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Abstract
Satisfiability Modulo Theories (SMT) solving is a technique used to deter-

mine the satisfiability of Quantifier-free First-order Logic formulae over a fixed
theory. The Cylindrical Algebraic Decomposition (CAD) method is a commonly
used strategy for solving problems of Non-linear Real Arithmetic. Recently, the
Cylindrical Algebraic Covering (CAlC) method has been developed, which is a
variant of the CAD method that incrementally tries to construct a satisfying
solution for a conjunction of polynomial constraints or to detect its unsatisfia-
bility. On the basis of a given variable and a partial assignment to some other
variables, the main principle of the CAlC method is to generate single real val-
ues and open intervals of real numbers which can be omitted when searching for
a satisfying solution.

We present two adaptions of the CAlC method that exploit strict constraints
in the input conjunction. Both aim at extending the generated open intervals
to include some of their endpoints in order to speed up the computation.
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Chapter 1

Introduction

Efficiently determining the satisfiability of polynomial inequalities has become in-
creasingly relevant in recent decades. Various properties of real-world systems can be
expressed in mathematical formulae whose satisfiability can be used to draw conclu-
sions about concrete systems, e.g. for checking the validity of circuit designs or to
analyse security issues [Stu06, Sne05]. Satisfiability Modulo Theories (SMT) solvers
are tools used to reason about such encodings of real-world problems. They aim at
checking the satisfiability of formulae over some existential fragment of a First-order
Logic theory.

In the middle of the 20th century, Alfred Tarski showed that the theory of Non-
linear Real Arithmetic is decidable [Tar51]. That implies, it is possible to algorith-
mically determine whether there exists a real-valued solution for a conjunction of
polynomial equations and inequations, so-called polynomial constraints which are
built using addition and multiplication of variables and rational coefficients. In SMT
solving, special Theory Solvers are employed to check the consistency of sets of theory
constraints.

A possible decision procedure for a theory solver for Non-linear Real Arithmetic
in SMT solving is the Cylindrical Algebraic Decomposition (CAD) method [Col75].
Based on the techniques of the CAD, in 2021 Ábrahám et al. developed a related
method: Instead of calculating a decomposition of the real space, this strategy works
on Cylindrical Algebraic Coverings (CAlCs) [ÁDEK21]. In Chapter 2 we first intro-
duce the necessary basics, in particular we formalise the used theory and some basic
CAD tools before introducing CAlCs and the corresponding CAlC method.

This work investigates how additional information can be drawn from strict in-
equations, allowing us to make statements about the satisfiability of polynomial in-
equations more efficiently, i.e. with less computational effort. In Chapter 3, we present
two ideas on how it might be possible to reduce the number of steps performed to
analyse a conjunction of constraints. That is done by leaving out some particularly
cost-expensive points of the real space.

The implementation of these variants in the SMT toolbox SMT-RAT is discussed
in Chapter 4. We analyse the differences between the two alternatives in practise and
evaluate their benefits before drawing conclusions in Chapter 5.
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Chapter 2

Preliminaries

Before analysing strict constraints in the CAlC method, we introduce some basic ter-
minology and techniques. First, we define polynomials and polynomial constraints,
then the theory of Quantifier-free Non-linear Real Arithmetic, the core idea of Sat-
isfiability Checking, the Cylindrical Algebraic Decomposition, and finally the main
concept of Cylindrical Algebraic Coverings.

Within this chapter, we often refer to Ábrahám et al. and Nalbach et al., who
introduce the main concepts of this thesis [ÁDEK21, NÁS+22]. Most of the following
definitions are adaptions of the ones given there. Moreover, we assume that 0 ∈ N.

2.1 Quantifier-free Non-linear Real Arithmetic
In this section we formalise the syntax and semantics of Quantifier-free Non-linear
Real Arithmetic and the related problem we try to solve utilising the CAlC method.

Definition 2.1.1 (Variable Ordering). Let X be a set of variables. A variable or-
dering ≺X is an order on X , i.e. a transitive and antisymmetric relation. If X is
unambiguous from the context, we omit the set and denote the ordering by ≺.

Within this thesis, we stick to the ordering x1 ≺ · · · ≺ xn if X = {x1, . . . , xn} and
x ≺ y ≺ z if X = {x, y, z}.

Definition 2.1.2 (Polynomial). A polynomial in normal form is of the form

p =
k∑

i=1

ci ·
n∏

j=1
x

eij

j


with n, k ≥ 0 natural numbers, X = {x1, . . . , xn} a set of variables, c1, . . . , ck ∈ Q
rational numbers, and e1 = (e11, . . . , e1n), . . . , ek = (ek1, . . . , ekn) ∈ Nn pairwise
different n-dimensional tuples.

The set of all polynomials in normal form over the variables X is denoted by
Q[x1, . . . , xn]. The notation points out that the coefficients of such polynomials are
rationals and x1, . . . , xn the used variables. The latter ones can be assigned to any
real value. We will not always stick to the normal form but different representations,
e.g. factorised polynomials.
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If the number of different variables appearing with a non-zero coefficient as well
as a non-zero exponent is greater than one, then p is called a multivariate polynomial,
p is univariate in case the number is exactly one, and otherwise constant.

Example 2.1.1. The polynomial p1 := (x − 1)2 + (y − 1)2 is multivariate in x and
y, i.e. p1 ∈ Q[x, y]. The polynomial p2 := (x − 1)2 + 2 is univariate in x.

Definition 2.1.3. Let p ∈ Q[x1, . . . , xn] be a multivariate polynomial. It can be
interpreted univariately as a polynomial p ∈ Q[x1, . . . , xi−1, xi+1, . . . , xn][xi] in the
variable xi with coefficients in Q[x1, . . . , xi−1, xi+1, . . . , xn].

Definition 2.1.4 (Variables of a Polynomial). Let p be a polynomial according to
Definition 2.1.2. The set var(p) of variables appearing in p is inductively defined:

• If p = x is a variable, then var(p) = {x}.

• If p = c is a constant c ∈ Q, then var(p) = ∅.

• If p = p̃ + p̂, then var(p) = var(p̃) ∪ var(p̂).

• If p = p̃ · p̂, then var(p) = var(p̃) ∪ var(p̂).

By the precedences of addition and multiplication, p can be structurally decomposed.
Note that exponentiation is just a shorthand notation for repeated multiplication.

Definition 2.1.5 (Degree and Level of a Polynomial). Let p be a polynomial using
the notation of Definition 2.1.2. The degree of p

deg(p) := max
1≤i≤k
ci ̸=0

n∑
j=1

eij

is the largest sum of all exponents of variable products in p with non-zero coefficients.
The main variable of p is the highest variable regarding the order in Definition 2.1.1

that appears in p with a non-zero coefficient as well as a non-zero exponent (if it
exists). If xi is the main variable of p, then p is of level i, denoted by level(p) = i. If
no such xi exists, we say level(p) = 0.

Definition 2.1.6 (Polynomial Irreducibility and Square-Freeness, as in [NÁS+22]).
Let p ∈ Q[x1, . . . , xn]\{0} be a non-zero polynomial. If p = p̃ · p̂ for some polynomials
p̃, p̂ ∈ Q[x1, . . . , xn], then p̃ and p̂ are called factors of p. The set of all factors of p is
denoted by factors(p).

We call p irreducible if for all p̃, p̂ with p = p̃ · p̂ we have that either p̃ ∈ Q or p̂ ∈ Q
and p is square-free if for all non-constant f ∈ factors(p) we have f2 /∈ factors(p).

If polynomials are compared to each other, we obtain constraints.

Definition 2.1.7 (Constraint). Let p1, p2 ∈ Q[x1, . . . , xn] be polynomials. A con-
straint c over p1 and p2, denoted c : p1 ∼ p2, compares p1 and p2 using a comparison
operator ∼ ∈ {<, ≤, =, ̸=, ≥, >}. The constraint c is in normal form if p1 is in normal
form and p2 = 0. In that case, the polynomial p1 is the defining polynomial of c.

Every constraint c : p1 ∼ p2 can be transformed to normal form by subtracting p2
from both sides and transforming the resulting polynomials to normal form.
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Example 2.1.2. The polynomials p1 and p2 from Example 2.1.1 are defining for the
constraints c1 : p1 > 0 and c2 : p2 ≤ 1 or equivalently c2 : (x − 1)2 + 2 ≤ 1. The latter
one simplifies to x2 − 2x + 2 ≤ 0 being in normal form.

Definition 2.1.8 (Quantifier-free Non-linear Real Arithmetic (QFNRA)). Let X =
{x1, . . . , xn} be a set of variables and ¬, ∧, ∨ the standard Boolean connectives. A
Quantifier-free Non-linear Real Arithmetic formula φ over X is obtained using the
following rules:

poly := const | x1 | . . . | xn | (poly + poly) | (poly · poly)
constr := poly < 0 | poly ≤ 0 | poly = 0 | poly ̸= 0 | poly ≥ 0 | poly > 0
φ := constr | (φ ∧ φ) | (φ ∨ φ) | ¬φ

Hereby, const represents all rational numbers const ∈ Q. Note that constraints
appearing in QFNRA formulae are normal formed.

Having defined polynomials and constraints syntactically, we now specify their se-
mantics by means of assignments.

Definition 2.1.9 (Assignment). Let X := {x1, . . . , xn} be a set of variables. An
assignment V : X → R is a function that maps variables to the real domain, i.e.
assigns them to real numbers. Instead of stating the variables and the assignment
separately, we often use the notation (x1 7→ α1, . . . , xn 7→ αn) or simply (α1, . . . , αn)
for real values α1, . . . , αn as a shorthand notation for the function V : X → R, xi 7→ αi

with 1 ≤ i ≤ n.

Definition 2.1.10 (Evaluation). Let V be an assignment, p, p1, p2 polynomials, and
c : p1 ∼ p2 a polynomial constraint. The (partial) evaluation of a polynomial p under
V results in another polynomial p̂ which is obtained from p by replacing the variables
in p according to V and transforming the result into the normal form. The evaluation
is denoted by p̂ = JpKV or p̂ = p(s) if we use the notion of a point s instead of an
assignment function V. In general, we cannot assume that p̂ ∈ R because V might not
instantiate every variable in var(p). Moreover, p̂ does not need to have only rational
coefficients.

A constraint c can be evaluated employing an assignment V if it assigns real
numbers to all variables in var(p1) ∪ var(p2). The evaluation JcKV yields a truth value
from the Boolean domain B := {True,False} where JcKV = True if and only if
Jp1KV ∼ Jp2KV holds. Hereby, we make use of the standard semantics of ∼. If V does
not assign all variables in var(p1) ∪ var(p2), the partial evaluation JcKV again might
be a constraint.

The evaluation of a QFNRA formula is performed the standard way, i.e. first the
constraints are evaluated and then the Boolean truth values are combined according
to the structure of the formula.

Definition 2.1.11 (Non-linear Real Arithmetic Satisfiability Problem). Let F be a
QFNRA formula over X . The Non-linear Real Arithmetic Satisfiability Problem asks
whether there exists an assignment V for X such that JFKV = True. That way, the
variables in F are implicitly existentially quantified.
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2.2 Satisfiability Checking
When solving the problem from Definition 2.1.11 for a QFNRA formula F , the goal
of Satisfiability Checking is, to determine whether there exists an assignment V that
satisfies F . If so, the answer is SAT otherwise UNSAT. Solving this question does not
only relate to QFNRA formulae. When using Boolean variables instead of constraints,
one obtains formulae of Propositional Logic. In the 1970s, Cook and Levin showed
that the Propositional Satisfiability Problem is NP-complete [Coo71, Lev73]. Thus,
it is possible to algorithmically determine the satisfiability of a Propositional Logic
formula, but as we know so far, it is computational expensive as well.

When dealing with QFNRA formulae, we do not only have to consider the Boolean
structure but also the truth values of the constraints when assigning the variables.
Hence, an extension of pure Boolean Satisfiability Checking is needed, called Satisfi-
ability Modulo Theories (SMT) solving. The key aim is to determine the satisfiability
of a sentence, i.e. a logic formula without free variables from an existential fragment
of a first-order theory. We do not introduce First-order Logic itself and instead refer
to [Fit96].

In the 1950s, the logician Alfred Tarski has shown that the Quantifier Elimination
Problem is decidable for real arithmetic [Tar51]. That implies the satisfiability of
conjunctively connected polynomial constraints can be determined algorithmically,
too. However, the original method presented by Tarski is very inefficient in terms of
complexity, so different methods have been evolved.

2.3 CAD Techniques
There exist many approaches to determine the satisfiability of QFNRA formulae, e.g.
Interval Constraint Propagation [FHT+06], Virtual Substitution [CÁ11], Subtropical
Satisfiability [FOSV17], or the Cylindrical Algebraic Decomposition (CAD) [Col75]
method.

We will focus on the techniques used in the latter one, which, contrary to the
other methods above, is complete, but we do not give a full inside into this method
as we are dealing with a related procedure below in Section 2.4.

The CAD method was introduced by Collins in 1975. When given polynomial con-
straints in n variables, the key idea is to partition the real space Rn into finitely many
cells, such that every defining polynomial of a constraint maintains its sign on each
cell [Col75, NÁS+22]. This is possible as every univariate polynomial has finitely
many zeros. In the following, we give some basic definitions.

Definition 2.3.1 (Sign). The sign function σ : R → {−1, 0, +1} states, whether a
real number is negative, zero, or positive.

