
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

PIECEWISE LINEAR UNDER-APPROXIMATION OF

CELL BOUNDARIES IN MCSAT

Paul Tristan Wagner

Communicated by
Prof. Dr. Erika Ábrahám

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Jasper Nalbach Aachen, 28.07.2023

Abstract

Satisfiability modulo theories (SMT) solving is the process of determining
the satisfiability of a logical formula in some first-order theory. A particularly
interesting and general first-order theory is called quantifier free non-linear real
arithmetic (QFNRA). SMT solving of formulae in this theory can be used during
the process of formal verification. In this thesis, we build upon a recent result
that showed how polynomial bounds can be under-approximated to improve the
performance of SMT solvers for quantifier free non-linear real arithmetic. In
particular, we will present how piecewise linear functions can be used to achieve
better under-approximations. We implemented two general variants of this ap-
proach into the open-source C++ toolbox for strategic and parallel SMT solving
(SMT-RAT) that offer many settings for fine-tuning. Furthermore, we evaluated
the implementation on the basis of SMT-LIB’s QF_NRA benchmark dataset.
Our evaluation revealed that our methods outperform the default approach,
which does not use approximations.

iv

v

Acknowledgements
I would like to thank Professor Erika Ábrahám for providing me with the opportunity
to write my bachelor thesis at the Theory of Hybrid Systems research group on this
very interesting but also challenging topic and for teaching me the necessary founda-
tions on satisfiability checking. Furthermore, I would like to thank Professor Jürgen
Giesl for being the second examiner for this thesis and for sparking my interest in
formal verification. I am thankful to Jasper Nalbach for being my advisor for this
thesis. I am very grateful for his endless patience and his ability to answer my every
question.

Special thanks are addressed to my family and to my girlfriend Zofia, who have
always supported me throughout my studies.

vi

Contents

1 Introduction 9
1.1 Research Question . 10
1.2 Thesis Outline . 10

2 Preliminaries 11
2.1 SMT Solving . 11
2.2 Quantifier Free Non-Linear Real Arithmetic 11
2.3 Model-Constructing Satisfiability Calculus 18
2.4 Levelwise Construction of a Single Cylindrical Algebraic Cell 19
2.5 Under-Approximating Cell Boundaries 23

3 Piecewise Linear Under-Approximation 27
3.1 Motivation . 27
3.2 Piecewise Linear Functions . 27
3.3 Computing Piecewise Linear Under-Approximations 28
3.4 Representation of Piecewise Linear Functions for MCSAT 32
3.5 Implementation . 37
3.6 Adapted McCallum Projection Operator 38

4 Experimental Results 41

5 Conclusion 49
5.1 Future Work . 49
5.2 Summary . 50

Bibliography 51

viii Contents

Chapter 1

Introduction

Software plays an increasingly relevant role in our day-to-day lives. Even if it is
sometimes not obvious, a large proportion of people depend on the correctness of
safety-critical software systems every day.

Some examples of such systems include autonomous or semi-autonomous vehicles,
railway signaling, medical devices, air traffic control, and industrial control systems.

Safety-critical software systems need to be designed, developed, and tested rigor-
ously in order to prevent severe consequences that could include loss of life, injury, or
damage to the environment.

Traditional testing of software systems works by examining the behavior of the
software on a set of example inputs. The problem with this is that even if the sys-
tem behaves correctly for the selected set of example inputs, this does not give any
guarantees that it behaves as intended for any possible input.

Formal verification is a rigorous and systematic process in which mathematical
methods are used to determine whether a software system adheres to its intended
behavior.

Formally verifying a software system can be divided into multiple steps. First, a
model for the software system is created that abstractly represents the properties of
the system one is interested in. Secondly, a specification is created that defines the
intended behavior of the software system at hand. The model and the specification
are then passed to a verification tool, which can rigorously deduce whether the model
adheres to the given specification or not. In the end, the verification tool has either
produced a formal proof showing the model always adheres to the given specification,
or it provides a counterexample in the form of an input for which the model can
behave in a way violating the specification.

Hybrid software systems are a class of systems that can behave in discrete as well
as continuous ways.

Satisfiability modulo theories (SMT) is an approach to formal verification that
has increasingly been used successfully in the past. In the SMT approach, both the
system model and the specification are encoded in the form of logical formulae in some
first-order theory. This makes the SMT approach particularly suitable for formally
verifying the correctness of hybrid systems. The logical operators in such a formula
are used to describe the system’s discrete behavior, while the literals in the considered
theory describe the system’s continuous behavior.

One especially interesting theory is the theory of quantifier free non-linear real

10 Introduction

arithmetic (QFNRA). It can be used to model hybrid systems exhibiting both linear
and non-linear behavior. While this makes QFNRA extremely general and attractive
for modeling hybrid software systems, it is also known in theoretical computer science
that QFNRA is decidable, meaning there are algorithms that can always compute
whether a given QFNRA formula is satisfiable or not.

In practice, however, it is the case that determining the satisfiability of QFNRA
formulae presents an incredibly challenging task. One of the most prominently used
algorithms for deciding the satisfiability of QFNRA in practice is the cylindrical alge-
braic decomposition (CAD) algorithm. Although it is known that the CAD algorithm
has a runtime that grows doubly exponential in the worst-case, there are ongoing
efforts to improve its runtime in practice using different heuristics.

1.1 Research Question
One particularly time-consuming task for most algorithms computing the satisfiabil-
ity of QFNRA formulae is the computation of so-called polynomial resultants, which
will be properly introduced in Chapter 2. A heuristic approach that aims to reduce
the total amount of time spent computing these polynomial resultants has been devel-
oped by Promies [Pro22]. The presented approach is based on the idea of introducing
new artificial polynomials which approximate the behavior of the original polynomi-
als, aiming to compute simpler resultants instead of fewer. Promies’ experimental
results showed that this approach can significantly improve the time needed to de-
termine the satisfiability of QFNRA formulae in many cases. And yet, it proved to
be challenging to find polynomials that, on the one hand, match the behavior of the
original polynomial more closely while also being of a form much simpler compared to
the original polynomial in order to reduce the computational effort. For this reason,
Promies proposed another idea that was deemed promising to investigate: In this
thesis, we therefore want to build upon the ideas Promies developed and investigate
the possibility of using piecewise defined linear functions to approximate the original
polynomials.

1.2 Thesis Outline
In Chapter 2 we will present the necessary foundations as well as the work that has
been done by Promies we are going to build upon. Chapter 3 will then cover the
use of piecewise linear functions, propose two specific approaches on how they can
be used for our purposes, and also show the ways in which we have implemented
them in the SMT-RAT solver. In Chapter 4 we are going to evaluate our ideas and
implementation using the SMT-LIB QF_NRA benchmarks and discuss our results.
Lastly, we will conclude our thesis with an outlook on further improvements to our
work and a summary in Chapter 5.

Chapter 2

Preliminaries

2.1 SMT Solving
Satisfiability modulo theories (SMT) is a variation of the well-known Boolean sat-
isfiability (SAT) problem and generalizes it by allowing to form more complicated
formulae containing literals from a broad selection of theories like real arithmetic,
integers, bit-vectors, etc.

The process of determining the satisfiability of such a formula regarding some
background theory is called SMT solving. The classical approach for SMT solving,
also called DPLL(T), consists of two phases. In the first phase, a SAT solver analyzes
the structure of the Boolean skeleton of the formula. If it determines that the Boolean
skeleton of the formula is satisfiable, it proposes a possible set of theory literals that
need to be satisfied. In the second phase, this set of theory literals is then checked
for consistency by a so-called theory solver, which either concludes that the set of
theory literals is indeed consistent, which means that the original formula is satisfi-
able, or returns an explanation for the inconsistency in the form of an unsatisfiable
subset of theory literals. These two phases alternate with each other until either the
satisfiability or the unsatisfiability is concluded.

The classical approach has the advantage that advances and breakthroughs in SAT
solving easily translate to improving SMT solvers.

2.2 Quantifier Free Non-Linear Real Arithmetic
In this thesis, we will deal with the theory of quantifier free non-linear real arith-
metic (QFNRA) and the process of deciding the satisfiability of a given QFNRA
formula. Quantifier free non-linear arithmetic encompasses real valued variables com-
bined with multiplication and addition, as well as the comparison predicates >, ≥,
=, ≤, <, ̸= and has been shown by Tarski in 1948 to be decidable even for quantified
formulae. Although the proof for this is constructive, the presented algorithm has a
non-elementary runtime complexity, meaning that it cannot be used in practice for
deciding the satisfiability of QFNRA formulae.

We will now continue by formally defining a couple of important concepts so that
it will be clear what exactly we are referring to later on.

Definition 2.2.1. (Multivariate Polynomials) as presented in [Pro22]. Let R be a

12 Preliminaries

ring (R,+, ·), x1, . . . , xn variables and m ∈ N. For all i ∈ {0, ...,m} and j ∈ {0, ..., n}
let ai ∈ R and ei,j ∈ N. Then the term

n∑
i=1

ai

n∏
j=1

x
ei,j
i

is called a polynomial over R in the variables x1, . . . , xn. The set of all such polyno-
mials is again a ring and denoted by R[x1, . . . , xn]. We always assume that the given
variables are ordered according to some total variable ordering ≺ with x1 ≺ ... ≺ xn.

Definition 2.2.2. (Polynomial Constraint). Let p ∈ Q[x1, . . . , xn] and ∼∈ {<,≤,=
,≥, >, ̸=}. We call p ∼ 0 a polynomial constraint.

Definition 2.2.3. (Formula). A quantifier free formula of non-linear real arithmetic
(QFNRA formula) is a Boolean combination of polynomial constraints using the op-
erators ∧,∨,¬. Every QFNRA formula φ has a logically equivalent formula φcnf in
conjunctive normal form (CNF), meaning that there are c, k1, . . . , kc ∈ N such that

φcnf =
∧

i∈{0,...,c}

 ∨
j∈{0,...,ki}

li,j

Where the li,j are polynomial constraints.

The disjunctions in the CNF are called clauses, and the li,j are also referred to as
literals.

Definition 2.2.4. (Semantics of QFNRA) as presented in [Pro22]. Let r ∈ Rn, p ∈
Q[x1, . . . , xn] be a polynomial and ∼∈ {<,≤,=,≥, >, ̸=}.

• We say r satisfies the constraint p ∼ 0, if p(r) ∼ 0 evaluates to true regarding
the standard semantics of R. This is also denoted as r |= (p ∼ 0).

• This notion of satisfaction is extended in the usual way. For formulae φ,ψ with
free variables x1, . . . , xn we have r |= φ ∧ ψ if r |= φ and r |= ψ, r |= φ ∨ ψ if
r |= φ or r |= ψ and finally r |= ¬φ if r ̸|= φ.

