
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Serverbasierte Anwendung von Neuronalen Netzen auf
Mobiletelefonen zur Lösung des Okklusions-Problems
Solving the occlusion problem on mobile phones via

server-based application of neural networks

Bachelorarbeit
Informatik

August 2023

Vorgelegt von Vladimir Rzaev
Presented by Matrikelnummer: 355361

vladimir.rzaev@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. rer. nat. Thomas Noll
Second examiner Lehr- und Forschungsgebiet: Software Modellierung und Verifikation

RWTH Aachen University

Betreuer Dr. Henning Petzka
Supervisor Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 2
1.3 Contribution . 2
1.4 Outline of this work . 2

2 Models 2
2.1 Thresholding . 2
2.2 MiDaS . 8
2.3 MonoDepth2 . 13

3 Experiment 15

4 Conclusion 19

5 Future work 20

References 21

II

1 Introduction

1.1 Motivation

The motivation behind this work is to find models with good performance in monoc-
ular depth estimation so that the resulting depth maps can then be used for solving
occlusion. These models need to be fast, as it is an application for mobile phones and
users generally do not want to stand with their cameras pointing at the same place for
too long, but on the other hand also need to provide accurate data to avoid mistakes
or, even worse, having to re-do the procedure. As such, it is imperative to find a
good balance between speed and performance. Even though there are several works
done in regards to occlusion in AR on mobile devices, most of them require either to
already have a built-in depth detection in the phone, which is only the case in the
most recent smartphones, or they calculate the depth maps by themselves during the
run, which is either very slow or has poor performances. We propose to offload the
processing of camera images to a server that already has the model to be used loaded,
which should save some time and guarantee good results, assuming a good model is
used. This has the added benefit that the resulting app will be light-weight and thus
a more approachable solution, as larger download sizes tend to dissuade users. We
propose to use Monocular Depth Estimation due to it being the simplest approach in
regards to usability as there is no calibration necessary or mandatory movement before
getting the resulting depth map. This has the downside of being slower than other
methods, as monocular depth estimation tends to be more resource-intensive. This
has the additional downside that the camera has to remain stable for accurate results,
as the processing time and the fact that the depth is only inferred for a single image
causes the app to not be useful for dynamic scenes. This is, however, not a problem, as
the scenes are static in our case. The end result will provide a convenient framework
for developing an app that will help the residents of areas with proposed wind parks
to visualise how it will look if and when the wind park is constructed, and as such
provide better information in order to help them make an informed decision, be that a
positive or negative one. In addition to this, any other AR projects where the camera
will work in medium and long ranges might find this paper useful in finding a decision
whether to use the more commonly found methods to calculate the depth maps ”by
themselves” or to offload it to a server as we do here.

1

1.2 Related work

To the best of our knowledge, there are no scientific works done with the procedure of
offloading the processing of depth maps to a server in AR. Estimating depth maps is
however one of the most well-researched topics in AR, as occlusion is one of the most
important indicators of quality for AR, as non-occluded virtual objects immediately
break the immersion. As such, there is a wide variety of different techniques used.
Some of the most commonly used ones are DepthLab [8], which uses Google’s ARCore
Depth API, Unity’s own AR Foundation package, which also uses Google’s ARCore
Depth API (on Android devices) or Apple AR Kit (on iOS devices). [4] A summary on
different techniques for occlusion in AR has been made by Macedo and Apolinário [19].

1.3 Contribution

We introduce a new approach in the topic of occlusion in AR, namely by offloading
the depth map estimation to a server, which leads to the overall application being
more lightweight and as such more approachable. We make use of pre-existing models
for depth estimation, such as MiDaS (and the adaptation by the same authors DPT-
Hybrid), as well as Monodepth2. We also propose a faster approach for estimating the
depth maps, albeit vastly less accurate and with naive assumptions about the structure
of the image where the depth is to be estimated.

1.4 Outline of this work

We will first describe the procedure of our lightweight approach for depth estimation,
which has comparatively poor results but high speed. We explain the thought behind
this approach and why it fails when the assumptions are not met. We then describe
the first actual model, MiDaS, and how it functions. We show example depth maps
resulting from applications of the model and also describe in which cases it fails. We
then introduce an adaptation of MiDaS, DPT-Hybrid, which leads to improved results
but longer processing times. We then introduce our last model, Monodepth2, explain
how it works and show its applications and failures of the model. Following that, we
describe our experimental approach and its results. Finally, we discuss the results and
the possible use cases and give a short outlook on the future of this technology.

2 Models

2.1 Thresholding

A very basic (and now outdated) approach at estimating depth from an image is to
use pixel intensity, operating under the assumption that objects that are closer to the
camera will have higher intensity (and therefore be darker) than objects that are fur-
ther away, which will have lower intensity (and therefore be brighter). One approach

2

for that is Otsu’s thresholding [20], wherein we separate the foreground from the back-
ground according to a threshold intensity value and then estimate the depth only for
foreground pixels. We can already see that this will cause issues with certain types of
input images, such as images with bright or even white objects in the foreground or
images with dark objects in the background, but nonetheless due to how simple and
lightweight the method is, it is still worth considering. As Otsu’s algorithm only works
with grayscale images, we first convert our input image into grayscale.

