all states that are reachable in 2i or
2i + 1 steps by an alternating trajectory. First we note that since zero duration time
steps are allowed, S ⊆ T+(S) holds for any state set S.

Since S0 = T+(InitH), it contains InitH , which are all states reachable in zero steps
and the time successors of these states, which are all states reachable by the first step
of an alternating trajectory.

Now assume the statement holds for an i ∈N. As noted D+(Si) ⊆ T+(D+(Si))
holds and thus Si+1 = T+(D+(Si)) contains all states that are reachable by a discrete
jump or a discrete jump and a time step from a state in Si. Thus the statement holds
for i + 1.

By induction
⋃∞

i=0 Si contains all states reachable by an alternating trajectory in
any number of steps and by Theorem 2 these are all reachable states of H.

Fixed-points. We reached a fixed point if Si ⊆
⋃i−1

j=0 Sj. Then for all states s ∈ Si

there is a j < i such that s ∈ Sj and thus s is also reachable in 2j or 2j + 1 steps.
So s is reachable is less than 2i steps. Since all s′ ∈ Si+1 are reachable by a state
from Si in at most two steps, all s′ are reachable is at most 2i + 1 steps and thus
Si+1 ⊆

⋃i
j=0 Sj =

⋃i
j=0 Sj. By induction the same holds for all following sets and the

computation may be terminated. Note that such a fixed point may never be reached
and thus the algorithm may not terminate.

2.2.3 Over Approximation and Bounded Analysis

That the algorithm may not terminate is a symptom of it solving the unbounded
reachability problem for linear hybrid automata, which is undecidable. To overcome
this there are three limitations put on the analysis.

We compute an over approximation App(RH) of the set of reachable states RH
such that RH ⊆ App(RH) is guaranteed to hold. This means that we can use over
approximations for both T+ and D+. Additionally we bound the number of jumps
by some j ∈N and compute the set RH [j] ⊆ RH of states that are reachable by initial
trajectories with j or fewer jumps.

The approach we describe below requires one more restriction to ensure termi-
nation. The time that may pass has to be bounded by a time horizon Tg ∈ R≥0 or
Tl ∈ R≥0. The global time horizon Tg is a bound on the total time that may pass.
Meaning that, using Tg, we compute the set RH [j, Tg] of states reachable in Tg or less
time. The local time horizon Tl bounds the duration of consecutive time steps. So
with Tl as a bound, we compute the set RH [j, Tl ] of states reachable by trajectories
that contain no sequence of time steps with a combined duration of more than Tl .

The results App(RH [j, T]) where T ∈ {Tl , Tg} are still useful since safety can be
proven by s /∈ App(RH [j, T]) =⇒ s /∈ RH [j, T]. This allows us to prove that certain
states are not reachable within a certain time and a certain number of jumps. The
time horizon T may also imply the jump bound j or j together with invariants may
imply T, so sometimes only one of them is necessary [Sch19, Sec.3.3].

A local time horizon can be imposed by adding a new variable and invariants.
The variable has a derivative of one, is initialized to zero and reset to zero on every
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jump. The invariants bound the variable from above by Tl . A global time horizon
can be added similarly to a local one except that the variable is never reset. The local
time horizon approach is specially handled in the implementation as we will mention
below.

2.2.4 Concrete Reachability Algorithm

We now look at the concrete reachability algorithm for a linear hybrid automaton
H. The algorithm effectively works with a partition of the sets Si, i ∈N by location.
The state sets that it processes are represented by pairs (V̂, `) or (F̂, `). Here V̂ is a
representation of a valuation set V ⊆ ValH as described in Section 2.3.1. A flowpipe
F̂ := (V̂1, . . . , V̂c) with c ∈N segments represents F :=

⋃c
i=1 Vi.

Initially, we construct pairs (V̂, `) from InitH. Since InitH is given as pairs of
a set of linear constraints and a location, it lends itself well to this. Then we use
two operators, similarly to the general algorithm, to compute their successors. The
continuous successor operator T+ on (V̂, `) must satisfy T+

` (V̂) := F̂ with

F ⊇{ f (t) | f ∈ FlowH(`), f (0) ∈ V, t ∈ R≥0, f (t′) ∈ InvH(`) for t′ ∈ [0, t]}
={eAtv | F̂lowH(`) = A, v ∈ V, t ∈ R≥0, eAt′v ∈ InvH(`) for t′ ∈ [0, t]}.

(2.3)

Let EdgeH(`) := {(`1, `2, lab, cond) ∈ EdgeH | `1 = `} be the set of edges originating
in `. The discrete successor operator D+ on T+

` (V̂) = F̂ is defined for each edge
e := (`, `′, lab, cond) ∈ EdgeH(`). Let (Ĝ, R̂) := ĉond, (A, b) := Ĝ, (A′, b′) := R̂. The
operator must satisfy

D+
ê (T

+
` (V̂)) := 〈(V̂1, t1, ê, `′), . . . , (V̂n, tn, ê, `′)〉 with n ∈N and

n⋃
i=1

Vi ⊇{R(v) | v ∈ T+
` (V̂), v ∈ G} ∩ InvH(`

′)

={A′v + b′ | v ∈ T+
` (V̂), Av ≤ b} ∩ InvH(`

′).

(2.4)

The components ê and `′ are redundant to ease notation below, ti ⊆ R≥0, i ∈ [1, n]
are time intervals. They satisfy that for any s1, s2 ∈ T+

` (V̂), s3 ∈ StH and ε ∈ ti with
s1

ε−→s2
e−→s3 it holds that s3 ∈ Vi. In other words, any state reachable from V by a time

step of duration ε ∈ ti followed by a jump via e, is contained in Vi.
Since

⋃n
i=1 Vi contains all states that are reachable from V by a time step followed

by a jump via e, we also know that any state that is not reachable from V by a time
step of duration ε ∈ ⋃n

i=1 ti does not enable the edge e. The full set of successors is

D+
` (T

+
` (V̂)) :=

⋃
e∈EdgeH(`)

D+
ê (T

+
` (V̂)). (2.5)

Computation Tree

The following is based on [Sch19, Sec.6.9]. The computation naturally describes a
tree as seen in Figure 2.4. If there are initial states in multiple locations this naturally
extends to a forest, but we will consider a single tree to avoid unnecessary complexity
in notation.

Storing this tree allows us to, for example, find a set of states S for a given
trajectory (si, ζi)i≥0 and i ∈ N such that si ∈ S. The opposite is also possible, for a
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(V̂0,0, F̂0,0, `0,0)

(V̂1,n1 , F̂1,n1`1,n1)

(V̂2,n2 , F̂2,n2 , `2,n2)

. . . ê, t

. . .(V̂1,1, F̂1,1, `1,1)

. . .

(V̂1,0, F̂1,0, `1,0)

(V̂2,0, F̂2,0, `2,0)

ê, t . . .

ê, t ê, t ê, t

L0 =

L1 =

L2 =

FIGURE 2.4: The general structure of a computation tree.

reachable state s ∈ RH , we can find a set of trajectories, by one of which s is reachable.
When we over approximate RH this second use is only a heuristic.

If memory consumption is a problem, parts of the tree can be discarded. If one is
only interested in whether a specific set of states is reachable, then those states can
be intersected with the the states represented by a node immediately after that node
is generated. A node can then be discarded once all its discrete successors, i.e. its
children were generated. This effectively only maintains a list of current leaf nodes.

The tree TH := (N,E) for a linear hybrid automaton H consists of

• nodes (init, full, `, n) ∈ N with init := V̂, full := F̂, V, F ⊆ ValH, ` ∈ LocH and a
numbering n ∈N,

• edges (n,n′, ê, t) ∈ E with n,n′ ∈ N, e ∈ EdgeH, t := [tl , tu] ⊆ R≥0.

The numbering on the nodes is necessary to model that otherwise identical nodes
may exist. When we omit it, each node mentioned is assumed to have a distinct
numbering.

For each pair (V̂, `) that is constructed from ÎnitH, there is a root (V̂, T+
` (V̂), `).

Each node n := (init, full, `) has a child n′ := (V̂ ′, T+
`′ (V̂

′), `′) for each (V̂ ′, `′, ê, t) ∈
D+

` (full). The edge connecting them is (n,n′, ê, t).
Let Li = {(init1, full1, `1), . . . , (initn, fulln, `n)} be the set of nodes at level i ∈ N,

i.e. the nodes whose shortest path to the root has length i. Then
⋃n

j=1 fullj corresponds
to Si in the general reachability algorithm from Section 2.2.