• A QFNRA formula φ(x1, . . . , xn) is satisfiable, if there exists a satisfying as-
signment r ∈ Rn with r |= φ, in this case we call r a model for φ. If there exists
no such model, we call φ unsatisfiable.

Example 2.2.1. The formula

φ := (x22 − x31 + x21 + 3x1 − 6 > 0) ∧ (x1x2 − 4 < 0)

is a QFNRA formula in conjunctive normal form. The assignment s = (−3, 1) ∈ R2

which assigns -3 to x1 and 1 to x2 satisfies φ. Therefore φ is satisfiable and we say
that s is a model for φ (s |= φ).

Generally, algorithms are unable to deal with arbitrary real numbers. For rea-
soning about QFNRA it turns out that it suffices to search for solutions in a proper
subset of the reals - the real algebraic numbers.

Definition 2.2.5. (Univariate Polynomials). Let R be a ring and p ∈ R[x1, . . . , xn].
We call p univariate in x ∈ {x1, ..., xn} if p ∈ R[x], that is, p contains no variables
other than x. Otherwise, p is called multivariate.

Quantifier Free Non-Linear Real Arithmetic 13

Definition 2.2.6. (Real Algebraic Number). A real algebraic number is a real number
that is the root of some univariate polynomial with rational coefficients.

Let r ∈ R. We say that r is algebraic if there exists p ∈ Q[x] \ {0} such that
p(r) = 0. The set of all real algebraic numbers (RANs) is denoted by R.

Real algebraic numbers are typically represented as tuples of a univariate polyno-
mial p ∈ Q[x] and an interval I ⊂ R with rational endpoints such that exactly one
root of p lies inside I. Note that there exist efficient methods that can isolate the real
roots of any univariate polynomial.

Example 2.2.2. The real number
√
3 is also an algebraic number, as it is the root

of the univariate polynomial x2 − 3. It can be represented as
(
x2 − 3, (1, 3)

)
. Note,

however, that many real numbers are not algebraic numbers, as they aren’t the root of
any polynomial. An example of this is π or Euler’s number e.

In 1975 further advancements in the field of computational real algebraic geom-
etry have been made by Collins [Col75] who introduced the notion of a cylindrical
algebraic decomposition (CAD) together with an algorithm for computing such a de-
composition. The CAD algorithm can be used to decompose the multidimensional
real space into a finite set of representative sample points with respect to a set of
polynomial constraints. Given this set of sample points, it is then possible to evaluate
the polynomial constraints for each sample point. The set of polynomial constraints
turns out to be satisfiable if and only if at least one of the sample points satisfies it.

For these reasons, the CAD algorithm can be used as a theory solver in the classical
DPLL(T) approach to SMT solving.

We will now explain the fundamental ideas that Collins’ algorithm for computing
a cylindrical algebraic decomposition relies on.

Definition 2.2.7. (Cell) as presented in [NAS+22]. A cell is a non-empty connected
subset of Ri for some i ∈ N.
We call a cell algebraic if it is a semi-algebraic set, meaning that it is the finite union
of sets defined by polynomial equalities and inequalities.

Definition 2.2.8. (Decomposition) as presented in [NAS+22]. A set D = {R1, ..., Rk}
of cells of Rn is called a decomposition of Rn if

•
⋃k

i=1Ri = Rn and

• Ri ∩Rj = ∅ for i ̸= j

We call a decomposition algebraic if its cells are algebraic.

Definition 2.2.9. (Cylindrical over a Decomposition) as presented in [NAS+22]. A
decomposition D of Rn is called cylindrical over a decomposition D′ of Rm with m < n
if all projections of cells R ∈ D onto Rm are again cells in D′.

Definition 2.2.10. (Cylindrical Algebraic Decomposition) as presented in [NAS+22].
A cylindrical algebraic decomposition (CAD) of Rn is an algebraic decomposition D
of Rn such that there exists a sequence (D1, ..., Dn) with Dn = D such that each Di

is cylindrical over Di−1 for i ∈ {2, ..., n}.
Definition 2.2.11. (Sign of a polynomial) [Pro22]. The sign of a polynomial p ∈
Q[x1, . . . , xn] at r ∈ Rn is defined as

sgn(p(r)) =

−1, if p(r) < 0,

0, if p(r) = 0,

1, if p(r) > 0.

14 Preliminaries

Definition 2.2.12. (Sign Invariance) [NAS+22]. A cell R is called P -sign invariant
for a set P ⊂ Q[x1, . . . , xn] if for all p ∈ P and r1, r2 ∈ R it holds that sgn(p(r1)) =
sgn(p(r2)).

Definition 2.2.13. (Cylindrical Algebraic Decomposition for a Set of Polynomials)
as presented in [Á14]. A CAD of Rn for a finite set of polynomials P is a CAD for
which all cells are P -sign invariant.

Definition 2.2.14. (Delineability) [Col75] as presented in [NAS+22].
Let i ∈ N, R ⊆ Ri be a cell, and p ∈ Q[x1, . . . , xi+1] \ {0}. The polynomial p is
called delineable on R if and only if there exist finitely many continuous functions
θ1, ..., θk : R→ R such that

• θ1 < ... < θk,

• the set of real roots of p(r, xi+1) is {θ1(r), ..., θk(r)} for all r ∈ R and

• there exists constants m1, ...,mk ∈ N>0 such that for all r ∈ R and all j ∈
{1, ..., k}, the multiplicity of the root θj(r) of p(r, xi+1) is mj.

We say that a finite set of polynomials P ⊂ Q[x1, . . . , xn] is delineable on a cell R
of Ri if the product of the polynomials is delineable on R.

An intuition for the notion of delineability for a finite set of polynomials P ⊂
Q[x1, . . . , xn] over a cell R is that the roots of P behave continuously over R, while
also their number and multiplicity and the number of common roots stay constant.

Definition 2.2.15. (CAD projection operator) [NAS+22]. A CAD projection opera-
tor proj is a function proj : 2Q[x1,...,xn] → 2Q[x1,...,xn−1] such that for any i ∈ {1, ..., n},
any cell R of Ri and any set of irreducible polynomials P ⊂ Q[x1, . . . , xn] each of level
i+ 1 it holds that

• proj(P) is a set of polynomials of level at most i and

• if proj(P) is sign-invariant on R then P is delineable on R.

The CAD projection operator is the main component needed in the CAD algo-
rithm. Although Collins originally presented a complete projection operator, meaning
that it will always succeed in computing a CAD for any finite set of polynomials, it was
relatively inefficient and has been subject to optimization and improvements since.
In this thesis, we will mainly focus on the projection operator presented by McCal-
lum [McC85]. It has the advantage of computing a much smaller set - even a strict
subset - of polynomials compared to Collins’ projection operator. This reduction in
the number of polynomials vastly improves the efficiency of the CAD algorithm, but
it comes at the cost of making the CAD algorithm incomplete, meaning that there
are cases for which the algorithm fails to compute a decomposition. Albeit that these
cases are statistically rare [BDE+16].

McCallum’s projection operator utilizes the concepts of polynomial coefficients,
discriminants and resultants, for which we will now provide a formal definition as
well as a geometric interpretation.

Definition 2.2.16. (Coefficients and Degree) as presented in [Pro22]. Let p ∈
Q[x1, . . . , xn]. We are able to interpret p as a univariate polynomial in xn with co-
efficients in Q[x1, . . . , xn−1]. Therefore let m ∈ N, c0, . . . , cm ∈ Q[x1, . . . , xn−1] such
that p =

∑m
i=0 cix

m
i

Quantifier Free Non-Linear Real Arithmetic 15

• We define the set coeffxn
(p) := {c0, . . . , cm} \ {0} ⊂ Q[x1, . . . , xn−1] of polyno-

mial coefficients of p with respect to xn.

• We define the degree of p with respect to xn as degxn
(p) = m.

Definition 2.2.17. (Resultants and Discriminants) as presented in [Pro22]. Let p
and q be two polynomials in Q[x1, . . . , xn].

• The resultant of p and q with respect to the variable xn is a polynomial denoted
as resxn(p, q) ∈ Q[x1, . . . , xn−1] such that for all s ∈ Rn−1 it holds that

resxn
(p, q)(s) = 0 ⇔ p(s, xn) and q(s, xn) have a common complex root

• The discriminant of p with respect to the variable xn is a polynomial denoted as
discxn(p) ∈ Q[x1, . . . , xn−1] such that for all s ∈ Rn−1 it holds that

discxn
(p) = 0 ⇔ p(s, xn) has a multiple complex root

Polynomial resultants are also commonly defined as the determinant of the so-
called Sylvester matrix. If the two polynomials are of degree m and degree n respec-
tively, the Sylvester matrix is a matrix in Q[x1, . . . , xn−1]

(m+n)×(m+n) containing the
coefficients of the two polynomials. In practice, there are more advanced methods for
computing the resultant of two polynomials other than computing the determinant
of the Sylvester matrix directly. One example of this is the subresultant algorithm,
which is able to avoid much of the complexity that is caused by more straightforward
implementations. Anyhow, it is still known that in the worst-case, the subresultant al-
gorithm must perform a number of multiplications and additions that grows quadrati-
cally in the degree of the polynomials [Duc00]. It is important to understand that the
resultant is typically of much higher degree compared to the original polynomials and
that its computation and the subsequent isolation of its real roots, which often follows
for our purposes, are the main things responsible for the complexity of the commonly
used algorithms for deciding the satisfiability of QFNRA and something we would like
to avoid whenever possible. Additionally, it is important to note that the methods for
computing polynomial resultants and discriminants that are used in practice can only
effectively work on square-free and pairwise co-prime polynomials. That is, a poly-
nomial p ∈ Q[x1, . . . , xn] \ {0} is square-free if it does not decompose into p = g2 ∗ h
with g ∈ Q[x1, . . . , xn] \ Q and h ∈ Q[x1, . . . , xn]. This means that a square-free
polynomial does not contain the square of another non-constant polynomial as a fac-
tor. Two polynomials p, q ∈ Q[x1, . . . , xn] are co-prime, if they do not compose into
p = g ∗ h, q = g ∗ f for g ∈ Q[x1, . . . , xn] \Q and h, f ∈ Q[x1, . . . , xn]. Therefore, two
polynomials are co-prime if they do not share any non-constant polynomial as a fac-
tor. For this reason, the presented algorithms expect sets of irreducible polynomials
as inputs and regularly perform factoring into irreducible polynomials to ensure that
the working set of polynomials stays irreducible. A polynomial p ∈ Q[x1, . . . , xn] is
called irreducible if it does not decompose into p = g ∗f with g, f ∈ Q[x1, . . . , xn]\Q.
An irreducible polynomial cannot be represented as the product of two non-constant
polynomials. Note that an irreducible polynomial is always square-free and that two
irreducible polynomials must either be equal or co-prime.