Figure 1: Converting image to grayscale

We then apply Otsu’s thresholding to the resulting grayscale image, which is an al-
gorithm that automatically detects the best threshold to use in the image.[20] The
algorithm starts with normalising the grayscale image

pi = ni/N pi ≥ 0
L

Σ
i=1

pi = 1

where L is the amount of gray levels present in the picture, ni the amount of pixels at
level i and N = n1+n2+ ...+NL the total amount of pixels in the picture.[20] We now
separate the pixels in the image into two classes C0 and C1, representing background
and foreground objects respectively, by a threshold at level k.[20] This results in C0

containing pixels with levels [1, ..., k] and C1 containing [k + 1, ..., L].[20] This results
in the following probabilities of class occurence and class mean levels:

3

Pr(C0) =
k

Σ
i=1

pi = w(k)

Pr(C1) =
L

Σ
i=k+1

pi = 1− ω(k)

µ(k) =
k

Σ
i=1

ipi

µ(L) =
L

Σ
i=1

ipi[20],

where ω(k) is the zeroth-order cumulative moment up to k-th level, µ(k) is the first-
order cumulative moment up to k-th level and µT is the total mean level of the
image.[20] With that, we can calculate the optimal threshold k∗ by maximising the
between-class variance σ2

B(k
∗) (B signifying between-class):

σ2
B(k

∗) = max
1≤k<L

σ2
B(k)

σ2
B(k) =

[µTω(k)−µ(k)]2

ω(k)[1−ω(k)]

Once that threshold k∗is obtained, we use it in combination with cv2’s
THRESH BINARY INV, which sets pixels over the threshold to the value 0 and other-
wise 255, signifying foreground.[20] This results in the following image for our previous
input image:

Figure 2: Resulting image after applying Otsu’s thresholding

As some parts of the bottom of the image were mistakenly labelled as background,

4

we dilate the image slightly. This has the additional benefit of later ensuring that all
borders between foreground and background are properly detected. Dilation takes a
kernel, in this case a matrix of odd size filled with 1s, and calculates the maximum
value around every pixel in the image to get the new value for each pixel.[25] As we
already thresholded the image in the previous step, we only have values of 0 and 1. We
chose a 5x5 kernel to make sure that any mistakes in the previous image are removed.
This has the downside of enlarging the wind turbines. This is however not a large
issue as wind turbines are already quite big and therefore the difference will not be
very noticable.

Figure 3: Resulting image after applying dilation with a 5x5 kernel

We then generate a depth map with the same dimensions as the original image except
filled with zeros. For each pixel in the grayscale image where the mask is white (255),
we calculate the depth value based on the pixel’s intensity. The intensity value of the
pixel is first normalized to the range [0, 1] by dividing by 255, and then scaled to the
desired depth range (e.g., [0, 255]). This has the clear downside of assuming that dark
objects are closer to the camera, which is a clear failure case. For example: When a
white car is close to the camera, this algorithm will deem it to be very far away due
to having low colour intensity. However, as the algorithm is designed with a use case
in nature in mind, where white is a rare colour (assuming it’s not snowing) this is an
acceptable failure case.

5

Figure 4: Resulting image after estimating depth values based on intensity, colours
corresponding to their depth values on a scale from blue (very far away,
depth 255), to red (very close, depth 0)

As this is a bit messy with some rather jagged lines, we apply cv2’s two-dimensional
Gaussian blur to the image.[25] A two-dimensional Gaussian blur works by initialising a
kernel, which in this case is an odd-sized matrix, in our case 11x11, with values following
a Gaussian distribution. The kernel is then placed on each pixel, where the weighted
average is calculated by multiplying the kernel with the surrounding corresponding
pixels element-wise.[11] This results in closer pixels having higher weight than pixels
that are further away. After the multiplications are done, they are summed up to
obtain a new value for the center pixel.[11] This process is then repeated for each pixel
in the image.

6

Figure 5: Resulting image after calculating depth values based on intensity

Clearly the foreground is not very accurate as it classifies almost everything as the
same depth but it provides satisfying data for the background.

Figure 6: Failure case. From left to right: Input, Thresholded image, Output depth

Unfortunately however, this procedure does not always work, as when objects in the
foreground have the same colour as the background, they might be detected as back-
ground and therefore receive a background depth. Another point of failure is non-
monotonous colouring of foreground objects, as the wind turbine that is closest to the
camera receives different depth values for the red and white parts of its rotor.