2.3 Successor Computations

After introducing the algorithm, we now discuss flowpipe construction, which is
used to compute the continuous successors of a set of states, i.e. implement T+

` from
Section 2.2.4. We will then look at the procedure to obtain the discrete successors
of such a set, i.e. the implementation of D+

` . As discussed before, both operators
will compute over approximations of the set of continuous and discrete successors
respectively, because exact computations are not possible in general.

The focus will be on the aspects that are relevant to our algorithm. That is the
representation of the result and how to use it, as well as some of the details of the
computation that we can use to optimize the computation for the compositional case.
For the remaining part an informal intuition will be given.
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For further details omitted here, we refer the interested reader to [Fre16, Sec.2.2,
2.3]. Notably, we only consider flows of the form ẋ = Ax, as in Definition 9, which is
a special case of what is described in [Fre16].

2.3.1 Continuous Successor Computation

Given a linear hybrid automaton H, V̂ representing V ⊆ ValH and ` ∈ LocH, let Xt
be the set of states reachable from V by a time step of duration t ∈ R≥0 ignoring
the invariant, i.e. Xt := {eAFtv | v ∈ V}. The goal is to compute F̂ representing a set
F ⊆ ValH with

X :=
⋃

t∈R≥0

Xt ⊆ F or X :=
⋃

t∈[0,Tl ]

Xt ⊆ F, given Tl ∈ R≥0.

Valuation Set Representations and Operations

As already seen in Section 2.2.4 we will be working with valuation sets, so we need
a representation for them. We use those available in the HyPro library [Sch19], so
our algorithm can be used with boxes, support functions and convex polyhedra for
example. Notably convex polyhedra directly correspond to the definition of InitH,
InvH and guards of a linear hybrid automaton H. All other representations can also be
constructed from a set of linear constraints, but may introduce an over approximation.
To simplify notation, we will not specially mark the over approximation introduced by
this construction and use sets of linear constraints interchangeably with the valuation
set representation constructed from them.

In general only over approximations are available for all operations on the
representations. To reflect this, we denote these operations surrounded by App(). The
operations that are available on representations V̂, V̂ ′ of V, V ′ ⊆ Rn are

• intersection App(V̂ ∩ V̂ ′) representing VR ⊇ V ∩V ′,

• affine transformation, App(AV̂ + b) representing VR ⊇ AV + b := {Av + b |
v ∈ V},

• Minkowski sum, App(V̂ ⊕ V̂ ′) representing VR ⊇ V ⊕ V ′ := {v + v′ | v ∈
V, v′ ∈ V ′},

• convex hull of the union, App(V̂ ∪ V̂ ′) := App(cHull(V̂, V̂ ′)) representing VR ⊇
cHull(V, V ′) where cHull(V, V ′) is the smallest convex set containing V and
V ′,

with n ∈N, A ∈ Rn×n, b ∈ Rn.

Flowpipe Construction

The representations we use can not describe the set of states reachable by time steps
exactly, especially when the flow describes non-linear functions. The discrepancy
between the represented set and the set of reachable states tends to grow with the
distance between the smallest and largest time steps allowed. Thus time is discretized
into intervals whose width is some time step δ ∈ R≥0. We then compute segments V̂i
for i ∈N≥1 each covering the time interval [(i− 1)δ, iδ], i.e.

X[(i−1)δ,iδ] :=
⋃

t∈[(i−1)δ,iδ]

Xt ⊆ Vi.
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X0

eδAX0

(A) The convex hull of the initial set and its trans-
formation by one time step.

X0

eδAX0

(B) The first segment with bloating.

FIGURE 2.5: Construction of the first flowpipe segment.

If Tl ∈ R≥0 is given, at most n :=
⌈

Tl
δ

⌉
∈N segments are computed.

At this point let us note two important statements. First, regarding the relationship
of the sets Xt, we make essentially the same argument as in Theorem 1.

Xt+t′

={eAF(t+t′)v | v ∈ V}
={eAFteAFt′v | v ∈ V}
=eAFt{eAFt′v | v ∈ V}
=eAFtXt′ .

(2.6)

Second, regarding linear transformations of any two sets S, S′ ⊆ Rd by a matrix
A ∈ Rd×d of some dimension d.

S ⊆ S′ =⇒ AS ⊆ AS′. (2.7)

First Segment. To compute V̂1 we first obtain Ŷ0 := V̂ and Ŷδ := App(eAFδV̂),
representing over approximations of X0 and Xδ respectively. We take their convex
hull App(cHull(Ŷ0, Ŷδ)). This is shown in Figure 2.5a. Intuitively this makes sense
because the convex hull accommodates for all possible linear behavior, but the set
still has to be extended for non-linear behavior. We will not explore how to do this in
detail but instead simply assume that we obtained V̂B such that VB over approximates
the difference between the convex hull and the potentially non-linear behavior. We
can use it for bloating such that X[0,δ] ⊆ cHull(X0, Xδ)⊕VB, as shown in Figure 2.5b.
Thus V̂1 := App(cHull(Ŷ0, Ŷδ)⊕ V̂B) fulfills our requirements. This type of bloating,
among others, is explained in both [Fre16; Sch19].

Flowpipe. We have the first segment V̂1 such that Xt ∈ V1 for all t ∈ [0, δ] or simply
X[0,δ] ⊆ V1 holds. Based on that we can now construct V̂i := App(eAFδV̂i−1) for i > 1.
Due to Equation 2.6 and 2.7 Xt ∈ Vi for all t ∈ [(i− 1)δ, iδ] or simply X[(i−1)δ,iδ] ⊆ Vi
holds again. Using this, we can keep iteratively computing further sets. We stop
the computation at V̂n or when the invariant is guaranteed to be violated, as we will
discuss next.

Invariant. So far we have been ignoring the invariant. Since we are computing an
over approximation and the invariant only restricts the set of reachable states, there
are no specific requirements on our handling of it. We simply intersect each segment
with the invariant, i.e. use V̂ ′i := App(V̂i ∩ InvH(`)) instead of V̂i. If V̂ ′i = ∅ we stop
the iteration as all following segments V ′j , j > i will also be empty. Thus in total
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c := max({i | V̂ ′i 6= ∅}), or if Tl ∈ R≥0 is given, c := min(n, max({i | V̂ ′i 6= ∅}))
segments are computed.

As the final result we then have T+
` (V̂) := F̂ := {V̂ ′1, . . . , V̂ ′c} representing F =⋃c

i=1 Vi.

2.3.2 Discrete Successor Computation

Let H be a linear hybrid automaton, F̂ := {V̂1, . . . , V̂c} a flowpipe representing
F ⊆ ValH , ` ∈ LocH a location and e := (`, `′, lab, cond) ∈ EdgeH(`) an edge originating
in `. Additionally let (Ĝ, R̂) := ĉond. The goal is to compute 〈(V̂ ′1, `′, ê, t1), . . .〉 for
each such edge with the properties given in Equation 2.4.

We only have to consider flowpipes because D+
ê is only applied to results of

T+
` . We must first compute the set of valuations that satisfy the guard. We do this

segment wise, computing the set of satisfying segments F̂sat := {V̂sat
i | i ∈ [1, c], V̂sat

i =

App(V̂i ∩ Ĝ), V̂sat
i 6= ∅}. This set is then partitioned into sets F̂sat

i ⊆ F̂sat for i ∈ [1, n],
n ∈N. Over those the union V̂agg

i := App(
⋃

V̂∈F̂sat
i

V̂) is computed. If n = |F̂sat| each
segment is handled individually, if n = 1 all segments are aggregated into one set.
Otherwise clusters of segments are created. These clusters are typically chosen to be
consecutive, i.e. F̂sat

i = {V̂j, . . . , V̂k} with j, k ∈N for all i ∈ [1, n]. This reduces over
approximation in the union because consecutive segments are usually close and are
actually guaranteed to overlap.

For each i ∈ [1, n] a set of time points

ti :=
⋃

j∈[1,c]∧V̂j∈F̂sat
i

[(j− 1)δ, jδ]

can be computed. If F̂sat
i contains consecutive segments, then that set is an interval

ti = [tl , tu] ⊆ R≥0. The successor valuations themselves are left to compute. We do
this for each i ∈ [1, n] by

1. V̂reset
i := App(AV̂agg

i + b) where R̂ = (A, b) is the edge’s reset,

2. V̂result
i := App(V̂reset

i ∩ ÎnvH(`
′)).