We will now briefly extend the definitions for coefficients, resultants, and discrim-
inants with a useful geometric interpretation for the two-dimensional case using the
two polynomials p = x22 − x31 + x21 +3x1 − 6, q = x1x2 − 4 ∈ Q[x1, x2]. Also note that

16 Preliminaries

in the following graphs, we plot the set of real roots for the given polynomials. These
sets are typically also called polynomial varieties.

0

0

q

x1

x2

(a) The set coeffx2(q) = {x1,−4}
whose root in x1 is exactly at the
points at which q has a discontinu-
ity.

0 2

0

p

q

x1

x2

(b) The resultant resx2(p, q) = −x5
1+

x4
1 + 3x3

1 − 6x2
1 + 16. Its root in x1

is exactly at the intersection of the
polynomial varieties of p and q

−2 0

0

p

x1

x2

(c) The discriminant discx2(p) =
4(x3

1 − x2
1 − 3x1 + 6) has its roots

exactly at the turning point of the
polynomial variety of p.

Figure 2.1: Geometric interpretation of the coefficients, resultants, and discriminants

Definition 2.2.18. (McCallum’s Projection Operator) [McC85] as presented
in [NAS+22]. McCallum’s projection operator is defined for each i ∈ {2, ..., n} and
each set of irreducible polynomials P ⊂ Q[x1, . . . , xi] \ {0} as

projmc(P) =
⋃
p∈P

level(p)=i

coeffxi
(p) ∪

⋃
p∈P

level(p)=i

{discxi
(p)} ∪

⋃
p,q∈P, p̸=q

level(p)=level(q)=i

{resxi
(p, q)} ∪

⋃
p∈P

level(p)<i

{p}

Quantifier Free Non-Linear Real Arithmetic 17

Given both the intuition for delineability and the components in McCallum’s pro-
jection operator, it is straightforward to see how it provides delineability: While the
coefficients of the polynomial are used to separate discontinuities, the discriminants
ensure that the roots of the polynomial have constant multiplicities, and the pairwise
resultants of the polynomials guarantee that the number of common roots between
the polynomials stays constant.

Definition 2.2.19. (Level) [Pro22]. Let F be a polynomial, constraint or clause.

level(F) := max ({i ∈ N | xi appears in F} ∪ {0})

Definition 2.2.20. (Real Roots) [Pro22]. Let p ∈ Q[x1, . . . , xn] and r ∈ Rn. We call
r a real root of p if p(r) = 0. The set of all real roots of p is denoted by realRoots(p).

Definition 2.2.21. (Indexed Root Expression) [Pro22]. Let i, j ∈ N, p ∈ Q[x1, . . . , xi]
with level(p) = i > 0. Then rootxi [p, j] : Ri−1 −→ R ∪ {undef} is defined by

rootxi [p, j](s) =

{
undef, if j > |realRoots(p(s, xi))| or p(s, xi) = 0, and otherwise
ξj , where realRoots(p(s, xi)) = {ξ1, ..., ξk} with ξ1 < ... < ξk.

We also call indexed root expressions of this form indexed root expressions of level
i. Algorithmically, we address the index j of an indexed root expression ir with
ir.index.

Definition 2.2.22. (Symbolic Interval) [NAS+22]. A symbolic interval I of level i
can have two forms

• I = (sector, l, u) where l is −∞ or an indexed root expression of level i and u is
∞ or an indexed root expression of level i.

• I = (section, b) where b is an indexed root expression of level i.

Definition 2.2.23. [NAS+22] (Single Cell Data Structure). A single cell data struc-
ture is a sequence R = (I1, ..., In) where each Ii is a symbolic interval of level i.

Now that we have introduced all the necessary prerequisites, we will present the
algorithm for computing a cylindrical algebraic decomposition.

18 Preliminaries

Algorithm 1: cad(P) [NAS+22]
Input: Finite set of polynomials P ⊂ Q[x1, . . . , xn] \ {0}
Output: Cylindrical algebraic decomposition for P
/* Step 1: Projection phase */

1 Pn := factors(P)
2 for i = n− 1, ..., 1 do
3 Pi := factors(proj(Pi))
4 Pi+1 := {p ∈ Pi+1 | level(p) = i+ 1}
/* Step 2: Lifting phase */

5 D0 := {()}
6 for i = 1, ..., n do
7 Di := ∅
8 foreach cell R = (I1, ..., Ii−1) ∈ Di−1 do
9 Ξ :=

⋃
p∈Pi

realRoots(p(s, xi))
10 sort elements of Ξ = {ξ1, ..., ξk} such that ξ1 < ... < ξk
11 foreach interval I ∈ {(−∞, ξ1), [ξ1, ξ1], (ξ1, ξ2), ..., (ξk,∞)} for k > 0

and I ∈ {(−∞,∞)} for k = 0 do
12 Define Ii as the symbolic interval that represents I
13 Di := Di ∪ {(I1, ..., Ii−1, Ii)}
14 return Dn

Despite the algorithm for computing a CAD for a set of polynomials being a big
improvement in solving non-linear real arithmetic, it still presents challenges.

The CAD algorithm exhibits a doubly exponential runtime complexity because, in
the worst-case the number of CAD cells is doubly exponential, which also manifests
in practical applications.

Therefore, there have been ongoing efforts to enhance the CAD algorithm by
building upon its underlying ideas and aiming to achieve a more efficient approach.

For the purpose of deciding the satisfiability of QFNRA, an entire CAD provides
more information than would be necessary to study the specific QFNRA formula
at hand. This is because having the entire CAD can be used to reason about the
satisfiability of any Boolean combination of the polynomial constraints present in the
formula.

2.3 Model-Constructing Satisfiability Calculus

The Model-Constructing Satisfiability Calculus (MCSAT) was originally introduced
as the prototype nlsat by Jovanović and de Moura in [JdM12] which is a decision
procedure specifically for solving quantifier free non-linear real arithmetic. Nlsat was
later generalized as the abstract decision procedure MCSAT in [JBdM13] for solving
first-order logic.

It provides a more general alternative to classical DPLL(T) approach by combining
the idea of incrementally constructing a model for the given QFNRA formula at hand
with conflict resolution.

For simplicity, we will refer to the MCSAT instantiation for nonlinear real arith-
metic simply as MCSAT in the remainder of this thesis.

In MCSAT, Boolean and theory searches are executed in parallel, and conflicts
are distinguished between Boolean and theory conflicts. While Boolean conflicts are

Levelwise Construction of a Single Cylindrical Algebraic Cell 19

addressed via Boolean resolution, theory conflicts are addressed using ideas from
CAD.

The MCSAT algorithm incrementally tries to construct a sample point that sat-
isfies all of the necessary constraints, which should hold according to the Boolean
search. If, at some point, it finds itself unable to extend the sample point further,
this is what we call a “theory conflict”. Then the algorithm will compute an explana-
tion in the form of a region containing the sample point on which the same constraints
are violated for the same reasons. These regions are constructed as cylindrical alge-
braic cells and used to discard them from the search space in which MCSAT tries to
construct sample points.

In this way, the MCSAT algorithm is also able to address some of the shortcomings
of the classical DPPL(T) approach for SMT solving, as it is no longer necessary to
compute an entire CAD.

Because the part of MCSAT where we generate explanations for theory conflicts
has been designed in a relatively flexible way, it is also possible to apply many attempts
at optimizing this process in various ways.

For a more in-depth overview of the MCSAT algorithm, we will refer to the expla-
nation in [Pro22] as well as the original papers introducing the idea [JdM12, dMJ13,
JBdM13].

In the next section, we will focus on computing explanations for the MCSAT
algorithm.

2.4 Levelwise Construction of a Single Cylindrical
Algebraic Cell

The task of single cell construction is: Given a finite set of polynomials
P ⊂ Q[x1, . . . , xn] and a sample point s ∈ Rn, construct a cell R ⊆ Rn such that
s ∈ R and R is P -sign invariant. We want the resulting cell to be algorithmically
computable and also to leverage the results of CAD theory. For these reasons, we
want to focus on the construction of cylindrical algebraic cells. Our goal is to make
the constructed cells as big as possible so that the MCSAT algorithm can exclude
larger regions of its search space.

We will now present an approach to the construction of a single sign-invariant
cylindrical algebraic cell that was recently proposed by Nalbach et al. [NAS+22]. It
was named the “levelwise” single cell construction because, in contrast to its prede-
cessors, it does not work by refining the cell polynomial by polynomial but rather by
working down in the variable ordering, constructing the intervals of higher levels first.

20 Preliminaries

Algorithm 2: levelwise_single_cell(P, s) [NAS+22]
Input: Finite set of polynomials P ⊂ Q[x1, . . . , xn] \ {0}, sample s ∈ Rn

Output: Single cell data structure R = (I1, ...Ii) of symbolic intervals such
that s ∈ R and R is P -sign invariant; or FAIL

1 Pn := {p ∈ factors(P) | level(p) = n}
2 P⊥ := {p ∈ factors(P) | level(p) < n}
3 for i = n, ..., 1 do

// For these cases, McCallum’s projection operator
fails.

4 if ∃p ∈ Pi : p(s[i−1], xi) = 0 then
5 return FAIL
6 Ξ :=

⋃
p∈Pi

realRoots(p(s[i−1], xi)) sort elements of Ξ = {ξ1, ..., ξk} such
that ξ1 < ... < ξk

7 find I ∈ {(−∞, ξ1), [ξ1, ξ1], (ξ1, ξ2), ..., (ξk,∞)} for k > 0 and
I ∈ {(−∞,∞)} for k = 0 such that si ∈ I

8 Define Ij as the symbolic interval that represents I
9 if i > 1 then

10 Pi−1 := {p ∈ factors(projmc(Pi)) ∪ P⊥ | level(p) = i− 1}
11 P⊥ := {p ∈ factors(projmc(Pi)) ∪ P⊥ | level(p) < i− 1}
12 return (I1, ..., In)

The algorithm for the levelwise single cell construction is a slight modification to
the CAD algorithm, where we only apply the so-called lifting phase over cells which
correspond to the sample s [NAS+22].

Levelwise Construction of a Single Cylindrical Algebraic Cell 21

Example 2.4.1. The following example depicts the single cell construction for our
running example.

0

0

p

q

s

x1

x2

(a) We start out by substituting the
sample point into all of the polyno-
mials up to the highest level. This
yields univariate polynomials in x2

whose roots we can isolate and or-
der.

0

0

p

q

s I2

x1

x2

(b) The two roots, which are directly
above and directly below our sample
point, define the symbolic interval I2.

