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Abstract

Railway traffic plays an important role in the public transportation system not
only for personal but also for freight transport. Hence it is important, that cur-
rent and planned railway timetables are evaluated for their validity and compat-
ibility for the given real-world infrastructure network. While several simulation
approaches for this task already exist, these are either theoretical or only avail-
able commercially with only sparse information publicly available about the
inner workings of the underlying algorithms. This is why, Haehn, Ábrahám
and Nießen developed a novel, open probabilistic simulation model which of-
fers examination of delay propagation within a reasonable computational com-
plexity. Nevertheless, modern computer hardware has become very powerful,
offering multiple CPU cores with potentially even more threads. Thus, by uti-
lizing multi-threading, the aim is to leverage as much of the available hardware
for the simulation as possible and possibly offering improvements in runtimes.
Therefore, in this thesis I examine possible approaches to parallelization of the
aforementioned simulation algorithm. The implemented approaches are then
evaluated with regard to their advantages and disadvantages.
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Chapter 1

Introduction

A 2019 report by the European Environment Agency (EEA) examining the means
of transportation between 1995 and 2017 concluded, that not only the demand for
passenger train travel has risen for the fifth year in a row but also the modal share
in the said category increased slightly [10]. This coincides with a competitive metrics
report by the Deutsche Bahn (DB), the largest German railway company, as published
in late 2020 [9]. It notices, too, a slightly increased share of passenger train travel in
2019 and 2020. This highlights the growing interest and importance in recent years.
This increased demand, if not properly accounted for, might put stress on the existing
infrastructure and ultimately lead to delays and/or cancellations, possibly resulting in
frustrated passengers and monetary losses. However, not only for passenger transport
but also for freight, the railway infrastructure plays an important role, as according to
the aforementioned EEA report, about 421 tonne-kilometres1 have been transported
in 2017, resulting in a share of about 17% [10]. A similar picture has been observed
in 2019 by the DB in Germany, revealing an 18% market share of the German freight
transportation sector [9]. While both studies observed a slight decline over the last
years, one could argue that freight train travel still plays an important role in the
overall logistics market. Like for passengers, delays or other problems in freight
transportation may lead to unsatisfied customers or large financial fines. Hence, to
reduce economical loss and increase passenger satisfaction, it is important that a train
schedule is carefully planned and weaknesses in the current system are strategically
analysed to reduce the probabilities of problems with delayed or cancelled trains.

To assess problems in a given railway network, one can run various types of studies
and analyses. As one example, one should mention the data science approach which
uses recorded real-world data of trains, such as actual arrival and departure times,
possible travel speeds, capacities or events, to name a few. This data then can be
processed together with a combination of mathematical, statistical and/or program-
matic methods (e.g. regression, artificial intelligence, event-driven analysis) to find
possible indications or relations on what may be an influencing factor for delays or
other complications along a train’s itinerary. This field of study has gained popularity
in recent years. However, there are some limitations to this type of analysis: they
require a large quantity of high-quality historic data to get usable results. If the data
used for analyses is of poor quality, e.g. by inaccurate or missing events or if too
narrowly/broadly sampled, the results may, too, be inaccurate or biased and may

1Freight in metric tonnes per travelled distance in kilometres.
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lead to false conclusions. If the quality and quantity is sufficient, these methods may
offer valuable insights into the past behaviour, for example in critical situations, from
which predictions or assumptions for future behaviour can be made.

One downside of the various data science approaches is, that they mostly rely
on already existing data. If this is not available, for example when a new route is
formed, one can also make use of simulating the behaviour on the infrastructure.
Simulations are independent of historical data and its quality as they primarily rely
on the initial state from which the simulation shall start. When considering railways,
the respective simulations will be performed on a graph-based structure modelling a
real-world railway infrastructure network. On this graph, a given set of trains can
then be simulated, for example, according to a timetable schedule, and possible delay
factors such as delayed provisioning of trains, failure of a control point or prolonged
waiting times at stations can be introduced. However, as it is extremely difficult, if
not impossible, to consider every aspect and state within a simulation, a limited set
of influencing factors as well as a certain level of detail needs to be used. This is
why there are various types of simulations developed focussing on different specifics,
e. g. how the trains can be simulated and what factors are considered to what extend.
While this might lead to the assumption that simulations are less realistic or precise,
the opposite is the case. Simulations can reliably model real-world behaviour without
the need to experience it.

Furthermore, the hardware of modern computer systems has become very power-
ful. Most, if not all, of the currently available CPUs for consumer or professional use
pack multiple cores which, in most cases, are also able to handle multiple threads at
the same time. This offers a large source of computing power to leverage for simulation
algorithms.

Therefore, in this thesis, we inspect the simulation approach as proposed by R.
Haehn, E. Ábrahám and N. Nießen in [15] with regard to how parallelization can be
implemented and its resulting impacts on runtime. This algorithm was developed by
the aforementioned authors as there were no freely available simulation tools offering
similar functionality and works by combining simulations and statistical methods to
evaluate the propagation of initial delays, e.g. due to delayed provisioning. This is
done by using a probability distribution for the trains’ locations instead of discrete
ones. With this probabilistic approach, the probabilities for a train arriving and
residing at a certain infrastructure element at a given point in time can be measured,
allowing for a deeper insight into the behaviour of the network and possible influencing
factors for delays. The details of the underlying algorithm will be explained in more
detail in Chapter 2.

While the simulation algorithm itself was already working, it was only operating
in a single-threaded sequential and linear mode. This potentially leaves performance
on the table, as modern computer hardware is oftentimes capable of multi-threaded
parallel execution. Therefore, the goal of this thesis was the parallelization of the
underlying algorithm and to allow for parallel execution leveraging the most potential
of the available hardware. For that, I have iteratively parallelized different aspects
of the simulation, analysed the effect concerning runtime and scalability and assessed
the effectiveness.

The thesis will start with a brief introduction into background knowledge, related
work and further information on the simulation in Chapter 2. Afterwards, the differ-
ent approaches and their respective implementation details will be presented in the
subsequent chapters. Each chapter will discuss the idea and details of the approach,
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together with the important changes made within the code base as well as a discussion
of the results. To conclude this thesis, we give a summary of the overall findings in the
last chapter, Chapter 8, discuss possible strengths and weaknesses of the approaches,
summarize the key learnings and lastly give an outlook to possible future work on
this topic.
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Chapter 2

Preliminaries

In this chapter, we want to give a brief overview of some of the currently existing
train schedule and railway network simulation approaches and compare them with
the probabilistic simulation used in this thesis. Furthermore, a short introduction to
the technicalities of multi-threaded and parallel processing will be offered for a better
understanding of the technical aspects.

2.1 Simulations

As seen in the introduction, railway traffic plays an important role in the current
passenger and freight transportation sectors. Hence, the smooth and uninterrupted
operation of train traffic is not only crucial from an organizational but also from a
customer’s point of view. For example, the planned and punctual operation is one
key aspect of customer satisfaction [25] and thus may lead to increased utilization
of trains as a mode of transportation forming a financial incentive for the train op-
erators. Hence, to optimally plan a train schedule and assess it for its robustness
and viability, oftentimes simulations are used. As the effective and robust railway
timetable scheduling concerns any large network, this has been researched in many
different ways scientifically and commercially alike. However, each simulation needs
to find a balance between performance and detail, as it is impossible to compute
a large scale simulation with fine granular detail within a reasonable time. Thus,
one can divide the approaches into different categories: microscopic and macroscopic
simulations. The former focuses on small parts of a network in high detail and the
latter aiming for a broad, less detailed inspection of a large network. Furthermore, a
division can be made between synchronous and asynchronous simulations, classifying
whether all operations, e. g. movements are performed synchronously at the same
time or if certain aspects are considered out of order.

Related Work on Railway Simulations. While it is easy to find scientific ap-
proaches or especially commercial or industrial simulations for railway networks, it is
hard to compare them: each simulation focuses on varying levels of detail1, prioritizes
different key aspects2 that need to be considered, uses different underlying simulation

1i. e. macro- or microscopic simulation
2for example capacities, weather, demand, pasenger flow, etc.
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principles1, or addresses completely different goals to achieve2. Therefore, it is hard
to precisely pinpoint which approach to name and which to omit. Nevertheless, we
want to give a brief overview of the most relevant works to put the work of this thesis
into context.

Corman and Kecman [6] proposed a predictive approach for assessing train de-
lays by using a Bayesian network. The idea of delay propagation in a train network is
similar to how it is done in our simulation, however, the realization is quite different.
Firstly, the focus lies on a real-time aspect and secondly Bayesian networks were used
for the implementation. The method inspects the delay propagation concerning cer-
tain events, such as trains arriving or departing, however, it also takes other delaying
events into account. As a result, the researchers found a strong correlation between
a train’s runtime and the experienced delays. Furthermore, reliable predictions for a
trains delay for up to thirty minutes in the future could be made. This approach is
not parallelized.

Li and Zhu [22] inspected the influence of passengers on the delay propagation
in urban rail transit systems. They proposed a simulation algorithm to assess and
predict the effect on the delay by various passenger-based factors. The study focussed
on the passenger point of view and additionally examined the delay recovery based on
possible passenger decisions with respect to the delay situation. From the description
it appears that the simulation is nit processed in parallel.

Briggs and Beck [4] found in their 2006 study that the delay propagation in rail-
way networks could be modelled by so-called q-exponential functions, a mathematical
modelling function which in fact can be applied to an interestingly wide spectrum of
complex, real-world systems.

Büchel, Spanninger and Corman [5] investigated the disruption of train traffic
in the greater Raststadt region in the south of Germany after an accident in 2017.
The researchers modelled the delay propagation of other trains in the region as an
impact of the incident. Furthermore, a predictive model was developed to investigate
the influence of said event on the train traffic in the nearby Swiss area. For their
simulations, the researchers used the tool OnTime.

OnTime [32] is developed by trafit in conjunction with the VIA Consulting com-
pany and the VIA Chair at RWTH Aachen University. It was initially presented
in 2013 in [13] and is a commercial, mesoscopic—between micro- and macroscopic—
simulation based on theMonte Carlo principle. It combines simulation with analytical
and statistical approaches in order to assess the quality of railway timetables concern-
ing their robustness given the infrastructure it is planned for. The exact details on the
inner workings are, as can be expected from a commercial application, not publicly
shared in detail. According to the developers, it is already in effective use with several
large railway companies.

Also developed by the VIA Consulting group is the LUKS tool suite [34]. The
suite offers various tools from timetable planning and construction to validity checking
and performance analysis of certain aspects of a railway network by the use of various
modules, one of which is the LUKS-S simulation module. For this, a timetable is
simulated microscopically on a given infrastructure network. Offering two modes,
the simulation can either validate a timetable for its viability or test the robustness
against delays. It too uses Monte Carlo simulation in multiple simulations runs [20].
According to the publishers, the tools are used by large rail companies, especially

1e.g. Monte Carlo, or analytical
2i.e. optimal planning, delay propagation, predictions, etc.
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for construction and planning. However, as it too is commercial software, not much
information on the precise algorithms or inner workings is provided.

Two other, already very old simulation software suites are RMCon RailSys [30]
and OpenTrack [27]. Both tools are available for more than 20 years. Like with
LUKS, RailSys consists of multiple management and planning tools, among which
a simulation can be found. It is based on microscopic simulation of timetables [18].
Despite the age, to the best of my knowledge, almost no freely available information
can be found regarding the internal algorithms. OpenTrack was originally developed
by the Institute for Transportation Planning and Systems at the ETH Zürich and
focusses on the aspect of timetable simulation using microscopic synchronous sim-
ulation [26]. Its main goal is to offer analytical tools to evaluate the feasibility of
timetables and find critical properties or potential problems. As with RailSys and
despite the name possibly indicating open-source software, next to no information
about the actual simulation mechanism is publicly available.