Finally the result is D+
ê (F̂) := 〈(V̂result

i , `′, ê, ti) | i ∈ [1, n], V̂result
i 6= ∅〉.
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Chapter 3

Flowpipe Construction for
Compositional Hybrid Automata

Our goal is to adapt the reachability algorithm from Chapter 2 to work with a hybrid
automaton H := H1|| . . . ||Hn without constructing H1|| . . . ||Hn explicitly. We aim to
improve scaling with the number n ∈N of component automata. We will work with
linear component automata, which implies that their parallel composition H is also a
linear hybrid automaton.

Compositional Structures As a prerequisite we introduce the compositional struc-
tures that we will need hereinafter.

• Compositional edges ê := (ê1, . . . , ên) with ei := (`i, `′i, labi, condi) ∈ EdgeHi
∪

IdEdgeHi
for all i ∈ [1, n] and

e := ((`1, . . . , `n), (`′1, . . . , `′n), lab,
n⋂

i=1

condi),

where lab := labi for the smallest i ∈ [1, n] with labi 6= I. Note that such edges e
are candidates for being edges of H, i.e. e ∈ EdgeH does not necessarily hold.

• Compositional valuation sets V̂ := (V̂1, . . . , V̂n) with V :=×n
i=1 Vi.

• Compositional flowpipes F̂ = (F̂1, . . . , F̂n) with Fi = {V̂i,1, . . . , V̂i,c}, represent-
ing F :=

⋃c
j=1(×n

i=1 Vi,j).

Composition of Trajectories. Now we look at the trajectories of H and how they
can be composed from the trajectories of the component automata Hi. Since the
variable sets VarHi are pairwise disjoint, we can assume w.l.o.g. that VarH is sorted
such that for v, v′ ∈ ValH there are vi, v′i ∈ ValHi for i ∈ [1, n] with v = (v1, . . . , vn) and
v′ = (v′1, . . . , v′n). Additionally let ` := (`1, . . . , `n) ∈ LocH and `′ := (`′1, . . . , `′n) ∈
LocH.

Remark 1. The relation s r−→s′ holds for r ∈ R≥0 if and only if (vi, `i)
r−→(v′i, `

′
i) holds for

all i ∈ [1, n].

Remark 2. For ê := (ê1, . . . , ên) with e ∈ EdgeH the relation (v, `) e−→(v′, `′) holds if and
only if (vi, `i)

ei−→(v′i, `
′
i) holds for all i ∈ [1, n].

In the remaining chapter we adapt the reachability algorithm from Chapter 2
following the same steps as we did there. We begin with the computation tree and
then move on to adapt the operators to compute continuous and discrete successors.
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3.1 Compositional Computation Tree

The first step we take is extending the structure from Section 2.2.4 by inserting another
level of composition. For the tree TH = (N,E) a node n := (init, full, `) ∈ N consists
of a compositional valuation set init := V̂ , a compositional flowpipe full := F̂ and
a location ` := (`1, . . . , `n) ∈ LocH. An edge e := (n,n′, ê, t) ∈ E consists of the
compositional parts

• n,n′ ∈ N,

• ê := (ê1, . . . , ên) with e ∈ EdgeH,

• t := [tl , tu] ⊆ R≥0 a time interval with the same properties as in Section 2.2.4.

For the initial states we first only consider the two component automata H1, H2.
Let ιi := |ÎnitHi | for i ∈ [1, n], n′ := |VarH | − |VarH1 |, m′ := |VarH | − |VarH2 |. We
assume w.l.o.g.

VarH1 = {x1, . . . , xn′}, VarH2 = {xn′+1, . . . , xn′+m′} and
VarH1||H2

= {x1, . . . , xn′ , . . . , xm′+n′}

The initial states of H1||H2 can then be obtained by

InitH1||H2

=(InitH1 ×Rm′) ∩ (Rn′ × InitH2) | Definitions 6, 7

=InitH1 × InitH2

=(
ι1⋃

j=1

InitH1(j))× (
ι2⋃

k=1

InitH2(k)) | Definition 9

=
⋃

(j,k)∈[1,n1]×[1,n2]

InitH1(j)× InitH2(k).

(3.1)

This naturally extends to all n component automata. Let (V̂i,j, `i,j) be chosen such
that Vi,ji × `i,ji = InitHi(ji) for i ∈ [1, n], ji ∈ [1, ιi]. For each (ÎnitH1(j1), . . . , ÎnitH1(jn))
where (j1, . . . , jn) ∈×n

i=1[1, ιi] we construct a pair (V̂ , `) with V̂ := (V̂1,j1 , . . . , V̂n,jn),
` := (`1,j1 , . . . , `n,jn). Each such pair is used as the root (V̂ , T +

` (V̂), `) of a computation
tree. As before, we consider only a single tree, even though there may be many.

3.2 Precision

Our goal is to represent the set of reachable states as precisely as possible. We will
now justify the definitions above, look at how the precision compares to an explicitly
constructed compositional hybrid automaton H and where that matters.

The initial states are given as a cartesian product. Assuming a single root n with
init = V̂ = (V̂1, . . . , V̂n), the initial states are V =×n

i=1 Vi. We again make the same
assumptions on variable ordering as above. Now we want to find the set of states
reachable by a step r−→ for some r ∈ R≥0. That is the set

{v′ := (v′1, . . . , v′n) ∈ ValH | v := (v1, . . . , vn) ∈ V , v r−→v′}
={v′ := (v′1, . . . , v′n) ∈ ValH | vi ∈ Vi, vi

r−→v′i for i ∈ [1, n]}.
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For some i ∈ [1, n] and an according j ∈ [1, |F̂i|], the set {v′i | vi ∈ Vi, vi
r−→v′i} is

approximated by the j-th segment Vi,j of F̂i ∈ F̂ . We get the following approximation
of the set of states reachable from V by r−→.

{v′ := (v′1, . . . , v′n) ∈ ValH | v′i ∈ Vi,j for i ∈ [1, n]} =
n

×
i=1

Vi,j.

The construction for jumps works similarly. We over approximate the states reachable
from the cartesian product over flowpipe segments×n

i=1 Vi,j via an edge e ∈ EdgeH
by the cartesian product×n

i=1 Vi over the initial valuation sets init = V̂ = (V̂1, . . . , V̂n)
of an according child node.

This is why the reachable sets of states in the above computation tree are all
represented by cartesian products. This is a considerable loss of precision if one is
interested in the relationship between variables of different component automata.
An important situation where this arises is jump synchronization between automata.
The guard of an automaton often implies stricter bounds on the variables of other
automata than we can establish by matching flowpipe segments.

Example 4 (Precision). We assume that neither arithmetic nor the representation
introduce over approximation for this example. Let H1 be a linear hybrid automaton
with a single location and single variable x that grows with ẋ = 1. Let H2 be
equivalent with a variable y. With a time step δ := 1 our first segments would be
V1,1 = [0, 1] and V2,1 = [0, 1] and the reachable set we obtain for H1||H2 is the box
[0, 1]× [0, 1].

Analysing the explicitly constructed automaton H1||H2 and using a fitting repre-
sentation like oriented boxes or polyhedra results in the line segment {(x, y) | x =
y, x ∈ [0, 1]} instead.

Constraints on x or y exclusively are satisfied by the box if and only if they are
satisfied by the line segment, but the constraint x − y ≤ 0.5, for example, is not
satisfied by the former but satisfied by the latter. Also, intersecting the first set with
the guard x = 1 yields {(x, y) | x = 1, y ∈ [0, 1]} while an intersection with the
second set yields the single point (1, 1).

3.3 Adapting Successor Operators
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FIGURE 3.1: Schematic of a
compositional flowpipe and
the order of construction of

segments.

Next we define operators D+ and T + for the new compo-
sitional structures. These operators must meet the same
requirements as D+, T+ in Section 2.2.4.

3.3.1 Continuous Successors

The continuous successors of a pair (V̂ , `) as above could
be computed as

T +
` (V̂) := (T+

`1
(V̂1), . . . , T+

`n
(V̂n)).

However, the longest time step of H from some s ∈ V × `
is at most as long as the shortest time step of any Hi from
some si ∈ Vi × `i. This is a consequence of InvH being
the intersection of the variable-extended invariants of the
component automata. We build all flowpipes with the
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same time step δ ∈ R≥0, so we can truncate them to the number of segments of
the shortest flowpipe min{|T+

`i
(V̂i)| | i ∈ [1, n]}. For an efficient implementation it

is important to iterate j = 1, 2, . . . and compute the j-th segment of each flowpipe
V̂1,j, . . . , V̂n,j in each step, as opposed to iterating i ∈ [1, n] and computing the i-th
flowpipe T+

`i
(V̂i) = {V̂i,1, V̂i,2, . . .} in each step. This is shown in Figure 3.1. We

want to reach the end condition App(V̂i,j ∩ ÎnvHi(`i)) = ∅ as early as possible, before
constructing segments that we will truncate away.