7

2.2 MiDaS

MiDaS is a training setup for a ResNet50 convolutional neural network, named after
the 50 layers of its architecture.[15] ResNet50 is one of the most commonly used neural
networks for monocular depth estimation. It addresses the issue of accuracy in neural
networks improving for the first few layers of the network, which are essentially the
building blocks of any neural network, and then rapidly degrading when adding more
layers. The layers serve several functions, mostly related to processing and transform-
ing input data, which in turn enables the network to learn and recognise patterns, which
is their essential function. The innovation of ResNet50 consists of the introduction of
residual blocks (hence the name ResNet = Residual Network), which each consist of
several layers. These blocks forward the unprocessed input to later layers through
the ”shortcut” or ”skip connections”, which allow the gradient to backpropagate much
more directly, thus avoiding the ”vanishing gradient” problem, that being the gradient
becoming smaller for each backpropagation, as they are the products of the results of
the layers they travel through, which are very low in early layers.[15] The ResNet50
architecture is then trained on a multitude of different datasets with possibly incom-
patible annotations.[21] It is based on the concept of zero-shot cross-dataset transfer,
which is a protocol that trains a model on certain datasets but tests it on completely
new datasets that have not yet seen before during training.[21] This is especially useful
to avoid running into the same biases over and over as every dataset has their own
specifics, even though they are ”aiming to sample the visual world ’in the wild’”.[27]
Torralba and Efros [27] came to the conclusion that if a model is trained only on one
dataset, it has a drop in performance testing on different sets compared to testing on
itself due to ”over-learning aspects of the visual data that relates to the dataset and
not to the ultimate visual task”, as table 1 by Torralba and Efros [27] shows. They
describe the problem for classification and detection of ”car” and ”person” for a model
that has been trained on one model and tested on others. With some outliers, the
drops in performance for differing sets can be quite large, such as a 78% drop when
training on the Caltech101 [10] set for ”car” detection, which can be explained by poor
generalisation in the datasets and therefore a poor representation of scenarios outside
of testing.[27]
As such, it is beneficial to train on several datasets to cover a wider spectrum of
biases and as such be more prepared for test cases outside of the datasets it was
trained on.[21] With that in mind, MiDaS trains on 5 different datasets, namely DIML
Indoor[16], MegaDepth[17], ReDWeb [32], WSVD [30], as well as a number of frames
from movies.[21] As previously mentioned, every dataset has its own bias, thus select-
ing 5 different datasets expands the possible categories of images. MiDaS also uses
previously unseen datasets for testing, namely DIW[6], ETH3D [23], Sintel [5], KITTI
[12], NYUDv2 [24] and TUM-RGBD [26]. Table 1 by Ranftl et al. [21] visualises all
the different characteristics of the used datasets for both training and testing. As all
datasets used in training provide medium accuracy, it is to be expected that the model
will not be able to detect details for which a high accuracy is needed. The sets used in
training are all rather high diversity, a high amount of generalisation is to be expected,

8

especially considering that most datasets combine both indoor and outdoor images.
DIML provides static indoor images [16], MegaDepth provides mostly static outdoor
images with a highly accurate ground truth for the background, as it uses wide baseline
multi-view stereo reconstruction for its ground truth[17], ReDWeb on the other hand
is rather small, but provides ”diverse and dynamic scenes with ground truth that was
acquired with a relatively large stereo baseline”[21], WSVD is a collection of static
videos from the internet and only consists of links to those videos [30], which makes it
problematic to recreate results obtained from a model that has been trained on WSVD,
as videos might get deleted or taken down, thus resulting in a different dataset to the
one the model has been trained on. The last dataset MiDaS uses is a collection of
3D Movies, as they provide a wide range of high quality images (that being the single
frames) ”from human-centric imagery ”story- and dialogue-driven Hollywood films to
nature scenes with landscapes and animals in documentary features”,[21] thus making
it an excellent source of training material for any model with ambitions of generalisa-
tion. This however does not come without its own challenges. As films are made with
the goal of providing a ”visually pleasing viewing experience while avoiding discomfort
for the viewer”[21], thus having variable disparity ranges, which leads to inaccuracies
in the dataset due to these variations. Another issue is that none of the configurations
of camera and rigs are known and also vary during a film. Lastly, films usually get
edited in post-production, thus leading to even more alterations compared to the orig-
inal camera footage. Nonetheless, these issues can get fixed. MiDaS selected movies
according to the following criteria: 1: Using only physical stereo camera 2: balancing
realism and diversity (get a diverse but realistic set), 3: only blu-ray available films
to get high quality images. For pre-processing, MiDaS starts by center-cropping all
frames to 1880x800, splitting the film into ”chapters”, dropping first and last due to
credits.[21] With the help of FFmpeg [1], individual clips are then extracted and sam-
pled. Even though stereo matching is designed to work on positive disparity ranges, as
opposed to the both positive and negative extracted here, that issue gets rectified by
having image pairs.[21] As the images are paired, one can use optical flow algorithms
to check for disparities in the pairs and thus reject pairs if their disparities are too
large. MiDaS then filters out any sky pixels and adds the remaining frames to the
dataset.[21]
With all these different datasets, the biggest challenge is to get consistency across the
sets. As previously shown in Table 1, the used datasets provide ground truth in differ-
ent forms, be that absolute depth, depth to an unknown scale or disparity maps.[21]
Thus we require ”an output space that is compatible with all ground-truth representa-
tions and is numerically well-behaved.”[21] In addition, to measure how well the model
is doing, we need a loss function that can handle the different datasets.[21] The idea
here is to create an overall loss function Ll comprising of scaled similarity loss between
the predicted and target images, as well as a regularisation loss, which aims to improve
the network’s generalisation.