Lastly, we want to mention TrenoLab trenissimo [33, 11]. It is a relatively recent
tool using synchronous and microscopic simulation. It was developed to make use of
the abundance of data that might be collected in recent years, providing detailed and
precise simulations without overloading the available hardware and address issues and
missing features of the competing simulations. Sadly, as with the other commercial
software, no details on the implementation are available.

For all the commercial simulation algorithms mentioned above, it is not known if
and to what extend parallelization techniques are used for the simulation.

To conclude the non-exhaustive literature review on simulations for railway sys-
tems and timetables, one can observe that while many tools are available, many of
those are only available commercially and without free access. Furthermore, little is
known about the actual methods or precise inner workings. Adding to this, many
of the available simulations use or seem to use Monte Carlo simulation. Some re-
searches suggest mathematical-statistical models which however is seldomly used in
reality. This is why Haehn, Ábrahám and Nießen [15] proposed a probabilistic
simulation approach which is used as the basis for this thesis.

2.2 Our Simulation Approach

The probabilistic railway timetable simulation used in this thesis was developed by
Haehn, Ábrahám and Nießen and presented in [15]. It proposes a synchronous
macroscopic and probabilistic approach by modelling the position of trains not by a
fixed location but by a probability distribution for multiple locations. With this, for
each train, the probability with which it resides at a certain infrastructure element
at a given time is recorded. This allows to investigate multiple scenarios in a single
run and also offers insights into the resilience of a railway timetable on a given in-
frastructure network. This probabilistic model has not been investigated or modelled
before and provides a novel take on assessing and investigating delay propagation. As
the algorithm is relatively new, currently only initial delays are investigated. Never-
theless, in the future other scenarios could be added to strengthen this approach. In
this section, we want to explain the inner workings of the simulation algorithm in its
current form in more detail.
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Model. To start, we want to focus on the data model. All following definitions
are, if not stated otherwise, as they are presented in the original article and will be
summarized. The simulation is based on two fundamental models: an infrastructure
network and a railway timetable.

The infrastructure network reflects the physical properties of the real-world railway
network in question. It is modelled as a directed graphG = (V,E) consisting of a set of
vertices V connected by a set of edges E ⊆ {(u, v) ∈ V ×V |u 6= v} without self-loops.
The vertices represent so-called operational control points, or OCPs for short. These
are important infrastructure nodes that a train passes on its itinerary such as stations,
switches or more general waypoints. Each edge represents one or more physical rail
tracks connecting the respective OCPs in the given direction. In our model, multiple
tracks that serve the same OCPs will be represented by only one edge, however,
to correctly reflect the available number of tracks, each infrastructure element has a
capacity property. This capacity is then modelled as: cap : (V ∪E)→ N+. This stores
the maximal number of trains that may reside at the given infrastructure element at
a certain point in time.

To prevent an unintended blockage of infrastructure elements by trains that are
waiting for their initial dispatch or at their final waypoint, two central source and tar-
get vertices vsource, vtarget are added to the infrastructure graph, so that G′ = (V ′, E′)
with V ′ = V ∪{vsource, vtarget}, E′ = E∪{(vsource, vi) | vi ∈ V }∪{(vi, vtarget)|vi ∈ V }.
Both nodes vsource and vtarget as well as their respective out- and ingoing edges to the
other vertices have an infinite capacity.

Time is modelled within a pre-defined interval T = [TMIN, TMAX] ⊆ N0, the time
horizon. Each point in time is discrete and is measured in minutes. However, later in
this thesis this is changed to a decimal representation.

On this graph network, the movement of trains is to be simulated. For this, a
railway timetable is used defining the finite set of trains τ1, ..., τm, their properties
(ID and type) as well as their planned itinerary. Each such train’s finite itinerary is
defined by an ordered set of vertices {v1, ..., vn} ⊆ V ′ and arrival and departure times
ai, di ∈ T for each vertex vi. This is called a timed path πid for train with ID id with

πid = {vid,1(aid,1 7→ did,1), ..., vid,nid
(aid,nid

7→ did,nid
)}.

For each train we also need to keep track of its current possible positions. For that,
let epdt ∈ T mark the earliest possible departure time at which the train may leave a
certain infrastructure element. Then we define a train’s state to be Sid = SV

id ∪ SE
id

whereas id is the train’s ID and

SV
id = {(vid,j , epdt) | 0 ≤ j ≤ nid, epdt ∈ T, did,j ≤ epdt} and

SE
id = {((vid,j , vid,j+1), epdt) | 0 ≤ j ≤ nid, epdt ∈ T, aid,j+1 ≤ epdt}

Each such state model the trains state at the j-th element on its timed path πid,
vertex vid,j , or the edge (vid,j ,vid,j+1) respectively.

To accommodate the extension of the graph, as presented above, the itinerary
of each train is altered by adding vsource(aid,1 7→ aid,1) as first element of the path
πid and vtarget(did,nid

7→ did,nid
) as its last. Therefore, the train starts at the source

vertex vsource requesting to enter its first regular waypoint at the planned time aid,1
and ultimately leaving the last waypoint ending at the target vertex vtarget at the
same time did,nid

it would arrive at its regular final destination.
Lastly, let E+(v) be the set of all incoming edges of vertex v, or to be precise:

E+ : V → E, v 7→ {(u,v) | (u, v) ∈ E}.
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Algorithm. Now that we have achieved an overview of the underlying model, we can
proceed with understanding the current implementation of the simulation algorithm.
A simplified and abbreviated pseudo-code version can be found in Algorithm 1.

As first step, the algorithm starts with an initialization phase in which the in-
frastructure network and timetable is loaded. This is then followed by emplacing the
trains at the edge from the source vertex ssource to their respective first waypoint.
This is done according to a pre-defined delay distribution: a train is considered to
start its itinerary with the probability for a certain delay. For instance, with a prob-
ability of p0 = 0.9 the train starts with no delay and p1 = 0.1 with one minute delay.
Therefore, for each possible delay according to the distribution function, a state is
inserted with the adjusted epdt times and the respective probability. The sum of all
probabilities of each train is always 1. For testing the validity of a timetable, the
probability of no delay is set to p0 = 1.

After reading the input data and initializing required variables, the algorithm in
its current form performs three separate scheduling phases for each point in time,
which will be explained in more detail below: 1) scheduling of vertices, 2) edges and
3) passing requests.

In the first step, the scheduling of vertices, all trains that are planned to enter an
OCP at the current time will be scheduled. For that, the simulation iterates over all
vertices and checks the incoming edges for occupying trains that are ready and waiting
to enter the current node. If the capacity of the respective vertex is sufficient, the
trains are scheduled to leave the edge and enter the vertex with probability pleave =
1.0. If the current demand is higher than the capacity, e.g. more trains want to
enter than physically possible at that time, the simulation calculates a probability
pstay ≤ 1.0 with which the train can’t enter and thus has to remain at its current
infrastructure element. The probability p′ for entering the respective vertex is then
determined by the complement of pstay, ergo pleave = 1−pstay. The total probability
p′ with which the train is at the next waypoint of its itinerary is therefore determined
by the product of its probability p with which it currently resides at the given element
and the probability with which it can leave pleave: p′ = p · pleave. The same holds
for the probability that the train can’t leave its current position and needs to be
reconsidered at the next possible time p′ = p ·pstay = p · (1−pleave). As for scheduling
the edges, this is done analogously. For each edge in the infrastructure graph, the
source vertices are checked for trains scheduled to enter the edge at the given time
and the probability for entering is again determined by the available capacity and
overall demand.

After these two phases, we have to address an edge case: as we are currently
inspecting discrete time steps, there is a fixed resolution (one minute at the moment)
with which the scheduling is done. Therefore, it might occur that trains pass multiple
infrastructure elements within the same time step, which refer to as passing requests.
If such a case occurs at the given point in time, we have to schedule all remaining
stops on the respective train’s itinerary until the next point in time would be reached.

These three scheduling steps are repeated for all points within the defined time
horizon T. Once the computations are completed, the simulation performs some
concluding analyses, e. g. the number of expected delayed trains.

Datasets. To run the simulation algorithms, different datasets were used. The
original, raw real-world data was provided by the Deutsche Bahn to the supervisors of
this thesis and was handed down to the author in a preprocessed way. For each dataset
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Algorithm 1: Simplified and abbreviated simulation algorithm in pseudo-
code.
/* Initialize variables, prepare data */
initializeSimulation();
/* Schedule Requests for each time step */
for Time t ∈ T do

passingRequests ← ∅;
/* First, schedule the vertices */
for Vertex v ∈ V do

requests ← ∅;
/* Gather all requests */
for Edge e ∈ E+(v) do

for Train τ at e do
if epdt(τ) ≤ t then

requests ← requests ∪ {τ};

for Train τ ∈ requests do
if cap(v) < |requests| then

/* Schedule the request of train τ,
probability of entering p′ = p · pleave with
pleave ≤ 1, remaining at the incoming edge
with p′ = p · (1− pleave) */

else
/* Schedule the request of train t,

probability of entering p′ = p. If arrival
at next waypoint is t: add τ to
passingRequests. */

/* Second, schedule the edges */
for Edge e = (u, v) ∈ E do

requests ← ∅;
/* Gather all requests */
for Train τ at u do

if epdt(τ, v) ≤ t then
requests ← requests ∪ τ ;

for Train τ ∈ requests do
if cap(v) < |requests| then

/* Schedule the request of train τ,
probability of entering p′ = p · pleave with
pleave ≤ 1, remaining at the source vertex
with p′ = p · (1− pleave) */

else
/* Schedule the request of train t,

probability of entering p′ = p. If arrival
at next waypoint is t: add τ to
passingRequests. */

/* Third, schedule passing requests, i.e. trains that
pass multiple waypoints in the current timestep */

for Train τ ∈ passingRequests do
/* Repeat scheduling of vertices and edges along

the timed path for all waypoints where eptd ≤ t */

/* Cleanup and evaluate */
evaluate();
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Vertices Edges
Dataset

D 16306 35270
N 2646 5622
M + N 4534 9674
N + SO 5146 11028
M + W + SW 6635 14510

Table 2.1: Statistical information about the infrastructure size of the respective com-
binations of infrastructure graph datasets (North/East/etc.).

the time window was set between TMIN = 0 (00:00h / 12:00am) and TMAX = 1620
(03:00h / 03:00am of the next day) for the simulation. However, each timetable only
contained a fixed cross-section with duration d within the given interval chosen by
the supervisors. Furthermore, the complete dataset spans the entirety of Germany
and is noted by either D. The Deutsche Bahn divides this network into sub-networks
identified by the managing organizational unit. These are: North (N), East (O),
South-East (SO), South (S), South-West (SW), West (W) and Center (M). For each
of the above mentioned time windows, a selected combination of those subnets was
chosen for inspection. A summary of the respective datasets can be found in Table 2.1
showing the size of the infrastructure networks and Table 2.2 depicting the respective
timetable information.

As already mentioned in the introductory chapter, the algorithm has reached a
working state, but only works in a single-threaded, sequential mode. As this poten-
tially misses performance on modern computer hardware, the goal of this thesis was
to parallelize the algorithm to possibly leverage the full potential of the simulation

2.3 Technical Background

After learning about related simulations and the specifics of the simulation used in
this thesis, we want to focus on the technical background. In the following, a brief
refresher on multi-threading, concurrency and parallelism in particular will be given.