Note that zero is a sign itself, because the comparison operators we are heading for
might only differ in their judgement on zero. Most of the time we neglect the explicit
use of the sign function and instead use comparisons to express a sign condition.

Definition 2.3.2 (Cell, as in [NÁS+22]). Let n, m ∈ N, S ⊆ Rm for some 0≤m≤n,
P ⊆ Q[x1, . . . , xn] a finite, non-empty set of polynomials, and C a finite set of con-
straints built by comparing the polynomials from P to zero according to Defini-
tion 2.1.7. S is called a cell if it is a non-empty connected set.
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If P ′ = P ∩ Q[x1, . . . , xm], then P ′ is sign-invariant on S if for all p ∈ P ′ and
a, b ∈ S there holds σ(p(a)) = σ(p(b)). The set C′ ⊆ C of constraints built on P ′ is
truth-invariant on S if JcKa = JcKb for every c ∈ C′ and a, b ∈ S.

The cell S is semi-algebraic if it is the solution set of a Boolean combination of
polynomial constraints. It is sampled if a particular point s ∈ S is associated with S.
Definition 2.3.3 (Cylindrical Algebraic Decomposition (CAD), as in [NÁS+22]).
A set D = {S1, . . . , Sk} of cells of Rn with

⋃
1≤i≤k Si = Rn and Si ∩ Sj = ∅ for all

1 ≤ i ̸= j ≤ k is called a decomposition of Rn. It is algebraic if its cells are semi-
algebraic. It is called cylindrical over some decomposition D′ of Rm for some m < n
if all projections of cells S ∈ D onto Rm are cells in D′, i.e. the cells in Rn are stacks
of cells filling the cylinder over the cells of D′.

A Cylindrical Algebraic Decomposition (CAD) D with respect to the variable or-
dering ≺ is obtained by a sequence (D1, . . . , Dn) where D = Dn and each Di is a
cylindrical algebraic decomposition of Ri over Di−1 for all i ∈ {2, . . . , n} and D1 is
an algebraic decomposition, too.
The key idea is that a decomposition inherits the invariance properties of the polyno-
mials and, thus, of the constraints. That way, reasoning about the satisfiability of the
input constraints can be broken down to lower dimensions. This happens with respect
to a projection operator. Within this thesis, we make use of the McCallum projection
operator, an improvement of the original projection used by Collins [McC98].
Definition 2.3.4 (McCallum Projection Operator, as in [McC98]). Let x1≺ . . .≺ xn

be the used variables, i ∈ {2, . . . , n}, and P ⊆ Q[x1, . . . , xi] \ {0} a set of irreducible
polynomials. The McCallum Projection of P , denoted by projmc(P ), is defined as

projmc(P ) :=
⋃

p∈P
level(p)=i

coeffxi(p) ∪
⋃

p∈P
level(p)=i

{discxi(p)} ∪
⋃

p,q∈P, p̸=q
level(p)=i
level(q)=i

{resxi(p, q)} ∪
⋃

p∈P
level(p)<i

{p}.

For all resulting polynomials p̂ ∈ projmc(P ) there holds level(p̂) < i: If XP is the set
of variables appearing in P and the projection is calculated with respect to xi, then
the resulting polynomials’ variables Xproj do not contain xi and even more Xproj ⊆
XP \ {xi}. That simplifies reasoning about cells later on. In exchange, it is often the
case that the resulting polynomials’ degrees are increased.

We do not formally analyse this projection operator but give an intuition for the
methods used in the projection steps. Therefore, we discuss the leading coefficient but
not all coefficients used in projmc. Note that we will not call this projection operator
in the CAlC method later on and instead state the calculations explicitly.
Definition 2.3.5 (Resultant, as in [Rot10, Kna08]). Let p1, p2 be univariately rep-
resented polynomials in the variable x. The resultant of p1 and p2 with respect to x
is the determinant of the Sylvester matrix of p1 and p2:

resx(p1, p2) = Det(Sylvester(p1, p2)).

Definition 2.3.6 (Discriminant, as in [Rot10]). Let p be a univariately represented
polynomial in x with deg(p) = k. The discriminant of p with respect to x is

discx(p) := 1
ck

· (−1)
k(k−1)

2 · resx(p, p′),

whereby ck is the leading coefficient of p and p′ is the first derivative of p.
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p1

x

y

(a) Discriminant

S

p1

p2

x

y

(b) Resultant

p3

x

y

(c) Leading coefficient

Figure 2.3.1: Visualisation of the three major projection steps. Depicted are the zeros of
polynomials p1, p2, and p3. As an abuse of notation, we name the zeros as their corresponding
polynomials. When calculating the discriminant, resultant, or leading coefficient of the polynomials,
one receives a polynomial of lower level whose zeros are depicted in orange. An example for a sign-
invariant cell is given in Figure 2.3.1b.

Example 2.3.1. In Figure 2.3.1a the zero of the polynomial p1 = y2 + x2 − 1 is
depicted. The discriminant discy(p1) = −4(x2 − 1) is zero for x = −1 and x = 1,
indicating that the number of zeros of p1 with respect to y changes there: While p1
has no zeros for x < −1, p1 has one zero at x = −1, two zeros for −1 < x < 1, one
zero at x = 1, and no zeros for x > 1. Intuitively, a parallel of the y-axis can be
shifted along the x-axis. If one marks the positions where the number of zeros of p1
laying on the currently shifted y-axis changes, these are the zeros of discy(p1).

When calculating discriminants, resultants, or coefficients, the points of interest are
mainly the zeros of the obtained polynomials. Hence, we store only square-free bases
in normal form and factorise polynomials as far as possible to simplify calculations
later on. To meet readability, we still use the equals sign ‘=’ when speaking about
discriminants, resultants and coefficients, e.g. in Example 2.3.1 we write discy(p1) =
(x − 1)(x + 1) and store (x − 1) and (x + 1) separately.

Example 2.3.2. In Figure 2.3.1b the zeros of p1 and another polynomial p2 = y − x
are depicted. The resultant resy(p1, p2) = x2 − 1

2 of p1 and p2 indicates where p1 and
p2 have common zeros. When moving the y-axis again, the only positions where p1
and p2 have intersecting zeros are above x = −0.71 and x = 0.71.

We use the ‘ · ’-notation to mark rounded numbers. In Example 2.3.2 we write 0.71
instead of 1√

2 .

Example 2.3.3. An example of a sign-invariant cell of the polynomials p1 and p2
is given in Figure 2.3.1b by the crosshatched region. For every s ∈ S there holds
σ(p1(s)) = −1 and σ(p2(s)) = −1. Note, however, that this cell is not maximal
sign-invariant, i.e. it could be extended towards its right.

Definition 2.3.7 (Leading Coefficient). Let p be a univariately represented polyno-
mial in the variable x with deg(p) = k. The leading coefficient lcoefx(p) of p with
respect to x is the coefficient ck of the term ck · xk in p, i.e. lcoefx(p) = ck.

Example 2.3.4. Figure 2.3.1c illustrates the importance of coefficients. The poly-
nomial p3 = xy − 1 has an asymptotic behaviour at x = 0. Again, this can be seen by
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shifting a parallel of the y-axis to x = 0 or by determining the zero of lcoefy(p3) = x
which is x = 0.
If the univariate representation of a polynomial p is unambiguous from the context,
we omit to specify it, e.g. we write lcoef(p3) instead of lcoefy(p3). The same applies
to resultants and discriminants.

2.4 Cylindrical Algebraic Coverings
The decomposition into a CAD is done dimensionwise. In the end, for every obtained
full-dimensional cell, a sample point is chosen to evaluate all input constraints and to
determine their satisfiability at that point, i.e. of that cell. After testing all samples,
a conclusion can be drawn whether the set of constraints is SAT or UNSAT.

In this section we introduce the CAlC method, a procedure related to the CAD
that draws conclusions also from partial samples. The following definitions and algo-
rithms are slightly modified or shortened versions of the ones presented in [ÁDEK21].

In 2021, the Cylindrical Algebraic Covering method was presented by Ábrahám et al.
It relaxes disjointness of the cells as long as cylindricity is maintained. Furthermore,
it works incrementally to guide itself (hopefully) further away from conflicts than the
pure CAD does [ÁDEK21].
Definition 2.4.1 (Cylindrical Algebraic Covering (CAlC), as in [ÁDEK21]). A cov-
ering of Rn is a finite set C = {S1, . . . , Sk} of cells with

⋃
S∈C S = Rn. The covering

is algebraic if every cell of it is semi-algebraic, and it is sampled if it is associated with
exactly one sample point s ∈ S for each cell S ∈ C.

If 0 < m < n and C is a covering of Rn as well as C ′ a covering of Rm, then C
is called cylindrical over C ′ if its projection onto Rm assures that every S ∈ C gets
projected to an S′ ∈ C ′. The cells S ∈ C being projected onto the same cell S′ ∈ C ′

form a cylinder over S′.
In addition, if C is a sampled covering being cylindrical over some sampled C ′,

there has to hold that the sample point of a cell S′ ∈ C ′ is the projection of the
samples assigned to the cells from C forming the cylinder over S′.

If for all 0 < m < n, where C is a sampled covering of Rn, there exists a sampled
covering C ′ of Rm being its projection, then C is called cylindrical. A covering of R
is always called cylindrical.
Example 2.4.1. Figure 2.4.1 illustrates three coverings of R2. Each coloured area,
line, and black point indicates a cell.

Assuming the variable ordering x ≺ y, the covering in Figure 2.4.1a is not cylin-
drical over R (the x-axis), but the one in Figure 2.4.1b is. Inspecting the blue cell in
Figure 2.4.1a, we identify another cell, e.g. the green one, which shares its x-interval
with the blue cell, but the interval is a proper subset of the blue one’s.

The blue and magenta cells in Figure 2.4.1b have a common x-interval as well,
but none of them is a proper subset of each other. Thus, together with the black
horizontal line, they form a cylinder over the x-axis’ interval I.

The last covering in Figure 2.4.1c is equal to the one in Figure 2.4.1b but is
sampled by the red points. After projection, all the samples over one cylinder have
the same x-coordinate. Hence, the whole covering is cylindrical and sampled.

Note that none of the coverings is cylindrical using the variable ordering y ≺ x.
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x
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(a) Non-cylindrical covering

)))
I

x

y

(b) Cylindrical covering

x

y

(c) Sampled covering

Figure 2.4.1: Three examples of coverings for R2. Each one consists of cells indicated by the
coloured areas, black lines, and black points. Red points illustrate possible samples.

2.4.1 CAlC Method
With the CAlC method we check a finite set of polynomial constraints for consistency,
i.e. we check whether their conjunction is satisfiable.

For the whole computations, the method maintains a sample point s, i.e. an
assignment, at which satisfiability is checked. The sample, however, does not need to
have full dimension n as in the CAD method. It might assign real values for the first
i < n variables with respect to the variable ordering but leaves out the other ones.

Starting with a zero-dimensional sample, i.e. an empty sample point s = (), it is
incrementally extended onto the next dimension. Each partial sample with assigned
components s1, . . . , si−1 is validated against the suitable constraints, namely those get
evaluated, whose main variable is xi. That way, we end up with univariate constraints.
Two steps are necessary:

First, we exclude all the subsets of R that, when extending s with a value from
them for si, lead to a violation of at least one constraint of level i. That way, the
possible choice for si is restricted. Either there is no real value left for si, i.e. the
whole set R is excluded, or a non-empty subset of R is remaining. In the latter case,
si gets assigned and the next dimension is explored. However, if the excluded sets
cover R, a conflict appeared. Hence, the algorithm checks the assignments in inverse
chronological order, i.e. it starts with si−1 first, and calculates an interval around
si−1 that does not satisfy the constraints for the same reason. This region might
be a point interval (called a section) [si−1; si−1] or an open interval (called a sector)
(ℓ; u) ⊆ R ∪ {−∞, ∞} with ℓ < si−1 < u. We later discuss how these intervals are
technically concluded. It might be that the resulting interval supplements previously
found intervals on the level i − 1 towards a full covering of the real line again. If so,
the backtracking step repeats recursively.

Termination of the algorithm takes place in two cases:

• If the sample point has full dimension and no constraint is unsatisfied, the
algorithm terminates with SAT, indicating the satisfiability of the constraints.

• In case the algorithm backtracks to the empty sample with no uncovered region
left for choosing s1, the constraint set is proven to be unsatisfiable and, thus,
the algorithm returns UNSAT.

Theoretically, this method is complete, however, the projection operator projmc is
not. Therefore, the CAlC method might return UNKNOWN in some cases. We now
discuss the four main algorithms of the CAlC method as presented by [ÁDEK21],
slightly adapted to the previous notation. In Section 2.4.3 we illustrate the procedure
by means of an example.
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2.4.2 Algorithmic Procedure
The core of the procedure is get_unsat_cover (Algorithm 1). Given a partial
sample s = (s1, . . . , si−1) which initially is s = (), get_unsat_cover first chooses
an extension si of that sample point onto the following dimension. If afterwards the
sample has full dimension, i.e. i = n, no conflict was found and SAT is returned.
Otherwise, the recursive call to Algorithm 1 in Line 6 checks whether a satisfying
extension of the current partial sample exists. If a sample cannot be extended, an
UNSAT interval around the latest component si is characterised by Algorithm 3 and
Algorithm 4. Sampling si within this interval would lead to the same conflict. The
necessary information is encoded in an interval structure.