−2 0 2

0

p

q

s

I1

x1

x2

(c) After executing one McCallum
projection, we are on the lowest
level and can now isolate and order
the roots of the projected univariate
polynomials. The two roots, which
are directly left and directly right of
our sample point, define the symbolic
interval I1.

0

0

p

q

s

x1

x2

(d) The computed cell R = (I1, I2).
Note how the correctness of the pro-
jection ensures that I2 is defined for
all of the points in I1.

Figure 2.2: Levelwise single cell construction

22 Preliminaries

For the task of single cell construction, the pairwise resultant computation in
McCallum’s projection provides more resultants than are necessary, as we only need
to ensure that no other root crosses into the computed cell. This observation enables
us to omit the computation of many of the resultants, which saves time and generally
results in bigger cells.

Example 2.4.2. We added an additional polynomial r to show how some resultants
in the projection can be ignored for single cell construction and how omitting them
can result in bigger cells.

0

0

p

q

r

s

x1

x2

(a) The full McCallum’s projection
also includes the resultant of q and
r, even though their intersection is ir-
relevant for the sign-invariance of the
resulting cell.

0

0

p

q

r

s

x1

x2

(b) We can omit computing the re-
sultant of q and r which results in a
bigger cell.

Figure 2.3: Cell size comparison between a full McCallum’s projection and when we
omit resultants

Of course, it is not the case that we can arbitrarily omit any resultants. We can
only do so in a way that still guarantees the sign-invariance of the resulting cell.
The idea of omitting resultants compared to the full McCallum’s projection has been
developed and formalized in [NAS+22] as an indexed root ordering. However, for our
purposes of under-approximating the cell boundaries in the single cell construction,
we are only going to use the so-called “biggest cell heuristic”. This heuristic only
includes the resultants between the polynomial that defines the upper bound and
all the polynomials that are above it at the sample point, as well as the resultants
between the polynomial that defines the lower bound and all the polynomials that
are below it at the sample point.

Under-Approximating Cell Boundaries 23

2.5 Under-Approximating Cell Boundaries

As we have already discussed, the computation of polynomial resultants is costly,
because, most of the time, it yields polynomials of high degree. This especially gets
worse if this process is iterated, as in the repeated projections in the CAD algorithm or
the single cell construction. It is known that during the projection phase, the degrees
of the polynomials grow doubly exponentially. This is the reason why Promies [Pro22]
developed an approach for introducing new artificial polynomials of low degree during
the single cell construction to simplify the computed resultants. This, however, comes
at the cost of under-approximating the cell, at least on the level at which the artificial
polynomial is introduced.

We will now present the basic ideas that Promies developed.

Example 2.5.1. For demonstrative reasons, we replace the polynomials p and q
from our running example with slightly perturbed versions of them. We define p̂ :=
26(x61x

6
2 + 1)p + 1 and q̂ := 26(x61x

6
2 + 1)q + 1. While these are completely different

polynomials, visually the difference between p and p̂ as well as q and q̂ is minuscule.
Furthermore, this perturbation did not affect the root structure around the sample
point s, meaning that the single cell construction would do exactly the same steps as
in the original example. Note that p̂ and q̂ are still irreducible as well as co-prime,
but that now degx2

(p̂) = 8 and degx2
(q̂) = 7.

In the levelwise single cell construction using the biggest cell heuristic, we would
now compute resx2(p, q). But since degx1

(resx2(p, q)) = 77 it could potentially be
beneficial if it is possible to avoid computing it in the first place. The idea that
Promies experimented with was to introduce new artificial polynomials of low degree,
therefore under-approximating the cell on the current level but also avoiding computing
complicated resultants.

Assume, for instance, that we artificially introduce the polynomial r := x2 + 2 to
our example. Now, according to the biggest cell heuristic, we need to compute the two
resultants resx2

(r, p̂) and resx2
(r, q̂) instead of one, but they are of much lower degree

degx1
(resx2

(r, p̂)) = 9 and degx1
(resx2

(r, q̂)) = 7.

24 Preliminaries

0

0

p̂

q̂
r

s

x1

x2

(a) We introduced the artificial poly-
nomial r := x2 + 2 to the perturbed
version of our running example.

0

0

p̂

q̂
r

s

x1

x2

(b) In this case, the resulting cell
from single cell construction is a
strict subset of the cell that would
be computed without the introduc-
tion of artificial polynomials. On the
other hand, it is much easier to com-
pute this new approximated cell.

Figure 2.4: Introduction of artificial polynomials of low degree to avoid the compu-
tation of complicated resultants

More specifically, Promies concentrated on the introduction of artificial polynomi-
als whose roots at the sample point lie at a rational point with simple representation.
This is the case because it was observed that simply choosing a rational very close to
the bound of the polynomial we are trying to approximate can lead to increasingly
complicated coefficients in our set of polynomials. We must therefore acknowledge
that there exists a trade-off between how well we can mirror the behavior of the
polynomial using our approximations and the complexity of the rational coefficients
used.

Promies coined the term “naïve” approximation for describing the introduction of
the presented type of polynomials, where we have h := xi − r with r ∈ Q. It was
noted further that if we continue to use this kind of approximation on each level for
approximating both the upper and lower bounds, the resulting cell is a box [Pro22].

Promies also addressed termination, stating that without further restrictions, it is
possible that MCSAT can do an arbitrary number of these approximations, therefore
leading to non-termination.

Example 2.5.2. Assume, for instance, that we start out with our usual running
example with the initial sample point s0 = (− 1

2 , 1). Now we want to approximate the
lower bound of the polynomial p and introduce the artificial polynomial h0 := x2 whose
root is always at x2 = 0, following the “naïve” approximation approach. This excludes
a large region containing s0 but does not prevent the MCSAT algorithm to choose the
point s1 = (− 1

2 ,−
1
2) as the next sample. We could now approximate the lower bound

of the polynomial p again by introducing the artificial polynomial h1 := x2 + 1. If we
do not restrict the process of approximating the cell boundaries in some way, there is
nothing that prevents MCSAT from continuing this process with ever more artificial
polynomials whose roots converge against the root of the approximated polynomial at

Under-Approximating Cell Boundaries 25

the sample point but never reach it, thus leading to non-termination. It is apparent
that the original levelwise single cell construction prevents this kind of problematic
behavior, as it excludes the entire available interval on that level from the get-go.

0

0

p

q

h0

h1
h2

s0

s1
s2
s3

..
.

x1

x2

Figure 2.5: Example of non-termination caused by repeated, unrestricted approxima-
tion of cell boundaries

For this reason, a number of criteria were introduced to ensure termination. The
most basic of these termination criteria simply limits the number of approximated
cells.

An apparent downside of approximating cells in the levelwise cell construction is
also depicted in the example for non-termination 2.5: If we regularly apply a cell
approximation, potentially we have to compute a significantly higher number of total
cells compared to the single cell construction without approximation. However, these
cells are potentially easier to construct.

Generally, we have to note that the approach of under-approximating cell bound-
aries in the presented fashion is heuristic in nature, regardless of the kind of artificial
polynomials that we use to approximate. There are no guarantees of any kind that the
introduced artificial polynomials will actually have a positive effect on the MCSAT
algorithm or if they will ultimately lead to complicated resultants being omitted.

It was hypothesized that further approximation approaches that embody the be-
havior of the approximated polynomial around the sample point more closely could
be beneficial to improve the amount of search space that the MCSAT algorithm can
consequently discard. Therefore, Promies further investigated other ways to intro-
duce artificial polynomials that take into account additional information about the
approximated polynomials.

An attempt was made to use the concept of the Taylor expansion to further in-
corporate the behavior of the polynomial at the sample point into the approximation.
Roughly speaking, the nth-order Taylor expansion of a function at a specific point
is another function whose value and first n derivatives match the original function
at that point. Promies concentrated on the use of the first- and second-order Taylor
expansions.

26 Preliminaries

In the executed experimental results of these three variants, the “naïve” box-like
approach as well as the first-order Taylor expansion performed significantly better
than the levelwise single cell construction without approximation, with the “naïve”
approach still beating the first-order Taylor expansion. Meanwhile, the second-order
Taylor expansion even performed slightly worse than the single cell construction with-
out approximation.

Promies concluded that the increased effort for calculating more accurate cell
approximations in the form of Taylor expansions does not pay off because, on the
one hand, additional derivatives need to be computed and, on the other hand, the
following resultants are still more complicated than for the “naïve” approach.

Another issue that can potentially affect the quality of the generated cells when
using the Taylor expansion is the limited amount of control that we have over the
resulting polynomial. This is because it is entirely determined by the original polyno-
mial and its partial derivatives at a single point. Therefore, it is pretty open whether
the resulting approximation is actually a good under-approximation and does not
immediately cross over the approximated polynomial, leading to small cells.

Promies suggested that one interesting approach that might be worth investigating
is to develop a technique for computing piecewise defined linear descriptions of cell
boundaries.

Chapter 3

Piecewise Linear
Under-Approximation

3.1 Motivation

Promies has shown that the approach of under-approximating the cell boundaries of
high-degree polynomials by low-degree ones can increase the efficiency of the levelwise
single cell construction, but has also presented the limitations and challenges that
come with this approach.

In this thesis, we want to investigate the possibility of using piecewise linear ap-
proximations of the cell boundaries instead of low-degree polynomials. While they
are more flexible in approximating the cell boundaries and provide more control, their
polynomial resultants are also easier to compute compared to the Taylor expansion
ones.

3.2 Piecewise Linear Functions

We will first define continuous piecewise linear functions in a rigorous way.

Definition 3.2.1. (Continuous Piecewise Linear Function). A continuous function
f : R −→ R is called a (continuous) piecewise (affine) linear function if there exists
n ∈ N, intervals Ω1, ...,Ωn ⊆ R and li = mix + bi ∈ Q[x] for i ∈ {1, ..., n} with
mi, bi ∈ Q such that

•
⋃

i∈{1,...,n} Ωi = R,

• for all i ∈ {1, ..., n− 1}, x ∈ Ωi, x′ ∈ Ωi+1 it holds that x ≤ x′,

• for all i,j ∈ {1, ..., n} with i < j it holds that |Ωi∩Ωj | = 1 if and only if j = i+1,

• by ri we denote the right endpoint of Ωi for i ∈ {1, ..., n− 1} and

• for all x ∈ R it holds that f(x) = li(x) where i = min{j ∈ N | x ∈ Ωj}.

28 Piecewise Linear Under-Approximation

In this definition, we basically expect n ordered intervals Ωi that cover the real
numbers such that neighboring intervals always have exactly one common boundary.
Furthermore, we expect n linear terms li such that they exactly define the given
function on their corresponding interval Ωi. We call a continuous piecewise linear
function consisting of n linear segments, n-segmented. Note that for i ∈ {1, ..., n−1},
the right endpoint ri of Ωi is also the left endpoint of Ωi+1. Technically, we are
not really dealing with linear functions here in the sense of linear algebra, as linear
functions must fix the origin, but rather with affine linear functions. For the remainder
of this thesis, we will simply ignore this difference for ease of language. We will also
usually drop the specifier “continuous” because, for reasons of delineability but also for
reasons of representability we will only deal with continuous piecewise linear functions
in this thesis.