2.3.1 Concurrency and Parallelism

Although the two words concurrency and parallelism are often mentioned in the same
context and sometimes even used interchangeably, strictly speaking, those are two
different things. While both concepts are considering performing tasks simultaneously
the ideas are slightly different. Both, Williams [35] and Reinders et al. [28] stress
this difference.

Concurrency, or concurrent execution describes the principle of two or more tasks
being divided or separated and running alongside each other, hence concurrently.
For this, only one executor, i.e. execution thread, is required. Concurrency can for
example be achieved by letting tasks each run for a small amount of time, rapidly
switching between them, hence often referred to as task switching. If this happens
fast enough, it appears as if the operations are running at the exact same time, whilst
they actually are performed sequentially. The term concurrency is often used to stress
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From Until Trains Avg. Stops
Dataset per Train

1h/D

08:00 09:00

5450 20.1
1h/N 702 18.8
1h/N_M 1450 17.9
1h/N_SO 1394 17.9
1h/W_M_SW 2629 18.9
2h/D

08:00 10:00

8020 26.7
2h/M_W_SW 3885 24.8
2h/N 1011 25.8
2h/N_M 2223 22.7
3h/D

08:00 11:00

10511 30.1
3h/M_W_SW 5103 27.8
3h/N 1402 28.5
3h/N_M 2956 25.6
4h/D

08:00 12:00

12993 32.1
4h/M_W_SW 6366 29.3
4h/N 1723 31.1
4h/N_M 3644 27.7
5d/D

12:00 17:00

16966 33.3
5d/N 2370 35.0
5d/N_M 4883 30.4
5d/N_SO 4599 31.3
5d/W_M_SW 8289 30.5
5h/D

08:00 13:00

15744 33.2
5h/M_W_SW 7726 30.4
5h/N 2021 33.4
5h/N_M 4366 29.1

Table 2.2: Statistical information about the various datasets used for testing the
simulation. Dataset grouped by selected duration and divided into different sub-
networks (North/East/etc.). Times in ISO8601 (24h) format.
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the logical separation of certain aspects, e. g. the separation of the UI and the actual
calculation tasks.

Meanwhile, parallelism refers to the concept that tasks may indeed be run at
the same time. This can only be realized when multiple executors, i.e. threads, are
available. To highlight the optimal utilization of the underlying hardware and thus
achieving better performance in certain aspects of a process, e.g. faster processing of
large amounts of data, the term parallelism or parallel execution is often used.

2.3.2 Technological Advancements

In recent years, computer processors have become very powerful, even in portable
devices such as laptops and smartphones. Especially the processors in these consumer
and professional devices nowadays seldomly contain only one processing core. The
latest releases of AMD and Intel, the two biggest chip producers for desktop and
server processors, are offering CPUs with core counts ranging from two up to 64 [16,
17, 2]. In professional equipment such as server-grade processors, these numbers may
even be higher. Furthermore, for server hardware, it is common to host multiple CPUs
on one board, offering an even higher number of combined usable cores. Besides that,
most CPU manufacturers have additionally implemented technologies to not only
allow the simultaneous execution of one single task, or thread to be more precise,
per core but multiple. This is often achieved by utilizing task switching, i. e. rapidly
switching between the active threads, letting them run in a quasi-parallel manner.
These techniques combined offer a way to handle multiple operations at a time, which
hence allow for parallel concurrent execution of tasks. A graphical example of these
concepts can be found in Figure 2.1. This technological foundation offers significant
potential for large-scale applications, such as simulations. If optimized for it, they
might benefit from the parallel compute power and increase their performance and
therewith also their runtime.

Task A Task B

Single Core

Core 

Core 1

Core 2

Dual Core

Figure 2.1: Example of concurrency via task switching on a single core and real
parallelism using multiple cores. Adapted from [35].
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2.3.3 Technical Details

To make use of the multiple cores and threads of modern CPUs, the respective ap-
plication needs to be optimized for it. There are multiple ways to achieve this: using
threads only or concurrent processes. Each one has its own advantages and disadvan-
tages, which we want to briefly highlight alongside the functionality in the following
paragraphs.

Threads

Threads can relatively easily be implemented and thus offer a quick way to get started
with parallel computing leveraging the multi-threading capabilities of modern CPUs.

To visualize this concept, imagine a robot that has to perform a certain task, for
example counting the number of marbles in a bowl. A thread can here be seen as an
arm of the robot. Each arm or thread is capable of performing its task independently
from the others but is controlled by the robot and all arms share its memory.

To formalize it: each thread is associated with exactly one parent process with
which it shares its memory and I/O, i.e. it runs in the same context as its parent. This
principle is depicted in Figure 2.2a. Therefore, the creation of threads is very fast, as
no program data needs to be copied. Furthermore, operating on the same data is easily
possible. This however means, strict access control for the shared data needs to be
implemented, as data corruption may lead to unwanted results and behaviour or cause
the entire application to crash. In the worst case, the corruption is not noticed and
leads to corrupt results. To mitigate this, access synchronization can and should be
used when simultaneously modifying the data. Typically, access synchronization for
shared resources can be managed through mutual exclusive read/write access control.
This principle is often referred to as mutex. A mutex can be seen as a lock that can
be exclusively obtained by one single thread. If other active threads want to access
this lock while it is held by another thread, they have to wait until it is released
again. With this, it can be ensured that no two threads are simultaneously altering
a critical data element. Computational results are being shared within the current
application context. This, all in all, leads to a quick and efficient way for enabling
parallel computing with only a small overhead and re-structuration of the code.

Multiple Processes

The second way to add parallelization to a program is through the use of multiple
processes. To again visualize this concept, we return to the analogy from above: a
process can be seen as the robot itself, with all arms and accessories attached. In
order to help the initial robot, we can assign another robot the task of counting the
marbles as well. Now both robots can work on this task. However, they do not share
the same memory and work completely separate from each other. Thus, the marbles
need to be shared and the total amount of marbles can for example be divided by two
so that each robot counts its separate portion. In the end, both need to communicate
their results to each other, so that the total amount is correct.

More formally, a process can create another process, a so-called child-process, to
help with a certain task. The child-processes each have their own context, meaning
they generally do not share the memory of the parent process. Hence it is crucial
to plan in advance what process needs which data. One could simply hand over a
complete copy of the parent process’ data, but this might consume available RAM fast



2.3. Technical Background 15

Process

Shared Process Memory

Thread 1

Thread 2

(a) Threads are sub-tasks within the cur-
rent process’ context and share its mem-
ory. Adapted from [35].

Process A

Process Memory

Thread

Operating System

Process B

Process Memory

Thread

Inter-Process 
Communication

(b) Processes are considered their own en-
tities and do not share the same memory.
Communication needs to be done through
the host OS. Adapted from [35].

Figure 2.2: Comparison between threads and processes with regard to their runtime
context.

or cause inconsistencies as possible changes need to be communicated to all processes,
e g. to avoid double processing. Additionally, as memory on consumer machines is
often limited, this may pose a problem, however on larger computing clusters, this
is less of a concern. Nevertheless, the data to be processed by the single processes
needs to be selected in advance, allocated and handed over to the respective processes.
Due to this memory separation, the danger of data corruption is low to non-existing,
which leads to only few synchronization code that needs to be accounted for. However,
communication between processes, the inter-process communication, is very costly as
it needs to be done through the operating system (OS). Due to the involvement of
the OS, it generally takes more time to instantiate and communicate, introducing a
significant overhead here. The concept of processes can be found in Figure 2.2b.

To conclude, the use of multiple processes may lead to better performance, espe-
cially on larger computing machines, such as clusters, with more than one CPU.

The probabilistic railway timetable simulation, that builds the foundation of this
theses, is written in C++, which added native support for multi-threading with tech-
nical specifications released in the standard C++11 [36, 35] with further refinements in
C++14 and C++17 [35]. However, there are also third-party solutions bringing other
implementations of multi-threading to C++ , which were often used to add support
for multi-threading and multiprocessing prior to the release of the aforementioned
versions. When working with processes, however, the C++ standard so far does not
define a way to natively manage the internal processes as it offers with threads [35].
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This means, that one needs to either write the platform-specific management code on
its own or rely on already existing implementations that are not part of the official
standard. Due to the limited scope of this thesis, I focussed on the implementation
of parallelism in the simulation algorithm with threads as the C++standards offer an
comprehensive way for implementing parallelization on consumer machines.

2.3.4 Related Work on Parallelization
In the following, we want to address the literature on parallelization of algorithms
or simulations in particular. After a literature review, it became obvious that the
comparability and relevance to the topic of this thesis is hard to find, especially with
the parallelization of this particular simulation in mind. This is mostly due to the
fact that the way how an algorithm can be parallelized is heavily dependant on the
algorithm itself and how it is designed on the one hand and on the other hand the
programming language and partly also the operating system. There is no universal
way, how parallelization has to be implemented. Furthermore, since the introduction
of native multi-threading in the C++11 standard in 2011, the way this can be done in
C++ , in particular, has changed drastically in recent years. While some approaches
might be similar enough to take advantage of the methods or findings, in this partic-
ular case and to the best of my knowledge, this was not applicable and the relevance
was found to be too minute. This too highlights the relevance of this thesis. The
most helpful information, at least to me, was found in the literature on parallelization
in general, for example in Williams [35] and Ljumovic [24]. Here, caveats and gen-
eral advice were given to look out for when implementing parallelism. Furthermore,
Reinders et al. [28] and Fernández-Villaverde and Valencia [12] also offered
some insights but mainly focussed on specific implementations of parallel computing
in C++.

For the interested reader, I recommend to start with the following literature:

• Danelutto et al. [7]

• REPARA Project [29]

• Sah and Vaidya [31]

• Jahr, Gerdes and Ungerer [19]

• Liang, Humos and Pei [23]

• HaCon [14]

2.4 Measuring Runtime Changes
As the goal of this thesis is to bring parallelization to the existing simulation algorithm,
this will change the runtimes of the algorithm inevitably. Hopefully, these changes
will provide some sort of speed up. To reliably compare the measured runtimes with
each other and put them into context, we define the following metrics. These are
adapted from [1].

Definition 2.4.1 (Measured Speed-Up using Threads). Let N be the number of
threads being used, tB the average runtime for the single-threaded baseline and tN the
average runtime using N threads, then
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SN = tB/tN

the speed-up gained from executing the current program concurrently with N threads.
The value can be interpreted as "How many multi-threaded runs can be made in the
time the baseline run takes?". Hence, the value should be SN > 1 and optimally
SN � 1. If SN = 1 or falls below 1, it indicates that the multi-threaded variant is
slower.

The gain in runtime speed-up is limited through an upper bound. Obviously, there
is no magic way to increase the speed-up indefinitely. As already verbally described
by Amdahl [3]1 in 1967, the maximum achievable speed-up of a program that can
execute p % of its code in parallel is bounded by

Smax =
1

1− p
.

A second aspect to consider is the difference in runtime between the not explicitly
threaded baseline version and a version explicitly using multi-threading but only one
thread. This allows measuring the overhead introduced in bookkeeping to explicitly
allow multi-threading to be used. This can be seen as the work efficiency, as defined
by [1].

Definition 2.4.2 (Work Efficiency). Let tB be the average runtime for the single-
threaded baseline and t1 the average runtime using the threaded version with only one
thread, then

r = t1/tB

is the efficiency of the threaded version compared to the baseline. The value can be
interpreted as "How much overhead is introduced when using the current threaded
variant?". Hence, the value should be optimally r = 1, meaning no overhead is
introduced. The larger the value gets, the more overhead is introduced.