Ll =
1
Nl

Nl

Σ
n=1

Lssi(d̂
n, (d̂∗)n) + αLreg(d̂

n, (d̂∗)n)

9

Lssi(d̂, d̂
∗) = 1

2M

M

Σ
i=1

ρ(d̂i − d̂∗i)

Lreg = (d̂, d̂∗) = 1
M

K

Σ
k=1

M

Σ
i=1

(|▽xR
k
i |+ |▽yR

k
i |),

where Nl is the training set size, ▽x,▽y is the Del operator (e.g. the partial derivatives

with respect to the x and y dimensions), α is set to 0.5, d̂, d̂∗ are the aligned prediction
and ground truth, Lssi is the scale- and shift-invariant loss, M the number of pixels
with valid ground truth, K is the amount of scale levels, which is set to 4, Ri = d̂i− d̂∗i
and Rk the difference of disparity levels at scale k. Ll is the final loss function.
With that, MiDaS uses the ResNet-based architecture by He et al. [15]. The en-

coder gets initialised with pre-trained weights, other layers are random with a 10−4

learning rate for random layers and 10−5 for pre-trained (to avoid over-learning).[21]
Decay rates are set to 0.9 and 0.999. In addition to that, some images are flipped or
randomly cropped to augment the data. As the ResNet50 model is pre-trained on the
ImageNet dataset, it is expected to perform better on that dataset and images that are
similar to it. The model is then trained for 60 epochs on 72000 images. Ground-truth
disparity is shifted and scaled to [0,1] for all sets.[21]
For testing, the model uses sets that have not been seen before, though with some
minor modifications. For DIW MiDaS created a validation set, which is a set that
is set aside during training in order to assess the model’s performance by using some
score to compare the prediction to the ground truth. The DIW validation set consists
of 10000 images. The official test set [6] of 74441 images is used for testing.[21] For
NYU the official test set [24], containing 654 images, is used.[21] For KITTI the official
validation set [12], containing 3,712 images and the Eigen test set [9], containing 697
images are used.[21] For ETH3D and Sintel, the set had to be shrunk down a bit, as
not all images had ground truth available and are thus not suitable for calculating
loss. For TUM only the images in the dynamic subset are used that contain humans
in indoor environments, in order to get a wider spectrum of images.[21]
As the methods of providing ground-truth vary between the datasets, different error
rates need to be used as well. For DIW the Weighted Human Disagreement Rate is
used. For datasets with relative depth as ground-truth, root mean squared error is
used. For datasets providing accurate absolute depth, the mean absolute value of the
relative error is used.[21] For KITTI, NYU and TUM, the percentage of pixels with

δ = max(
z∗i
zi
, zi
z∗i
) > 1.25 is used.[21] This naturally comes with more problems, as each

dataset has differently sized/scaled images. Therefore images need to be rescaled to
be uniform. In order to achieve this, the images are rescaled so that the larger axis
equals 384 pixels, with the shorter one being a multiple of 32, while maintaining aspect
ratio.[21] As KITTI has a very high aspect ratio, this would lead to very small input
images.[12] Thus, only for KITTI, the shorter axis is set to 384 pixels, with the rest of
the scaling working the same way.[21] As tables 3 and 4 by Ranftl et al. [21] show, the
performance of a model when fine-tuning on another set and testing on yet another set
massively declines. This is due to poor generalisation in the datasets and the model
thus getting ”confused”when fine-tuning on images that are so different from the ones

10

used in training.
To fix this issue, Ranftl et al. [21] introduce dataset mixes for training, consisting
of various combinations of ReDWeb [32], DIML Indoor [16], Movies, Megadepth [17]
and WSVD [30] As tables 6 and 7 by Ranftl et al. [21] show, the performance greatly
improves when using a mix of datasets as opposed to just one, due to much higher
generalisation. The improvements when using the full mix range from 7% on Sintel
[5] to 38.5% on NYU [24]. This shows that having a wider range of training images
is extremely beneficial for overall performance, which can also be seen by the com-
paratively good performance of models trained only on RW. Even though it is a very
small set, it covers a wide variety of image types and is therefore somewhat of a mix
as well, even if a small one. Even though the results are good, there are naturally
some failures and biases present in the model, such as lower parts of an image being
perceived as closer, which can be fixed by adding rotated images to the datasets. It
is however likely not needed, as humans tend to take pictures with the ground being
closer than objects in higher parts of the image.[21] It is also of no concern for our use
case, as any images used in our application will naturally have the ground as the clos-
est part of the image due to being mostly used in fields. Another failure are reflecting
objects, as the model does not perceive them as such and thus attempts to calculate
depth for the objects being reflected.[21] This is once again not an issue for our case,
as reflecting objects will not be present in areas for proposed wind parks, as they are
mostly empty. Another issue is that thin objects and objects that are very far away
are usually not recognised. This could however be caused by low resolution images and
depth maps generally not providing good data on background objects.[21] In addition
to the regular MiDaS model, Ranftl et al. [22] later added additional transformers,
which usually consist of an encoder-decoder architecture, where the encoder creates
lower-dimensional representations of an image and the decoder generates a depth map
based on the learned features. In order to do that, transformers separate the image
into patches, which are square or rectangular areas of an image with something in
common, usually pixel values.[28] These patches are then either used as input for con-
volutional layers or, in this case, used by the encoder to extract features from them. It
is important to mention that the patches can, but do not have to, overlap in an image,
leading to easier extraction of certain features.[22] Transformers are extremely useful
for dense prediction tasks, as the self-attention mechanism, which is at the core of
transformers, captures the relationship between pixels and their context in the image.
The mechanism works by calculating a so-called ”attention score” for each patch in the
image and thus determining its importance in regards to the image. Without going
into detail, these scores are effectively descriptions of how relevant other pixels are
for a given pixel. As such, Ranftl et al. do not use convolutional neural networks.[22]
These additional transformers effectively transform an image into a bag of words, as
every image patch takes the role of a word. These patches are then flattened into
vectors and individually embedded.[22] As such, the transformer has a global range
due to every word can see each other word, unlike in convolutional networks, where
the range is gradually increased.[22] Ranftl et al. introduce 3 different variants of this
procedure, which results in 3 different models. For the Base model the previously