3.3.2 Discrete Successors

To compute the discrete successors of a pair (F̂ , `) := ((F̂1, . . . , F̂n), (`1, . . . , `n)) we
must first obtain the set EdgeH(`) of edges of H originating in `.

Label Sets

In modeling of hybrid systems, it sometimes occurs that a model has many edges that
are identical except for their label. We will see such an example in Section 4.1. It is
useful to treat these edges as a single edge with a set of labels instead. We denote such
sets of labels by lab instead of lab. Once we introduce this notion and implement its
analysis efficiently, we can use it in modeling as a powerful tool to express discrete
synchronization. We will show an example of that in Section 4.2.3.

Let H be a hybrid automaton as defined before. Let ∼⊆ Edge2
H be a relation with

(`1, `′1, lab1, cond1) ∼ (`2, `′2, lab2, cond2) if and only if `1 = `2, `′1 = `′2, cond1 = cond2,
i.e. ∼ is equality ignoring labels. Then the equivalent hybrid automaton to H using
label sets is Coll(H), which is equal to H except for

EdgeColl(H) := {(`, `′, {lab1, . . . , labm}, cond) | m ∈N≥1,

{(`, `′, lab1, cond), . . . , (`, `′, labm, cond)} ∈ EdgeH�∼}.

We extend ∼ to (EdgeColl(H) ∪ EdgeH)
2, as the same elementwise equality, ignoring

labels and label sets, as before. We additionally define the self loops from Definition 5
for Coll(H) as eI(Coll(H), `) := (`, `, LabColl(H), cond) where eI(H, `) = (`, `, I, cond).
The label I is replaced by LabColl(H), which is the absolute complement of LabColl(H) =
LabH.

The semantics of Coll(H) are defined as those of H. The semantics of any hybrid
automaton H′ using label sets are those of the hybrid automaton Coll−1(H′) that is
uniquely defined by the requirement Coll(Coll−1(H′)) = H′.

The notion of edges with sets of labels is useful because it simplifies modeling,
makes the implementation more efficient and, as we will see below, allows us to also
simplify the implementation by handling edge cases elegantly.

Computing the Set of Edges

Let H be a compositional automaton of n components. Furthermore, let i ∈ [1, n],
` := (`1, . . . , `n) ∈ LocH, Edge∪I

Hi
(`i) := EdgeHi

(`i) ∪ eI(Hi, `i) and ê := (ê1, . . . , ên) be
a tuple of edges with ei ∈ Edge∪I

Hi
(`). Let labi be the label of ei. Applying Definition 7

yields that e ∈ EdgeH(`) if and only if

• i ∈ [1, n] with labi 6= I exists and

• for all i, j ∈ [1, n] with labi 6= I, labj 6= I the labels are the same lab := labi = labj
and
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• for all i ∈ [1, n] with labi = I the common label, i.e. lab := labj for some j ∈ [1, n],
labj 6= I, does not occur in Hi, i.e. lab /∈ LabHi .

We can use label sets to simplify the above requirements and at the same time
implement edges with multiple labels efficiently. We compute the set of edges

CEdgeH(`) := {(`, `′,
n⋂

i=1

labi,
n⋂

i=1

condi) | (`i, `′i, labi, condi) ∈ Edge∪I
Coll(Hi)

for i ∈ [1, n],
n⋂

i=1

labi 6= ∅, `′ = (`′1, . . . , `′n)}.

This set is easy to compute and satisfies CEdgeH(`) ∼ EdgeH(`). This means that
every state reachable by jumps via edges in EdgeH(`) is also reachable by jumps via
edges in CEdgeH(`), since their elements only differ by their labels.

To ease notation and mental burden, we will allow label sets in all hybrid au-
tomata, justified by the fact that label sets are a generalization. This allows us to
simply use H instead of Coll(H). We will also use EdgeH instead of EdgeColl(H) or
CEdgeH, even though the implementation uses CEdgeH.

Modeling as a Tree. Let ê := (ê1, . . . , ên) with ei ∈ Edge∪I
Hi

for all i ∈ [1, n] now. Let
Plab(ê) :=

⋂n
i=1 labi and equivalently for smaller tuples. For efficiency one should

avoid to enumerate the cartesian product×n
i=1 Edge∪I

Hi
(`i) in its entirety. The problem

of enumerating all tuples ê such that Plab(ê) 6= ∅, i.e. e ∈ CEdgeH(`) can be modeled
as a search on a tree. Let Tedges

H(`) := (N, E) with

•N := {(ê1, . . . , êm) | m ∈ [0, n], ei ∈ Edge∪I
Hi
(`i) for i ∈ [1, m],

Plab((ê1, . . . , êm)) 6= ∅} and

•E := {((ê1, . . . , êm), (ê1, . . . , êm, êm+1)) ∈ N × N}.

We store Plab(ê) with each ê ∈ N. The children of each node can then be obtained
efficiently because we can check Plab((ê1, . . . , êm)) 6= ∅, m ∈ [1, n] by

Plab((ê1, . . . , êm−1)) ∩ labm 6= ∅.

Note that the result of the empty intersection is the neutral element with respect to
intersection, which is LabH is this context. The leaf nodes, those at depth n, represent
the edges in CEdgeH(`). They can be enumerated, for example, by depth first search
as shown in Algorithm 1. The empty tuple () is the root of Tedges

H(`), so we obtain
EdgeH(`) by EdgeH(`) = {e | ê ∈ DFS((), LabH)}.

The tree may still be large, even if |EdgeH(`)| is small. The size of the tree can
vary based on the order that the edge sets are processed in. An edge set Edge∪I

Hi
(`i)

whose only edge synchronizes with no other edges can limit the size of the tree to
|N| = |{(), eI(Hi, `i)}| = 2 if it is the very first one to be processed. If it is the last
one, then there may still be up to

∏
j∈[1,n−1]

|Edge∪I
Hj,`j
| nodes.

The order of the edge sets can be chosen for each compositional location individually.
This is an opportunity to employ various heuristics or use knowledge about the
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Algorithm 1: Pseudo-code algorithm for depth first search in Tedges
H(`).

Function DFS(ê, lab):
Edges := ∅
i := |̂e|
if i = n then

return ê
forall e ∈ Edge∪I

Hi
(`i) do

lab′ := lab ∩ lab(e)
if lab′ 6= ∅ then

Edges := Edges ∪ DFS((ê, ê), lab′)

return Edges

model. One may, for example, process those edge sets first whose edges have the
fewest labels combined.

Computing the Valuation Sets

We have computed EdgeH(`) for a location ` := (`1, . . . , `n) ∈ LocH and are given
a compositional flowpipe F̂ := (F̂1, . . . , F̂n) with F̂i := (V̂i,1, . . . , V̂i,c). We need to
compute D+

ê (F̂ ) = (V̂ , `′, ê, t) for each ê := (e1, . . . , en) with e := (`, `′, lab, cond) ∈
EdgeH(`). Let (Ĝi, R̂i) := ĉondi where ĉondi is the representation of the condition of ei.

The sets of reachable states are Vj :=×n
i=1 Vi,j for each j ∈ [1, c]. The jump

(v, `) e−→(R(v), `′) for v := (v1, . . . , vn) ∈ Vj, with R being the reset of e, is possible if
and only if (vi, `i)

ei−→(Gi(vi), `′i) is possible for all i ∈ [1, n]. So we compute all indices
j ∈ [1, c] where for all i ∈ [1, n] the satisfying segment V̂sat

i,j := App(V̂i,j ∩ Ĝi) is not
empty. Again there are efficiency concerns to be considered. The intersection with the
guard and the check for emptiness of the result are a single operation in HyPro and
and it is the only relevant operation we are performing here. To minimize the number
of these intersections that we need to make, we iteratively compute SatIndsi ⊆ [1, c]
from i = 0 to i = n by

SatIndsi :=

{
[1, c], if i = 0,
{j ∈ SatIndsi−1 | V̂sat

i,j 6= ∅}, otherwise.
(3.2)

Then SatInds := SatIndsn contains the indices j for which the corresponding segments
Vi,j of all flowpipes F̂i contain valuations that satisfy the guard. Note that we only
need to compute the intersection with the guard for all segments for the first flowpipe.
For all following flowpipes we need to check only the segments whose corresponding
segments in all previous flowpipes were satisfying.