1Amdahl only verbally mentioned this limit. In the following, we will use the generally accepted
mathematical definition as it for example presented in Reinders et al. [28]. A visual explanation
can be found by Kipfer in [21].
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Chapter 3

Approach 1: Basic
Multi-Threading

In the following chapters, various approaches for parallelizing the Probabilistic Rail-
way Timetable Simulation by Haehn et al. [15] that have been explored will be
discussed. To start, in this chapter we will explain the initial approach, show its
implementation details and analyze the impact on the simulation runtime. From the
results, further possible improvements will be deducted that potentially further boost
the performance of the simulation, which subsequently will then be elucidated in the
next chapters.

Like it was mentioned in the previous chapter, threads offer a lightweight way to
make use of parallel computing on modern computer hardware. As the implemen-
tation of threads was facilitated in C++ in the recent versions 11 to 17 of the C++

standard by the introduction of a standardized programming interface, it seemed a
good point to start. Therefore, firstly this initial and very basic approach will be
explained, which will then later be improved according to the respective results and
insights gained from the implementation process and subsequent analysis.

As a starting point, a basic extension of the given simulation algorithm was chosen
as a proof-of-concept. As mentioned in the algorithm description in Chapter 2.2, the
simulation follows a fixed and rather intuitive order of operations: each of the vertices
needs to be scheduled first, then edges and lastly passing requests can be scheduled.
The scheduling of vertices moves trains from the incoming edges to the vertices and
scheduling of vertices then transports the trains from the vertices to the corresponding
edges. Through this order of operations, it is guaranteed that all trains are considered
correctly as trains are always considered in the correct way and cannot get stuck
or misplaced. Therefore, the integrity of all states is given. Therefore, changing
this order would require rewriting some major parts of the underlying structure and
careful planning and consideration as well to further ensure a valid simulation. Hence,
to start, we wanted to investigate the possibilities within the current implementation
and began the parallelization of these three scheduling loops. That is, threads were
added to handle the scheduling of vertices and edges in the main iteration through
the respective time steps. For this, the vertices were divided in up to n equal-sized
chunks, where n is the number of simultaneous threads to be used. The number can
be adjusted by the user, but is limited to a maximum by the system: a system can
only execute a certain number of threads in parallel. While it is usually possible
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1 2 3 4 5 6
A

B

C

D

E F H

G

(a) Initial exemplary infrastructure
graph.

1 2 3 4 5 6
A C

D

E F H

G

B

(b) Exemplary infrastructure graph di-
vided into two chunks for vertices and
edges each as indicated by the differing
colours/markings.

Figure 3.1: Visualization of infrastructure network split into two chunks to be used
with two threads.

to define more threads than this number, no more threads can be executed by the
system parallelly which reduces the efficiency with regard to the runtime. Hence, the
system maximum was set as a possible maximum for the simulation. This maximal
number was obtained through the std::thread::hardware_concurrency()1

directive. The division of infrastructure elements, i. e. the vertices and edges of the
underlying graph, into the aforementioned chunks did not follow any prioritization in
this attempt and was handled in the order of the respective IDs. Formally speaking,
let V = {v1, ..., vi} and E = {e1, ..., ej} be the set of vertices and edges respectively.
Furthermore, let n be the number of chosen chunks. Then V and E are split into n
equal-sized subsets each: Vk = {v1+(k−1)di/ne, ..., vkdi/ne}, k ∈ [1, n], i ∈ N, v ∈ V or
Ek′ = {e1+(k′−1)dj/ne, ..., vk′dj/ne}, k′ ∈ [1, n], j ∈ N], e ∈ E. It can be seen that the
resulting chunks are pairwise disjunct, i. e. Vk ∩ Vl = ∅ for all k, l ∈ [1, i], k 6= l and
analogously Ek′ ∩El′ = ∅ for all k′, l′ ∈ [1, j], k′ 6= l′. This splitting is visualized in an
exemplary manner in Figure 3.1. In the given example, two chunks are used (n = 2).
The six vertices (i = 6) are ordered by their ID (here 1-6) and split into two groups
of three, where the first three vertices (1-3) and last three (4-6) are each grouped
together. Similarly, from the eight edges (j = 8), which here are labelled from A-H
for a better distinction to the vertices, the first four edges (A-D) and last four edges
(E-F) are each grouped in the same chunk.

As for the changes in the algorithm, little was modified in this first approach.
When threading was enabled by the user, the loops scheduling the vertices and edges
in each time step were substituted by a threaded variant. This variant assigned
the previously created threads to the respective chunks to work on in parallel. Each
stage, i. e. scheduling of edges is then executed subsequently by the respective chunk’s
thread. Ergo, only the scheduling within a stage at a given time step is done in parallel.

As threads work on the exact same shared data as the parent process, measures
against simultaneous access and modification need to be put into place, preventing
data corruption, inconsistencies or erroneous results. This was realized with the
help of C++ std::mutex2 and std::unique_lock3. The latter is a standard
wrapper implementation to facilitate the management of the underlying mutexes. A
central mutex was created and whenever a variable that is used by multiple threads

1see https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
(visited last on 16. April 2021)

2see https://en.cppreference.com/w/cpp/thread/mutex (last accessed on 16. April
2021)

3see https://en.cppreference.com/w/cpp/thread/unique_lock (last accessed on 16.
April 2021)

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/unique_lock
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and therefore might be modified simultaneously was accessed, That is, when reading
or modifying it, the mutex was locked using the unique_lock. This ensures the
consistency of the data along all threads.

As can easily be seen, due to the waiting for each stage to finish before continuing
and the use of only one mutex, this approach by far does not nearly exhaust the full
potential of the available hardware. However, as we approached the problem in an
iterative way, the goal in this first attempt was to achieve a first working parallelized
prototype which then can be improved on in further iterations. The implementation-
specific details will now be explained in the following section.

3.1 Implementation

As already indicated above, there is no real limit to how many threads can be cre-
ated by a program, given enough physical resources are available. Nevertheless, due
to hardware limitations, a system is only capable of handling a certain amount of
threads at a time in parallel. If more threads are created than the system can execute
concurrently, other threads need to be halted or extensive task switching needs to be
applied which can diminish any improvements or even worsen the overall runtime.
Depending on various circumstances, it may also be beneficial to not use the maximal
number of allowed concurrent threads but only a restricted subset as it may yield
even better performance, e. g. due to better load distribution. For one, especially
on low power hardware such as laptops, but also on some desktop CPUs the speed
with which a core works, depends on the current load. If only a few cores, and thus
threads, are used, the CPU can focus all the available power to only those two cores,
allowing for higher boost frequencies. If more cores are used or the entire CPU is
stressed, the total power needs to be distributed to all cores and often the maximal
frequency is lower. This may affect the overall performance. Additionally, it requires
optimization to benefit from more cores as the overhead in preparing the data, as-
signing it to threads, merging the results, etc. may prevail the benefits from running
the tasks in parallel. The maximal number of available concurrent threads is limited
by the CPU and the number of its cores in particular. Each core can process at least
one thread concurrently, however, most processor manufacturers have implemented
further improvements so that, in most cases, up to two threads can be executed on
a single processor core. To make optimal use of threads on a given machine, the
maximal number of concurrent threads should be dynamically received. In C++, this
can be done through the std::thread::hardware_concurrency() directive.
The result is set as the maximal possible threads for the simulation. Furthermore,
an argument switch was implemented to easily specify with how many threads the
simulation shall be run. This was especially done to ease testing and evaluation of the
parallelized application in different configurations. One can pass -t 0 to the com-
piled simulation binary to use the non-threaded base variant, -t n to use n threads
whereas n will automatically be limited to the previously determined maximal possi-
ble number of threads on the current system. To automatically enable the maximally
supported count of threads, n can be set to n = −1.

After knowing how many threads are maximally possible and how many of those
shall be used, the infrastructure network can be divided accordingly into subsets of
infrastructure elements for each thread to handle. In this initial approach, this was
done by dividing the set of vertices and edges into equally-sized chunks. It should be
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noted, that no prioritization or special grouping was applied. The corresponding code
can be seen in Listing 3.1. An exemplary visualization of the splitting was presented
in Figure 3.1.

The chunks were modelled as pairs of Graph::VertexIterator1 or Graph::-
EdgeIterator objects respectively, which represent the start and end of the chunk.
While the chunks could also be stored as lists of vertices or chunks, I found it simpler,
faster and more efficient to save it that way. This is, however, only possible as the
chunks are assigned by the order of the respective element’s ID. As can be seen in the
referred code listing, the division of vertices was relatively straight forward, whereas
the assignment of edges is slightly less elegant. This is due to the fact that the boost
library, which is internally used to model the graph, allows VertexIterators to be
modified by the addition of multiple steps at once whereas EdgeIterators can only be
advanced by one step at a time through addition. Therefore, the edge iterators are
not advanced by addition but by using the C++ advace method for pointers. It can
be seen that the chunks are divided into sized of vertex_chunk_size for vertices
and or edge_chunk_size for the edges, which correspond to the number of vertices
(di/ne) or edges (dj/ne) per chunk rounded to the next higher integer value.

Listing 3.1: Division of vertices and edges into the chunks to be utilized in threads.
1 Graph::VertexIterator vertexIterator, vertexEnd;
2 std::tie(vertexIterator, vertexEnd) = vertices(g);
3

4 Graph::EdgeIterator edgeIterator, edgeEnd, edgeEndChunk;
5 std::tie(edgeIterator, edgeEnd) = edges(g);
6

7

8 for (int thread = 0; thread < threads; thread++) {
9 vertexChunks[thread].first = (thread * vertexChunkSize) + vertexIterator;

10 vertexChunks[thread].second = std::min((((thread + 1) * vertexChunkSize) +
vertexIterator), vertexEnd);

11

12 edgeChunks[thread].first = edgeIterator;
13 advance(edgeIterator, edgeChunkSize);
14

15 // Advance does not check boundaries, use edgeEnd as end if last chunk not
completely full.

16 edgeEndChunk = (thread == (threads - 1)) ? edgeEnd : edgeIterator;
17 edgeChunks[thread].second = edgeEndChunk;
18 }

As the necessary preprocessing and preparations are completed with the chunk
generation, we can now proceed with adjusting the scheduling parts. For each time
step and each stage, the algorithm now assigns each thread the respective chunk.
Within this thread, the iteration over the respective elements, i. e. vertices or edges
is done. Hence, each thread works on only the respective limited subset of the infras-
tructure elements. This implementation can exemplarily be seen for the scheduling of
edges in Listing 3.2, whereas the scheduling of vertices is done analogously and will
be omitted here.

1Iterators are pointer objects, which are used by C++to quickly iterate over a collection. Vertex-
or EdgeIterators, respectively, are special instances of iterators for traversing through the graph
structure used to represent the infrastructure network.
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Listing 3.2: Adjusted edge scheduling for multi-threading.
1 if (using_threads) {
2 for (int thread = 0; thread < threads; thread++) {
3 auto edgeIteratorChunk = edgeChunks[thread].first; // Start of chunk
4 auto edgeEndChunk = edgeChunks[thread].second; // End of chunk
5

6 // Run thread with edges from resp. chunk
7 results.emplace_back(thpool.enqueue(
8 // Lambda function as task description for thread
9 [](auto sim, auto eit_s, auto eit_end, auto timestep) {

10 // For each edge in the chunk,
11 // perfrom scheduling for current time step
12 for (; eit_s != eit_end; ++eit_s) { sim->schedule_edge(*eit_s,

timestep); }
13 },
14 this, (edgeIteratorChunk), (edgeEndChunk), t));
15 }
16

17 // Wait for the threads to finish
18 for (auto && threadResult: results) {
19 threadResult.get();
20 }
21 results.clear();
22 } else {
23 // Schedule the edges conventionally
24

25 Graph::EdgeIterator eit, eend;
26

27 for (std::tie(eit, eend) = edges(g); eit != eend; ++eit) {
28 schedule_edge((*eit), t);
29 }
30 }

To avoid conflicts with simultaneous access and thus possibly corrupting data,
synchronization needs to be put in place. This can be achieved in C++ by using mutex
locks implemented in the standard library std::mutex. Mutexes, an acronym for
mutual exclusion, can be used as locks and thus limiting the access to certain parts of
the data for, as the name suggests, mutual exclusion. This ensures that two threads
that want to access a variable that is used in common cannot do this at the same time.
In the first parallelization attempt, one mutex lock was created and locked, whenever
a write operation to a common, shared variable in the code should be executed.