11

described patch-based embedding and 12 transformer layers are used, the large model
uses the same embedding but 24 transformer layers and a wider feature size. The
hybrid model, which we use in our application, uses ResNet50 for embeddings instead,
which is then followed by 12 transformation layers.[22] The Dataset mix from before
gets extended by 5 additional datasets, resulting in a training set containing 1.4 mil-
lion images. Table 1 by Ranftl et al. [22] shows that the DPT-Hybrid model produces
results roughly in the middle between the DPT-Large model and the regular MiDaS
model, as well as vastly outperforming models by other autors.

Figure 7: Comparison of resulting depth images with DPT-Hybrid and the regular
MiDaS model on randomly chosen images from the DIW [6] dataset.

We can see that DPT-Hybrid provides better details on the foreground as well as more
accurate values but the regular MidaS model has an advantage in the background.

12

2.3 MonoDepth2

Another model that is well suited for the task is MonoDepth2, developed by Go-
dard et al. [14], which is a model using self-supervised training on stereo pairs and/or
monocular video. Video however comes with the added challenge that in addition to
estimating the depth of the single frames of the video, it also needs to estimate the
motion that happened between two images that form a pair, as otherwise there will
be a lot of flickering in the resulting depth video.[14] On the other hand, using only
stereo data for training causes the camera-position estimation to be ”a one-time offline
calibration” which can cause issues regarding occlusion [13] As such, we will focus on
the monocular video for this model and the combination of monocular and stereo. Go-
dard et al. [14] propose three innovations that lead to greatly improve depth estimation
when training on stereo pairs or video. These innovations are:

• Appearance matching loss in order to combat the issue of occluded pixels

• Auto-masking to ignore pixels without relative camera motion

• Reducing depth artifacts by sampling the images at input resolution [14]

As MonoDepth2 is a self-supervised depth estimation model, it operates without
ground truth and instead uses image reconstruction error, where the model receives
a set of stereo pairs or sequences as input and then tries to reconstruct the image
by hallucinating a depth map for an image and then projecting that on the following
images,[14] effectively trying to reconstruct an image from the POV of another im-
age. As this can lead to a high amount of wrong depths for certain pixels, depending
on the relative position of the views. Godard et al. [14] formulate this problem as
”minimization of a photometric reprojection error at training time.”

Lp = Σ
t′
pe(It, It′→t)

It′→t = It′⟨proj(Dt, Tt→t′ , K)⟩
pe(Ia, Ib) =

α
2
(1− SSIM(Ia, Ib)) + (1− α)||Ia − Ib||1[14]

Where Lp is the photometric projection error, It is the input image, It′ is the source
view, pe is a photometric reconstruction error, ⟨⟩ are the sampling operators, Dt is
a depth map, Tt→t′ is the relative pose for for each source view with regard to the
image’s pose, proj() are the 2D coordinates for projected depths in the source view
and K pre-computed intrinsics of all the views, which we assume to be identical.[14]
SSIM is the structural similarity as described by Wang et al. [31]. For α in pe Godard
et al. [14] chose a value of 0.85. For sets with stereo pairs, the source view It′ is the
second image in the pair, as the relative pose is known.[14] As relative poses are un-
known in the case of monocular image sequences, Monodepth2 uses the 2 frames that
are temporally adjacent to the input frame as source frames, so It′ ∈ {It−1, It+1}[14]
For the combined training on both stereo and monocular sequences, MonoDepth2 uses
both the temporally adjacent frames as well as the opposite stereo pair.[14]

13

As unsupervised models generally produce lower quality depth maps than fully su-
pervised ones, Godard et al. propose a number of changes in regards to conventional
unsupervised training. For one, self-supervised models usually average out the repro-
jection error when working with multiple source images, which leads to issues if a pixel
is visible in the target image but not in the source images. To fix this issue, Godard
et al. propose to take the minimum error instead of the average. As such, the formula
for per-pixel photometric loss changes to:

Lp = min
t′

pe(It, It′→t)[14]

Another common issue is that self-supervised monocular training usually assumes that
there is a static scene and a moving camera. Due to our use case involving a moving
camera, even if slightly, this might cause inaccurate data. If one of the aforementioned
assumptions turns out to be false, performance significantly declines, such as assigning
infinite depth to objects that are usually in motion during training.[18] To rectify this
issue, Godard et al. propose a mask that filters out any pixels that do not change
appearance between two frames. This could be due to objects moving at the same
speed as the camera, the camera being static or just low texture regions.[14] As such,
the mask µ only includes the loss of pixels that have a lower reprojection error of the
warped image than the original image:

µ = [min
t′

pe(It, It′→t) < min
t′

pe(It, It′)]