In the same way as in Section 2.3.2 we partition SatInds into SatIndsk ⊆ SatInds
for k ∈ [1, m] and create the aggregated valuation sets as the union

V̂agg
i,k := App(

⋃
j∈SatIndsk

V̂sat
i,j ).

We assume that the indices in SatIndsk are consecutive. Similarly to Section 2.3.2 the
time intervals tk are computed by
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tk :=
⋃

j∈SatIndsk

[(j− 1)δ, jδ].

Each set V̂agg
i,k is further processed to obtain

1. V̂reset
i,k := App(AV̂agg

i,k + b) with (A, b) := R̂i,

2. V̂result
i,k := App(Vreset

i,k ∩ ÎnvH(`
′
i)).

Finally let V̂ k := (V̂result
k,1, . . . , Vresult

k,n) to form the result

D+
ê (F̂ ) := 〈(V̂ k, l′, e, tk) | k ∈ [1, m], V̂result

i,k 6= ∅ for all i ∈ [1, n]〉.

Optimizing Edge Set Enumeration

In Chapter 4 we will see two situations where |EdgeH(`)| grows exponentially with
the number n of component automata, but only a single edge can actually be taken.
We present an optimization for such cases.

Let (N, E) := Tedges
H(`). Given ` ∈ LocH, a compositional flowpipe F̂ and ê :=

(ê1, . . . , êm) ∈ N, let SatIndsi be defined as above for i ∈ [0, m] and V̂sat
i,j := App(V̂i,j, Ĝi)

where Gi is the guard of ei. For each such ê ∈ N we define SatInds(ê) := SatIndsm.
We then use SatInds(ê) 6= ∅ similarly to Plab(ê). We can also compute SatInds(ê)
incrementally by SatInds(ê) = {j ∈ SatInds((ê1, . . . , êm−1)) | V̂sat

m,j 6= ∅}.
We consider the subtree Tedges(`)[F̂ ] := (N′, E′) of edges that have satisfying

segments in F̂ . Its nodes and edges are N′ := {ê ∈ N | SatInds(ê) 6= ∅} and
E′ := {(ê1, ê2) ∈ E | ê1, ê2 ∈ N′}. Algorithm 2 shows the adaption of Algorithm 1 to
incorporate the new constraint. The size of Tedges

H(`)[F̂ ] and thus the running time
of Algorithm 2 varies depending on the order that the edge sets are processed in, in
the same way as in Section 3.3.2. A heuristic for the order of the edge sets should now
consider the guards of the edges. The fewer constraints the guards have the later the
edge set should be processed.

Evaluating the added constraint SatInds(ê) 6= ∅ may also require the computation
of more satisfying segments V̂sat

i,j than Algorithm 1. Thus the new constraint represents

Algorithm 2: Adaption of Algorithm 1 for depth first search in Tedges
H(`)[F̂ ].

Function DFS(ê, lab, SatInds):
Edges := ∅
i := |̂e|
if i = n then

return ê
forall e ∈ Edge∪I

Hi
(`i) do

lab′ := lab ∩ lab(e)
SatInds′ := {j ∈ SatInds | V̂sat

i,j 6= ∅}
if lab′ 6= ∅ ∧ SatInds′ 6= ∅ then

Edges := Edges ∪ DFS((ê, ê), lab′, SatInds′)

return Edges
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a different trade off between the number of edges to enumerate and the number of
intersections to compute to check for satisfying segments.

3.4 Urgent Edges

Before we look at some applications of our algorithm, we need to extend it to support
urgent edges. Intuitively urgency of an edge means that when its guard is enabled,
the edge, or another enabled edge, must immediately be taken.

Definition 11 (Urgent Edge). Any hybrid automaton H may be extended by a set
UEdgeH ⊆ EdgeH designating its urgent edges. For (v, `), (v′, `) ∈ StH, r ∈ R≥0. The
relation (v, `) r−→(v′, `) holds if and only if the conditions from Definition 3 hold and
the function f additionally satisfies ( f (ε′), v′′) /∈ cond for ε′ ∈ [0, r), any v′′ ∈ ValH
and any urgent edge e := (`, `′, lab, cond) ∈ EdgeH(`).

From this definition, we can see that the complements of guards of urgent edges
act similarly to invariants that only constrain time steps, but not discrete jumps. There
are some nuances because the interval [0, r) is half open and when working with
convex representations, the complement of the guard can not be formed unless it is
defined by a single linear inequality. We will not explore these nuances here.

We will implement the analysis of urgent edges by adding a check to the procedure
from Section 2.3.2. After intersecting each segment with the invariant, we check for
the resulting set V̂ whether V̂ ⊆ G for each guard G of an urgent edge and stop the
flowpipe construction if this is the case. The subset check is conservative in the sense
that a positive result is guaranteed to be correct but negative result is not. This is a
safe over approximation of the allowed behavior.
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Chapter 4

Applications

We will now look at a few models and apply our algorithm to them. These tests
will show strengths and weaknesses of the algorithm and reveal opportunities for
improvement.

4.1 Robot Swarm Model

First we consider a model of a simple scenario demonstrating emergent behavior
taken from [Leo+19]. Simple robots are modeled by automata H1, . . . , Hn that each
have an internal clock variable xi and, when the clock reaches a threshold, flash an
LED and reset their clock to zero. When a robot flashes its LED, all other robots
multiply the value of their clock by some factor α > 1. We are interested in the
behavior of the whole swarm, i.e. H := H1|| . . . ||Hn.

In [Leo+19] four different models are considered. Two using shared variables,
two using exclusively labels for synchronization. Our algorithm is applicable to both
models using label synchronization. We choose the model lsync I I because it was
found to lead to better scaling of the analysis.

4.1.1 The Model

In Figure 4.1 the automaton modeling the i-th robot is shown. Control initially starts
in the location wait := (wait1, . . . , waitn) ∈ LocH. Time passes and the clocks of the
automata increase their values. When an automaton reaches xi = 1, control jumps
to the location adapt := (adapt1, . . . , adaptn) ∈ LocH because Hi jumps via the upper
edge with label flashi and all others synchronize via their respective lower edge.

The location adapt is only used to differentiate between the case where a clock
was set to a value less than one and may continue and the case where a clock was set
to a value greater than or equal to one and must be reset to zero. No time may pass
in adapt because the outgoing edges are urgent and the guards of the two edges with
the return label cover the entirety of R.

4.1.2 Analysis Parameters

We will compare the two algorithms we presented. On the one hand we use the
compositional algorithm presented in Chapter 3, which works on separate compo-
nent automata, without the edge set enumeration optimization of Section 3.3.2. On
the other hand we employ the plain flowpipe construction algorithm outlined in
Chapter 2, working on the explicitly constructed parallel composition. We perform the
construction using HySt and use our implementation of the compositional algorithm
and the preexisting implementation of the plain algorithm in HyPro.
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waiti
ẋi = 1
xi ≤ 1

xi := i
n

adapti
ẋi = 0

flashi
xi ≥ 1
xi := 0

flashj 6=i
xi := 1.1 · xi

return
xi ≥ 1
xi := 0∗

return
xi < 1

∗

FIGURE 4.1: The i-th automaton of the lsync I I model we are using.

We consider two parameters for this model. The number n of robots in the
model and the size of the used time step δ, which is a proxy for precision. Which
representation is used for the compositional algorithm is not important because the
state spaces are one dimensional so any representation degenerates to intervals. More
complex representations only add overhead, which is why we use boxes. For the
plain algorithm, a more complex representation may improve precision, but as we
will see, with a small enough δ, boxes are precise enough for all n that the plain
algorithm is able to handle. For the maximum jump depth we use 20 as in [Leo+19]
and the initial value for the clock of each Hi is i−1

n .

4.1.3 Initial Results

The results of our experiments are summarized in Tables 4.1 and 4.2. For the plain
algorithm the number of nodes in the computation tree is not listed because was no
branching so there were always the expected 21 nodes generated. We identify several
limiting factors.

Precision. Initially all segments are boxes or intervals of length δ in each dimension.
With every jump that does not reset x to zero precision is lost, because a segment
V := [3δ, 4δ], for example, that is used as an initial set, results in the first segment

TABLE 4.1: Run time in seconds and number of nodes in the computa-
tion tree for the plain algorithm for different numbers of robots n and

time steps sizes δ. Time out is two minutes.