Definition 2.4.2 (Interval Structure). Let ℓ ∈ R∪{−∞}, u ∈ R∪{∞} and L, U, Pi ⊆
Q[x1, . . . , xi] \ Q[x1, . . . , xi−1] as well as P⊥ ⊆ Q[x1, . . . , xi−1]. An interval structure

I = (ℓ, u, L, U, Pi, P⊥) or I = (Iℓ, Iu, IL, IU , IPi
, IP⊥)

describes an UNSAT interval consisting of

• the lower bound ℓ of the interval,

• the upper bound u of the interval,

• polynomials L defining ℓ by one of their zeros (in case ℓ ̸= −∞ otherwise L = ∅),

• polynomials U defining u by one of their zeros (in case u ̸= ∞ otherwise U = ∅),

• a set Pi of polynomials with main variable xi that appeared in a (previous)
characterisation step, and

• a set P⊥ of polynomials with main variables smaller than xi.

The represented interval is open at both ends if ℓ ̸= u and closed at both ends
otherwise. Note that Pi and P⊥ are trivially initialised by get_unsat_intervals,
but they can be modified after calling construct_characterisation.

Algorithm 1: get_unsat_cover(s), as in [ÁDEK21]
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1 that does not evaluate any

constraint to False.
Output: (SAT, O) for a satisfying sample O ∈ Rn or (UNSAT, I) where I covers R.

1 I := get_unsat_intervals(s)
2 while

⋃
I∈I I ̸= R do

3 si := sample_outside(I)
4 if i = n then
5 return (SAT, (s1, . . . , sn))
6 (res, O) := get_unsat_cover((s1, . . . , si))
7 if res = SAT then
8 return (SAT, O)
9 else

10 R := construct_characterisation((s1, . . . , si), O)
11 I := interval_from_characterisation((s1, . . . , si−1), si, R)
12 I := I ∪ {I}

13 return (UNSAT, I)
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Algorithm 2: get_unsat_intervals(s), as in [ÁDEK21]
Data: Global set of constraints C.
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1.
Output: A set I of intervals such that {s} × I unsatisfies at least one constraint for all I ∈ I.

1 I := ∅
2 Ci := the subset of C with main variable xi

3 foreach c = p ∼ 0 ∈ Ci do
4 c′ := JcKs // Yields truth value or univariate constraint
5 if c′ = False then
6 I := (Iℓ = −∞, Iu = ∞, IL = ∅, IU = ∅, IPi

= {p}, IP⊥ = ∅)
7 return I := {I}
8 if c′ = True then
9 continue

10 Z := real_roots(p, s) // Ordered list z1 < · · · < zk

11 Regions := {(−∞; z1), [z1; z1], . . . , (zk; ∞)} // (−∞; ∞) if Z was empty
12 foreach J = (ℓ; u) ∈ Regions do
13 Pick r ∈ J
14 if Jc′Kr = False then
15 L := ∅ U := ∅
16 if ℓ ̸= −∞ then
17 L := {p}
18 if u ̸= ∞ then
19 U := {p}
20 I := (Iℓ = ℓ, Iu = u, IL = L, IU = U, IPi

= {p}, IP⊥ = ∅)
21 I := I ∪ {I} // After simplifications

22 return I

Initially, get_unsat_intervals evaluates those input constraints c : p ∼ 0 that
become univariate after substitution of the current partial sample. It distinguishes
three types of results:

• If the constraint is equivalent to False as in Line 5, e.g. after evaluating
xi−1xi > 0 at s = (xi−1 7→ 0), it can be concluded that no assignment for xi

will be satisfying. This is indicated by the resulting interval (−∞; ∞). Hence,
the bounds are ℓ = −∞ and u = ∞ together with L = U = ∅. The respon-
sible polynomial with main variable xi is p meaning Pi = {p}, and no other
polynomial, neither with main variable xi, nor some xj with j < i is necessary,
i.e. P⊥ = ∅. As the whole real line is already covered by a single interval, the
procedure terminates.

• If the substituted constraint evaluates to True as in Line 8, no infeasible interval
can be derived and the next constraint is tested.

• The most elaborate case takes place in Line 10, if the partial evaluation of p
becomes univariate but is not unsatisfiable. Now the real zeros of the resulting
univariate polynomial p̂ are calculated, and every zero, every interval between
two zeros, the open left, and the open right interval before and after the first
respectively last zero of p̂ are used to evaluate c and to check for satisfiable
regions. For example, we would obtain the intervals (−∞; 0), [0; 0], (0; ∞) if
p̂ = x2.
For each interval, a value is chosen at which p̂ is evaluated and the truth value
of the constraint c is determined. Note that the choice within the interval is



CYLINDRICAL ALGEBRAIC COVERINGS 21

arbitrary as the satisfaction of c cannot change in between two zeros of p̂. If c
is violated, the interval is stored together with the responsible polynomial p as
mentioned in the first case. Otherwise, the next interval is examined.

Thus, we obtain a set of intervals covering some part of the real line. Back in Algo-
rithm 1, an assignment si outside of these intervals is chosen, unless the real line is cov-
ered in total. However, if the set I from Algorithm 1 covers the real line for xi, UNSAT
is propagated to the parent call, which will use construct_characterisation to
generalise the conflict and to update the latest assignment si−1. In particular, there
might be infinitely many values for si−1 which run into the same conflict. Therefore,
interval_from_characterisation deduces a hopefully large interval around
si−1 which can be neglected when reassigning xi−1.

To understand the characterisation, it is helpful to consider the cell induced by
an interval structure. To meet readability, from now on we assume that the (i + 1)th
dimension is fully covered and an interval around si, the highest assigned component
of s, should be deduced. To that end, let I be an interval structure on level i + 1
deduced in the CAlC method bounded by L and U . The variable xi+1 is the highest
appearing in L ∪ U and L̂ ∪ Û is the set of all polynomials from L ∪ U partially eval-
uated at (s1, . . . , si−1). The smallest set around s bounded by the zeros of L̂ ∪ Û and
the ones of I’s characterisation is a (two-dimensional view on a) cell. In Figure 2.4.2a
two polynomial zeros are illustrated. The zero of p ∈ U is bounding the corresponding
cell induced by its interval structure I. The cell is highlighted as a crosshatched area
of the same colour as the zero of p. The polynomial q is contained in Pi+1 \(L∪U), i.e.
it is not defining for I’s bounds. As an abuse of notation, we name the zeros as their
responsible polynomials, i.e. we write p instead of p = 0. Note that the expansion of
the crosshatched cell in Figure 2.4.2a is limited by the common zero of p and q. To
identify such points, the other components of I have to be taken into account.

It remains to be clarified how an interval around si (a local view on the above cell) is in-
ferred. To that end, a (possibly smaller) non-redundant subset of I is discovered by
compute_cover, whereby the notion of non-redundancy is introduced below.
Definition 2.4.3 (Interval Redundancy and Ordering). Let I = {I1, . . . , Ik} be a set
of interval structures covering the real line. The set I is non-redundant if for all Ij

with 1 ≤ j ≤ k the subset I \ {Ij} does not cover the real line anymore. On the set I
we make use of the total order ⪯I which for I, J ∈ I is defined by

I ⪯I J ⇔ Iℓ ≤ Jℓ ∧ (Iℓ < Jℓ ∨ Iu ≤ Ju).

The intervals I and J are called consecutive if I ⪯I J or J ⪯I I and there exists no
K ∈ I \ {I, J} with I ⪯I K ⪯I J respectively J ⪯I K ⪯I I.
To derive an interval on the level i over which the cells induced by the covering form
a cylinder, a set of polynomials R is computed based on the non-redundant covering.
It is defined the following way:

• Polynomials p appearing in the intervals I ∈ I with level(p) < i+1 are inherited
from the intervals in I without modifications.

• The remaining polynomials need to be projected before they are stored in R to
determine the lower and upper bounds in Algorithm 4 later on. The calculated
projection is computed as explained in Definition 2.3.4. We now focus on the
appearing resultants:
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Figure 2.4.2: Both types of resultants appearing in the computation of a CAlC. Depicted are
the zeros of two polynomials p and q and in orange the zero of their resultant. Crosshatched areas
illustrate the induced (truncated) cells.

– Firstly, the resultants characterising a cell are calculated in Lines 8 and 9.
One has to consider common zeros of the polynomials p ∈ L and q ∈ Pi+1,
respectively p ∈ U with q ∈ Pi+1. However, these are only necessary in
case q(s × m) = 0 for some m ≤ ℓ or m ≥ u, respectively, where s × m
extends s by (si+1 : xi+1 7→ m). They guarantee that the cell remains
sign-invariant over the projection interval. The situation where p ∈ U is
depicted in Figure 2.4.2a.

– Secondly, resultants characterising a covering are computed which are built
across the UNSAT intervals: To obtain a connected covering, we have to
ensure that the deduced interval does not exceed the points where the
covering cells overlap. Thus, in a first step, we need to identify the common
zeros of neighboured interval bounds, i.e. we calculate resultants to check
if the lower bound q of an interval reaches beyond the upper bound p of
its predecessor. An illustration is given in Figure 2.4.2b.

Afterwards, simplification steps are performed, e.g. removing squares or coefficients
as discussed in Examples 2.3.1 and 2.3.2.

Having calculated the polynomials of interest, the CAlC method determines an
interval I around si such that for every choice (xi 7→ s′

i) for some s′
i ∈ I not only a

satisfying extension is impossible, but also this happens for the same reason as for si.
To that end, based on the current sample, the real roots Z of polynomials with

main variable xi resulting from the (previous) characterisations are identified. More-
over, fallback values ±∞ are stored in case no polynomial restricts an extension in
any direction. The deduced interval is based on the zeros in Z closest to si.

The additional information is again stored in an interval structure, but this time,
the sets Pi (polynomials with main variable xi) and P⊥ (polynomials with main
variable smaller than xi) are composed of polynomials that may not be defining for
any input constraints.
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Figure 2.4.3: Illustration of the polynomial zeros belonging to the defining polynomials of the
constraint set C.

Algorithm 3: construct_characterisation(s, I), as in [ÁDEK21]
Input: (Partial) sample point s = (s1, . . . , si) ∈ Ri and an UNSAT covering I.
Output: A set R ⊆ Q[x1, . . . , xi] of polynomials characterising an unsatisfiable region around

s for the same reason.
1 I := compute_cover(I)
2 R := ∅
3 foreach I ∈ I do
4 Extract ℓ := Iℓ, u := Iu, L := IL, U := IU , Pi+1 := IPi+1 , P⊥ := IP⊥
5 R := R ∪ P⊥
6 R := R ∪ {disc(p) | p ∈ Pi+1}
7 R := R ∪ {required_coefficients(p) | p ∈ Pi+1}
8 R := R ∪ {res(p, q) | p ∈ L, q ∈ Pi+1, q(s × m) = 0 for some m ≤ ℓ}
9 R := R ∪ {res(p, q) | p ∈ U, q ∈ Pi+1, q(s × m) = 0 for some m ≥ u}

10 foreach j ∈ {1, . . . , |I| − 1} do
11 R := R ∪ {res(p, q) | p ∈ Uj , q ∈ Lj+1})
12 return R // After CAD simplifications

Algorithm 4: interval_from_characterisation(s, si, P ), as in [ÁDEK21]
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1, an extension si, and a polynomial

UNSAT characterisation P .
Output: Interval I around si so that the constraints are unsatisfiable on {s} × I for the same

reason.
1 P⊥ := {p ∈ P | p ∈ Q[x1, . . . , xi−1]}
2 Pi := P \ P⊥
3 Z := {−∞} ∪ real_roots_with_check(Pi, s) ∪ {∞}
4 ℓ := max{z ∈ Z | z ≤ si}
5 u := min{z ∈ Z | z ≥ si}
6 L := {p ∈ Pi | p(s × ℓ) = 0}
7 U := {p ∈ Pi | p(s × u) = 0}
8 I := (Iℓ = ℓ, Iu = u, IL = L, IU = U, IPi

= Pi, IP⊥ = P⊥)
9 return I
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2.4.3 Running Example

We conclude this chapter by introducing the running example of this thesis. It will
be reused after each approach to illustrate the differences from the original method.
Let C be the set of constraints

C := { ︸ ︷︷ ︸
p1

c1︷ ︸︸ ︷
z − y2 − x2 > 0, ︸ ︷︷ ︸

p2

c2︷ ︸︸ ︷
z2 + y2 + x2 − 3 < 0, ︸ ︷︷ ︸

p3

c3︷ ︸︸ ︷
z2 + (y − 2.5)2 + x2 − 16 > 0 }

whose polynomial zeros are depicted in Figure 2.4.3. The zero p1 = 0 is illustrated

lllllllllllllllllllllllllllAnimation

in blue, p2 = 0 in orange, and p3 = 0 in green. The constraint c1 is satisfied inside
the paraboloid, c2 inside the smaller sphere, and c3 outside of the larger one. The
zeros, i.e. the surfaces, are never satisfying. That way, every pair of constraints is
satisfiable, but all together are not. A 3D-illustration is given in [Bär22].

s = ()
The procedure is started by calling get_unsat_cover with an empty sample s = ().
The set I of UNSAT intervals for the current dimension is set to I := ∅ and by a call
to get_unsat_intervals, every constraint in C is substituted by the current par-
tial sample s and the univariate ones are analysed. However, without assigning any
variable, no constraint becomes univariate and the set I remains empty, in particular,⋃

I∈I I ̸= R. Therefore, any real number is suitable for being assigned to x as s1. For
simplicity we choose (s1 : x 7→ 0). The updated sample s = (s1 : x 7→ 0) has not yet
full dimension, so a recursive call to get_unsat_cover is executed.

s = (s1 : x 7→ 0)
The situation is similar to the one before, so we choose (s2 : y 7→ 0).

s = (s1 : x 7→ 0, s2 : y 7→ 0)
This time, get_unsat_intervals examines univariate constraints after substitu-
tion of s and all three constraints yield UNSAT intervals.