[14] where [] is the Iverson bracket, which evaluates to 1 if the condition inside the
bracket is met and 0 if not. This mask would then filter out any sequences with static
cameras and also prevent objects that move at the same speed as the camera, thus
remaining in more or less the same spot in the image, to ”contaminate” the loss.[14]
This leads to the final loss function:

L = µLp + λLs

Ls = |δxd∗t |e−|δxIt| + δyd
∗
t |e−|δyIt|

where d∗t = dt/dt is the ”mean-normalized inverse depth” from [29].[14] λ is selected
as 0.001 [14]. Godard et al. use a ResNet18 encoder instead of the commonly used
ResNet50 as it is a lot faster due to having fewer layers and parameters.[14] An en-
coder has the task compressing high-dimensional data, such as images in this case,
to a lower dimension, such as a numerical representation of the image. They then
extract certain features from that representation, such as edges or textures and create
embeddings, which are low-dimensional representations of the image by mapping each
pixel’s features to a lower dimension, once again as a numerical representation. These
embeddings can then be optimised through applying a loss function and attempting to
minimise the loss through training. The architecture is pre-trained on ImageNet [7],
just like MiDaS, as this improves performance.[14] The model is then trained for 20
epochs on the Eigen split[9] of the KITTI dataset [12] with a batch size of 12, a uniform
resolution of 640x192 and a learning rate of 10−4 for the first 15 epochs and 10−5 for

14

the remaining epochs.[14] The training takes 12 and 15 hours for the monocular and
monocular plus stereo models respectively.[14] Table 1 by Godard et al. [14] shows that
Monodepth2 outperforms most other common models for both monocular training and
the combination of monocular and stereo training, even without pre-training. As ex-
pected, the results improve greatly when combining monocular and stereo training. To
visualise the results, we use the same random images from DIW used for visualising
the MiDaS results before.

Figure 8: [14]From left to right: Input image, Monodepth2 trained only monocularly,
Monodepth2 trained both monocularly and stereo.

Results for close range clearly leave a lot to be desired, but for medium and high range,
they are fairly accurate.

3 Experiment

For our experiment, we set up a local Django server that can receive images as input
and then passes them to a model through a subprocess that processes them and re-
turns the corresponding depth maps. For this experiment, we choose our thresholding
method described earlier, MiDaS[21], DPT-Hybrid[22] and Monodepth2[14] trained on
both monocular and stereo. We will compare their performance as well as the amount
of time it takes to send the image, process it and receive an answer from the server. It
is important to stress that we’re using a local server and as such the latency is lower
than it would be on regular servers. In all cases we use a 3840x5120 pixel image with
a total size of 4.69MB, shot with a Huawei Mate 20 lite phone camera (20 MP). For
the models requiring a GPU, we use a single Nvidia GeForce RTX 2060 Super. As our
metric to compare the models/methods we use AbsRel, which is short for Absolute
Relative Error. The way the error is calculated is by taking the absolute error (ground
truth - prediction) and normalising it by the ground truth again (making it relative).

15

For AbsRel a low value is better, as the error is smaller. We choose the ETH3D [23]
dataset for testing, as it has not been seen by any model before except in testing for
MiDaS and also contains mostly outdoor static images. [21] We additionally introduce
a rating system for evaluating their performance, which is the multiplication of the
AbsRel score with the time it takes to receive an answer from the server, with a lower
score being better.

Thresholding MiDaS DPT-Hybrid Monodepth2
Time to result (without server) 0.35s 2.73s 3.07s 4.02s
Time to result (with server) 3.04s 5.51s 5.77s 6.48s
AbsRel on ETH3D 0.849 0.164 0.098 0.113
Score 2.58 0.90 0.57 0.73

Table 1: Time needed to load a picture, send it to the server and receive a depth map,
as well as AbsRel on average for the ETH3D dataset and the resulting score

The AbsRel values coincide with our observations from the previous sections, with
DPT-Hybrid providing the best results but being slower than MiDaS. Monodepth2 is
the slowest and its results are better than MiDaS but slightly worse than DPT-Hybrid
(according to AbsRel). When looking at our score for the methods, we once again see
that DPT-Hybrid has the best performance, followed by Monodepth2 and MiDaS. Our
thresholding method, even though it is a lot faster than the others, has an immensely
worse score than them due to its AbsRel error rate being a lot higher.

Figure 9: [14]From left to right: Input image used for the previous table, depth map
estimation with the thresholding method, depth map estimation with the Mi-
DaS model, depth map estimation with the DPT-Hybrid model, depth map
estimation with the Monodepth2 model trained on monocular and stereo. All
depth maps are visualised with the jet colour scheme, using a colour range
from red (very close) to blue (very far)

1 def process_image(image_data):

2 # Pass the image data to the processing program using subprocess

3

4 command = [’python ’, ’PATH TO PROCESSING SCRIPT ’]

16

5 process = subprocess.Popen(command , stdin=subprocess.PIPE , stdout

=subprocess.PIPE)

6 stdout , stderr = process.communicate(input=image_data)

7

8 # Get the directory path of the current file

9 current_dir = os.path.dirname(os.path.abspath(__file__))

10

11

12 #Read the depth maps from the CSV files

13 depth_map_path = glob.glob(PATH TO DEPTH MAP)

14 depth_map_values = []

15

16 with open(depth_map_path , ’r’) as f:

17 depth_map_reader = csv.reader(f)

18 depth_map_values.extend ([row for row in depth_map_reader

])

19

20

21 return depth_map_values

Listing 1: The core of our processing, depending on the method we choose for our
testing, that code gets executed with an input image. The resulting depth
map is then read and returned.