δ n = 1 2 3 4 5 6 7 8 9 10

2 · 10−5 time 4.79 1.84 1.74 1.87 2.41 2.23 2.59 TO 3.36 5.56
10−5 time 7.15 3.59 2.88 3.15 3.61 3.46 3.64 5.15 4.35 7.42

δ n = 11 12 13 14 15 16 17 18 19 20

2 · 10−5 time TO 6.77 12.4 19.6 38.2 TO TO TO TO TO
10−5 time TO 10.2 12.3 22.6 52.5 TO TO TO TO TO
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TABLE 4.2: Run time in seconds and number of nodes in the compu-
tation tree for the compositional algorithm for different numbers of

robots n and time steps sizes δ. Time out is two minutes.

δ n = 1 2 3 4 5 6 7 8 9 10

10−4 time 0.20 0.15 0.19 0.36 0.53 0.35 1.46 4.27 0.91 3.07
nodes 21 21 21 21 21 21 36 55 27 24

10−5 time 2.00 1.32 1.21 1.25 1.33 1.11 1.03 1.23 1.07 1.40
nodes 21 21 21 21 21 21 21 21 21 21

δ n = 11 12 13 14 15 16 17 18 19 20

10−4 time 2.00 0.91 1.13 1.20 1.76 59.9 14.2 50.4 45.2 TO
nodes 43 22 22 22 22 253 54 207 72 120

10−5 time 2.35 1.17 1.27 1.60 2.09 3.20 5.08 9.28 16.9 33.2
nodes 40 21 21 21 21 21 21 21 21 21

[3δ, 5δ] in the next flowpipe, increasing the segments width by δ. This also leads to
segments overlapping, as the next segment in the example would be [4δ, 6δ]. This
means that multiple segments will be satisfying the x ≥ 1 guard before the flowpipe
construction can be terminated. The aggregation of the corresponding segments in
other automata causes further loss of precision. In Section 5.2.1 we suggest a possible
solution. The according Figure 5.1 visualizes the described situation.

Modeling can have an impact on this, as for example the reset xi := 0 on the
edge labeled flashi is superfluous for the semantics of the system, but is important to
collapse the segment that enables this jump to [0, 0].

Urgent Edges It occurs sometimes that a reachable set in adapt overlaps with the
guard of two urgent edges. Due to over approximations the algorithms can not
determine that the reachable set is fully contained in the guards of the edges, so
control remains in adapt indefinitely. Non termination is only avoided by a local
time horizon. This phenomenon can most clearly be seen in the timings of the plain
algorithm for n ∈ {8, 11}.

Branching. For the compositional algorithm there is a clear correlation of running
times and the number of nodes in the computation tree. This correlation can also be
observed for the plain algorithm with time steps larger than what is shown here. We
can also see in the data that using smaller time steps can help with this problem. With
the smaller time step, the compositional algorithm generates fewer branches and
runs faster for n ∈ {7, 8, 10, 16, 17, 18, 19, 20}. The plain algorithm behaves similarly
when going from δ = 10−3, for which the data is not shown, to the shown time step
sizes. With δ = 10−3 it times out for all n ≥ 7 because of branching, while there is
no branching and fewer time outs for the two time step sizes shown. The smaller
time steps reduce branching because they cause the calculated segments to be more
precise and thus smaller. Smaller segments intersect less often with more than one
guard than larger ones.

Since branching is so impactful, the maximum jump depth has a big impact on
the running times. The number of nodes grows exponentially with the jump depth
and the loss of precision with every jump causes even more branching.
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TABLE 4.3: Run time in seconds and number of nodes in the compu-
tation tree for the compositional algorithm for different numbers of

robots n. Time out is two minutes.

δ n = 40 80 120 160 200 240 280 320 360 400

10−5 time 1.63 2.34 3.56 13.0 34.5 11.9 17.5 58.5 44.8 TO
nodes 21 22 26 50 77 52 60 147 114 NA

Exponential Model Growth. The size of the models generated for the plain algo-
rithm is not listed but it is significant. Since there are two edges leading from adapti
to waiti for each i ∈ [1, n] and they all have the return label, there are 2n edges in
EdgeH(adapt). For n = 16 and above this caused the model file parser alone to time
out. While the parser may be optimized, |EdgeH(adapt)| still grows exponentially, so
the problem would persist for n not much larger than what we tested.

The compositional algorithm avoids the problem of writing EdgeH(adapt) to a
file and reading it again because it takes the component automata each on its own.
However, computing the edge set as described in Section 3.3.2 still enumerates all
edges in EdgeH(adapt). This is the reason for the exponential growth of running times
of the compositional algorithm with δ = 10−5 from n = 16 to n = 20, despite no
branching.

Summary. The issue of loss of precision and branching caused by it were mostly
overcome by using a small enough δ, at least for the jump depth limit of 20. As the
number of automata n increases, exponential model growth becomes the limiting
factor. This makes the plain algorithm unusable for n ≥ 16. While the effect on the
compositional algorithm is less significant, it still causes the running time to grow
exponentially. In the next section we will look at a solution for this.

Additionally, urgent edges sometimes cause technical problems. These could be
avoided by adding a fresh variable with an invariant that prohibits time from passing
in adapt or by adding urgent locations, i.e. locations that no time may pass in, to the
formalism and model. We will however not consider this any further.

4.1.4 Optimized Edge Set Enumeration

We have determined that the limiting factor is the exponential growth of EdgeHi
(adapt).

We now apply the optimization from Section 3.3.2. The results of using the com-
positional algorithm with this optimization are shown in Table 4.3. Up to n = 120
the running time increases only very slightly, suggesting that algorithm scales well
with the number of automata. Beyond n = 120 branching occurs again and impacts
running time similarly to before. This, presumably, happens because the starting
values of the clocks of the automata are closer the more automata there are. For
n = 100 the starting values are 0, 0.01, 0.02 . . . for example.

Increasing the maximal jump depth also reintroduces the problems of precision
and branching again. We were not able to obtain an analysis result with a jump depth
of 30. We suggest two approaches to deal with this problem in Section 5.2 of the next
chapter.
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FIGURE 4.2: A simple hybrid Petri net.

4.1.5 Conclusion

This specific model, with its linear flow, may be better analysed with specialized
methods that compute continuous successors in one step. These methods fail however
if we replace the clocks’ behavior by non-linear functions. The model also still
serves as a useful example in its current form and shows some of the strengths and
weaknesses of our approach.

Both algorithms suffer from branching, but this problem can be alleviated to such
an extent by smaller time steps, that exponential model growth becomes the limiting
factor. For the compositional algorithm, exponential model growth can be overcome
entirely by the optimization from Section 3.3.2. For large n or larger maximum jump
depths branching is reintroduced and becomes the limiting factor again.

The plain algorithm does not scale well with the number of automata, but the
option to use more precise representations is available to analyse with a larger
maximum jump depth for few automata. The compositional algorithm allows the
analysis of many automata but is limited in jump depth by precision and branching.
No solution to this is implemented, but there are directions for further work on this.

4.2 Hybrid Petri Nets

Hybrid Petri nets as explored for example in [DA01] can naturally be translated to
compositional linear hybrid automata using only labels for synchronization. We
will look at the simple example seen in Figure 4.2 and only informally discuss the
semantics relevant to this example. Our translation to a hybrid automaton can be
used as a formal definition of the net’s semantics.

4.2.1 Petri Net Semantics

In this hybrid Petri net there are discrete places and discrete transitions between them,
here P2, P3, P4, P5 and T3, T4, T5, T6. Each discrete place Pi has a number mi ∈ N of
tokens. The initial number of tokens is indicated by dots in the node in the graphical
representation. Each discrete transition Ti has a delay di ∈ R≥0 associated with it,
which is denoted by a number in the node. A transition is enabled when its source
place has at least one token. If the transition Ti is enabled for di time, it fires. This
moves one token from its source to its target place.
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on
ṁi = 0(mi := m_initi)

off
ṁi = 0

(mi := m_initi)

tk
mi ≥ 2

mi := mi − 1

tj
mi := mi + 1

tk
mi = 1
mi := 0

off i

∗
tj

mi := 1

oni

∗

FIGURE 4.3: Translation of a discrete place Pi with an
input transition Tj and an output transition Tk. Only
one of “on” and “off” are initial locations. The initial

location is on if m_initi ≥ 1, off otherwise.

There are also a continuous
place P1 and continuous tran-
sitions T1, T2. The continuous
place can be thought of as a
tank with an inflow and an
outflow. We denote its filling
level by m1 for consistency with
discrete places. The initial level
is indicated by a number in
its node again. There are also
bounds on its level. Here we are
interested in whether and when
those are violated and stop the
analysis when they are. The
change, i.e. the derivative, of
the tank’s level is the difference
between the flow of its enabled
input transition and its enabled
output transitions T1, T2.