Constraint Evaluated Unsatisfied Intervals
c1 z > 0 (−∞; 0), [0; 0]
c2 z2 < 3 (−∞; −1.73), [−1.73; −1.73], [1.73; 1.73], (1.73; ∞)
c3 z2 > 9.75 [−3.12; −3.12], (−3.12; 3.12), [3.12; 3.12].

The corresponding interval structures contain more information on the conflicts, e.g.
instead of storing (−∞; 0) from c1, we store (ℓ = −∞, u = 0, L = ∅, U = {p1}, P3 =
{p1}, P⊥ = ∅). As these structures are simple to infer, we omit them on the z-level.

The UNSAT intervals obtained from c2 and c3, here denoted by I, cover the real
line and, thus, get_unsat_cover returns (UNSAT, I).

s = (s1 : x 7→ 0)
Back in the previous routine get_unsat_cover, the conflict is handed over to

https://doi.org/10.5281/zenodo.6738566
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Figure 2.4.4: (a) Two-dimensional visualisation of the zeros of the projection polynomials ob-
tained by the first characterisation. The obtained interval above (s1 : x 7→ 0) is illustrated over
x = 0. The crosshatched region belongs to the cell induced by I1. (b) A full covering of the y-axis
which is achieved after six sampling steps.

construct_characterisation yielding three non-trivial polynomials

p4 := disc(p2) = y2 + x2 − 3,

p5 := disc(p3) = y2 − 5y + x2 − 9.75,

p6 := res(p2, p3) = y + 1.35,

simplified according to Section 2.3. Finally, interval_from_characterisation
generates an interval structure. At first, the zeros of p4, p5, and p6 are calculated being

Z = {−∞, −1.73︸ ︷︷ ︸
p4

, −1.5︸︷︷︸
p5

, −1.35︸ ︷︷ ︸
p6

, 1.73︸︷︷︸
p4

, 6.5︸︷︷︸
p5

, ∞}.

The closest zeros around (s2 : y 7→ 0) are −1.35 and 1.73, resulting in I1 :=(−1.35; 1.73)
together with the sets L = {p6}, U = {p4}, P2 = {p4, p5, p6}, and P⊥ = ∅. A vi-
sualisation of the current situation is given in Figure 2.4.4a. The crosshatched area
belongs to the cell induced by the interval structure I1. It is bounded by the zeros of
p4 and p6. The expansion of the cell in x-dimension is limited by the common zeros
of p4 and p6. If we focus on the space I1 × R, the zeros of p2 and p3 in Figure 2.4.3
do not change in their number and order. This invariant remains unchanged at any
s1 and s2 chosen inside the coloured cell.

Unfortunately, I1 does not cover the whole y-axis yet, so we have to continue with
a sample s = (s1 : x 7→ 0, s2 : y 7→ a) for some a ∈ R \ I1. When using the sequence
a1 := 0, a2 := −1.5, a3 := −2, a4 := 2, a5 := −1.73, a6 := 1.73 to choose y based on
(s1 : x 7→ 0), one obtains the intervals depicted in Figure 2.4.4b. Now the y-axis is
covered and characterisation steps take place again.

Based on I1, . . . , I6 some polynomials are calculated, i.e. the characterisation is per-
formed based on intervals that do not stem from constraints directly. We do not
discuss all of them but the subset of resultants characterising a cell. When deducing
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I1, we used resultants characterising a covering. Now we also compute resultants
characterising a cell, i.e. polynomials from a single interval structure are used.
Doing so, we obtain

p7 := res(p6, p5) = p8 := res(p6, p4) = p9 := res(p4, p5) := x2 − 1.1775.

As these are equal, they would be stored once, but we keep them all separately for
reference purposes.

Other characterisation polynomials as discriminants and resultants characterising
a covering are computed as well, but x = −1.09 and x = 1.09 from p7 = p8 = p9 are
closest to s1. Hence, we deduce the interval (−1.09; 1.09).

We do not continue concluding other intervals. However, if one would do so, the whole
x-axis can be covered with UNSAT intervals. The initial call to get_unsat_cover
is not able to select a sample anymore and overall UNSAT is constituted.



Chapter 3

Closed Intervals in the CAlC
Method

Although the CAlC method as presented in Section 2.4 outperforms the naive CAD
method in many cases [ÁDEK21], the algorithm does not consider the strictness of its
input constraints. In get_unsat_intervals, strict constraints allow for additional
sections, i.e. the zeros of the defining polynomial, but that information is used only on
the constraint level. In any subsequent deduction step, the strictness of the ancestor
constraints is not taken into account.

In Section 3.2, we shortly introduce an existing approach of how to exploit strict
constraints in the CAD. Afterwards, Sections 3.4 and 3.5 propose two different ways
of how the strictness of input constraints might be used within the CAlC method.

3.1 Motivation
Using Cylindrical Algebraic Coverings in a conflict-driven framework as the CAlC
method, is an efficient advancement of CAD techniques compared to the standard
Cylindrical Algebraic Decomposition.

In theory, assigning a value to the current variable, i.e. choosing a sample from a
set R ⊆ R, is an arbitrary choice. Despite the incompleteness of the McCallum pro-
jection operator, every r ∈ R is sufficient to end up with the same satisfiability result,
but in practise, this choice is limited to the proper subset Ralg ⊊ R of real numbers
having an algebraic representation. It holds r ∈ Ralg if there exists a univariate poly-
nomial p with real roots ξ1, . . . , ξn and ξi = r for some 1 ≤ i ≤ n. This subset of real
numbers is sufficient to determine the satisfiability of polynomial constraints.

In practise, sampling a rational number r ∈ Q ⊊ Ralg can usually be done much
more efficient than sampling a non-rational r ∈ Ralg \ Q. Also, the isolation of real
roots is time-consuming if the current partial sample is not rational. That is because
the latter one can only be represented as the root of some polynomial, e.g. r might
be the ith real root of a univariate polynomial p.

Therefore, one aims at reducing the number of samples based on a non-rational
number as far as possible. For example, a heuristic choice could be to sample only
rationals until R is covered up to finitely many non-rational numbers. These are the
endpoints of open intervals which do not yield a full covering yet. However, note
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Figure 3.1.1: The intervals I1 to I4 nearly cover the entire real line. The only uncovered numbers
are ζ1 and ζ2. These could but need not to be non-rational numbers. One would like I1 to have
a closed upper bound or I2 to have a closed lower bound. Respectively, this holds for I3 and I4.
Note that the upper bound of I2 and the lower one of I3 are open, but no sampling is needed as the
endpoints are covered vice versa.

that not all of the open bounds have to be non-rationals. Nevertheless, one has to
sample these points although algebraic numbers involve higher computational effort.
A visualisation of a partial covering with two real numbers left is given in Figure 3.1.1.

As open interval bounds, which are not covered by some other interval, are the
only situation in which non-rational samples are indispensable, it would be helpful to
check these for satisfiability, more precisely for their extensibility towards a satisfying
sample, without needing to perform all computations. When proving SAT by sampling
an interval bound, this is not that costly because the computationally expensive
characterisation steps are not performed anyway. However, for a partial UNSAT
result, there are situations in which one can conclude an interval with closed bounds
instead of open ones. In these cases, the non-rational endpoints do not need to be
taken into account at all.

Intuitively, this is possible if an interval stems from strict constraints. Due to
the strictness of the constraints’ comparison operators, a zero of such a defining
polynomial is not a satisfying assignment. While this intuition works for top-level
intervals, a more elaborated view is necessary for lower levels.

In the following, we investigate two approaches, one mathematically proven way to
infer closed interval bounds and one conjecture that makes use of a different strategy.
The first one concludes closed bounds based on a property of those intervals that build
up the current covering and the second one is based on some property of polynomials
that are associated with the intervals of a covering.

3.2 Related Work
The idea of exploiting strict input constraints is not limited to the CAlC method. For
example, in the CAD method one can preselect the generated cells and distinguish
between those that need to be sampled and those that can be left out [Bro15].

As we did not introduce the complete CAD method, we give a brief intuition of
how to make use of strict constraints: Normally, the CAD method generates sign-
invariant full-dimensional cells which are sampled afterwards. All input constraints
are evaluated at these samples and SAT is returned, if one is satisfying all constraints.
However, all sections can be left out if the input constraints are all built up on strict
comparison operators. A sample on a zero of a defining polynomial unsatisfies the
corresponding strict constraint and, thus, the conjunction of input constraints.

A two-dimensional example is given in Figure 3.2.1. The coloured regions illustrate
cells concluded by the CAD method. All cells are sampled, but not all are needed.
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p2

p1

x
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Figure 3.2.1: Illustration of the polynomial zeros of two constraints c1 : p1 ∼1 0 and c2 : p2 ∼2 0.
The comparison operators ∼1 and ∼2 are strict. Hence, no satisfying solution can be found on the
zeros of p1 or p2. The crosshatched regions and orange areas indicate the cells computed by the
CAD method, sampled by the red points. There holds p1 = 0 or p2 = 0 within cells coloured in
orange, hence no evaluation of the constraints at the corresponding (circled) samples is needed.

3.3 Deducing Closed Interval Bounds
When exploiting the strictness of input constraints, there are at least two fundamen-
tally different approaches how to deducing and pushing down closed interval bounds.

While calculating a covering, two different data types occur, namely polynomials
and intervals. Polynomials are used to maintain the properties of a covering when
projecting down onto the next inspected level. Intervals are (local) results of the
CAlC method regarding a specific dimension. These are the germs of cells, i.e. sign-
invariant regions.

We present ideas on how to infer closed bounds both by means of intervals and
polynomials. However, before diving into the approaches, we extend the definition of
interval structures and cells used in the CAlC method. This facilitates the readability
in both approaches.

So far, we represented intervals (ℓ; u) or [b; b] by a structure I consisting of bounds
ℓ < u or b = ℓ = u, defining sets of polynomials L and U , a set Pi containing the pro-
jection polynomials with main variable xi, and P⊥ storing the remaining polynomials
that appeared within the projection, i.e. polynomials with main variables smaller
than xi. There was no need to maintain whether an endpoint is closed or open as it
could be reasoned from the context. To allow for other types of intervals, however, we
have to extend the interval representation used in the CAlC method. To distinguish
between these structures, we name the extension of interval structures differently.
Definition 3.3.1 (General Interval Structure). Let ℓ ∈ R ∪ {−∞}, u ∈ R ∪ {∞} be
endpoints, bℓ, bu ∈ B Boolean flags, and L, U, Pi ⊆ Q[x1, . . . , xi] \ Q[x1, . . . , xi−1] as
well as P⊥ ⊆ Q[x1, . . . , xi−1] sets of polynomials.
The general interval structure I with

I = (ℓ, u, bℓ, bu, L, U, Pi, P⊥) or I = (Iℓ, Iu, Ibℓ
, Ibu

, IL, IU , IPi
, IP⊥)

defines an interval based on the endpoints ℓ, u whereby
• the endpoints ℓ and u together with the sets L, U, Pi, and P⊥ are defined anal-

ogously as for the interval structure (ℓ, u, L, U, Pi, P⊥), and
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• the Boolean flags bℓ and bu indicate whether the bounds of the represented
interval are closed. The endpoint e ∈ {ℓ, u} is closed if and only if be is True.

Note that every interval structure I can be extended to a general interval structure
by assigning the bound flags bℓ and bu to True if and only if ℓ = u.

Based on a general interval structure, a cell is induced similar as for interval
structures. This time, however, statements about the satisfiability of the cell’s bounds
can be made. To do so, we first extend the notion of coverings onto sets.

Definition 3.3.2 (Specialisation of an Interval). Let s = (s1, . . . , si) be a partial
sample, s′ = (s1, . . . , si−1, s′

i) similar to s apart from the last component, and I =
(ℓ, u, bℓ, bu, L, U, Pi, P⊥) a general interval structure based on s. The specialisation I ′

of I over s′ results from I by evaluating the zeros of L and U at s′ instead of s, i.e.
all components of I and I ′ are the same except ℓ and u.

Note that the existence of the zeros belonging to L and U has to be taken into account
before calculating I ′, which we have to ensure in the later adaptions.

An illustration of an interval specialisation is given in Figure 3.4.1a. The same
interval structure is evaluated once over si and once over s′

i.

Definition 3.3.3 (Covering over a Set). Let n ∈ N, S ⊆ Rn, s ∈ S be a partial
sample, and I := {I1, . . . , Ik} a set of general interval structures, such that I1, . . . , Ik

form a covering over s. If for all s′ ∈ S the specialisations of I1, . . . , Ik provide a
covering over s′, then I forms a covering over S.

Finally, we introduce two functions used to precisely state when a constraint is strict
and when an interval bound is finite.

Definition 3.3.4. Let R∞ denote R ∪ {−∞, ∞} and let a ∈ R∞. The function
finite : R∞ → B determines whether a is a real number, meaning

finite(a) := True ⇔ a ∈ R.

Definition 3.3.5. Let c : p ∼ 0 be a constraint based on a polynomial p compared
to zero by an operator ∼ ∈ {<, ≤, =, ̸=, ≥, >}. The strictness of ∼ is determined by
the function strict : {<, ≤, =, ̸=, ≥, >} → B with

strict(∼) = True ⇔ ∼ ∈ {<, ̸=, >}.