1 while (true)

2 {

3 // Wait for the polling interval

4 yield return new WaitForSeconds(pollInterval);

5

6 // Capture a screenshot

7 yield return new WaitForEndOfFrame ();

8 Texture2D texture = ScreenCapture.CaptureScreenshotAsTexture ();

9

10 // Convert the texture to bytes

11 byte[] imageBytes = texture.EncodeToPNG ();

12 Destroy(texture);

13

14 // Create a UnityWebRequest to upload the image

15 WWWForm form = new WWWForm ();

16 form.AddBinaryData("image", imageBytes , imageName , "image/png");

17

18 UnityWebRequest request = UnityWebRequest.Post(serverURL , form);

19 yield return request.SendWebRequest ();

20 // Get the response text

21 string responseText = request.downloadHandler.text;

22 Debug.Log("Server Response: " + responseText);}}

Listing 2: Image uploading process in Unity. The camera takes a screenshot and
uploads that image to the server. The script then waits for the server’s
response.

We use Unity to simulate a camera with a virtual environment[3] for testing purposes.
We attach a script to the camera that constantly sends images of what it sees to

17

the server for processing. The resulting depth images are then returned to the Unity
environment by the server. Unity offers the option of applying a depth shader, where
any objects that are to be inserted at a given depth are compared to the depth values
in that given area. Creating a depth shader is however a very complex and unnecessary
procedure as several pre-made ones already exist. The way a depth shader works is
that for every pixel in the area, if the depth at which the object is to be inserted is
higher than the depth of the pixel in the real world, or the virtual environment in our
simulation, it is occluded in order to enhance realism. DepthLab[8] can be used to
achieve this (only on Android 8.1 or higher), which uses Google’s ARCore for depth
estimation but the framework can be adapted to receive depth maps from another
source. Google unfortunately does not disclose how exactly they estimate depths in
ARCore and as such it is not possible to determine an exact error rate for a dataset.
We show a comparison between the depth maps from DepthLab (using ARCore) and
our models.

Figure 10: Comparison of depth maps when facing into the sun. From left to right: In-
put image, depth map produced by DepthLab [8], our thresholding method,
MiDaS, DPT-Hybrid and Monodepth2.

Figure 11: Comparison of depth maps when facing away from the sun. The same order
as in the previous figure.

We can see that DepthLab (and by extension ARCore) gives good depth values for
close range but breaks down for higher ranges. This is due to the ARCore version
used by DepthLab being limited to a distance of 8.191m. ARCore has however had
an update increasing its effective range to 65.535m.[2] As shown and described in the
previous table, we can see that DPT-Hybrid provides the best results, closely followed

18

by Monodepth2 and MiDaS. Clearly visible failures by the models are that Monodepth2
doesn’t provide good details, as it is quite blurred, as well as DPT-Hybrid, and MiDaS
in particular, get ”tricked” by the light when facing into the sun.
DepthLab results in the following occlusion effects:

Figure 12: Occlusion effects in DepthLab in close range

Figure 13: Occlusion effects in DepthLab in medium range

As previously described, we can see that the occlusion effects are satisfying for close
range, but degrade for higher ranges.

4 Conclusion

In conclusion, we evaluated several approaches for server-based depth map estimation,
each providing their own advantages and drawbacks. Even though our introduced

19

thresholding method is very simple and fast, it is near useless for actually estimating
a depth map and should therefore be discarded. In contrast, the other models provide
highly satisfying depth maps but need a long time to receive a response due to the
server communication, which will only be longer when the server is not implemented
locally anymore. As such, the user will have to remain stationary for a while and hold
the phone still, due to the depth map not corresponding with the actual position of
the user anymore if they move, which is a suboptimal solution. However, as DepthLab
requires the user to have a fairly new phone, server-based occlusion is a good solution
for older phones, as they would not be able to process a model for depth estimation
anyway. Another benefit of server-based application of the depth map estimation is
the small size of the app, as all processing is handled on the server and all that remains
for the app to do is to send a request to the server, receive an answer and implement it
into its occlusion shader. The users will therefore have to weigh their options whether
to have a large app that does the processing quickly due to not having to communicate
with a server, albeit slightly worse, or to have a small app that offloads the processing
to an external server but have to wait to get a more accurate response while having to
remain stationary during that time.

5 Future work

Due to our work being focused on providing a framework for estimating depth maps
for occlusion fixing through a server, we leave out the actual implementation of the
occlusion shader in Unity. As the field of depth estimation as well as occlusion is
constantly evolving, the models for depth estimation will undoubtedly improve and
as such this work can serve as a base for testing improved models. The technology
for depth estimation built into phones will also definitely improve and as such it will
definitely be worth to reevaluate at a later time whether it is worth it to offload the
depth estimation to a server or to leave it all up to the app.

20

References

[1] URL https://ffmpeg.org/.

[2] URL https://developers.google.com/ar/develop/depth/changes?hl=en.

[3] URL https://assetstore.unity.com/packages/3d/environments/

landscapes/low-poly-simple-nature-pack-162153.