A continuous transition has
a flow denoted in its node. It
is enabled if its source place,
which is discrete, is enabled. For
example T1 is enabled if at least
one token resides in P2.

4.2.2 Hybrid Automaton Translation

We will first do an intuitive translation of the Petri net to hybrid automata. We
translate each place and transition into a hybrid automaton, except that continuous
transitions have no internal state other than a boolean toggle between on and off,
so we do not model them. The continuous place instead interacts directly with the
discrete places enabling its input and output transitions.

In Figure 4.4 you can see the automaton corresponding to a continuous place Pi
with the discrete place Pj enabling its input and Pk enabling its output. The tanks level,
or continuous marks, are tracked by mi and its total flow by flow. The requirement that
its level must stay within [0, 10] is translated to an invariant, so violating these bounds

ṁi = flowi
˙flowi = 0

mi ∈ [0, 10]
mi := m_initi

onj
flowi := flowi + flowj

off j
flowi := flowi − flowj

onk
flowi := flowi − flowk

off k
flowi := flowi + flowk

FIGURE 4.4: Translation of a continuous place Pi with an input
transition enabled by Pj and an output transition enabled by Pk. The
four labels and resets are to be interpreted as four distinct self loops.
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causes a deadlock in the the automaton. Its level is initialized to the appropriate
value and then updated by four self loops edges that correspond to each input or
output turning on or off. The continuous place itself has no events to report.

We continue with discrete places. The result of the translation of a discrete place Pi
with input Tj and output Tk can be seen in Figure 4.3. Again, the marks are tracked by
mi but the changes in value are discrete in this automaton. The label tk corresponds
to the output transition Tk firing and thus a mark is removed. For this to happen,
the place must have had at least one mark and thus been in the “on” location. If the
last mark is removed, a jump to the off location is taken. A jump back to the “on”
location is taken when the input transition Tj fires. There are two intermediate states,
that no time can pass in, that are jumped through on the way from “on” to “off” and
the other way around. They are required because the jumps between states must
synchronize with the firing of transitions and then synchronize with the oni and off i
labels.

on
ċi = 1
ci ≤ di

(ci := 0)

off
ċi = 0

(ci := 0)

ti
ti = di
ti := 0

off j
onj

FIGURE 4.5: Translation of a discrete
transition Ti with a source place Pj. Only
one of “on” and “off” are initial locations.
The initial location is on if m_initialj ≥ 1,

off otherwise.

Finally, we consider the translation of
discrete transitions, shown in Figure 4.5. The
only variable of the automaton is a clock
measuring the time that the transition is
enabled. When the clock value reaches the
delay di, the transition fires. This resets the
clock and communicates the firing through
the label ti. The transition switches locations
in synchronization with its source place.

Analysis. Trying to use either of the
two algorithms on the Petri net from
Figure 4.2 using the translation above shows
disappointing results. We can not even
analyse up to a global time horizon of four
time units with a two-minute timeout. Before
timing out over 55.000 nodes are generated,
so the reason is clearly branching again, just
as observed in Section 4.1. One reason for the

branching is that the discrete transitions in the left and the right cycle very often fire at
the exact same time. This introduces a branch because the two cases of the left or the
right transition firing first are analysed in different branches of the computation tree.
Since there is real non-determinism in the hybrid automaton model here, this can not
be avoided with higher precision. We suggest a possible solution in Section 5.2.3.

However, the branching problem is only this egregious because of the intermediate
states in the translation of discrete places. They additionally cause branching when-
ever a transition fires because both the source and target of the firing transition jump
to intermediate states, and then it is non-deterministic which one takes the second
jump first. This causes two branches to be created. When two transitions fire at the
same time six branches are created, instead of the two branches one would expect.

4.2.3 Improved Translation

We can improve the model by merging the labels oni and off i of each discrete place
Pi, with the labels tj and tk of their input and output transitions. We now use labels
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on
ċi = 1
ci ≤ di

(ci := 0)

off
ċi = 0

(ci := 0)

ti_stay_stay, ti_stay_on
ti = di
ti := 0

ti_off _stay, ti_off _on
ti = di
ti := 0

tj_stay_on, tj_off _on

FIGURE 4.7: Translation of a discrete transition Ti whose source place
has the input Tj. Only one of “on” and “off” are initial locations. The

initial location is on if m_initialj ≥ 1, off otherwise.

ti × {stay, off} × {stay, on} for each discrete transition Ti. They signify that the transi-
tion has fired and that the source has either stayed in location “on” or switched to
“off” and the target has similarly either stayed in “off” or switched to “on”.

An edge that has the label oni for some discrete place Pi above, can now be
changed to use the labels tj_stay_on, tj_off _on for each input of transition Tj of Pi.
Replacing off i works the same way with tj_off _stay, tj_off _on for outputs Tk of Pi. The
translation of continuous places does not change other than the replacement we just
specified. The improved translations of discrete transitions and places are shown in
Figure 4.7 and 4.6 respectively.

on
ṁi = 0(mi := m_initi)

off
ṁi = 0

(mi := m_initi)

tk_stay_stay, tk_stay_on
mi ≥ 2

mi := mi − 1

tj_stay_stay, tj_off _stay
mi := mi + 1

tk_off _stay, tk_off _on
mi = 1
mi := 0

tj_stay_on, tj_off _on
mi := 1

FIGURE 4.6: Translation of a discrete place Pi with an input
transition Tj and an output transition Tk. Only one of “on”
and “off” are initial locations. The initial location is “on” if

m_initi ≥ 1, “off” otherwise.

Compared to the first
translation, we are reduc-
ing branching at the cost
of additional labels. This
tradeoff is worthwhile for
this specific example. For
arbitrary hybrid Petri nets
a more complex translation
is needed. If a similar
tradeoff can be made there
is an interesting question for
future research. One may
also use a discrete synchro-
nization mechanism that is
different from label synchro-
nization altogether, as we
touch on in Section 5.2.4.

Analysis. The results of run-
ning our analysis on the
improved translation of the Petri net are summarized in Table 4.4. Considering that
before there were over 55.000 nodes for Tg = 4 already, we can see that significantly
fewer nodes are being generated. The compositional algorithm with the optimization
from Section 3.3.2 enumerates exactly one edge per node, while the unoptimized
version enumerates four edges per node. The differences in runtime are however
not significant enough to draw any conclusions. The plain algorithm is about two to
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TABLE 4.4: Results of running the improved Petri net translation with
the compositional, optimized compositional and plain algorithms.
Run time in seconds and number of nodes in computation tree for
different global time horizons T, δ = 10−3 and unbounded jumps.

Time out is two minutes.

Algo. T = 2 4 6 8 10 12 14 16 18 20

comp time 0.05 0.14 0.34 0.92 2.36 5.90 16.6 45.7 117 TO

comp* time 0.16 0.19 0.32 0.85 2.81 5.33 14.9 34.6 87.0 TO

plain time 0.12 0.33 0.86 2.54 7.11 16.8 MO MO MO MO

all nodes 7 31 71 167 551 1.1k 2.7k 8.8k 19k >21k

three times slower than the compositional one. We conjecture that this ratio increases
with the size of the model. The plain algorithm is also less memory efficient than the
compositional one, this may however be caused by implementation details rather
than begin a property of the approach. Reducing the non-determinism in the model
by changing the delay of T3 to 0.75 in Figure 4.2 drastically reduces the number of
nodes generated. That allows us to analyse with Tg = 30 and larger.
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Chapter 5

Conclusions

5.1 Summary

We built upon existing methods to implement an algorithm that scales significantly
better for compositional automata with many components. We handle each compo-
nent automaton separately and handle synchronization explicitly, which is why we
consider only automata whose synchronization is based on labels.

Since we keep computations separate for each automaton and apply synchro-
nization as late as possible, we were able to implement measures to reduce the
number of both generated locations and edges. In both cases the numbers went from
exponentially growing to feasible magnitudes, as our experiments have shown.

We also extended the label synchronization mechanism to allow sets of labels,
which improves performance and allows for new ways of modeling, which we
showcased on two examples.

5.2 Future Work

During the development of this work, opportunities for extensions that support
further applications revealed themselves and we encountered several possible opti-
mizations. We will elaborate on these extensions and optimizations. First, we present
two ways to improve the precision of the algorithm, an optimization for stutter jumps
and the possibility of introducing an explicit time dimension. To deal with branching,
caused by non-determinism, we propose detecting fixed points. We end on the
less concrete research directions of more advanced discrete synchronization and
extending our algorithm to work with specialized reachability analysis of subclasses
of hybrid automata.