3.4 Closed Bounds Based on Intervals
In this section, we deal with the first approach of how to deduce closed interval
bounds. It makes use of the intervals forming a covering over some partial sample
s = (s1, . . . , si). If all of these intervals rely on strict ancestor constraints only, the
inferred interval around si will be closed.

In the following, we start by giving an intuitive argument on how the approach
works, then dive into formalism and the theoretical background before updating the
algorithmic procedures from Section 2.4.

The most comprehensible way is, to inspect a covering obtained directly from con-
straints, i.e. input constraints whose defining polynomials become univariate after
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Figure 3.4.1: (a) A cell bounded by the green zero. The interval I based on si is specialised
to I′ over some s′

i. (b) Three polynomials defining the interval bounds of a covering over si. The
generalisation around si yields the interval I, the view on S based on the current partial sample.
The filled regions belong to the cells S1, . . . , Sk corresponding to the intervals I1, . . . , Ik forming a
covering over si. The intervals are highlighted above si. The sequence (ν, β) is illustrated by the
purple points converging to (α, β). The convergence point is laying in closure(S1) and closure(S2).
In this example it suffices to choose q = 1, i.e. the whole sequence is laying within S1 as well as S2.

substitution of the current partial sample s = (s1, . . . , si). When generalising around
si, an UNSAT interval I for dimension i is inferred. For all s′

i ∈ I there holds that
the specialisations of some intervals I1, . . . , Ik which form a covering over si, still
cover the real line over s′

i. Thus, the degree of extension around si is limited by the
polynomial zeros defining the intervals I1, . . . , Ik: If they disperse too far away from
each other, the covering of the real line breaks up. That way, the polynomial zeros
defining the interval bounds of I1, . . . , Ik are responsible for how far an extension is
possible. Note that the zeros obtained from Pi and P⊥ of the covering intervals have a
co-responsibility when defining I, but we omit these for now as they are trivial when
inferring a covering only based on constraints.

In the previous section we noted that a (general) interval structure induces a cell.
Moreover, given an interval Ij , the cells of all specialisations of Ij are equal because
the defining polynomials do not change.

In the original CAlC method, it holds that for a sector I the corresponding cell
is UNSAT for the conjunction of its ancestor constraints. Remember that such a
cell is open-bounded, i.e. it is an open set. In case I is a section, the related cell
consists only of the zeros of its defining polynomials. Again, the cell is UNSAT for
the conjunction of parent constraints.

Now to the case where all intervals I1, . . . , Ik stem from strict constraints. In
that particular case, the cells induced by I1, . . . , Ik can be extended to contain their
bounds, i.e. the interval perspectives on these cells have (at least) one closed end-
point. If I is a sector and in the next iteration one chooses si to be a finite endpoint α
of I, then UNSAT over α can be constituted without needing to infer a new covering
first. That is because I1, . . . , Ik already form a valid covering over α: Since I has been
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extend up to α, the cells over I mainly cover the real line over α. The only problem
is that the cell bounds intersect or vanish over α. But as the bounds are part of the
corresponding cells, the intersections of polynomial zeros above α are still covered and
the properties of an UNSAT covering are maintained. That way, the related endpoint
of I can be closed.

The above intuition relies on the fact that all intervals of the covering stem directly
from input constraints. However, this does not apply to the majority of computed
coverings. Having deduced UNSAT intervals from constraints, we deduce some inter-
val I for the next lower level. After repetition of that procedure, a covering of the
second-highest dimension might be concluded and an interval for the third-highest
level is inferred. This time, its relationship to the strictness of input constraints is
not obvious anymore. Thus, we formalise the approach to make inductive statements.

Similar to the previous intuition for a covering on the constraint level, the inference
of closed interval bounds can be reduced to statements about the underlying cells.
If we extend an open cell onto its bounds, we obtain the closure of the original cell.
Note that this one is a cell as well.

Definition 3.4.1 (Closure of a Cell). Let m ∈ N and S be a cell in Rm. The set
closure(S) is the smallest closed set that contains S, i.e.

closure(S) := {s | s ∈ Rm and Bε(s) ∩ S ̸= ∅ for all ε > 0},

whereby Bε(s) is an open ball around s of radius ε. S is called closed if S = closure(S).

Instead of arguing based on intervals, we use cells in the following theorem.

Theorem 3.4.1 (As in [Bro22]). Let m > 0, k ≥ 0, S ⊆ Rm−1 the cell to be con-
structed, and let F be a formula. Furthermore, let I1, ..., Ik be general interval struc-
tures with the corresponding cells S1, . . . , Sk forming a covering over S such that for
each 1 ≤ j ≤ k, closure(Sj) is UNSAT for F . Then closure(S) is UNSAT for F , too.

Proof (As in [Bro22]). Let S ⊆ Rm−1 be a set over which I1, . . . , Ik form a covering
and α ∈ closure(S) \ S be a sample on the bounds of S. Next, let n be the index
of the highest variable according to the variable ordering and β, γ1, . . . , γn−m ∈ R be
arbitrary real numbers for extending α towards a full-dimensional sample. We have
to show that F is unsatisfied at the point P := (α1, . . . , αm−1, β, γ1, . . . , γn−m).

The unsatisfaction of F at P can be transferred to the cells induced by the general
intervals I1, . . . , Ik. Therefore, let (νj)j∈N be a sequence of partial samples in S
converging towards α. Then the extensions (νj1 , . . . , νjm−1 , β, γ1, . . . , γn−m) for j ∈ N
converge to P .

If we extend νj by β only, we obtain a point P ′
j ∈ Rm laying inside one of the cells

S1, . . . , Sk. Due to the convergence of (νj)j∈N, there exists a q ∈ N and a 1 ≤ r ≤ k,
such that for the subsequence (νj)j≥q the points P ′

j lie in the cell Sr of one interval
Ir. In particular, the convergence point (α, β) is in closure(Sr) and by assumption
closure(Sr) is UNSAT for F . Hence, every P ∈ closure(S) is violating F .

A visualisation of the proof idea is given in Figure 3.4.1b. Based on a partial sam-
ple si, a covering of three intervals has been obtained. The cells bounded by some
polynomials are coloured corresponding to their defining zeros. A base interval I is
deduced after characterisation steps. It is a local representation of the cell S, i.e.
fixed to specific values for x1, . . . , xi−1, namely the ones belonging to the sample’s
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components s1, . . . , si−1. Therefore, the chosen sample point α is equal to one of
I’s bounds. The convergence point (α, β) of the purple sequence (νj , β)j≥q is laying
within the closure of the green cell. That way, reasoning about the assignment si := α
can be postponed to the cells constructed before.

The depicted situation aims at the advantage of the closure property: Since the
defining zeros of the green and the blue cell belong to their closures and these are
unsatisfying some formula F , a statement about the unsatisfiability based on (α, β)
can be made.

In general, it holds that if a cell can be closed, then it is unsatisfying for the conjunc-
tion of all input constraints, i.e. F could be chosen trivially. However, the converse
does not hold: It might be mandatory that a cell, which unsatisfies the conjunction
of input constraints, is not closed.

Example 3.4.1. We consider the satisfiable constraint set {x + y = 0, −x + y = 0}.
When choosing s = (s1 : x 7→ 1), from the two constraints we obtain an UNSAT cov-
ering for the y-dimension that projects down to the interval (0; ∞). Its corresponding
cell is bounded by the zero of resy(y + x, y − x) = x. If the cell, respectively the
interval, is not closed, the sample s = (s1 : x 7→ 0) on its left bound can be extended
towards s′ = (s1 : x 7→ 0, s2 : y 7→ 0). The latter one witnesses the satisfiability of the
constraint set. However, if the previous cell would be closed, the result of the CAlC
method would be UNSAT. That is because the only satisfying assignment s′ would
not be taken into account.

We take this for a reason to choose F such that it supports reasoning about closed cell
bounds. To that end, we make use of a set associated with every appearing interval
in the CAlC method. It is used to build up F inductively.

Definition 3.4.2 (Ancestor Constraint Set). Let I be an interval deduced by the
CAlC method. As every interval is deduced from a covering which itself consists of
intervals or from a constraint, a tree with I as the root is obtained.

The ancestor constraint set AI contains the input constraints used to deduce I,
i.e. those constraints responsible for the leaf nodes in the mentioned tree.

When deducing an interval I in the CAlC method, we can use AI to define F .

Corollary 3.4.1. Let k ≥ 0 and I be an interval deduced from a covering I1, . . . , Ik

(k > 0) or from a constraint (k = 0) within the CAlC method. If all constraints in
the ancestor constraint sets AIi

are strict for all 1 ≤ i ≤ k, then the expansion of I
towards its bounds is a valid UNSAT interval.

Proof by Structural Induction. We prove that there exists a formula F for I based on
AI such that the endpoints of I unsatisfy F .

IB In that case, I is inferred from a strict constraint c in get_unsat_intervals,
i.e. AI = {c}. Hence, no previous intervals need to be considered and so we
choose F := c. By the strictness of c, the closure of the corresponding cell S of I
is UNSAT for F . Thus, I can be expanded towards its endpoints as it is a local
view on S.

IS Let I1, . . . , Ik be the intervals used to non-redundantly cover the current dimension
and AI1 , . . . , AIk

their corresponding ancestor constraint sets. Furthermore, let
S1, . . . , Sk be the induced cells of I1, . . . , Ik.
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By the induction hypothesis, there exist formulae F1, . . . , Fk based on input con-
straints AI1 , . . . , AIk

such that closure(Sj) is UNSAT for Fj and all 1 ≤ j ≤ k.
The conjunction

F := F1 ∧ · · · ∧ Fk

is unsatisfied by the closures as well, as each one unsatisfies a subformula of F .
By use of Theorem 3.4.1, the closure of the deduced cell S is UNSAT for F , too.
Thus, the endpoints of the interval I, which is a local view on S, are allowed to
be closed. □

3.4.1 Algorithmic Adaptions
The above ideas are used to update the CAlC method. Regarding the proof of Corol-
lary 3.4.1, the existence of formulae F1, . . . , Fk is sufficient to argue that the deduced
interval can be closed. That is why the algorithmic procedures do not have to main-
tain a formula for each interval but a flag assuring that all constraints in the ancestor
sets are strict.

To that end, we once again modify the definition of general interval structures.

Definition 3.4.3 (General Interval Structure (Updated)). A general interval struc-
ture I with I = (ℓ, u, bℓ, bu, L, U, Pi, P⊥) is supplemented by a Boolean flag ∆ ∈ B
stating whether all ancestor constraints of I are strict, i.e.

∆ = True ⇔ all constraints in AI are strict.

Note that the flags bℓ and bu are no longer mandatory to determine closed bounds:
Considering ∆, whether the endpoints are finite, and whether they are equal would
suffice as well.

As the proof of Corollary 3.4.1 suggests, the inheritance of the flag ∆ happens in-
ductively. Thus, we first adapt get_unsat_intervals (Algorithm 2), afterwards
interval_from_characterisation (Algorithm 4) is adapted.

Currently, get_unsat_intervals yields sections and sectors, general interval
structures, however, allow for fewer but more extended intervals. That is because
sections can be merged with consecutive sectors stemming from the same constraint,
if both characterise unsatisfiable intervals based on the current partial sample.

The only sections not being able to be merged with neighbour intervals are those
resulting from strict constraints which have no unsatisfying neighbours. Typically,
these are constraints c of the form c : p ̸= 0. As the zero of p will not lead towards a
satisfying sample, but any value in an ε-region around the zero of p might do so, no
consecutive sectors exist. Other comparison operators can cause a similar behaviour,
e.g. the inequation −x2 < 0 is satisfied for all choices of x except x = 0.

Regarding the preliminary considerations, we obtain Algorithm 5. Differences to
Algorithm 2 are coloured in blue.

The method compute_regions creates general interval structures with L = U =
Pi = P⊥ = ∅ for intervals induced by a set of zeros. It closes up finite endpoints of
sectors if the corresponding constraint is strict. That way, sections are merged with
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Algorithm 5: get_unsat_intervals(s) (Updated)
Data: Global set of constraints C.
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1.
Output: A set I of general interval structures such that {s} × I unsatisfies at least one

constraint for all I ∈ I.
1 I := ∅
2 Ci := the subset of C with main variable xi

3 foreach c = p ∼ 0 ∈ Ci do
4 c′ := JcKs // Yields truth value or univariate constraint
5 if c′ = False then
6 I := (Iℓ = −∞, Iu = ∞, Ibℓ

= False, Ibu = False, I∆ = strict(∼),
IL = ∅, IU = ∅, IPi

= {p}, IP⊥ = ∅)
7 return I := {I}
8 if c′ = True then
9 continue

10 Z := real_roots(p, s) // Ordered list z1 < · · · < zk

11 Regions := compute_regions(Z, ∼) // (−∞; ∞) if Z = ∅
12 foreach J ∈ Regions // J has the form (ℓ; u), [ℓ; u), (ℓ; u] or [ℓ; u]
13 do
14 Pick r ∈ J
15 if Jc′Kr = False then
16 L := ∅ U := ∅
17 if ℓ ̸= −∞ then
18 L := {p}
19 if u ̸= ∞ then
20 U := {p}
21 I := (Iℓ = Jℓ, Iu = Ju, Ibℓ

= Jbℓ
, Ibu = Jbu , I∆ = strict(∼),

IL = L, IU = U, IPi
= {p}, IP⊥ =∅)

22 I := I ∪ {I} // After simplifications

23 return I

Algorithm 6: interval_from_characterisation(s, si, P, I) (Updated)
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1, an extension si, a polynomial

UNSAT characterisation P , and the set of general interval structures I forming the
covering over si.