In an early stage of this initial approach, the threads were created whenever
needed. This was found to introduce an overhead and prolong the runtime due to
the creation and destruction of each thread requiring some system resources. Even-
though the resources needed for the creation are very few, this all in all summed up
to a noticeable difference. Hence, to reduce this overhead to a minimum, a thread
pool was used. The C++ standard does not specify a direct solution for this, which
is why we chose a lightweight external implementation1 for this. This creates a pool
with a fixed number of threads, to which work can be assigned. As long as no work is
assigned, the threads are in a sleeping state and do not consume any resources. Only
then the respective threads start working.

As a further note: the scheduling behaviour of passing requests was not altered at
this point, as it requires more consideration and care to be executed in parallel. This
is due to the fact that passing requests possibly can span a large part of the infrastruc-

1https://github.com/progschj/ThreadPool/blob/master/ThreadPool.h

https://github.com/progschj/ThreadPool/blob/master/ThreadPool.h
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ture network, meaning that chunk borders could be crossed. This, therefore, implies
that the pre-calculated chunks cannot be used in their current form. Additionally, the
passing requests are stored centrally as a vector and the modification or simultaneous
access would be needed to be taken care of. While these issues can be mitigated, this
was not in the scope of this first approach.

3.2 Analysis

After the changes were made, their effect needed to be evaluated in order to see if
they yielded any improvements. To reliably test the algorithm and see differences in
performance when using different amounts of threads, a benchmark tool was written.
This tool can be configured with an input directory containing the datasets to be
tested and the number of runs that should be executed per thread-dataset combina-
tion. For each dataset, all possible number of threads are tested, i. e. starting with
the baseline version then increasing the thread count to be used until the system max-
imum is reached. For each run, the runtime of the simulation algorithm is measured
and noted in a CSV file for further analysis. As for the evaluation, a small Python1,
script was written which loaded the recorded data into a Pandas2 DataFrame for
further analysis. Additionally the run times were plotted using the Seaborn library3

for better visual representation.
For the evaluation, the simulation was run on two distinct machines which repre-

sent relatively recent consumer hardware: a laptop and a regular desktop computer,
the specifications of which can be found in Table 3.1.

Laptop Desktop PC
Property

CPU Intel Core i7 8550U AMD Ryzen 5 3400G
Frequency 1.9-3.0 GHz 2.2-4.0 GHz
Cores/Threads 4/8 4/8
RAM 16 GB 16 GB
Operating System Ubuntu 20.04 via WSL Fedora 33
C++ compiler gcc/g++ 9.3 gcc/g++ 10.2

Table 3.1: System specifications used for testing.

The benchmark then was used to test all the available datasets as presented in
Table 2.2 with thread count combinations, respectively. Each combination was run at
least three times to account for varying system load and to get a relatively constant
and representative measurement. While more samples would be better, due to the
long runtime for all test combinations (over four hours) this was not feasible. However,
for the desktop, it was observed that the variation in runtime typically was very low
supporting the decision. Furthermore, due to the steady results, the desktop computer
will be used as the main reference in the further analysis.

1https://www.python.org/, version 3.9
2https://pandas.pydata.org/, version 1.2.2
3https://seaborn.pydata.org/, version 0.11.1

https://www.python.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
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Visual Results. The measured runtimes from the benchmark were used also to
generate a plot for visual representation. For that, we used Python and Pandas for
reading and managing the recorded runtimes in CSV format and plotted these results
using the scientific plotting library Seaborn. The respective results can be seen in
Figure 3.2. A detailed graph of the 5h datasets is attached in the appendix in Figure
A.1a.

As it can be seen, the improvements gained on the desktop with this approach
are only marginal. In some cases, especially when considering larger and thus longer
running datasets, the runs with two to three threads performed slightly better than
their baseline counterparts “0 Threads”). However, the improvements diminish with
more than three threads and the performance rapidly decreases. This indicates that
a large communication overhead between the threads, extended waiting and/or poor
task distribution is present when more threads are being used.

It can be additionally noted that the test results from the laptop computer have
a much more pronounced curve. Here, no improvements could be found compared to
the baseline runs. This is probably due to the small “slim and light” form factor of the
given device: On the one hand, the device is relatively small and only offers a very
compact cooling solution limiting the overall possible dissipated power. On the other
hand, the specific CPU is a low power U model and furthermore can only make use of
higher boost clocks when one to two cores are utilized. If more cores are stressed, the
total maximal frequency is much lower, which can impact the overall performance.

Figure 3.2a shows the results for the runs on the desktop PC whereas Figure 3.2b
depicts the results for the mobile laptop.

Analytical Results. For the evaluation, we defined the speed-up (see Definition
2.4.1) and efficiency (Definition 2.4.2) in Section 2.4. To measure the efficiency, we
need the runtime of the baseline (original simulation with non-threaded scheduling)
as well as the runtime with only one thread. This allows us to determine the overall
overhead that is introduced by the parallelization, e. g. thread creation, assigning the
chunks and running in threaded mode. Additionally, the overall speed-up shall be
evaluated. For this, we decided to compare the runtime of the respective fastest vari-
ant to the baseline. As we have run each configuration multiple times, we applied the
average to the runtime and used the resulting values for our evaluation. A summary
of these results on the desktop computer can be found in Table 3.2.

As we introduced parallelization, we would hope to find some sort of improvement
with regard to the runtime. However, as we already highlighted previously, in this
approach, we do not expect the runtimes to be significantly faster. This is due to the
rudimentary division in chunks and non-optimal usage of mutexes.

This is reflected in the actual results. As can be seen in the above-mentioned table
and the visual results, the yielded improvements are rather minute: in most of the
cases, the baseline run was the fastest. Only the 2h, 3h and 4h partially recorded
some speed-ups.

Speed-Up. As already visible from the graphs, the speed-up in some cases is a
slowdown. To put it into numbers, the best performing run from the 1h/D dataset
for example is used for the formula defined in Definition 2.4.1. Or to be precise:
the baseline run was the fastest with an average runtime of 85.6 seconds, the second-
fastest was with two threads and a runtime of 87.6 seconds. The runs with one thread
averaged 98 seconds.
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Baseline 1-Thread Fastest Speed-up Efficiency Best Thread
Dataset [s] [s] [s]

1h/D 85.558 98.069 87.617 0.976 1.146 2
1h/N 12.845 16.217 13.452 0.955 1.263 2
1h/N_M 26.762 28.318 27.148 0.986 1.058 5
1h/N_SO 30.332 31.903 30.268 1.002 1.052 5
1h/W_M_SW 38.144 40.871 39.571 0.964 1.071 5
2h/D 87.281 105.007 84.867 1.028 1.203 2
2h/M_W_SW 35.128 42.625 34.283 1.025 1.213 2
2h/N 13.085 15.533 12.643 1.035 1.187 2
2h/N_M 23.276 27.373 22.793 1.021 1.176 2
3h/D 93.496 99.491 90.178 1.037 1.064 2
3h/M_W_SW 39.644 42.509 36.991 1.072 1.072 2
4h/D 96.851 114.677 90.811 1.067 1.184 2
4h/M_W_SW 38.241 45.059 36.292 1.054 1.178 2
4h/N 14.927 16.025 15.369 0.971 1.074 5
4h/N_M 26.977 27.778 27.778 0.971 1.030 1
5h/D 106.378 116.535 104.272 1.02 1.095 2
5h/M_W_SW 43.081 46.591 44.689 0.964 1.081 4
5h/N 14.588 15.902 14.117 1.033 1.090 2
5h/N_M 26.369 28.41 28.026 0.941 1.077 2

Max 106.378 116.535 104.272 1.072 1.263 5.0
Min 12.845 15.533 12.643 0.941 1.030 1.0
Mean 44.893 50.468 44.272 1.006 1.122 2.684

Table 3.2: Benchmark results on the desktop PC for the various datasets. Average
values, runtimes in seconds.

tB = 85.6s (average baseline)
t2 = 87.6s (average runtime with N = 2 threads)
S2 = tB/t2 ≈ 0.977%

This indicates that the fastest runs of the threaded variant on this particular
dataset on average are about 2.3% slower for this particular dataset. This general
behaviour seems to be overall present in the other datasets, as can be seen in the Speed-
up column of Table 3.2. While some are faster, others are slower like the example
above. This reflects in the mean value of approximately 1.0 and indicates that the
best-threaded approaches are, on average, as fast as the baseline. Furthermore, the
maximally achieved speed-up was with a value of 1.07 relatively insignificant. This
demonstrates that improvements and optimizations are needed.

Efficiency. A similar behaviour is noticeable when inspecting efficiency as defined
in Definition 2.4.2. Here too, this approach fared relatively poorly. To take the 1h/D
dataset as example again: the execution of the threaded variant with only one thread
took 98.0 seconds whereas the baseline was completed in 85.6 seconds on average.
This results in an efficiency value of:
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tB = 85.6s (average baseline)
t1 = 98.0s (average of parallel w/ 1 thread)
SN = t1/tB ≈ 1.145

This means that about 15% overhead was introduced in the threaded variant. This
is quite a lot and also needs to be improved on.

When comparing this to the other values observed and shown in column Efficiency
of Table 3.2, for every dataset this value is greater than 1. The average value for all
datasets is 1.122 and approximately aligns with the example calculation resulting in
a general overhead of roughly 12%.

Profiling. To further assess possible bottlenecks and find long-lasting operations
are used within the application, a profiler was used. For this, the included profiler
of the selected IDE (CLion) was chosen, which generated and interactively processed
the results of the Linux tool Perf.

After running the profiler on the 5h/D dataset, which was chosen for its size and
performance results, it can be seen that about 22% of the runtime was spent locking
and unlocking the mutex locks. This is a relatively large share and indicates why the
performance was sub-par. It was additionally noted, that variables containing statis-
tical information were frequently accessed. As these necessarily need to be guarded
for simultaneous access to ensure correctness, these variable changes are commuta-
tive meaning that the order in which the changes are applied does not matter. This,
therefore, is to be investigated for further improvements.

Furthermore, about 30% of the time was spend merging and 20% unblocking. The
former is especially interesting as only a few merges are actually made, indicating pos-
sible improvements for the actual simulation algorithm, which however is not within
the scope of this thesis.

Learnings. In the results and evaluation presented above, it was shown, that the
algorithm indeed can be parallelized as envisioned. However, it is obvious that the
current implementation is far from efficient or fast and currently introduces more
overhead as it provides speed-up. From the profiling results, I concluded that at the
moment much time is spend locking and waiting for the write-lock to be obtained.

3.3 Summary
In this first approach, the simulation algorithm modified to support basic multi-
threading. This allowed the simulation to schedule part of its code in parallel. How-
ever, the analysis has revealed some discrepancies between the laptop and desktop
computer. While the desktop noticed some minor improvements, the laptop could not
improve the runtime at all. In this first iteration, nevertheless, we were able to show
that the simulation indeed can be parallelized. The parallelization in fact showed
already some minor improvement with much headroom in future iterations.
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(a) Runtimes on the desktop computer.