Example 3.2.1.

f : R −→ R, x −→

1 if x < −1

−x if − 1 ≤ x < 1

−1 if x ≥ 1

is a continuous piecewise linear function, as it is continuous and the following exists:
Ω1 = (−∞,−1], Ω2 = [−1, 1], Ω3 = [1,∞) and l1 = 1, l2 = −x, l3 = −1, which fulfill
the definition. Here we have r1 = −1 and r2 = 1.

The graph of this piecewise linear function looks as follows:

0

−1
0
1

f

x

f(x)

Figure 3.1: Graph of the piecewise linear function f

3.3 Computing Piecewise Linear
Under-Approximations

The setup at this point is the following: During the levelwise single cell construction,
we want to introduce artificial piecewise linear functions that approximate the upper
or lower bound of the cell we are trying to construct. If we are currently constructing
the interval for level i in the single cell construction, the piecewise linear function will
be computed in terms of the variables xi and xi−1. Therefore, we must be at least on
level 2.

Computing Piecewise Linear Under-Approximations 29

This means that geometrically, our piecewise linear approximations are always
only trying to capture the behavior of the approximated polynomial bound according
to a two-dimensional cut that lies parallel to the coordinate axes of xi and xi−1.

In this context, we will call the associated variable xi−1 the primary variable and
xi the secondary variable. This is because the piecewise linear function will be defined
in terms of xi−1 and is going to be used to bound the values in the variable xi.

We will now present the process of piecewise linearly approximating a polynomial
p ∈ Q[x1, . . . , xn] around a sample point s ∈ Rn.

The main idea is to generate a number of support points that resemble the behavior
of the root of the polynomial we are trying to approximate. We will do this by first
choosing a number of rational coordinates in the primary variable at which we want
to probe the root of the polynomial. To make sure that at the coordinates at which we
want to probe the polynomial, the root of the polynomial that we are interested in is
available, we initially compute the so-called delineable interval given the polynomial
around our sample point.

For a single polynomial, we obtain the delineable interval by computing, isolating,
and ordering the roots of its discriminant and its coefficients. No resultant compu-
tation is necessary at this point because we don’t take any other polynomials into
account for probing p.

Additionally, it is worth mentioning that the calculation of the delineable inter-
val generally does not incur any additional computational cost at this point, as its
components are cached and will be used during McCallum’s projection anyway.

Now that this delineable interval is computed, we can choose a number of rational
coordinates inside the delineable interval, near the primary variable of the sample
point s.

The exact way in which we choose these coordinates is not fixed at this point, and
can also be subject to various different heuristics.

Then we isolate the roots of the polynomial at the chosen coordinate and select
the specific root we are interested in. For every of the chosen coordinates, this results
in a real algebraic number representing the root of the polynomial at that coordinate.

As we want to compute a piecewise linear function based on rational coefficients,
we need to rationally approximate the obtained real algebraic number from the side
from which we intend to approximate. This whole process finally yields a number of
rational support points from which we can span the piecewise linear function.

The pseudocode for this algorithm is given below. For simplicity, we focus on the
case where we approximate the upper bound of the cell.

30 Piecewise Linear Under-Approximation

Algorithm 3: approximate_upper_bound_piecewise_linearly
Input: Indexed root expression ir of a polynomial p ∈ Q[x1, . . . , xi], Number

of piecewise linear segments n ∈ N, Sample s = (s1, ..., si) ∈ Ri

Output: Piecewise linear under-approximation for the upper bound or FAIL
1 if level(p) < 2 then
2 return FAIL
3 if si−1 ̸∈ Q then
4 return FAIL
5 Let delineable_interval be the delineable interval of p with respect to s.
6 if si−1 is one of the bounds of delineable_interval then
7 return FAIL
8 Choose n rational coordinates {q1, ..., qn} in delineable_interval such that

qi ̸= si−1 for all i ∈ {1, ..., n}
9 support_points := ∅

10 for q ∈ {q1, ..., qn} do
11 modified_sample := (s1, ..., si−2, q)
12 roots := realRoots(p(modified_sample, xi))
13 root := roots[ir.index]
14 Choose v ∈ Q such that v is close to root, but v < root
15 support_points := {(q, v)} ∪ support_points
16 modified_sample := (s1, ..., si−2, si−1)
17 roots := realRoots(p(modified_sample, xi))
18 root := roots[ir.index]
19 Choose v ∈ Q such that v is close to root, but v < root and v > si
20 support_points := {(si−1, v)} ∪ support_points
21 return the piecewise linear function that is induced by support_points

Note that here we restrict ourselves by only computing piecewise linear functions
that have a support point at the primary coordinate of the sample. We do this because
it is a straightforward way to ensure that the piecewise linear function can be used for
explanations in MCSAT, since we need to make sure that the explanation excludes
the current sample point.

In the context of the algorithm and the piecewise linear function f that we com-
pute, this means that it must be the case that si < f(si−1).

It is important to realize that not all piecewise linear functions that correctly
exclude the sample point must also have a support point at the primary coordinate
of the sample point. Therefore, this restriction is a choice we made that is rather
pragmatic in nature.

Example 3.3.1. In this example, we show how the construction of a piecewise lin-
ear approximation for the upper bound would go along with the polynomial p in our
running example.

Computing Piecewise Linear Under-Approximations 31

0

0

p

s

≀()

x1

x2

(a) Initially, we compute the deline-
able interval in x1 with respect to the
sample point s and the given polyno-
mial we want to approximate. Here
the delineable interval is (−2;∞).

0

0

p

s

≀

(

(

≀((

≀

(

(

x1

x2

(b) Next, we choose rational coordi-
nates for x1 in the delineable inter-
val at which we isolate the roots of
the polynomial, which yields real al-
gebraic numbers that represent these
roots in the x2 coordinate.

0

0

p

s

L

M

R

x1

x2

(c) We choose rational approxima-
tions for these isolated roots from be-
low. Therefore, we created a number
of support points that roughly match
the shape of the root of the polyno-
mial.

0

0

p

s

L

M

R f

x1

x2

(d) Lastly, we compute the piecewise
linear function that is spanned by the
given support points.

Figure 3.2: A visual representation of the process of piecewise linearly approximating
the root of a polynomial

Fallbacks

As the algorithm reveals, there are multiple possible occasions at which either this
restriction causes this approach to fail or where it does not make any sense to execute
a piecewise linear approximation.

32 Piecewise Linear Under-Approximation

The first case in which a piecewise linear approximation does not make sense is
when we are in the one-dimensional case during the single cell construction.

The second case is when the primary coordinate of the sample point is not rational,
therefore causing our restriction to fail to compute a support point directly at the
sample.

A third possible case is when there is no space around the sample point in the
delineable interval. We will illustrate this possibility using an example.

Example 3.3.2. Consider the example of the polynomial p from our running example,
together with the sample point s = (−2, 2). In this case, the delineable interval of p
with respect to the sample point s is [−2;−2] because the sample point lies exactly on
the root of the discriminant discx2

(p).

−2 0

0

2

p

s

x1

x2

Figure 3.3: The delineable interval of p with respect to s does not have any space
around s. Therefore, a piecewise linear approximation does not make sense here.

However, in all of these cases, not all hope is lost for executing an approximation.
One option we still have is to simply execute one of the “naïve” approximations by
Promies, thereby combining the two approaches.

3.4 Representation of Piecewise Linear Functions for
MCSAT

In order to use a piecewise linear approximation as a cell boundary and feed it back
into the MCSAT algorithm as part of an explanation, we need to be able to convert
it into a logical formula.

It turns out that there is no unique way in which this task can be accomplished.
For this thesis, we decided on using a form of representation that is also called a
conjunctive normal expression for continuous piecewise linear functions. This form of
representation has been extensively studied in [XVDBDS14, XvdBDSL15]. Later on,
we will give more elaborate reasons for why this representation was deemed attractive
for our purposes.

Representation of Piecewise Linear Functions for MCSAT 33

We will now introduce this form of representation formally.

Theorem 3.4.1. Let f be an n-segment continuous piecewise linear function consist-
ing of linear terms l1, ..., ln. There exists k ∈ {1, ..., n} and sets I1, ..., Ik ⊆ {l1, ..., ln}
such that for all x ∈ R it holds that

f(x) = min
k

(max
l∈Ik

(l(x)))

For the remainder of this thesis, we will also refer to this as the min-max repre-
sentation of a continuous piecewise linear function.

It is important to note that we can also represent continuous piecewise linear func-
tions in terms of maxima over minima (max-min representation). Their construction
is completely analogous, which is why we will mostly focus on talking about min-max
representations.

In order to prove Theorem 3.4.1 and to show how we can compute such a repre-
sentation, we will now introduce an important type of set.

Definition 3.4.1. Given an n-segment piecewise linear function f and its corre-
sponding intervals Ω1, ...,Ωn and linear segments l1, ..., ln, we define the sets I≤,i and
I≥,i as follows:

I≤,i := {l ∈ {l1, ..., ln} | ∀x ∈ Ωi : l(x) ≤ li(x)}

I≥,i := {l ∈ {l1, ..., ln} | ∀x ∈ Ωi : l(x) ≥ li(x)}

Before we can prove Theorem 3.4.1, we will first introduce and prove a lemma
that guarantees the existence of certain delimiting linear segments.

Lemma 3.4.2. Given an n-segment continuous piecewsie linear function f with linear
segments l1, ..., ln and intervals Ω1, ...,Ωn. For every pair li = mix+bi, lj = mjx+bj ∈
{l1, ..., ln} there exists some lk ∈ {l1, ..., ln} such that lk ∈ I≥,i and lk ∈ I≤,j.