Output: A general interval structure I around si so that the constraints are unsatisfiable on
{s} × I for the same reason.

1 P⊥ := {p ∈ P | p ∈ R[x1, . . . , xi−1]}
2 Pi := P \ P⊥
3 Z := {−∞} ∪ real_roots_with_check(Pi, s) ∪ {∞}
4 ℓ := max{z ∈ Z | z ≤ si}
5 u := min{z ∈ Z | z ≥ si}
6 L := {p ∈ Pi | p(s × ℓ) = 0}
7 U := {p ∈ Pi | p(s × u) = 0}
8 bℓ :=

(
finite(ℓ) ∧

∧
I′∈I I′

∆

)
∨ (ℓ == u)

9 bu :=
(

finite(u) ∧
∧

I′∈I I′
∆

)
∨ (ℓ == u)

10 ∆ :=
∧

I′∈I I′
∆

11 I := (Iℓ = ℓ, Iu = u, Ibℓ
= bℓ, Ibu = bu, I∆ = ∆, IL = L, IU = U, IPi

= Pi, IP⊥ = P⊥)
12 return I
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neighboured sectors whenever possible. We do not give an implementation of this
method as it is straightforward.

Calculating projection polynomials in construct_characterisation is in-
dependent of the interval bounds and, thus, no modification is necessary.

Next, the inductive step is performed by interval_from_characterisation.
Based on a covering I of the real line, the characterisation polynomials are calculated
and an interval I is deduced. The covering I over si is inspected and the conjunction
of flags I ′

∆ of the intervals I ′ ∈ I determines whether all constraints in the ancestor
set of I are strict.

Finally, get_unsat_cover is adjusted to fit the parameter list of Algorithm 6,
i.e. the set of intervals I is handed over to interval_from_characterisation
in Line 11. As the rest remains unchanged, we do not present the updated procedure.

3.4.2 Example
We head back to the running example introduced in Section 2.4.3. The constraint set

C := { ︸ ︷︷ ︸
p1

c1︷ ︸︸ ︷
z − y2 − x2 > 0, ︸ ︷︷ ︸

p2

c2︷ ︸︸ ︷
z2 + y2 + x2 − 3 < 0, ︸ ︷︷ ︸

p3

c3︷ ︸︸ ︷
z2 + (y − 2.5)2 + x2 − 16 > 0 }

remains unchanged.
As before we discuss the first deduced interval for the y-dimension in detail. When

choosing the sample s = (s1 : x 7→ 0, s2 : y 7→ 0), all three constraints can be partially
evaluated. From that, we infer UNSAT intervals for the z-dimension.

Constraint Evaluated Unsatisfied Intervals
c1 z > 0 (−∞; 0]
c2 z2 < 3 (−∞; −1.73], [1.73; ∞)
c3 z2 > 9.75 [−3.12; 3.12].

Note that sections and sectors are merged by compute_regions. This time, we
exemplary give the general interval structure obtained from c3 explicitly which is
(ℓ = −3.12, u = 3.12, bℓ = True, bu = True, ∆ = True, L = {p3}, U = {p3}, P3 =
{p3}, P⊥ = ∅). All four interval structures have the flag ∆ = True as the input
constraints are all strict.

A covering is provided by c2 and c3 and a characterisation of the conflict is com-
puted. The calculated polynomials p4, p5, and p6 are as before and yield the zeros

Z = {−∞, −1.73︸ ︷︷ ︸
p4

, −1.5︸︷︷︸
p5

, −1.35︸ ︷︷ ︸
p6

, 1.73︸︷︷︸
p4

, 6.5︸︷︷︸
p5

, ∞}.

The closest ones still are −1.35 and 1.73. We deduce the interval I1 := [−1.35; 1.73]
because the tree of coverings above I1 consists of three leaf intervals (two from c2
and one from c3) all with ∆ = True. The ancestor set of I1 is AI1 = {c2, c3}. The
conjunction of the three interval flags ∆ is True and we obtain I1 = (ℓ = −1.35, u =
1.73, bℓ =True, bu =True, ∆ =True, L = {p6}, U = {p4}, P2 = {p4, p5, p6}, P⊥ = ∅).
Compared to Figure 2.4.4a, the bounds of the induced cell defined by the zeros of p4
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Figure 3.4.2: The intervals I1 to I4 cover the real line for the y-dimension. All finite interval
bounds are closed as they stem from True flagged intervals only.

and p6 are now part of that UNSAT cell. The possibility of reassigning s2 is reduced
by the values −1.35 and 1.73.

If one continues covering the y-axis, a set consisting of four instead of six general
interval structures is deduced, all with ∆ = True. Since all bounds are closed, no
point intervals occur as depicted in Figure 3.4.2.

Based on these four interval structures, characterisation steps are performed yield-
ing the same polynomials as the original CAlC method does. In particular, the two
intervals I5 and I6 from Figure 2.4.4b do not provide any missing insides.

That way, the first interval covering a part of the x-axis is [−1.09; 1.09]. The
conjunction of the corresponding flags ∆1 ∧∆2 ∧∆3 ∧∆4 is True and both endpoints
are finite. Therefore, bℓ = True and bu = True.

Note that all three constraints have to use strict comparison operators as otherwise
one of the intervals I1, . . . , I4 would have a False flag. Thus, the conjunction of
∆1, . . . , ∆4 would be False as well.

3.5 Closed Bounds Based on Polynomials
Unlike the approach presented in Section 3.4, we introduce another possibility of
deducing interval bounds, this time based on polynomials. The method above con-
cludes the unsatisfiability of a closed interval bound by arguing on the unsatisfiability
of ancestor constraints. That way, the argumentation is based on a property of the
intervals forming the current covering.

The alternative approach presented in this section is based on a conjecture instead
of a sophisticated mathematical argumentation. A significant difference to the previ-
ous approach is that the closure is based on polynomials rather than intervals when
it comes to the inference of closed bounds. To that end, the following section focuses
on the intuition level instead of a seamless proof.

Definition 3.5.1 (Flagged Polynomial Pair). Let p ∈ Q[x1, . . . , xn] be a polynomial
and ω ∈ B a Boolean truth value. The pair (p, ω) is called a flagged polynomial pair.
Sometimes, we call these pairs polynomials themselves, in particular when speaking
about projection steps. In that case, we refer to ω as the flag of p.

As in the method based on intervals, the strictness of input constraints is the basis
for inferring closed bounds. This time, the definition of a general interval structure is
reused for clarity only. By using flagged polynomial pairs, one can deduce the type
of bounds based on the polynomial flags as well. Note that we use Definition 3.3.1
for general interval structures, not the updated version.
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The setup, however, is not only adapted to deal with general interval structures but
also to deal with flagged polynomial pairs. Thus, every polynomial p appearing in
the computation of a CAlC, either from input constraints or from a characterisation,
is replaced by a flagged polynomial pair (p, ω). The flag indicates whether an interval
bound based on this polynomial can be closed (ω = True) or has to remain open
(ω = False). If all polynomials defining the same interval bound are flagged True,
the endpoint is inclusive, i.e. the bound is closed.

If p results from an input constraint p ∼ 0, it is flagged based on the comparison
operator ∼ ∈ {<, ≤, =, ̸=, ≥, >}, so ω := strict(∼). However, if p is generated in the
original algorithm, it is replaced by the pair (p, ω), whereby the flag ω is defined as a
Boolean combination of the flags from p’s polynomial parents.

As introduced in Section 2.3, four types of polynomials are calculated in the charac-
terisation steps:

• Discriminants,

• Coefficients,

• Resultants for a covering, and

• Resultants for a cell.

We give a rule-based deduction system for how the flag of newly generated polynomials
is set. As mentioned before, we do not propose that this system is sound. Moreover,
we mainly focus on the intuition for resultants but give rules for discriminants and
coefficients as well.

If (p, ω) is the discriminant of some polynomial (q, ϑ), we conjecture that the flag
can be inherited directly.

Rule 3.5.1 (Discriminant). Let (q, ϑ) and (p, ω) be flagged polynomial pairs and
p = disc(q). The flag ω of p is straightly inherited from the parent polynomial q, i.e.
there holds ω := ϑ.

Determining the flag of required coefficients of a polynomial q is more involved. Head-
ing back to Section 2.4, we need coefficients to detect asymptotic behaviour which
can restrict the size of the generalisation around a partial sample point. For now, we
stick to False flags of these coefficients regardless of the parent polynomial’s flag.

Rule 3.5.2 (Coefficient). Let (q, ϑ) and (p, ω) be flagged polynomial pairs such that
p ∈ required_coefficients(q) is a coefficient that evaluates to zero after sub-
stituting the current sample, i.e. it needs to be considered in the CAlC projections.
The flag ω of p is set to ω := False.

Finally, the mentioned two kinds of resultants of pairs (q, ϑ) and (r, λ) are computed.
For resultants within a cell, two different variants are presented below. Independent
from that, the flag of resultants characterising a covering is assigned using the same
rule for both variants. Thus, we explain the latter one first.

Rule 3.5.3 (Resultant for a Covering). Let (q, ϑ), (r, λ), and (p, ω) be flagged poly-
nomial pairs and let Ij and Ij+1 be consecutive intervals of a covering whereby (q, ϑ)
is defining for the upper bound of Ij and (r, λ) for the lower bound of Ij+1. If
p := res(q, r), the flag ω is disjunctively inherited, i.e. ω := ϑ ∨ λ.
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Figure 3.5.1: Visualisations of resultants characterising a covering. A solid line indicates the
zero of a True flagged polynomial, a dashed line belongs to a False one. (a) A covering showing
that it suffices for a common zero if it is contained in one of the intervals, i.e. one bound is inclusive.
(b) Illustration for why one has to consider all common zeros over the deduced interval bound.

The intuition behind Rule 3.5.3 is, that it suffices for the common zero of q and r if
it is contained in one of the cells bounded by either q or r. As it cannot be an inner
point of the cells, we require at least one parent to have a closed endpoint. That way,
the covering at the common zero still holds. In terms of flagged polynomial pairs that
is equivalent to a True flag of q or r. The situation where ϑ = False and λ = True
is depicted in Figure 3.5.1a. We assume that xi describes the dimension we want to
project onto and for xi+1 a covering has been calculated before. Hence, all variables
xk with k < i are substituted according to the current partial sample. Let si denote
the current assignment for the xi-dimension. If the zero of the resultant p = res(q, r)
is defining for the upper bound of the interval in the next lower dimension, it is
the closest zero to si. Therefore, the cells above (red area) and below (blue area)
the common zero allow for a covering above and below it. The crucial zero itself is
contained within the cell bounded by r, thus a full covering is achieved.

If multiple polynomials are defining for the bound u, the weakest flag is domi-
nating, i.e. the bound of the deduced interval is closed if and only if all responsible
polynomials are flagged True. Speaking locally, the common zero of q and r in
Figure 3.5.1a does not prevent the interval below from being closed but does not
guarantee it either. If another two polynomials t and v, both with False flags, have
a common zero below the one of q and r, the conjunctive value of the resultants’ flags
is False as well. The bound at u remains open, because the covering above u is no
longer seamless. An illustration is given in Figure 3.5.1b.

For resultants within a single cell, we present two different approaches.

First Variant

This variant uses two different rules for the two types of resultants.

Rule 3.5.4 (Resultant for a Cell). Let I = (ℓ, u, bℓ, bu, L, U, Pi+1, P⊥) denote a gen-
eral interval structure of a covering, let (q, ϑ), (r, λ), and (p, ω) be flagged polynomial
pairs whereby (q, ϑ) ∈ U [(q, ϑ) ∈ L] and (r, λ) ∈ Pi+1 with r(s × m) = 0 for some
m ≥ u [m ≤ ℓ]. If p = res(q, r), then ω := ¬ϑ ∨ λ.



40 CLOSED INTERVALS IN THE CALC METHOD

q

r

si u xi

xi+1

]

)

(a) ϑ = False, λ = False

q

r

si u xi

xi+1

)

]

(b) ϑ = True, λ = False

q

r

si u xi

xi+1

]

]

(c) ϑ = False, λ = True

q

r

si u xi

xi+1

]

]

(d) ϑ = True, λ = True

Figure 3.5.2: Types of bounds appearing in the computation of resultants within a cell. The
zero of q is defining the upper bound of a cell in dimension i + 1. The polynomial r appeared in
earlier characterisation steps. Four combinations of ϑ and λ are possible. A solid zero refers to a
True flag. The upper intervals are concluded using the first variant, the lower ones by applying the
second variant.

W.l.o.g., we discuss a cell with (q, ϑ) ∈ U and (r, λ) ∈ Pi+1. Let s = (s1, . . . , si)
denote the current partial sample. The resultant (p, ω) of q and r is flagged according
to Rule 3.5.4. The four combinations of ϑ and λ are illustrated in Figure 3.5.2.

The idea is, to ensure sign-invariance of a cell as mentioned in the original CAlC
method: Thus, deducing a closed interval bound in Figure 3.5.2a and Figure 3.5.2c is
no problem as the intersection of the zero of r and the cell bound defined by the zero
of q is not part of the cell as the bound itself is not (ϑ = False).

Other than that, in Figure 3.5.2d, the zero of q is part of the cell as ϑ = True.
Although this time the common zero occurs inside the cell, it is not disturbing as the
flag of r is True as well. Thus, the sign change of r to zero meets weak sign-invariance
(σ ≥ 0 or σ ≤ 0 instead of strict comparison) which is sufficient as λ = True.