(b) Runtimes on the laptop computer. Note: Due to poor performance, only one run for
each thread/dataset run.

Figure 3.2: Runtimes of the initial approach with various datasets for differing thread
counts.



Chapter 4

Approach 2: Separated
Statistics

The evaluation of the initial parallelization attempt revealed one main issue that
influenced the runtimes: long waiting for the mutual exclusive access when entering
critical sections, which was aggravated by a large amount of statistic write operations
requiring said exclusive access. The first part of this issue, i. e. the long waiting times
to obtain a lock is not particularly striking as all write requests were locked by only
one available lock regardless of what was written to. This can be prevented or at
least reduced by locking logically independent variables separately. That is, if two
variables do not share any logical connection and are independent of each other, these
can be locked by separate mutexes to indeed further guarantee single simultaneous
access but also allow for access of the separate variables. This is implemented in this
approach.

Furthermore, in the initial approach, we noticed that there was a large number
of write operations to statistics variables. While these are not specific to the paral-
lelization, they nevertheless are important for the simulation algorithm itself. These
variables contain, as the name suggests, statistical information about the current
state of the simulation such as a number of scheduled vertices and edges or waiting
trains. So as these statistics are mostly counters or variables that are computed by
just simple addition or multiplication. This can be leveraged to an advantage as these
mathematical operations are commutative, i. e. the order does not matter provided
operators are not mixed together. As the latter was not the case, we decided to move
the modification of the statistics variables into the context of the thread. That is,
each thread has a separate copy of the statistics variables and only modifies this par-
ticular instance. Once the simulation is finished, the separate individual instances can
simply be merged together. This concept was realized by creating a Statistics
class, which takes care of all modification operations. It also handles the final merge
with the other instances. Each thread is associated with one instance of said class.

This change is depicted in Figure 4.1. Each thread uses a separate Statistics class
instance to keep track of changes done by local scheduling operations, here shown
as Task. Once the simulation concludes, the separated statistics are merged into a
central one, which then is used for further evaluation.
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Figure 4.1: Separated Statistics. Each thread uses a separte instance for scheduling
(Tasks). Once completed, merged into central object for evaluation.

4.1 Implementation

The first major implementation change was the introduction of the Statistics
class. To realize this, a class was created and all variables that contained statistical
information—variables with the statistics_-prefix—were migrated into this class
as public members. From here, two separate experiments were made: one where
the std::vector data types were kept the same and another where some of these
were exchanged with std::map types. The later experiment was conducted with
the reasoning that a thread would not visit all available vertices and edges as the
graph was split into the previously introduced chunks. Furthermore, some updates
of the statistic variables are made when an actual train change occurs. Hence when
in a chunk only a part of the vertices observe changes, as some tracks or vertices are
not used in the current timetable, the resulting vector would be filled only sparsely.
Therefore, to save some memory, maps were used to only save the relevant information
on the elements that the thread visits. However, accessing and modifying these maps
introduces an overhead as the internal structure is very different. This means, in some
circumstances, this model change may not be beneficial.

After running some tests with both experimental versions implemented, it was
noted, that the differences for small datasets, i. e. small graph and short timetable
were not significant. However, for larger datasets with a lot of trains and a large
network, the differences were very pronounced: for example, when comparing both
implementations on the 5h/D dataset, the vector-approach used up 9.3GiB of mem-
ory, whereas the map-approach only used 350-470 MiB of memory while performing
the simulation with 8 threads. This is a difference of about 20% to 27%. While run-
ning this was not a problem on the present hardware yet, for an even larger dataset
this might quickly become an issue. Furthermore, the runtimes of the vector approach
were slightly longer. This was due to a significantly prolonged merging time (0.03s for
map, 13s for vector). This is probably due to a non-optimized merge for the vector
variant and may be improved. On the other hand, it needs to be noted, that the
map variant introduced slightly longer runtimes for the evaluation part. However,
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this can also probably be optimized; for example, by converting back the map to a
vector based data-structure.

Because of the significantly lower memory usage and no significant changes in
runtime, I decided to pursue the map variant in the further implementation.

As the separate instances need to be joined in the end to result in conclusive
overall numbers, a class method was implemented that takes care of this task. Said
join method works by adding the respective values from one instance to another one.

The statistics instances are generated during the initialization of the simulation.
Each thread is then associated with one of those instances to not mix them up. Fur-
ther, all locations in the code where the former statistics variables were accessed
needed to be changed. Therefore, most methods received an additional function pa-
rameter to hand over the correct instance/object. Every former access to the variables
was then changed to access to the respective variables within the instances. Once the
simulation steps concluded, the individual thread objects were merged to a central
one with the implemented joining method for further processing and evaluation.

The second change was the introduction of separate locks for all other, non-
statistical variables. With this, the individual access can be controlled precisely
and threads that want to read or write to two independent variables do not need
to wait for each other. The declarations can be seen in Listing 4.1. As the inclusion
of entire code segments would exceed the scope and readability of this thesis, only
some small exemplary uses are shown in Listing 4.2. It can be seen, that the mutex
locks were implemented using std::shared_mutex objects, which also allow being
used for synchronized read access. That is, the lock can be used in a multiple-read,
single-write configuration, meaning that before reading a non-blocking lock can be
acquired by multiple instances, however, when write access is needed, all other read
and write locks need to be returned before the continuation. This ensures that data
stays consistent if read and write operations would occur at the same time.

It should be noted that the way the tasks are scheduled has not changed compared
to the approach described in Chapter 3.

Listing 4.1: Summary of used shared mutex locks.
1 std::shared_mutex mutex_shared_general; // For general access
2 std::shared_mutex mutex_shared_reqs; // For request handling
3 std::shared_mutex mutex_shared_caps; // For capacity calculations
4 std::shared_mutex mutex_shared_blocked; // For blocking trains
5 std::shared_mutex mutex_shared_at_element; // For residing trains at element
6 std::shared_mutex mutex_shared_element_to_consider; // For mods on which

train to consider next

Listing 4.2: Unique write lock to specifically reserve a variable for write access.
1 {
2 // Get unique access to shared lock for exclusive write
3 std::unique_lock uniqueLock(mutex_shared_at_element);
4

5 // the respective Occupier at the current infrastructure element
6 auto it = std::find(atCurrent.begin(), atCurrent.end(), Occupier(r.type, r.

trainID, r.j, r.epdt, r.p));
7 assert(it != atCurrent.end());
8

9 // Delete current state of blocker
10 atCurrent.erase(it);
11 }
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4.2 Analysis

Like in the previous chapter, this revision was tested on the same two devices as
before with the same benchmark file. This time, mostly only two runs were made as
the results appeared to be already adequately stable. However, similarly as in the
previous approach the results from the mobile computer are overall less consistent.
We will therefore focus on the results of the desktop PC in favour of compactness and
consistency.

Visual Results. Like it was done in the previous chapter, the data was processed
with the Python script using Pandas and Seaborn. The results can be found in Figure
4.2. Like before, a detailed graph of the 5h datasets can be found in the appendix in
Figure A.1b.

When inspecting the results of the desktop PC, one can see a clear but small im-
provement in runtime with more than two threads. However, the overhead introduced
by this approach can be seen by the large bump when one thread is used, compared
to the baseline results. It can additionally be noted that the threaded runtimes after
the initial overhead are relatively constant and do not change much. This is where
the differences of the mobile CPU become clear. While the initial behaviour is sim-
ilar and also shows some speed-up compared to the baseline results, this advantage
quickly deteriorates and with an increasing thread count, so does the overall runtime.
This phenomenon is more pronounced with the larger datasets when compared to
the smaller ones. These results highlight the differences of the respective CPUs and
show that the laptop seems to be strongly limited in multi-threaded performance,
probably due to its low power target. Furthermore, there are multiple outliers in the
graphs of the laptop. This might be due to temporary power or thermal constraints
or other applications that performed some tasks in the background, which impact the
performance on the laptop severely.

Analytical Results. After the visual representation already provided some initial
clues, we want to inspect the speed-up and efficiency of the new approach. As we have
already observed in the previous attempt and the graphical analysis above, the laptop
computer provides much less stable results. Therefore, we focussed on the results of
the desktop PC for which the resulting runtimes can be found in an averaged form in
the following Table 4.1 grouped by dataset.

When inspecting the measured runtimes above, the observations of the visual
analysis can be confirmed. We see, that in many cases, the run using all available
eight threads was the fastest one (see column Best Thread) and for every dataset, a
threaded variant performed better than the non-threaded baseline. This is especially
the case for the datasets with lower train count (as defined by the observed duration,
see Table 2.2). This resulted in an overall speed-up.

Speed-Up. As can be seen in Table 4.1 and the visual evaluation, the runtimes
of the larger datasets with regard to timetable size and hence train count improved
with each new thread until at total of four threads were used. Afterwards, no further
significant gain could be observed. For the exemplary speed-up calculation, we want
to compare the best result to the baseline of the 1h/D dataset as done for the previous
attempt in order to receive a best-case value for this approach. Hence, we take the
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(a) Runtimes on the desktop computer.

(b) Runtimes on the laptop computer.

Figure 4.2: Runtimes of the Separated Statistics approach with various datasets for
differing thread counts.
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Baseline 1-Thread Fastest Speed-up Efficiency Best Thread
Dataset [s] [s] [s]

1h/D 79.090 96.341 62.669 1.262 1.218 4
1h/N 14.208 18.076 11.123 1.277 1.272 8
1h/N_M 24.520 28.941 18.506 1.325 1.180 8
1h/N_SO 30.343 34.172 20.654 1.469 1.126 8
1h/W_M_SW 39.889 45.453 26.488 1.506 1.139 4
2h/D 86.690 102.599 65.998 1.314 1.184 4
2h/M_W_SW 43.939 48.37 28.331 1.551 1.101 7
2h/N 14.947 18.828 11.696 1.278 1.260 8
2h/N_M 26.178 30.581 19.354 1.353 1.168 8
3h/D 85.883 102.388 68.753 1.249 1.192 4
3h/M_W_SW 47.485 52.487 31.002 1.532 1.105 8
3h/N 16.133 19.97 12.743 1.266 1.238 8
3h/N_M 28.663 33.879 20.963 1.367 1.182 8
4h/D 94.225 111.371 77.838 1.211 1.182 4
4h/M_W_SW 54.711 58.956 33.635 1.627 1.078 8
4h/N 16.982 22.964 13.254 1.281 1.352 8
4h/N_M 30.395 34.984 22.373 1.359 1.151 6
5d/D 111.492 124.227 87.013 1.281 1.114 4
5d/N 17.357 21.716 13.412 1.294 1.251 8
5d/N_M 31.127 37.338 22.934 1.357 1.200 8
5d/N_SO 38.296 43.066 26.412 1.450 1.125 8
5d/W_M_SW 52.629 60.06 38.137 1.380 1.141 8
5h/D 106.155 122.58 75.286 1.410 1.155 4
5h/M_W_SW 49.263 54.838 34.702 1.420 1.113 7
5h/N 18.839 20.068 13.852 1.360 1.065 5
5h/N_M 28.223 34.687 21.816 1.294 1.229 7

Max 111.492 124.227 87.013 1.627 1.352 8.0
Min 14.208 18.076 11.123 1.211 1.065 4.0
Mean 45.679 53.036 33.805 1.364 1.174 6.615

Table 4.1: Runtimes for the Separated Statistics approach of the simulation on the
desktop computer with the given dataset and threads. Runtimes in seconds.

values for the fastest variant of dataset 1h/D and calculate the speed-up, again with
the formula introduced in Definition 2.4.1.

tB = 79.090s (average baseline)
t4 = 62.669s (average runtime with N = 4 threads)
S4 = tB/tN ≈ 1.262

This indicates that the parallelized code with four threads is 1.26x or 26% faster
than the baseline. This result is consistent with the other datasets yielding approx-
imately the same relative numbers. For some smaller datasets, the improvements
are noticeably better. Speed-ups of 30-40% were common, one even achieving 67%.
When inspecting the overall result, an average speed-up of 1.364 is observed.
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While this is already a significant improvement, especially compared to the results
from the prototype, in comparison to the theoretically available computation power
of four threads this gain is relatively small.