[4] URL https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.

0/manual/index.html.

[5] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A nat-
uralistic open source movie for optical flow evaluation. In Andrew Fitzgibbon,
Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors,
Computer Vision – ECCV 2012, pages 611–625, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-33783-3.

[6] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth perception
in the wild. 04 2016.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.
5206848.

[8] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dour-
garian, Joao Afonso, Jose Pascoal, Josh Gladstone, Nuno Cruces, Shahram Izadi,
Adarsh Kowdle, Konstantine Tsotsos, and David Kim. DepthLab: Real-time 3D
Interaction with Depth Maps for Mobile Augmented Reality. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology, UIST
’20, pages 829–843. ACM, 2020. doi: 10.1145/3379337.3415881.

[9] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. 11 2014.

[10] Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories. In 2004 Conference on Computer Vision and Pattern Recognition
Workshop, pages 178–178, 2004. doi: 10.1109/CVPR.2004.383.

[11] Estevão S. Gedraite and Murielle Hadad. Investigation on the effect of a gaussian
blur in image filtering and segmentation. In Proceedings ELMAR-2011, pages
393–396, 2011.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer

21

https://ffmpeg.org/
https://developers.google.com/ar/develop/depth/changes?hl=en
https://assetstore.unity.com/packages/3d/environments/landscapes/low-poly-simple-nature-pack-162153
https://assetstore.unity.com/packages/3d/environments/landscapes/low-poly-simple-nature-pack-162153
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html

Vision and Pattern Recognition, pages 3354–3361, 2012. doi: 10.1109/CVPR.
2012.6248074.

[13] Clement Godard, Oisin Aodha, and Gabriel Brostow. Unsupervised monocular
depth estimation with left-right consistency. 07 2017. doi: 10.1109/CVPR.2017.
699.

[14] Clément Godard, Oisin Aodha, Michael Firman, and Gabriel Brostow. Digging
into self-supervised monocular depth estimation. 11 2019. doi: 10.1109/ICCV.
2019.00393.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[16] Youngjung Kim, Hyungjoo Jung, Dongbo Min, and Kwanghoon Sohn. Deep
monocular depth estimation via integration of global and local predictions. IEEE
Transactions on Image Processing, 27(8):4131–4144, 2018. doi: 10.1109/TIP.2018.
2836318.

[17] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction
from internet photos. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2041–2050, 2018. doi: 10.1109/CVPR.2018.00218.

[18] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, Ram Nevatia,
and Alan Yuille. Every pixel counts ++: Joint learning of geometry and motion
with 3d holistic understanding. IEEE Trans. Pattern Anal. Mach. Intell., 42(10):
2624–2641, oct 2020. ISSN 0162-8828. doi: 10.1109/TPAMI.2019.2930258. URL
https://doi.org/10.1109/TPAMI.2019.2930258.

[19] Márcio C. F. Macedo and Antônio L. Apolinário. Occlusion handling in augmented
reality: Past, present and future. IEEE Transactions on Visualization and Com-
puter Graphics, 29(2):1590–1609, 2023. doi: 10.1109/TVCG.2021.3117866.

[20] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. doi: 10.1109/
TSMC.1979.4310076.

[21] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
IEEE Transactions on Pattern Analysis amp; Machine Intelligence, 44(03):1623–
1637, mar 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.3019967.

[22] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for
dense prediction. ICCV, 2021.

22

https://doi.org/10.1109/TPAMI.2019.2930258

[23] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Kon-
rad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo bench-
mark with high-resolution images and multi-camera videos. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 2538–2547,
2017. doi: 10.1109/CVPR.2017.272.

[24] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor seg-
mentation and support inference from rgbd images. In Andrew Fitzgibbon, Svet-
lana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, Com-
puter Vision – ECCV 2012, pages 746–760, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-33715-4.

[25] Himanshu Singh. Advanced Image Processing Using OpenCV, pages 63–88. Apress,
Berkeley, CA, 2019. ISBN 978-1-4842-4149-3. doi: 10.1007/978-1-4842-4149-3 4.
URL https://doi.org/10.1007/978-1-4842-4149-3_4.

[26] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgb-d slam systems. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
573–580, 2012. doi: 10.1109/IROS.2012.6385773.

[27] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In CVPR
2011, pages 1521–1528, 2011. doi: 10.1109/CVPR.2011.5995347.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

[29] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and Simon Lucey. Learning
depth from monocular videos using direct methods. In 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 2022–2030, 2018. doi:
10.1109/CVPR.2018.00216.

[30] Chaoyang Wang, Simon Lucey, Federico Perazzi, and Oliver Wang. Web stereo
video supervision for depth prediction from dynamic scenes. 04 2019.

[31] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.819861.

[32] Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, Yang Xiao, Ruibo Li, and Zhenbo
Luo. Monocular relative depth perception with web stereo data supervision. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
311–320, 2018. doi: 10.1109/CVPR.2018.00040.

23

https://doi.org/10.1007/978-1-4842-4149-3_4
http://arxiv.org/abs/1706.03762

	Introduction
	Motivation
	Related work
	Contribution
	Outline of this work

	Models
	Thresholding
	MiDaS
	MonoDepth2

	Experiment
	Conclusion
	Future work
	References