Finally, Figure 3.5.2b constitutes the only problem: The cell bound, namely the
zero of q, has a True flag, but this time weak sign-invariance is not enough because
λ = False. Hence, a real sign change appears inside the cell and the deduced interval
has to remain open such that it is not projected downwards.
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Second Variant

This variant does not make a difference when flagging both resultants.

Rule 3.5.5 (Resultant for a Cell). Let I = (ℓ, u, bℓ, bu, L, U, Pi+1, P⊥) denote a gen-
eral interval structure of a covering, let (q, ϑ), (r, λ), and (p, ω) be flagged polynomial
pairs whereby (q, ϑ) ∈ U [(q, ϑ) ∈ L] and (r, λ) ∈ Pi+1 with r(s × m) = 0 for some
m ≥ u [m ≤ ℓ]. If p = res(q, r), then ω := ϑ ∨ λ.

W.l.o.g., we again discuss a cell with (q, ϑ) ∈ U and (r, λ) ∈ Pi+1. Let s = (s1, . . . , si)
be the partial sample and p := res(q, r) the desired resultant with its flag ω according
to Rule 3.5.5. Again, there are four possible combinations of the parent flags ϑ and
λ illustrated in Figure 3.5.2. If the common zero of q and r is closest to si, the upper
bound is based on it. Hence, it is defining for whether the endpoint of the deduced
interval might be closed.

In the original approach, an open bound is inferred when extending the interval
around si onto some interval (ℓ; u). Thus, the common zero defining u is not part
of the covering above the interval. However, if the endpoint should be closed, the
common zero must not compromise the cells above it. Although the sign of r within
the cell bounded by q changes at the common zero, this does not need to have an
impact on the unsatisfiability.

If q has a True flag as in Figure 3.5.2b and Figure 3.5.2d, the sign change of r at
the common zero does not affect the truth of the UNSAT cell as its bound is already
part of it. Thus, the intersection takes place inside the cell and the flag of p can be
specified as ω := True.

Now to the situation where q has the flag ϑ = False and r is flagged λ = True,
depicted in Figure 3.5.2c. As r is not defining for a cell, its semantics allow for fewer
conclusions compared to the situation in Figure 3.5.1a. However, from the True flag
one can infer that the common zero itself can be excluded from the search space. That
is because the True flag of r ensures UNSAT for some input constraint on the zero of
r. The reason is that at least one ancestor constraint causing the resultant r makes
use of a strict comparison operator. Otherwise, r would be flagged λ = False. That
way, r is able to cause ω := True.

In case both q and r have a False flag as in Figure 3.5.2a, meaning ϑ = False
and λ = False, none of the zeros guarantees the truth-invariance at the intersection:
Neither the zero is part of the UNSAT cell, nor ensures r the unsatisfiability by its
flag. Therefore, the flag ω of p is set to ω := False and the derived interval must
remain open.

Contrary to the first variant, the second one relays on the unsatisfiability at the
common zero, i.e. truth-invariance of the conjunction of input constraints, and cuts
down the interval accordingly. The first variant, however, deals with the original idea
of sign-invariance. This affects that the interval bounds differ. Regardless of which
variant might be used, both are unproven conjectures.

3.5.1 Algorithmic Adaptions
We reuse the definition of general interval structures as of Definition 3.3.1. Note that
this choice is for convenience only. Considering the conjunction of flags belonging
to polynomials in L and U that correspond to finite bounds, one can infer the same
information.
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As before, the inductive base of all computation steps is given by UNSAT inter-
vals stemming from constraints. Thus, we update get_unsat_intervals first.
Contrary to the first approach, no flag ∆ is needed to indicate whether all ancestor
intervals are based on strict constraints, but instead, flagged polynomial pairs are
used. Modifications of the algorithm are highlighted in blue.

Algorithm 7: get_unsat_intervals(s) (Updated)
Data: Global set of constraints C.
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1.
Output: A set I of general interval structures such that {s} × I unsatisfies at least one

constraint for all I ∈ I.
1 I := ∅
2 Ci := the subset of C with main variable xi

3 foreach c = p ∼ 0 ∈ Ci do
4 c′ := JcKs // Yields truth value or univariate constraint
5 if c′ = False then
6 I := (Iℓ = −∞, Iu = ∞, Ibℓ

= False, Ibu = False, IL = ∅, IU = ∅,
IPi

= {(p, strict(∼))}, IP⊥ = ∅)
7 return I := {I}
8 if c′ = True then
9 continue

10 Z := real_roots(p, s) // Ordered list z1 < · · · < zk

11 Regions := compute_regions(Z, ∼) // (−∞; ∞) if Z = ∅
12 foreach J ∈ Regions // J has the form (ℓ; u), [ℓ; u), (ℓ; u] or [ℓ; u]
13 do
14 Pick r ∈ J
15 if Jc′Kr = False then
16 L := ∅ U := ∅
17 if ℓ ̸= −∞ then
18 L := {(p, strict(∼))}
19 if u ̸= ∞ then
20 U := {(p, strict(∼))}
21 I := (Iℓ = Jℓ, Iu = Ju, Ibℓ

= Jbℓ
, Ibu = Jbu , IL = L, IU = U,

IPi
= {(p, strict(∼))}, IP⊥ = ∅)

22 I := I ∪ {I} // After simplifications

23 return I

This time, we need to modify construct_characterisation too, because it
is responsible for correctly inheriting the flags of projection polynomials. As we
presented two different variants, we use an orange ♦ to highlight differences between
the two variants. For the first variant, the orange marking is replaced by the formula
¬ϑ ∨ λ, while for the second one it would be ϑ ∨ λ.

As mentioned in Section 3.5, we stick to False flags for all coefficients and,
therefore, assume that required_coefficients works accordingly.

The interval deduction takes place in interval_from_characterisation,
where the bound flags bℓ and bu are set with respect to the polynomials stored in
L and U . The deduction is conjunctive as pointed out in Figure 3.5.1b. This time,
however, there is no need for passing over the covering I since all necessary information
is self-contained within the polynomial flags.
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Algorithm 8: construct_characterisation(s, I) (Updated)
Input: (Partial) sample point s = (s1, . . . , si) ∈ Ri and an UNSAT covering I.
Output: A set R ⊆ Q[x1, . . . , xi]×B of flagged polynomial pairs characterising an

unsatisfiable region around s for the same reason.
1 I := compute_cover(I)
2 R := ∅
3 foreach I ∈ I do
4 Extract ℓ := Iℓ, u := Iu, L := IL, U := IU , Pi+1 := IPi+1 , P⊥ := IP⊥
5 R := R ∪ P⊥
6 R := R ∪ {(disc(p), ϑ) | (p, ϑ) ∈ Pi+1}
7 R := R ∪ {required_coefficients(p) | (p, ϑ) ∈ Pi+1}
8 R := R ∪ {(res(p, q),♦) | (p, ϑ) ∈ L, (q, λ) ∈ Pi+1, q(s × m) = 0 for some m ≤ ℓ}
9 R := R ∪ {(res(p, q),♦) | (p, ϑ) ∈ U, (q, λ) ∈ Pi+1, q(s × m) = 0 for some m ≥ u}

10 foreach j ∈ {1, . . . , |I| − 1} do
11 R := R ∪ {(res(p, q), ϑ ∨ λ) | (p, ϑ) ∈ Uj , (q, λ) ∈ Lj+1})
12 return R // After CAD simplifications

Algorithm 9: interval_from_characterisation(s, si, P ) (Updated)
Input: (Partial) sample point s = (s1, . . . , si−1) ∈ Ri−1, an extension si, and a flagged

polynomial UNSAT characterisation P .
Output: A general interval structure I around si so that the constraints are unsatisfiable on

{s} × I for the same reason.
1 P⊥ := {(p, ω) ∈ P | p ∈ Q[x1, . . . , xi−1]}
2 Pi := P \ P⊥
3 Z := {−∞} ∪ real_roots_with_check(Pi, s) ∪ {∞}
4 ℓ := max{z ∈ Z | z ≤ si}
5 u := min{z ∈ Z | z ≥ si}
6 L := {(p, ω) ∈ Pi | p(s × ℓ) = 0}
7 U := {(p, ω) ∈ Pi | p(s × u) = 0}

8 bℓ :=
(

finite(ℓ) ∧
∧

(p,ω)∈L
ω

)
∨ (ℓ == u)

9 bu :=
(

finite(u) ∧
∧

(p,ω)∈U
ω

)
∨ (ℓ == u)

10 I := (Iℓ = ℓ, Iu = u, Ibℓ
= bℓ, Ibu = bu, IL = L, IU = U, IPi

= Pi, IP⊥ = P⊥)
11 return I
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3.5.2 Example
To illustrate both variants and their differences, we head back to the running example
but modify it slightly: The constraints c1 and c3 are updated to compare via their
corresponding weak operator ‘≥’ instead of ‘>’, i.e.

C := { ︸ ︷︷ ︸
p1

c1︷ ︸︸ ︷
z − y2 − x2 ≥ 0, ︸ ︷︷ ︸

p2

c2︷ ︸︸ ︷
z2 + y2 + x2 − 3 < 0, ︸ ︷︷ ︸

p3

c3︷ ︸︸ ︷
z2 + (y − 2.5)2 + x2 − 16 ≥ 0 },

which still is unsatisfiable as the original constraint set.
Instead of dealing with polynomials, the corresponding flagged polynomial pairs

are used, which can be deduced from constraints by inspecting the comparison op-
erators: (p1, ω1 := False), (p2, ω2 := True), and (p3, ω3 := False). To meet
readability, we identify each flag ωi by the index of the polynomial pi it belongs to.
In fact, these have to be interpreted as the pair (pi, ωi) because the same polynomial
might appear several times with different flags. To distinguish pairs with the same
polynomial, each time a non-trivial polynomial is deduced, the index is incremented
causing some polynomials to appear multiple times with different names.

We recompute the first interval of a y-cover in detail and skip the others as done
before. The first valuable call to get_unsat_intervals takes place after choosing
s = (s1 : x 7→ 0, s2 : y 7→ 0). All three constraints become univariate and yield
UNSAT intervals.

Constraint Evaluated Unsatisfied Intervals
c1 z ≥ 0 (−∞; 0)
c2 z2 < 3 (−∞; −1.73], [1.73; ∞)
c3 z2 ≥ 9.75 (−3.12; 3.12).

Note that the sections resulting from c2 are merged with neighboured sectors. We once
give the general interval structure for (−∞; −1.73] which is (ℓ = −∞, u = −1.73, bℓ =
False, bu = True, L = ∅, U = {(p2,True)}, P3 = {(p2,True)}, P⊥ = ∅) and forego
the other ones on level z.

The UNSAT intervals obtained by c2 and c3 denoted as I cover the real line and,
thus, get_unsat_cover returns (UNSAT, I).

The conflict is handed over to construct_characterisation yielding

p4 := disc(p2) = y2 + x2 − 3 ω4 := ω2 = True,

p5 := disc(p3) = y2 − 5y + x2 − 9.75 ω5 := ω3 = False,

p6 := res(p2, p3) = y + 1.35 ω6 := ω2 ∨ ω3 ≡ True.

Thus, one derives the pairs (p4,True), (p5,False), and (p6,True) stored in the sets
of polynomials instead of p4, p5, p6. Finally, interval_from_characterisation
constructs a general interval structure. At first, the zeros of p4, p5, and p6 are calcu-
lated, which again are

Z = {−∞, −1.73︸ ︷︷ ︸
p4

, −1.5︸︷︷︸
p5

, −1.35︸ ︷︷ ︸
p6

, 1.73︸︷︷︸
p4

, 6.5︸︷︷︸
p5

, ∞}.
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Figure 3.5.3: The intervals I1 to I4 cover the real line for the y-dimension. All finite interval
bounds are closed as they stem from True flagged polynomials only.

Still, the closest zeros are −1.35 and 1.73. Every zero is obtained by a unique poly-
nomial, so the conjunctions of the responsible flags are bℓ = ω6 and bu = ω4. Both
endpoints are finite, so the first condition of Lines 8 and 9 are met.

The resulting interval I1 := [−1.35; 1.73] is stored together with bℓ = True,
bu = True, L = {(p6,True)}, U = {(p4,True)}, P2 = {(p4,True), (p5,False),
(p6,True)}, and P⊥ = ∅. Compared to Figure 2.4.4a, the induced cell now contains
its bounds. In the next step, one would reassign y, but due to the closed bounds of
I1 the possible assignments are reduced by −1.35 and 1.73.

If one continues covering the y-axis, a set consisting of four instead of six general
interval structures is deduced since no point intervals occur. The bounds of all such
intervals are closed, as depicted in Figure 3.5.3. Although not all constraints make
use of strict comparison operators, the disjunctive connectives compensate that.

Based on these four intervals, characterisation polynomials are calculated. We do
not discuss all of them but continue with the three resultants p7, p8, and p9 obtained in
the execution of the original CAlC method. Ignoring the flags, I1 consists of the same
polynomials as before. Hence, the characterisation polynomials remain unchanged,
but although the polynomials are equal, their flags need not to be. That is why we
keep all three resultants as individual polynomial pairs.

Moreover, the obtained polynomials p7, p8, and p9 are resultants within a single
cell, namely the one induced by I1. That is why the flags depend on the chosen
variant. We first discuss the rule with negation, i.e. Rule 3.5.4:

p7 := res(p6, p5) = x2 − 1.1775 ω7 := ¬ω6 ∨ ω5 ≡ False,

p8 := res(p6, p4) = x2 − 1.1775 ω8 := ¬ω6 ∨ ω4 ≡ True,

p9 := res(p4, p5) = x2 − 1.1775 ω9 := ¬ω4 ∨ ω5 ≡ False.