Efficiency. To assess the efficiency of this revision’s changes, again the formula
of Definition 2.4.2 is used. Like in the evaluation of the speed-up, the results from
the desktop will be used due to the more consistent and steady results. For the
overall assessment, the inputs 1h/D and 1h/N will be used in an exemplary manner,
however, the results from the other data sets yield similar numbers as can be seen in
the aforementioned Table 4.1. As for the 1h/D data the efficiency is calculated as

tB = 79.090s (average baseline)
t1 = 96.341s (average of parallel w/ 1 thread)
r = t1/tB ≈ 1.218

For the 1h/N set, the result is r ≈ 1.27, and shows a similar picture. When
inspecting the averaged efficiency values from Table 4.1, the overhead introduced
ranges from 1.065 to 1.352 with an average of 1.174. This means that the overhead
in this approach is slightly worse with about 17% instead of the previously measured
12%. However, this is also a bit expected as the introduction of the Statistics class
requires additional handling that was previously not there.

Profiling. Again, the developed approach was tested with the Perf profiler and
reviewed in CLion. For the evaluation, the large 5h/D dataset was chosen with 8
cores as it represents a large graph with a lot of trains.

From the results, it could be noticed that about 38.3% of the total time was spent
locking or unlocking the mutexes. The careful reader might have noticed that this is
more than found in the initial approach. While we are not quite sure why that is in
particular, it is still a bottleneck and reducing these locking times would potentially
result in better runtimes.

Inspecting and looking out for other culprits slowing down the simulation, it was
found that the boost library currently seems the only major contributor to have an
impact on the runtime besides the aforementioned handling of mutexes. Most of its
share comes from iterator dereferencing or map accesses. However, this is nothing we
can improve on within the scope of this thesis with the exception of minimizing its
usage.

Learnings. During the evaluation of this approach, we have noticed that using a
separated class handling the statistic values helped to improve the overall runtime
of the simulation. Furthermore, while a vector-based statistics class is simpler, for
datasets with both, a large graph and large timetable, this results in a significant
increase in memory usage. While this is not an issue for the currently used datasets,
this might be one when even larger timetables and networks might be investigated in
the future. Here, the limits of consumer hardware might be reached and prosumer or
professional hardware would be required to run. Hence, we decided to continue with
the map-based approach for now, as it offered us no significant increase in runtime
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when compared to its vector-based counterpart, but resulted in significantly lower
memory usage.

Furthermore, as a result of the analysis it was found out that due to the changes
made, a total speed-up of about 20% to 63% with an average of approximately 35%
was achieved depending on device and dataset. While this is already a significant
improvement to the initial implementation, there is more potential headroom as the
increase is relatively small compared to the theoretically available power. Therefore,
further improvements need to be made.

While locking and eventually waiting always introduces some kind of slow down
and overhead, it can be seen in this approach’s benchmark and profiling results that
the overhead is still relatively high. Therefore, it is desirable to reduce as far as
possible. This issue will be addressed in the subsequent chapter.

4.3 Summary
In this approach, we investigated the possible advantages of extracting the statistics
variables and allowing each thread to modify a local separated copy of them. This was
implemented by creating a class containing all statistics-related variables, of which
then each thread used one particular instance of. This was possible due to the com-
mutative nature of said variables. All contents are then merged by addition after the
termination of the simulation for further evaluation. This implementation change,
together with optimized synchronization showed significant improvements to the pre-
vious implementation. However, the resulting runtimes still offer much headroom for
further improvements.
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Approach 3: Sub-Graphs

While the previous iteration already improved the runtime by a bit, it strongly de-
pended on the use of mutexes. As the evaluation revealed, despite the distribution
to multiple locks this showed to still be a severe bottleneck. A large portion of the
runtime was spent handling, i. e. creating, locking and unlocking, these mutexes.
However, the synchronization done by the locks was needed as the chunks, i. e. the
data each thread worked on had no clear separation. This means that while each
thread focussed on a fixed set of vertices and edges, they could potentially be all con-
nected and thus requiring each thread to always know the state of each infrastructure
element to read from or write to. To counteract this, a new revised approach was
planned to reduce the locking and blocking to a minimum.

At first, as we noticed that the split of data for the statistics variables helped to
divide the data into separated sections and reduce or even eliminate the use of mutexes
for this part, a similar approach was tested for the rest of the data. However, while this
split was rather uncomplicated for the statistics as the performed operations on said
data were commutative, this was not necessarily the case for the rest of the data. Here,
also non-commutative operations were performed. This means, that updates for these
variables had to be synchronized and sent to all other threads so that each thread was
working on the same version. Nevertheless, a prototype was implemented to test the
viability of this division approach. However, first tests showed that synchronization
needed to be performed very often increasing the overall overhead. This resulted in
effectively unusable runtimes even for small datasets (small graph and timetables),
with increased runtimes from several seconds to minutes by approximately an order
of magnitude.

While with optimizations this overhead probably could have been reduced, I de-
cided to discard this approach. As the synchronization of data sections was the main
problem with this attempt, the division of the existing network into logical subsec-
tions was prioritized as it reduces the need for common updates and thus promised
better maintainability and also results.

For this, the generation of chunks and with it the division of the infrastructure
network was re-envisioned. Previously, the vertices and edges were ordered by their
internal ID and then divided into equal-sized groups, which then represented the
respective chunks. This division did not consider any special logic for example distance
metrics between edges. The IDs were generated on the import of the infrastructure
and therefore may theoretically address vertices and edges randomly in the network.
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(a) Initial exemplary infrastructure
graph.
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(b) Exemplary infrastructure graph di-
vided into three chunks for vertices and
edges each as indicated by the differing
colours/markings. Only one inner edge
from A1 to A2. All other edges are outer
edges of the respective chunk in which the
source node resides.

Figure 5.1: Visualization of infrastructure network split into three chunks (A/blue,
B/red, C/green).

This is where the new approach comes into play: the division of the vertices and edges
shall now be done in logically separated sub-graphs to improve the work order on the
one hand and on the other hand reduce the need for synchronization as each thread
works on an encapsulated part of the network.

To be precise, the infrastructure graph G′ as described in Section 2.2 shall be
divided into p sub-graphs G′′i = (V ′′i , E

′′
i , E

′′
i ) for i ∈ [1, p], V ′′i ⊆ V ′, E′′i , E

′′
i ⊆ E′ so

that each sub-graph is vertex disjunct, i. e. V ′′i ∩ V ′′j = ∅ for all i, j ∈ [1, p], i 6= j.
The definition of the sub-graphs are a little bit different than it is known from the
original graph’s one: it comprises of two edge sets E′′i and E′′i besides the regular
vertex set. The first one defines all inner edges that are contained within the sub-
graph G′′i , ergo E′′i = {(u,v) | u, v ∈ V ′′i , (u, v) ∈ E′, u 6= v} for i ∈ [1, p]. However,
as the different sub-graphs are connected and trains need to be able to pass from
one sub-graph to another, the outgoing and incoming edges of each partition need
to be kept track of. Therefore, E′′i defines the outer edges of sub-graph G′′i so that
E′′i = {(u, v) | u ∈ V ′′i , v /∈ V ′′i , u 6= v} for i ∈ [1, p]. That way, trains that pass
multiple sub-graphs can be scheduled via the connecting edges. This division has the
advantage, that the scheduling of the vertices and inner edges are completely isolated
and do not require synchronization. Only changes affecting connecting edges, i. e.
incoming or outgoing edges, need to be shared between threads.

The aforementioned chunk division is visualized in Figure 5.1. The raw graph is
depicted in Subfigure 5.1a. The divided graph can then be seen in Subfigure 5.1b. In
this example there are three chunks: these are coloured blue (A), red (B) and green
(C). Each chunk is visualized by the coloured polygon containing the respectively
coloured/shaped vertices. The respective inner and outer edges are marked by the
respective colour and line shape. In the example only the blue chunk (A) has an inner
edge—from A1 to A2, other edges are outer edges of the respective chunk.

To achieve this separation, data available in the respective datasets is used: the
data has two intrinsic levels of regional information, the organizational unit region
(i. e. North, West, East, South, South-East, South-West and Centre) as well as finer
regional area (such as Cologne, Frankfurt, Munich). The latter information is encoded
within the operational control points short name. Each short name uniquely identifies
the OCP and its location. The first letter(s) identify the area and the rest the OCP
within said area. The areas are derived from the former German Railroad Divisions
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that were managing the different regions until the transition from a government-
owned to private company with the foundation of the Deutsche Bahn AG in 1994. A
downloadable list of these DB Betriebsstellen, the Operational Control Points, as of
2018 can be found under [8].

With these two levels of regional information the graph can be partitioned into the
respective regions. Each region then is processed by a thread. Due to this separation
most of the vertices are encapsulated and are independent. Only vertices that have an
incoming connection from another region must be aware of the state of the respective
connecting edge. If an incoming edge has been successfully scheduled in the previous
time step, the vertices can be worked on in parallel without the need for synchro-
nization. Any changes on the incoming edges during the respective time step will be
considered either in the next time step or during the scheduling of passing requests
at a later point during the current time step. Furthermore, the inner edges only have
points of contact within the respective region, i. e. source and target vertices are both
in the same region. Therefore, while scheduling the inner edges, no synchronization
needs to be done and the only requirement is that the source vertex has been success-
fully scheduled at the current time. The only other point of synchronization between
threads now happens during the scheduling of edges that connect two regions. Here it
is required that the chunks, in which the target vertex resides, may not do any other
calculations. It shall also be noted that, as each incoming edges is inevitably also an
outgoing edge of another vertex, these have to be considered only once. Because the
scheduling of edges pulls all available trains from a vertex, we associated it with the
region of its source vertex.

The scheduling of passing requests is not changed in this approach and will be
done in a non-parallelized manner as before. Therefore, passing requests need to be
scheduled to finalize a time step and must be completed prior to the next one, thus
marking a potential bottleneck.

Another change in this approach was the general handling of the scheduling within
time steps. To recall, formerly each vertex or edge was assigned to one specific chunk
which by itself was again associated by one particular thread. Therefore, it was
possible that one thread would receive one or multiple small chunks whereas other
threads were burdened with large ones. As all threads need to wait for all others to
complete the scheduling of infrastructure elements in one time step, this also means a
potentially prolonged simulation time due to an unequal load distribution. To reduce
the risk of such inequalities and wait times, a task queue with prioritization was
developed.

For each chunk that needed to be scheduled within a time step, a task is created
and inserted in the queue, then to be prioritized by its current scheduling stage (i. e.
scheduling vertices, inner or outer edges). However, as multiple tasks will ultimately
be executed in parallel, there need to be some constraints to safeguard the correct
order of execution and consistency of the data for some stages.