Proof. If we have li ∈ I≤,j we are immediately done, as li ∈ I≥,i. Symmetrically if
we have lj ∈ I≥,i we are also immediately done, as lj ∈ I≤,j . So we will consider the
case where li ̸∈ I≤,j and lj ̸∈ I≥,i.
If i and j were direct neighbors, one of the first two conditions must directly hold for
continuous piecewise linear functions, as li and lj intersect at their common boundary
point of Ωi and Ωj .
Furthermore we can assume without loss of generality that j > i+ 1 as the proof for
i > j + 1 is analogous.
Given the case we consider where li ̸∈ I≤,j and lj ̸∈ I≥,i there must exist witnesses
v ∈ Ωi and w ∈ Ωj such that li(v) > lj(v) and li(w) > lj(w).
It follows that if li and lj have a point of intersection, its x-coordinate cannot lay in
Ωk for any k ∈ {i+1, .., j−1}, because their order does not change between v and w.
We now define the linear function l = mx+ b connecting the right endpoint ri of Ωi

at li(ri) with the left endpoint rj−1 of Ωj at lj(rj−1).
This means that l(ri) = li(ri) and l(rj−1) = lj(rj−1).
It must hold now that l(ri) = li(ri) > lj(ri) and l(rj−1) = l(rj−1) < li(rj−1) because
li lies above lj between v and w.
As we now know, where the intersections between li, lj and l lay, we can deduce

34 Piecewise Linear Under-Approximation

that m < mi and m < mj . Since the algebraic manipulations for showing this are
straightforward we will omit them at this point.
Because the original piecewise linear function f is continuous and its linear segments
connect l(ri) and l(rj−1), there must now exist lk = mkx+ bk ∈ {li+1, ..., lj−1} such
that lk(t) = l(t) at some t ∈ Ωk and xl, xr ∈ Ωk such that xl < xr, xl ≤ t ≤ xr,
lk(xl) ≥ l(xl) and lk(xr) ≤ l(xr).
It follows that mk ≤ m and that lk ∈ I≥,i and lk ∈ I≤,j .

v w

l1 = li

l5 = lj

Ω1 Ω5

x1

x2

(a) Example showing the ordering of
the linear segments that is induced
by li ̸∈ I≤,j and lj ̸∈ I≥,i

xl t xr

l1 = li l2 l3 = lk

l4
l5 = lj

l

x1

x2

(b) Extension of the previous exam-
ple by linear segments between l1 and
l5 as well as the artificial connecting
line l

Figure 3.4: Visualized proof idea for Lemma 3.4.2 using an example

Now we can use Lemma 3.4.2 to prove Theorem 3.4.1.

Proof. We claim that given an n-segment piecewise linear function the sets I≤,1, ..., I≤,n

suffice to fulfill the min-max representation.
First of all we prove that for all i ∈ {1, ..., n} and t ∈ Ωi it holds that li(t) =
maxl∈I≤,i

(l(t)). It must be true that for all t ∈ R it holds that li(r) ≤ maxlj∈I≤,i
(lj(r))

because li ∈ I≤,i. Let us now assume that for some t ∈ R it is the case that
li(t) < maxlj∈I≤,i

(lj(t)). Then there must exist an l ∈ I≤,i such that li(t) < l(t).
But this contradicts the definition of I≤,i.

Now we will assume that there exists some t ∈ R such that
f(t) ̸= mink(maxl∈I≤,i

(l(t))).
It holds that t ∈ Ωi for some Ωi. Therefore, it follows that f(t) = li(t) = maxl∈I≤,i

(l(t))
as we have just shown. It must be true that f(t) = li(t) > mink(maxl∈I≤,k

(l(t))) be-
cause the previous maximum is one of the terms that the minimum includes.
Now there exist some j such that li(t) > maxl∈I≤,j

(l(t))
But from Lemma 3.4.2 we know that there exists some lk such that lk ∈ I≥,i and
lk ∈ I≤,j

For that reason, maxl∈I≤,j
(l(t)) ≥ lk(t) and lk(t) ≥ li(t)

We now obtain li(t) > maxl∈I≤,j
(l(t)) ≥ lk(t) ≥ li(t).

Thus it must hold that for all t ∈ R, f(t) = mink(maxlj∈I≤,i
(lj(t)))

Representation of Piecewise Linear Functions for MCSAT 35

Example 3.4.1. The sets I≤,1, I≤,2 and I≤,3 look as follows for the piecewise linear
function from Example 3.2.1:

0

−1
0
1

l1
l2

l3

x

f(x)

Figure 3.5: The piecewise linear function from Example 3.2.1 decomposed into its
linear segments.

I≤,1 = {l1, l3}, I≤,2 = {l2, l3}, I≤,3 = {l2, l3}

Which results in this representation:

min
(
max(1,−1),max(−x,−1),max(−x,−1)

)
This can be simplified to

min
(
1,max(−x,−1)

)
As we can observe, there can be a lot of redundancy in the sets I≤,i.

In [XVDBDS14, XvdBDSL15] the possibility of finding irredundant or even mini-
mal conjunctive normal expressions has been investigated. For our purposes, however,
we decided that we are okay with having redundancy in our min-max representation
because computing an irredundant or even minimal representation of this form is
much more involved. In the case of the minimal representation, the method pre-
sented in [XvdBDSL15] even requires an amount of time that grows exponentially in
the number of segments of the piecewise linear function.

From the proof for Theorem 3.4.1 we can also derive another possibility to con-
struct the sets I1, ..., In:

Ij := {lj} ∪ {li ∈ {l1, ..., ln} \ {lj} | lj ̸∈ I≥,i, li ∈ I≤,j}
∪ {lk | li ∈ {l1, ..., ln} \ {lj}, lj ̸∈ I≥,i, li ∈ I≤,j , lk as in Lemma 3.4.2 for li and lj}

The rationale behind this construction is to have lj ∈ Ij and Ij ⊆ I≤,j . From this
directly follows the correctness of the first part of the proof. Additionally, we only
add those lk to the set Ij that the second part of the proof depends on. As we have
already indicated, it holds that Ij ⊆ I≤,j , where in practice this subset relation is
usually strict. For this reason, we will refer to this representation as the “advanced”
representation in contrast to the former “simple” one. Because of this subset relation,
one might think that this representation will always be at least as small as the one

36 Piecewise Linear Under-Approximation

using the sets I≤,i. It turns out, though, that this is only true before factoring out
identical sets. This means that these two representations are actually incomparable
after factoring out identical sets.

Example 3.4.2. The resulting sets from the second construction, for Example 3.1
look as follows:

I≤,1 = {l1}, I≤,2 = {l2, l3}, I≤,3 = {l2, l3}
They result in this representation:

min (max(1),max(−x,−1),max(−x,−1))

We will now shortly present why Theorem 3.4.1 only holds for continuous piecewise
linear functions.

Example 3.4.3. Whichever sets I1 and I2 we choose for the depicted example, the
expression of the minimum over maxima will always deteriorate into either 1 or −1
which does not equal the desired function.

0

−1
0
1

l1

l2

x

f(x)

Figure 3.6: Non-continuous 2-segment piecewise linear function with l1 = 1 and
l2 = −1 and a discontinuity at x = 0

At this point, we will shed some light on the reasons why we decided to use the
presented form of representation for piecewise linear functions.

The first reason for this is that the min-max representation is advantageous for the
conversion into a logical formula for the MCSAT algorithm, as it can be canonically
converted. Consider the case where we want to use piecewise linear functions to
approximate the upper bound of a cell. We can simply formulate a bound on the
secondary variable from above by using the piecewise linear function at hand. This
means that given a piecewise linear function f and its min-max representation f =
mink (maxl∈Ik(l(x))) with sets I1, ..., In, a primary variable x and a secondary variable
y, we can formulate that

y < f = min
k

(
max
l∈Ik

(l(x))

)
From which we can derive∧

k

(
y < max

l∈Ik
(l(x))

)
≡

∧
k

∨
l∈Ik

(y < l(x))

Implementation 37

The second reason for using the min-max representation is that it behaves fairly
nicely when the region we want to exclude is convex. This is because if the region
is convex, all of the sets I≤,i will only contain li. Therefore, the resulting min-max
representation is simply the minimum over all linear segments, which is consistent
with the region that we want to exclude. The resulting logical formula is then simply
the conjunction over the constraints y < li. Because the MCSAT algorithm wants to
exclude the described region, it actually applies a negation to the entire conjunction.
Note that after applying the negation, the resulting formula is a clause, which can be
easily recorded by MCSAT.

3.5 Implementation

SMT-RAT is an ongoing research project of the Theory of Hybrid Systems research
group at RWTH Aachen University. The acronym SMT-RAT stands for satisfiability-
modulo-theories real arithmetic toolbox. The project revolves around the implemen-
tation of the open source C++ toolbox for strategic and parallel SMT solving, which
is called SMT-RAT as well [SMTb].

For this thesis, we implemented two concrete approaches for piecewise linear under-
approximations into the SMT-RAT solver. They are called the static approach and
the refinement-based approach. These two approaches can be fine-tuned and adapted
using various settings.

For both of these approaches, we initially compute the delineable interval for the
polynomial we intend to approximate with respect to our sample point to determine
the interval in which it is possible to probe the polynomial.

In the static probing variant, we determine a fixed, predefined number of rational
coordinates that are evenly distributed inside the computed delineable interval. Since
it is possible that the delineable is unbounded in one or even both directions, we use a
fallback distance, which is measured from the sample point, to artificially restrict these
unbounded intervals. This fallback distance can be configured in the approximation
settings beforehand.

The second implemented approach is called the refinement-based approach and
builds upon the static approach. In the refinement-based approach, we first apply
the static approach and then preemptively calculate the resultants between the given
linear segments and the approximated polynomial and determine if these have any
relevant roots. If this is the case, we choose a new rational coordinate in the middle
of the two endpoints of the original linear segment, at which we again probe the
polynomial. This new support point is then incorporated into the piecewise linear
function, thereby refining the original approximation. This process is then recursively
repeated up to a predefined depth, if necessary. We should note that the preemptive
calculation of the resultants by itself does not incur an additional computational cost
on its own at this point, as the resultant and its root are again cached. In a way,
we only move up this process in order to gain an information advantage. Only if we
decide to actually refine the piecewise linear function at this point by introducing
another support point will this resultant calculation act as an additional cost.

We will now show how the construction of min-max representations can be im-
plemented. Specifically, we will present, given an n-segment piecewise linear function
f containing two linear segments li and lj together with their respective intervals Ωi

and Ωj , how to compute whether li ∈ I≤,j .

38 Piecewise Linear Under-Approximation

Algorithm 4: is_under
Input: Two linear segments li = mix+ bi, lj = mjx+ bj ∈ Q[x] of an

n-segment piecewise linear function f together with their respective
intervals Ωi and Ωj

Output: Whether li ∈ I≤,j

1 if i = j then
2 return true
/* Here we denote by ri the right endpoint of the

interval Ωi of f for i ∈ {1, ..., n− 1} as in Definition
3.2.1 */

3 if j = 1 then
4 return li(r1) ≤ lj(r1) and mi ≥ mj

5 else if j = n then
6 return li(rn−1) ≤ lj(rn−1) and mi ≤ mj

7 else
8 return li(rj−1) ≤ lj(rj−1) and li(rj) ≤ lj(rj)

This algorithm is based on evaluating the linear segments at the two endpoints
of Ωj if possible and otherwise additionally using information about the slope of the
segments. Its correctness is directly given by the fact that two non-identical affine
linear functions have at most one point of intersection.