5.2.1 Stutter Jump Optimization

When the discrete successors are computed for some node with full = (F̂1, . . . , F̂n)
then for each edge that is enabled, i.e. SatInds is not empty, we potentially aggregate
segments, compute the reset and do a first segment computation in the corresponding
child node. We perform these steps for each of the n flowpipes, even if for some of
them the edge they take is a stutter edge. Recall that a stutter edge is an edge that
does not change the location, i.e. a self loop, and that does not change the variable
valuation.

In addition to the time that these computations take, they also introduce over
approximation. Aggregation causes segments to cover larger time intervals each time
it is applied, which increases over approximation. The first segment computation
also increases the width of the covered time interval by one time step and adds over
approximation through bloating.
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For some r1, r′2 ∈ R≥0, s1, . . . , s4 ∈ StH and a stutter edge e we can simplify
s1

r1−→s2
e−→s3

r2−→s4 to s1
r1+r2−−−→s4 because s2 = s3. This means that we can ignore stutter

jumps and compute more segments in the existing flowpipe instead. The child node
that corresponds to a stutter edge could theoretically have the same init set as we
defined so far, but an efficient implementation should not compute it because it adds
no information that is not already available in the computation tree. The flowpipe
in the child node would start with the interval of satisfying segments which were
chosen for aggregation from the corresponding flowpipe in the parent node. Beyond
those, the flowpipe would contain the segments computed from the last segment in
the interval.

V1,1

V1,2

V1,3

V1,4

V1,5

V1,6

V ′1,1

V ′1,2

V ′1,3

V ′1,4

V ′1,5

V ′1,6

V ′1,7

V ′1,8

V2,1

V2,2

V2,3

V2,4

V2,5

V2,6

V ′2,1

V ′2,2

V ′2,3

V ′2,4

V ′2,5

V ′2,6

FIGURE 5.1: Schematic of
flowpipes before and after a
jump. The vertical position
and extend of segments cor-
responds to the time inter-
val that they cover. The sat-

isfying indices are {4, 5}.

With this optimization, matching flowpipe segments
to another becomes more difficult. Segments from
different flowpipes in the same node with the same
index no longer necessarily cover the same time interval.
Consequently, the reasoning from Section 3.2 can no
longer be applied and segments can not be matched one
to one based on their indices to obtain the set of reachable
states as their cartesian product. In Figure 5.1 you see an
example where two segments are initially one time step
wide, then for a jump, two segments are aggregated to
obtain V ′2,1.

Instead we need to keep track of the time interval
that each segment covers. To obtain the set of states
reachable in some time interval, we must find intervals
of segments for each of the flowpipes of a node, such
that the segments in each interval cover the time interval
of interest together. Notably, these matchings are not
necessarily unique. As a side effect, this would allow us
to use a different aggregation strategy for each automaton.

It is important to handle local time horizons in some
way other than by an extra variable, because the clock
variable for the time horizon is reset on every jump,
preventing all jumps from being stutter jumps.

5.2.2 Explicit Time Dimension

In Section 3.2 and Example 4 we discussed the loss of precision that comes with
our approach. In particular that the information about the relation of variables of
different component automata is lost. This problem can potentially be addressed
by introducing an explicit time variable into each component automaton. The syn-
chronization of the automata on the time dimension is only implicitly handled in our
current approach, by matching segments by index. Dealing with this synchronization
explicitly should make it possible to lose no information.

During the computation of discrete successors of some node n, the non-empty
intersection of a guard with some segment V1,j of the first flowpipe F̂1 results in a
segment Vsat

1,j . If it has an explicit time dimension, we can project it to that dimension
and we obtain an interval [tl , tu] ⊆ R≥0 that contains the lengths of all time steps that
result in valuations that enable the edge in question. The segment V2,j of the next
flowpipe should then be intersected with its corresponding guard, but also with the
constraints defined by [tl , tu]. Projecting the result to the time dimension again results
in a narrower interval. The process is repeated for all flowpipes.
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It is also possible to compute a more precise set of reachable states. Given some
index j, we used×n

i=1 Vi,j as an approximation of the set of states reachable by
an according set of trajectories, defined by the path leading to n. We assume a
representation that uses linear constraints. The constraints of Vi,j only use variables
of the i-th component automaton and thus implicitly do not constrain any other
variables. Because of this, the cartesian product×n

i=1 Vi,j is the conjunction of the
constraints of the valuation sets Vi,j, i ∈ [1, n].

If the component automata each have a time variable, then the constraints rep-
resenting the cartesian product also include that variable. We can apply one step of
the Fourier Motzkin variable elimination procedure to remove the time dimension,
projecting on the remaining dimension. This finally gives us a closer approximation
of the set of reachable states. Note that this can not only be applied to general convex
polyhedra, which might be the first representation that comes to mind, but also more
performant representations like template polyhedra, as they are implemented in
HyPro, see [Tse20].

Example 5 (Explicit Time Dimension). We replay the scenario from Example 4 with
an explicit time dimension. Using the compositional algorithm, we obtain the line
segment {(x, t) | x = t, x ∈ [0, 1]} as the first segment for H1. For H2 we similarly
obtain {(y, t) | y = t, y ∈ [0, 1]}.

Given the guard x = 1 for H1 and no guard for H2, we compute

{(x, t) | x = t, x ∈ [0, 1]} ∩ {(x, t) | x = 1} = (1, 1).

Projecting to the t variable yields the point interval [1, 1]. There is no guard for H2, so
we compute

{(y, t) | y = t, y ∈ [0, 1]} ∩ {(y, t) | t = 1} = (1, 1).

Computing the reachable set as described above yields

{(x, y, t) | x = t, y = t, x ∈ [0, 1], y ∈ [0, 1]}.

Eliminating t and leaves us with {(x, y) | x = y, x ∈ [0, 1], y ∈ [0, 1]}, which is
exactly the line segment we would obtain using the plain algorithm.

Whether this approach is computationally feasible or erases all performance
improvements gained using our approach is unclear. Projection using the Fourier
Motzkin procedure has doubly exponential complexity, but here only a single variable
has to be eliminated. Projecting to the time dimension may also be feasible, because
it can be achieved by solving two linear programs, one finding the smallest value
of the time variable, the other the largest value. The procedure can also be applied
selectively for specific edges or specific segments that intersect forbidden states.

5.2.3 Fixed Points

In Section 4.2 we observed that our Petri net model included indeterminism that
caused branching. We were able to improve the model to reduce branching, but it
was still the limiting factor, prohibiting the analysis with large time horizons. The
branching occurs specifically because two edges are enabled by the same segments
and thus there are two possible orders that they could be taken in. Semantically
it does however not matter which one is taken first and the set of reachable states
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should accordingly be the same for both orders. This means that fixed point detection
could be used to terminate one of the two branches.

Checking newly computed segments against all previously created segments is
very expensive both in time and space. Since it takes two jumps for the two branches
to reach nodes that should be identical to each other, it is sufficient to check against
segments of nodes up to two levels above the node being checked. In this case it also
suffices to check the newly computed initial sets against existing initial sets.

5.2.4 Advanced Discrete Synchronization

We extended the discrete synchronization mechanism of labels to allow sets of labels.
This is only one possible extension, which can also be simulated using ordinary
hybrid automata. At the point of discrete synchronization during the analysis, it is
known which edges are enabled for which time intervals. Based on this information
an arbitrary synchronization algorithm can be designed. For the example of hybrid
Petri nets, each event, i.e. each time point at which one or more transitions fire, could
be handled at once. This also allows to resolve indeterminism.

Discrete synchronization can also be extended into an entirely different direction.
Since we can project to one or more variables, we can use the resulting set in guards
and resets of edges of other automata. Resets like x := 2y, where x is a variable of
one automaton and y a variable of another, can be implemented for example.

5.2.5 Extension to Discrete and One Step Reachability

Dealing with component automata individually allows us to analyse their syntax
individually as well. We can thus determine for each component automaton whether
it lies within a subclass of hybrid automata for which a method for the computation
of continuous successors is available which is faster or more precise than flowpipe
construction. This method has to provide certain information and operations to be
compatible with our approach.

The method has to compute the set of states reachable from a given valuation
set in a given location. The representation of the result has to support some form of
intersection with guards and resets have to be applicable. In addition to this it has to
be possible to obtain an over approximation of the enabling time intervals. That is
the time intervals that contain the durations of all time steps that result in a valuation
that satisfies the guard.

Such a method is conceivable for various flavours of discrete automata. For
hybrid automata with flows with constant derivatives there are one-step approaches
available that may be adaptable to fulfill our requirements [Sch19, Sec.8.1].
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