The zeros x = −1.09 and x = 1.09 of these three resultants are closest to s1, so for
the deduced interval I, there holds ℓ = −1.09, u = 1.09 and L = U = {(p7,False),
(p8,True), (p9,False)}. Because the conjunction ω7 ∧ω8 ∧ω9 ≡ False, the flags bℓ

and bu are False as well, so the interval endpoints remain open. Thus, the excluded
interval is I = (−1.09; 1.09) as in the original CAlC method’s example.

If we repeat this characterisation step for the second variant using the purely dis-
junctive Rule 3.5.5, we obtain different flags:

p7 := res(p6, p5) = x2 − 1.1775 ω7 := ω6 ∨ ω5 ≡ True,

p8 := res(p6, p4) = x2 − 1.1775 ω8 := ω6 ∨ ω4 ≡ True,

p9 := res(p4, p5) = x2 − 1.1775 ω9 := ω4 ∨ ω5 ≡ True.
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As the polynomial flags of the defining zeros are all True, this time the conjunction
ω7 ∧ ω8 ∧ ω9 is True, i.e. bℓ ≡ True and bu ≡ True. Hence, we deduce the interval
I = [−1.09; 1.09]. Compared to the interval approach, the ratio of strict constraints
in C is smaller but nevertheless sufficient to infer closed bounds.

Although the negation might seem obstructive in this example, it can be powerful:
If c1, c2, and c3 had been built up on weak inequations only, the first variant would
flag p7, p8, and p9 all True and a both sides closed interval I is inferred. The second
variant would flag these polynomials False and, thus, concludes a both sides open
interval.



Chapter 4

Benchmarks

In the previous chapter we introduced two different approaches for inferring closed
bounds when deducing UNSAT intervals in the CAlC method. We revisit the ap-
proaches once again but this time from a practical point of view.

4.1 Dataset and Environment
This comparison aims to determine the impact of the two approaches on the results
and on the strategy of the CAlC method. The basis for this comparison is the existing
implementation of the CAlC method in the Satisfiability Modulo Theories Real Algebra
Toolbox (SMT-RAT) [CKJ+15]. In the following, this original solver is called CAlC.
We refer to the two adaptations of SMT-RAT as CAlC-I for the approach based on
intervals and CAlC-P for the one based on the second variant of flagged polynomials.

We use the Quantifier-free Non-linear Real Arithmetic dataset QF_NRA from
SMT-LIB as of April 2022, consisting of 11552 instances from twelve different fami-
lies [BFT16]. The instances might not only be pure conjunctive constraint sets but
Boolean combinations of them, i.e. the CAlC method is used as a theory solver in
the context of SMT solving. For our experiments, we apply limits of 60 seconds and
4 GB of RAM per instance, each running on a CPU with 2.1 GHz frequency.

4.2 Experimental Results

4.2.1 Setup
The CAlC method in SMT-RAT is different from the pseudo algorithmic procedures
presented in the algorithms of this thesis. In particular, the characterisation process
differs. Instead of calculating characterisation polynomials independent from each
other and in a linear manner, a rule system is used, which is introduced in [NÁS+22].
That is the reason why we implement the second variant of the polynomial approach:
In that case, no difference between the flagging of resultants is made.

Moreover, transferring the above ideas to an implementation requires adjustments
and decisions on heuristics. We do not deepen these aspects but exemplary focus on
a heuristic for choosing the covering intervals.
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Solver SAT UNSAT UNKNOWN TIMEOUT Solved

CAlC 4553 0.38 s 4625 1.29 s 171 4.78 s 1783 9178 79.5%
CAlC-I 4609 0.43 s 4648 1.29 s 160 5.34 s 1726 9257 80.1%
CAlC-P 4612 0.53 s 4654 1.48 s 171 5.11 s 1711 9266 80.2%

Figure 4.2.1: Overview of the satisfiability results of the three solvers. UNKNOWN indicates
that the solver stopped due to the incompleteness of the McCallum projection operator projmc. The
column of solved instances states the sum of SAT and UNSAT results.
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Figure 4.2.2: Accumulative illustration of solved instances and their mean runtimes.

After inferring a covering of the real line, characterisation steps are performed
based on the polynomials stored in these intervals. However, not all intervals might
be used as mentioned in [ÁDEK21]. The reason is that the covering should be non-
redundant. The choice of an appropriate subset of intervals is likely to be not unique.

For the interval approach, a sophisticated choice could be to select many intervals
stemming only from strict constraints. If the whole non-redundant covering consists
of those intervals, for the deduced one the property holds as well.

Regarding the polynomial approach this choice is more involved. That is because
one can only guarantee for closed endpoints if all polynomials appearing in some
interval of the covering are flagged True. As this is unlikely, one has to go with less
flagged polynomials. At least for us, no sophisticated preselection of intervals, which
guarantees flagged polynomials for the closest zeros in the deduction, was obvious.

4.2.2 Overview
The overall performance of the three CAlC solvers is given in Figure 4.2.1. First of
all, we want to remark that none of the solvers returns a wrong satisfiability result.
The measures, however, differ between the three CAlC methods.

Both adaptations can increase the number of solved instances, i.e. SAT or UNSAT
results. CAlC-I solves 79 instances and CAlC-P 88 instances more than CAlC. Inde-
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Figure 4.2.3: Transition chart showing movements in the results of CAlC and CAlC-I on
instances with different results. The circle boundaries symbolise the different result types. Chords
between the boundaries indicate how the result has changed. A chord of colour x between x and y
indicates a transition from result x (CAlC) to result y (CAlC-I).

pendent of the approach, the share of SAT instances has increased more than the one
of UNSAT instances. On the other hand, the mean runtime is raising simultaneously.
Only for UNSAT instances, CAlC-I is slightly faster by 0.0034 s. We assume that
the higher runtimes are related to the workload caused by maintaining the flags for
interval bounds and the strictness of parent constraints. However, for the polynomial
approach the hardness of additionally solved instances is relevant, too: Based on the
instances that can be solved by both CAlC and CAlC-P, the runtime of CAlC-P is
0.909 s, i.e. 0.087 s higher than of CAlC, but 0.098 s lower than the average runtime
of CAlC-P on all solved instances which is 1.007 s. For CAlC-I, no such gap is notice-
able. Moreover, the new heuristics first check for the existence of intervals which are
more promising for deducing closed bounds before actually computing a non-redundant
covering. An accumulation of instances sorted by runtime is given in Figure 4.2.2.

4.2.3 Detailed Analysis of the Interval Approach
After giving an overview and a comparison of the approaches, in this section we focus
on the deviations of the interval approach from the original CAlC method.

It is worthwhile to inspect where the surplus of SAT and UNSAT results comes
from, depicted in Figure 4.2.3. To this end, we compare the instances with different
results of CAlC and CAlC-I. As one might expect, a majority of the chords flowing
to SAT and UNSAT results from instances that do not finish within 60 seconds. Note
that the extra work that is performed to preselect promising intervals causes some
former SAT or UNSAT instances to run into timeout.

Eleven instances turn from UNKNOWN to SAT or UNSAT and none the other
way around. The reason for this behaviour is that by inferring an interval with
closed bounds, sampling its endpoints (which have been nullifying in CAlC) becomes
obsolete. However, it cannot be assumed that this is a general behaviour of CAlC-I,
because all those newly solved instances come from the same dataset zankl.
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Solver # Overall Sample Components # Sample Components on Bounds

CAlC 165.281 109.745
CAlC-I 155.751 −5.77% 102.478 −6.62%
CAlC-P 147.964 −10.48% 96.267 −8.77%

Figure 4.2.4: Number of executions of sample_outside to (re)assign a sample component.
The number of such components laying on open interval bounds is a subset of the overall number of
sample components. The percentages refer to the original number of samples needed by CAlC.

4.2.4 Detailed Analysis of the Polynomial Approach
The polynomial approach behaves rather similar to the interval one regarding the
overall statistics measured beforehand. However, the number of UNKNOWN in-
stances does not alter between CAlC and CAlC-P. Instead, the proportion of former
timed out instances turning to SAT or UNSAT is larger with 62 and 39 instances.
On the downside, the proportion of former SAT or UNSAT instances that time out
is higher as well.

Intuitively, it might seem as if the polynomial approach can solve more instances
than the interval one due to its purely disjunctive behaviour, but the difference is
marginal. We have no clear explanation for why the polynomial approach can (only)
solve nine more instances but suspect that the following three factors play a role:

• As mentioned in Section 4.2.1, the heuristic for choosing the non-redundant
intervals is more involved and the optimality is not predictable: If one could
predict which polynomials will induce the closest zeros next to the current sam-
ple before calculating the characterisation, one could save large parts of the
characterisation step itself. Therefore, in the current implementation, intervals
are preferred in which the proportion of polynomials flagged as True is high.

• Coefficients are always flagged False. It could be that this choice is too rigor-
ous, but we did not discuss another flagging rule. Therefore, some bounds are
not closed, although it might be possible in theory.

• Finally, the runtime of instances solved by CAlC-P is on average higher than
the one of CAlC-I and CAlC. In particular, instances that can be solved in less
than ten seconds are by far slowest on CAlC-P. The number of closed intervals
per instance that can be deduced by CAlC-P but not CAlC, however, is on
average 454.9 and therefore larger than 357.2 of CAlC-I. Thus, we assume that
the polynomial based adaption lacks implementational efficiency rather than
applicability.

Neglecting the drawbacks, the use of disjunctive connectives seems to be the reason
why the polynomial approach can solve more instances than CAlC-I, namely 11%.
This correlates with the number of partial samples needed to evaluate an average
instance illustrated in Figure 4.2.4: The solver CAlC-P needs the fewest sample
components to infer a satisfiability result, measured by the number of times a sample
component is (re)assigned. That refers to both the total number of samples and those
on open interval bounds.



Chapter 5

Conclusion

In this thesis we have recalled the concept of the Cylindrical Algebraic Coverings
(CAlC) method and adapted it in two different ways in Chapter 3. We summarise
the main properties of both approaches as well as the experimental results of the cor-
responding implementations. Afterwards, we discuss some ideas and open questions
that could not be addressed in this thesis but are nevertheless of strong interest.

5.1 Summary
The idea of the CAlC method is, to check the satisfiability of a polynomial constraint
set over the reals. To do so, (partial) sample points are chosen and for these it
is checked whether a satisfying extension exists. This thesis mainly focuses on the
situation where non-extensibility of the current sample has been shown. Regarding
some variable ordering, the CAlC method deduces an interval around the value of the
highest assigned variable in the current partial sample. This interval can safely be left
out when searching for further extensions of the current lower-level assignments. The
intervals are open ended in case they do not only contain a single point. However,
different enhancements are conceivable.

The interval approach derives closed interval bounds from strict input constraints
in the literal sense. If all constraints that led to the currently deduced interval make
use of strict comparison operators, the zeros of the involved polynomials are surely
not suitable to be chosen for a SAT sample. Hence, the endpoints of the interval do
not need to be considered for further checks, i.e. the interval’s bounds are allowed to
be closed.

The polynomial approach abstracts from this straight inheritance relationship.
It is based on strict constraints as well but does not encode the information in an
interval but instead annotates polynomials with flags. This allows for a more refined
procedure since the number of polynomials per covering is usually greater than the
number of intervals, i.e. there might be more sources for closed interval bounds. In
particular, fewer requirements have to be met when deducing closed bounds as the
rules used to inherit polynomial flags are disjunctive.

In practise, both adaptions are able to increase the number of solved instances
because fewer samples need to be checked. The difference between the practical
impact of the two approaches is small: The polynomial approach does not outperform
the one based on intervals.
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5.2 Future Work
In this thesis, we introduced two approaches to infer closed interval bounds based
on the strictness of input constraints. However, even though we presented intuitive
arguments why we believe that the polynomial approach is correct, we could not yet
formally prove its correctness. Hence, the next step is to substantiate and formalise
this approach.

The two variants proposed for flagging the resultants characterising a cell in the
polynomial approach have different semantics, thus we need to prove their correctness
separately. A further interesting question is whether there are other rules for flagging
that can be used.

Moreover, coefficients in the polynomial-based approach are currently flagged in-
dependent of their parent polynomial. It can be assumed that there is a less restrictive
alternative that does not generally set the flags to False.

For the interval approach, we conjecture that it can be relaxed as well, i.e. the
conjunctive behaviour might be reduced to weaker conditions. To us, it makes sense
that it suffices if one of two adjacent cells is flagged True.

In addition, the implementation should be further improved. More fundamentally
and independent from the specific approach, it is important to consider how to over-
come the structural differences between the CAlC method introduced here and the
rule-based system used by SMT-RAT [NÁS+22, CKJ+15].

Next, the heuristics for selecting the intervals that cover the real line should be
optimised. Particularly concerning the polynomial approach, it can be assumed that
this could unfold as yet unused potential. Currently, there is a low advantage of using
disjunctive connectives. A new heuristic might also contribute to reducing the average
runtime per instance, because there is a considerable difference in runtime between
CAlC-I and CAlC-P, especially for easier instances.

Finally, the idea of how strict constraints are exploited in SMT solving might be
transferable to other techniques. For example, first tests with the single cell construc-
tion introduced by Nalbach et al. in [NÁS+22] do seem promising.
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