We recall at this point that we proposed two different possible ways of computing
the index sets that satisfy the min-max representation from Theorem 3.4.1. Both of
these were implemented into the SMT-RAT solver.

3.6 Adapted McCallum Projection Operator

One thing that should be addressed at this point is that if we want to introduce
artificial piecewise linear functions, we cannot use the default variant of McCallum’s
projection operator anymore. This is because McCallum’s projection operator is only
defined for polynomials.

Furthermore, if we have a piecewise linear function that we want to use during the
levelwise single cell construction, it obviously does not suffice to simply deconstruct it
into its linear segments and treat them as individual polynomials, because this would
not yield the cell that we intended when using the piecewise linear bound. What
we need to do instead is to treat the piecewise linear function as its own object and
compute the necessary resultants according to the biggest cell heuristic for each linear
segment.

During this process, it is necessary to apply filters to the roots of the computed
resultants to capture the intended meaning of the piecewise linear function. We will
now depict the idea for this adapted projection operator.

Example 3.6.1. Consider the piecewise linear function f that was used to describe
how to probe a polynomial to compute a piecewise linear approximation. If we use the
adapted version of McCallum’s projection operator, the computed resultants resx2(p, l1)
and resx2

(p, l2) have roots that do not correspond to common roots of f and p because
they are outside the interval for which the linear segment defines the piecewise linear
function f . Therefore, we need to filter out these roots.

Adapted McCallum Projection Operator 39

p

s

l1l2

f

x1

x2

Figure 3.7: In the adapted version of McCallum’s projection operator, resx2(p, l1) and
resx2(p, l2) have unnecessary roots that need to be filtered out because they do not
capture the intended meaning of the piecewise linear function f .

As the exact details of the implementation of the adapted McCallum’s projection
operator are out of scope for this thesis, we will not further elaborate on them at this
point.

It suffices to mention that an efficient version of this adapted projection operator
has been implemented by Nalbach in the SMT-RAT solver, which utilizes the knowl-
edge of the intervals on which the individual linear segments are defined to efficiently
filter out unnecessary roots of the resultants.

40 Piecewise Linear Under-Approximation

Chapter 4

Experimental Results

In this chapter, we will present the experimental results that were obtained while
comparing different variants of our implemented approaches for piecewise linear cell
approximations with the default single cell construction without approximation.

We used the SMT-LIB QF_NRA dataset [SMTa] to evaluate the performance of
the different solver variants. At the time of writing, it consists of 12134 different
QFNRA problems that are specified in the SMT-LIBv2 language.

The problems originate from a wide range of applications. Some of them are
categorized as industrial problems, stemming from the qualitative analysis of systems
of ordinary differential equations in the natural sciences; others are generated as proof
obligations by frameworks for program analysis; again, others are families of crafted
problems like the Kissing family, which aim to investigate a special case of sphere
packing.

While there is not really an objective way to determine important or representative
QFNRA problems, the SMT-LIB benchmark sets try to cover interesting, practical
problems, some of which should be challenging to solve by modern SMT solvers.

Of the 12134 benchmark problems, 5248 are labeled as satisfiable, 5534 are labeled
as unsatisfiable, and 1352 are labeled as unknown, meaning that it could not be
determined yet whether they are satisfiable or unsatisfiable.

All the benchmarks were executed on the high-performance computing cluster
of the RWTH Aachen University using the Benchmax benchmarking tool, which is
bundled into the SMT-RAT solver.

The timeout was set to 60 seconds and the memory limit to four gigabytes. These
cut-offs are somewhat arbitrarily chosen but fall into a favorable area in which it is
still very feasible to run extensive benchmarks of the entire dataset as well as cover an
overwhelming majority of the problems where we can actually decide the satisfiability
of the given problem. The cluster nodes on which the benchmarks were executed are
equipped with two Intel® Xeon® Platinum 8160 processors, each having 24 cores
and a processor base frequency of 2.1 GHz.

Promies equipped the approximation framework inside the SMT-RAT solver with
a number of different settings to configure when and how an approximation will be
used during the single cell construction. We want to mention just a few of these
settings here, on which we focused while evaluating the performance of our imple-
mentation. The first setting that we used was the maximum number of total approx-
imations that were applied. Secondly, we also utilized the threshold on the degree

42 Experimental Results

of polynomials, which suffices to apply an approximation. The idea is that for poly-
nomials of high degree, applying an approximation is more useful because they also
cause polynomial resultants of higher degree. However, one has to be careful at what
value this threshold is set. If it is set too high, the number of problems to which
any approximation is applied gets very small. On the other hand, if the threshold is
set too low, potentially too many approximations will be applied to problems that
could normally also be solved without applying an approximation, therefore leading
to unnecessary overhead or even to the solver not being able to solve them in the set
time limit.

The Baseline

We started by benchmarking the SMT-RAT solver with the levelwise single cell con-
struction without approximations using the biggest cell heuristic. This solver will act
as the baseline for the following comparisons, and we will abbreviate it as “LW”.

The benchmark results showed that 10010 of the 12134 problems could be solved
by the levelwise single cell construction without approximations. More interestingly,
we observed that 8748 of the problems could be solved in less than one second. This
reveals that a significant portion of the benchmark set consists of rather “easy” prob-
lems.

To get an impression of the reliability of the benchmarking results, we wanted to
see how much the runtime for the instances differed between different runs. There-
fore, we executed another benchmark of the levelwise single cell construction without
approximations, using the exact same build as before.

The results of the two benchmark runs on the identical build showed that even
though for about 70 of the problems the total runtime in the two different benchmarks
differed by more than a second, overall, for the overwhelming majority of the problems,
this difference was below 200 milliseconds. In Figure 4.1 the runtime distribution for
the two benchmark runs on the identical build can be observed.

0 20 40 60

0

20

40

60

Runtime of first LW benchmark (s)

R
un

ti
m

e
of

se
co

nd
LW

be
nc

hm
ar

k
(s

)

Figure 4.1: Scatter plot showing the runtime comparison between the first and second
benchmark run of the identical LW build

43

More importantly, both benchmark runs are able to solve the same number of
problems. Both benchmark runs differed in their results for four problems, with the
first run solving two problems that the second couldn’t, and vice versa. This effect
can be explained by problems that the solver is able to solve in a time frame that is
close to the time limit. In this case, small deviations in the solver’s speed between
different runs can cause different runs on the same build to yield slightly different
results.

This observation lets us conclude that, overall, the benchmark results between
different runs are relatively comparable. For this reason, we are going to execute
every benchmark in the following comparisons only once.

We decided to use the following approximation settings for the upcoming bench-
marks: Approximate at most 50 cells, approximate at most twice per polynomial, and
approximate only polynomials that have at least a degree of five. Furthermore, we de-
cided to use the advanced way of representing the piecewise linear functions as logical
formulae for MCSAT and also defined the fallback distance for probing polynomials
in the case of an unbounded delineable interval to be equal to one.

While these decisions for the approximation settings are relatively arbitrary, we
hope they are in a suitable area to work out the differences between the different
approaches.

Different Number of Linear Segments

We now executed three benchmarks using piecewise linear approximations using the
static approach and a different number of linear segments. It is important to note
that in the case of fallbacks, we do not apply any of Promies’ “naïve” approximations
here, as we are purely interested in the effect that our piecewise linear approximations
have on the benchmarks.

The first benchmark was executed using 2-segmented piecewise linear approxima-
tions, the second using 4-segmented piecewise linear approximations, and the third
using 6-segmented piecewise linear approximations. While we could have also com-
pared using a different number of segments, we want to explore whether a change in
the number of segments has a large effect on the benchmarks and if a general trend
is visible.

Solver solved SAT UNSAT timeout memout segfault gained lost
LW 10010 5049 4961 2083 40 (1) - -

2-segment 10055 5081 4974 2039 38 (2) 111 66
4-segment 10068 5095 4973 2027 37 (2) 123 65
6-segment 10075 5102 4973 2020 39 0 133 68

Figure 4.2: Comparison between variants of piecewise linearly approximating solvers
using different numbers of linear segments and the baseline solver, which uses the
levelwise single cell construction without approximation (LW). The columns “gained”
and “lost” indicate the number of problems the respective solver solved that the base-
line solver could not, and vice versa.

Given these results, we mainly observe three effects. Firstly, we see that using
piecewise linear approximations does actually have a positive effect on the perfor-
mance of the SMT-RAT solver. Secondly, we observe that if we use a higher number

44 Experimental Results

of segments, the number of solved instances increases slightly. We presume that this
effect can be attributed to the fact that by using more segments, we can better approx-
imate the bound of the polynomial, therefore increasing the likelihood of producing
larger cells. Lastly, we can see that the increase in solved problems when using piece-
wise linear approximations cannot simply be attributed to the solver solving purely
more instances. While the piecewise linearly approximating solvers gain many prob-
lems that they were able to solve compared to the levelwise single cell construction
without approximation, they also lose many problems that could have been solved
before. Because this is an effect that we generally observe when making changes to
the SMT-RAT solver, we assume one should not overinterpret this effect, as it is most
likely caused by the nature of the algorithm at hand: Whenever the solver decides
to take a different path during its search for a solution to the problem compared to
before, there is always the potential that the decision is better or worse just by chance.

Another thing that is notable is the occurrence of segmentation faults. Usually,
the presence of segmentation faults indicates bugs in the solver. In this case, we are
certain that these segmentation faults do not correspond to bugs in the solver but are
actually caused by the benchmarking tool for technical reasons in rare cases where
the actual result should have been a memout instead. We conclude this by the fact
that for none of the indicated segmentation faults we could reproduce the problem,
even when using the exact build used for benchmarking, and by the fact that for
all of these segmentation faults the recorded peak memory usage lies upwards of the
specified four gigabytes. For these reasons, we will denote these segmentation faults
in parentheses. The reader should keep in mind that these segmentation faults should
most likely be attributed to the memout column.

Figure 4.3: Performance profile showing the impact of using piecewise linearly ap-
proximating solvers with different numbers of segments compared to the levelwise
single cell construction without approximation (LW).

45

Different Representations for Piecewise Linear Functions
Next, we want to investigate how much the two different ways of representing the
piecewise linear functions as logical formulae affect the performance of the solver.
For this, we compare two solvers using 6-segmented piecewise linear approximations
using the same settings as before, with the only difference that one is using the simple
and the other is using the advanced form of representing piecewise linear functions as
logical formulae for MCSAT. For comparison, we will again provide the solver using
the levelwise single cell construction without approximation as a baseline.

Solver solved SAT UNSAT timeout memout segfault gained lost
LW 10010 5049 4961 2083 40 (1) - -

6-segment simple representation 10069 5094 4975 2026 35 (4) 125 66
6-segment advanced representation 10075 5102 4973 2020 39 0 133 68

Figure 4.4: Comparison between two different 6-segmented piecewise linearly approx-
imating solvers equipped with different ways of representing piecewise linear functions
and the levelwise single cell construction without approximation (LW).

As we can see, the advanced representation shows a small edge over the simple
representation. When discussing the two different representations for piecewise linear
functions, we claimed that they are in fact incomparable after factoring out identical
sets. Because this factoring out of identical sets is in fact not implemented yet in
the SMT-RAT solver, the observation that the advanced representation has a small
edge over the simple representation seems logical, given that its index sets are always
subsets of the simple representation ones.

Static and Refinement-Based Approach
Now we are going to compare the two different implemented approaches to piecewise
linear approximation. To do this, we will compare the benchmarking results of the
solver using four linear segments with the static probing approach against the solver
using four linear segments with the refinement-based approach. Therefore, the solver
using the refinement-based approach starts out by doing exactly the same thing as
the static probing variant, but then it preemptively computes the resultants of the
linear segments and the polynomial it is trying to approximate, refining the piecewise
linear function if necessary. Hence, the refinement-based solver may end up with a
maximum number of eight segments if it refines every segment once.

Solver solved SAT UNSAT timeout memout segfault gained lost
LW 10010 5049 4961 2083 40 (1) - -

4-segment static 10068 5095 4973 2027 37 (2) 123 65
4-segment refinement 10071 5098 4973 2024 39 0 124 63

Figure 4.5: Comparison between two different 4-segmented piecewise linearly approxi-
mating solvers of the two different approaches and the levelwise single cell construction
without approximation (LW).

In this comparison, the refinement-based approach has only a very slight edge over
the static approach. This indicates that precomputing and refining the segments is
only rarely advantageous in the way that we implemented them.

46 Experimental Results

Addressing Fallbacks via “Naïve” Approximations

Another aspect we addressed was the presence of fallbacks during the process of
piecewise linearly approximating the polynomials. We mentioned that in these cases,
we still have the option to execute one of Promies’ “naïve” approximations. Therefore,
we want to investigate whether additionally using Promies’ “naïve” approximations in
cases of fallbacks can further improve the benchmark performance of our approach.
For this we benchmarked the performance of a solver primarily using the 6-segmented
piecewise linear approximation applying a “naïve” approximation whenever piecewise
linear approximations do not make sense. We also compared these results with the
performance of a solver that only used “naïve” approximations.

Solver solved SAT UNSAT timeout memout segfault gained lost
LW 10010 5049 4961 2083 40 (1) - -

6-segment 10075 5102 4973 2020 39 0 133 68
6-segment + “naïve” 10081 5099 4982 2014 36 (3) 147 76

“naïve” 10108 5113 4995 1986 40 0 153 55

Figure 4.6: Comparison between the 6-segmented piecewise linearly approximating
solver, a combination of the 6-segmented piecewise linearly approximating solver us-
ing Promies’ “naïve” approximation during fallbacks, a solver only using Promies’
“naïve” approximations, and the levelwise single cell construction without approxi-
mation (LW).

Figure 4.7: Performance profile showing the difference between the solvers from Figure
4.6.

We observe that combining piecewise linear approximations with “naïve” approx-
imations during fallbacks further improves the performance. However, we have to
acknowledge the fact that the solver only using “naïve” approximations not only
outperforms the regular 6-segmented piecewise linear approximations but also the

47

combination of them with the “naïve” approximations during fallbacks.
We suspect that in general, the “naïve” approximation approach is much better

suited for the QF_NRA benchmark set because, for many of the problems, it suffices
to compute a simple approximation. Piecewise linear approximations, on the other
hand, are more costly to compute and potentially only pay off for more complicated
problems.

48 Experimental Results

Chapter 5

Conclusion

5.1 Future Work

Further Approaches for Piecewise Linear Approximations

The first aspect we consider worthy of further research is the development of different
approaches for computing piecewise linear approximations. For example, one could
develop a method that works differently than the two presented approaches and does
not start out by evenly distributing support points, but rather works from the sample
point outward. Potentially, such an approach can also implement a heuristic capable of
removing support points that it decides are unnecessary later on. As we have discussed
while presenting the refinement-based approach, the precomputation of the resultants
between the linear segments of the piecewise linear function and the polynomial that
is approximated does not incur an additional computational cost as long as we don’t
change the piecewise linear function anymore. Therefore, we presume that it is a
promising aspect to investigate how to take further advantage of this fact.

Simple Rational Representations

A second aspect we think is important to investigate is the effect of the approximation
methods for real algebraic numbers and the rational representations we use for the
computed support points from which we span the piecewise linear functions. As
our goal from the beginning was to find approximations that better resemble the
behavior of the approximated polynomial, one has to investigate how to reconcile the
two aspects of finding piecewise linear functions that represent a good approximation
of the approximated polynomial but at the same time have simple representations
so that they don’t introduce complicated piecewise linear functions into the MCSAT
algorithm.

Irredundant or Minimal Representation for Piecewise Linear
Functions

We were surprised by the fact that using the advanced min-max representation had a
considerable positive effect on the piecewise linear approximation. Thus, we believe
that investigating the effects of irredundant or even minimal min-max representations,

50 Conclusion

as presented in [XVDBDS14, XvdBDSL15], could be worth researching. We would
like to note at this point that even though the method presented in [XvdBDSL15]
requires an amount of time that grows exponentially in the size of the piecewise
linear function since it requires computing a covering, it is known that reasonable
approximation algorithms exist for this problem [Vaz01].

Identifying Problems for Which More Costly Approximations
Pay Off
As we have seen, the “naïve” approximation approach by Promies’ is generally better
suited for the QF_NRA benchmark dataset than the piecewise linear approximations.
This is why we believe that future work should be done in trying to identify QFNRA
problems for which more costly approximations like piecewise linear ones pay off. A
staggered approach could then be developed, applying piecewise linear approximations
when it is indicated that they are better suited than “naïve” approximations.

5.2 Summary
We began this thesis by motivating formal verification and introduced SMT solving
for quantifier free non-linear arithmetic. In the preliminaries, we formally defined
the problem at hand, presented the necessary groundwork, and recapped Promies’
ideas and findings on under-approximating polynomial bounds using polynomials of
low degree. We continued by giving a definition for piecewise linear functions, and
we showed the general idea of how one can use probing to compute a piecewise linear
approximation for a polynomial bound. Then we discussed how it is possible to feed
back representations of piecewise linear functions into the MCSAT algorithm and
proved the existence of such representations for continuous piecewise linear functions.
Furthermore, we proposed two different variants of the general idea that we imple-
mented into the SMT-RAT solver. Lastly, we evaluated our implementation using
SMT-LIB’s QF_NRA benchmarking dataset, which revealed that it outperforms the
levelwise single cell construction, which does not use approximations.

Bibliography

[Á14] Erika Ábrahám. Lecture on satisfiability checking, winter semester
2014/2015. https://ths.rwth-aachen.de/wp-content/
uploads/sites/4/teaching/vorlesung_satchecking/
ws14_15/09c_cad_handout.pdf, 2014.

[BDE+16] Russell Bradford, James H. Davenport, Matthew England, Scott Mc-
Callum, and David Wilson. Truth table invariant cylindrical algebraic
decomposition. Journal of Symbolic Computation, 76:1–35, 2016.

[Col75] George E. Collins. Quantifier elimination for real closed fields by cylin-
drical algebraic decompostion. In H. Brakhage, editor, Automata The-
ory and Formal Languages, pages 134–183, Berlin, Heidelberg, 1975.
Springer Berlin Heidelberg.

[dMJ13] Leonardo de Moura and Dejan Jovanović. A model-constructing sat-
isfiability calculus. In Roberto Giacobazzi, Josh Berdine, and Isabella
Mastroeni, editors, Verification, Model Checking, and Abstract Inter-
pretation, pages 1–12, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[Duc00] Lionel Ducos. Optimizations of the subresultant algorithm. Journal
of Pure and Applied Algebra, 145(2):149–163, 2000.

[JBdM13] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. The design
and implementation of the model constructing satisfiability calculus.
In 2013 Formal Methods in Computer-Aided Design, pages 173–180.
IEEE, 2013.

[JdM12] Dejan Jovanović and Leonardo de Moura. Solving non-linear arith-
metic. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Au-
tomated Reasoning, pages 339–354, Berlin, Heidelberg, 2012. Springer.

[McC85] Scott McCallum. An improved projection operation for cylindrical
algebraic decomposition. In Bob F. Caviness, editor, EUROCAL ’85,
pages 277–278, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[NAS+22] Jasper Nalbach, Erika Ábrahám, Philippe Specht, Christopher W.
Brown, James H. Davenport, and Matthew England. Levelwise con-
struction of a single cylindrical algebraic cell, 2022.

https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_satchecking/ws14_15/09c_cad_handout.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_satchecking/ws14_15/09c_cad_handout.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_satchecking/ws14_15/09c_cad_handout.pdf

52 Bibliography

[Pro22] Valentin Promies. Underapproximating cell bounds in mcsat using
low-degree polynomials. Master’s thesis, RWTH Aachen University,
2022.

[SMTa] SMT-LIB benchmarks in QF_NRA logic. https://clc-gitlab.
cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA.

[SMTb] SMT-RAT, a toolbox for strategic and parallel satisfiability modulo
theories solving. https://github.com/ths-rwth/smtrat.

[Vaz01] Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.

[XVDBDS14] Jun Xu, Ton JJ Van Den Boom, and Bart De Schutter. Irredundant
lattice piecewise affine representations and their applications in explicit
model predictive control. In 53rd IEEE Conference on Decision and
Control, pages 4416–4421. IEEE, 2014.

[XvdBDSL15] Jun Xu, Ton JJ van den Boom, Bart De Schutter, and Xiong-Lin Luo.
Minimal conjunctive normal expression of continuous piecewise affine
functions. IEEE Transactions on Automatic Control, 61(5):1340–1345,
2015.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA
https://github.com/ths-rwth/smtrat

	Introduction
	Research Question
	Thesis Outline

	Preliminaries
	SMT Solving
	Quantifier Free Non-Linear Real Arithmetic
	Model-Constructing Satisfiability Calculus
	Levelwise Construction of a Single Cylindrical Algebraic Cell
	Under-Approximating Cell Boundaries

	Piecewise Linear Under-Approximation
	Motivation
	Piecewise Linear Functions
	Computing Piecewise Linear Under-Approximations
	Representation of Piecewise Linear Functions for MCSAT
	Implementation
	Adapted McCallum Projection Operator

	Experimental Results
	Conclusion
	Future Work
	Summary

	Bibliography