To be able to schedule the vertices, all other connected chunks, ergo sub-graphs
that have an outgoing edge to one or more vertices of the currently inspected chunk,
need to be completed in the previous time step. Therefore, all chunks save the last
scheduled time for the vertices and outgoing edges. Since time is modelled discretely
as before, the previous time is known and can then be checked for. The scheduling of
inner edges does not require any constraints except that it is subsequently processed
after the vertices have been scheduled. Lastly, the scheduling of outgoing edges re-
quires that the vertices of the connected chunks have already been calculated in the
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Figure 5.2: Visualization of dependencies between chunks. Chunks are depicted by the
underlying polygons, green/red hatched vertices are start/end nodes. Red and blue
edges are incoming or outgoing edges of respective chunk requiring synchronization
and constraints.

current time step.
This behaviour can be seen in Figure 5.2: there are two chunks as marked by

the respective polygons in the background. For the left chunk, all incoming edges
are marked in blue, all outgoing ones in red; for the right one it is vice versa. The
green and red vertex are the source and target vertices. In this particular example,
both chunks depend on each other. This means, that for the left chunk to be able to
schedule its vertices, the right chunk needs to have finished scheduling the its outer
edges, i. e. the blue ones. When this is the case, the left chunk may then proceed
with the scheduling of its vertices, which pulls all possible trains from the respective
incoming edges to the vertex. Here, only locking needs to be applied for those edges
that connect the two chunks. After scheduling the vertices, the inner edges can
be planned without any issues and necessity for locking as all inner edges can only
be accessed by the current thread. Lastly, for scheduling the outgoing, and thus
connecting edges, i. e. putting trains from a vertex to the respective edge, the right
chunk needs to have already finished the scheduling of its vertices. In the example,
for the left chunk to schedule its outgoing, red edges, the right must have completed
its vertices to free all trains that may depart. Here too, locking needs to be put in
place when accessing edge-related data, to ensure non-parallel access.

To formalize this, firstly let the set of possible stages that a task can go through
be defined by the ordered set S = {V, Ein, Eout,W,F} with the strict order V < Ein <
Eout < W < F . In the first three stages (V, Ein, Eout) the vertices, then the inner
and lastly the outer edges are scheduled. If the outer edges cannot be scheduled, due
to unsatisfied constraints, the task enters the stage W waiting until the respective
constraints are fulfilled and the outer edges can be scheduled. This special waiting
task is introduced as the algorithm would otherwise potentially lock up: if a stage
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was not possible and is re-inserted as is, it would quickly be picked up again and
thus either lock up or at least reduce efficiency. Thus, the task is reinserted with a
lower priority state so that other task, that can and potentially need to be processed
first can be worked on. Once a task could be completely scheduled, it resides in the
finished state F .

Lets recall from the algorithm description in Section 2.2, a time step t ∈ T is
a discrete point from the time horizon T = [TMIN, TMAX] ⊆ N. Let a chunk G′′i for
i ∈ [1, p] be identified by a unique identifier. In this case, we use its fixed index i. Then
a SchedulingTask can be defined as q = (t, s, c), t ∈ T, s ∈ S, c ∈ [1, p] and comprises
of the time t and stage s which is to be scheduled and lastly the corresponding chunk
c as identified by its index.

This task can then be inserted into the priority queue Q with ordering relation ≤
so that

Q ⊆ {(t, c, s) | t ∈ T, s ∈ S, c ∈ [1, p]} and

≤= {((t, c, s),(t′, c′, s′)) | (t < t′) ∨ (t = t′ ∧ s < s′) ∨ (t = t′ ∧ s = s′ ∧ c < c′)}.

Now that the scheduling via the task queue has been explained, we need to formally
define the previously mentioned constraints. For that, we firstly declare tV , tEout ∈
(T∪{−∞})p which for each chunk represent the last successfully processed time point,
or −∞ if none was processed yet, of the vertices or outgoing edges respectively. Then,
the vertices (stage V) of a chunk G′′i with i ∈ [1, p] can be scheduled in time step t ∈ T
iff

∀j ∈ [1, p]. (tEout,j = t− 1) ∨ (tEout,j = −∞),

with i 6= j, (u, v) ∈ E′′i , (u, v) ∈ E′′j , u ∈ V ′′j , v ∈ V ′′i , tEout,j ∈ (T ∪ −∞).
Similarly, for the scheduling of an outer edge e = (u, v) in chunk G′′i with i ∈ [1, p]

at time t ∈ T, the following constraint must hold to be schedulable:

∀j ∈ [1,p]. tV,j = t,

with i 6= j, u ∈ V ′′i , v ∈ V ′′j , (u, v) ∈ E′′i , (u, v) ∈ E′′j , tV,j ∈ (T ∪ −∞).

5.1 Implementation

The main change in this iteration consists of the division of the network into the
aforementioned independent regional chunks. Furthermore, the scheduling process
was modified to allow for a better balanced workload of scheduling tasks. This was
achieved in two parts: implementation of a task queue handling the different steps
and assuring that those get executed correctly and secondly the optimization of the
chunking algorithm.

To start, we want to explain the changes in the network division. During the
initialization of the simulation, it is now checked to which region a vertex belongs
prior assigning it to the respective chunk. As we have seen above, there are two
possible levels of detail on whose basis this region assignment can be made, i. e. how
granular the infrastructure shall be divided. Thus, this regional level can be selected
via a newly introduced GranularityLevel parameter which can be provided to the
simulation. It accepts level zero (0) and level (1) where level 0 is the coarse selection by
organization unit and level 1 is the finer division by lower region. This information
can be inferred from the infrastructure data: the organizational unit is saved as a
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vertex property and thus can easily be accessed. The region can be inferred from the
vertex name property: the first letter indicates the regional area to which it belongs
to. The following letters identify the operational control point in particular and its
location in more detail. For most of the data, this OCP code follows the pattern
(without hyphens) R-L(LL)-(T), where R is the region, L is the locality, identified by
one to three letters. If there is special type of locality, such as freight stations, this is
sometimes marked with one additional character T at the end. For instance, KA for
Aachen Central Station is region Cologne (KA) and locality Aachen Central Station
(KA). However, localities within the same city often are associated with the next
largest locality by using more descriptive letters in the locality code. For example,
Aachen West Station a smaller station near the Aachen Central Station has the code
KAW (region Cologne KAW, city Aachen KAW, locality West Station KAW).

While this would theoretically allow for an even finer division, these locality codes
are often unreliable, incomplete or inconsistent. Furthermore, not every larger city has
the locality code defined solely by the second character but also by the third as well,
resulting in hard or even impossible to separate locations without more information.
For example, KAU identifies Au (Sieg) Station (region Cologne KAU, city/locality Au
(Sieg) KAU), a completely different city on the other side of Cologne. Both Aachen
and Au share the second letter A. But for the separation, one could not tell if the U
describes a locality near Aachen as above or a completely other city as it does here.
Therefore, this was omitted from the actual implementation.

The definition of the levels is modelled as an enum, and is shown in the Listing 5.1.
With regard to the implementation, the following can be noted: initially the linkage
between infrastructure elements and the respective chunk was done with the imple-
mentation of maps. However, as the access to this map occurred very frequently the
extended lookup times accumulated and affected the runtime noticeably. Therefore,
the implementation was adjusted to vectors which have much better access times as
maps. Some maps were used as helpers which however were seldom used and thus
affected the runtime only marginally.

Listing 5.1: Granularity Levels
1 // Granularity for chunk gen
2 enum GranularityLevel {
3 ORGA_UNIT, // Based on organization unit
4 REGION, // Based on region (first letter if node id)
5 };

To handily save all information regarding a chunk, a Chunk class was introduced.
It handled the properties of a chunk, such as name, ID, vertices and inner/outer
edges. Furthermore, some information about the simulation state was saved like the
last time step in which the vertices were successfully scheduled.

Besides the revised division of the infrastructure the scheduling algorithm was
adjusted, too. A std::priority_queue1 for SchedulingTasks was used to
implement a TaskQueue, holding all scheduling steps as so-called SchedulingTasks. A
SchedulingTask contains information about the chunk that should be processed,
the current state it is in, e. g. scheduling of vertices and lastly the time step it
schedules. These scheduling states are also modelled as an enum and can be found
in Listing 5.2. The tasks for different chunks are placed in a priority queue, which

1https://en.cppreference.com/w/cpp/container/priority_queue, last accessed on
20. April 2021

https://en.cppreference.com/w/cpp/container/priority_queue
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prioritizes the element according to their current state and the time step; the lower
the time and the lower the status (as indicated by the enumeration index), the higher
the priority. The threads then take tasks from this queue to work on, an try to process
them. If a task could temporarily not be processed, due to yet unfulfilled constraints,
it is ignored, enters a specialized waiting state with lower prioritization and is placed
back into the queue to be re-tried at a later point in time. This switch to a designated
waiting state with lower priority allows the dependents to be processed first, before
a retry takes place. As all tasks are guaranteed to finish, also all depending tasks
will finish at some point. The dependencies of each scheduling task are in such a
way, that they can be resolved to an execution order which is solveable. That is,
either a task is dependant on a task with an earlier point in time or it depends on
a task at the same time point. In the later case, if it the dependency is unresolved,
the dependee is re-scheduled with a lower priority stage as the dependant. Thus, by
the ordering relation ≤ as described above, there is always an execution order where
the dependants are scheduled prior to the dependees. A deadlock thus cannot occur.
Furthermore, chunks are not assigned to fixed threads but can now be worked on any
available thread depending on the current workload.

Lastly, it is to mention, that the passing requests are calculated centrally after all
other SchedulingTasks have been completed for the current time step. This is still
necessary as the time steps are performed in discrete steps and thus require special
handling. While it would also be possible to reschedule the necessary chunks in the
same time step, the previous implementation was more efficient as it only updated
the necessary vertices or edges. This is not possible using the SchedulingTasks with
the current implementation.

This approach continues to use the separated statistics approach from the previous
iteration presented in Chapter 4. While the previous implementation benefited from
the strict association of vertices/edges to chunks which were assigned to fixed threads,
the map-based implementation still held up with regard to speed and memory usage
as the train timetables are relatively sparse. However, more memory (approx. 500MiB
to 1GiB) was used with this implementation as threads will possibly work on multiple
chunks over the time. Nevertheless, this new approach changes the general scheduling
behaviour significantly and can thus be seen as alternative rather than extension of
the previous iterations.

Listing 5.2: Scheduling States
1 enum scheduling_states {
2 QUEUED_INITIAL, // Waiting to schedule Vertices
3 SCHEDULED_VERTICES, // Waiting to schedule inner Edges
4 SCHEDULED_INNER_EDGES, // Waiting to schedule outer Edges
5 QUEUED_WAITING_FOR_CONNECTING, // Waiting for constraints of out edges
6 FINISHED
7 };

5.2 Analysis

This time, the approach was only evaluated on the desktop computer. As the laptop
results have been inconsistent in the previous iterations, it was omitted in favour of
time and power consumption as a complete test run would take several hours. If
not stated otherwise, the results are shown for GranularityLevel ORGA_UNIT. The 5h
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datasets are depicted in detail in the appendix in Figure A.1c.

Visual Results. The results have been visualized as before and can be seen in a
the graph of Figure 5.3.

It can also be seen, that the runtimes for the variants using three or more threads
are extremely consistent. The variation as indicated by the coloured confidence in-
tervals is very narrow. This indicates a relatively stable simulation. However, when
inspecting runs with two or less threads and especially the baseline approach, the
variation is relatively high when compared to the rest of the runs. This behaviour
is especially pronounced in the longer runs, i. e. for large infrastructure network and
large timetable. This behaviour was confirmed after re-running the tests at a later
time. Therefore, a temporary issue with the device can be ruled out. The cause for
this could also not be found and thus this behaviour is unexplainable at the moment.
Similarly, the strong increase in runtime for the 5h/D dataset using the Region level
and utilizing five or six threads is significant. Also, for this dataset and Granular-
ityLevel combination, the variances are much higher than it is obeserved for other
dataset-thread-level combinations. This behaviour also persisted after a re-run.

It can further be seen that the efficiency, i. e. the performance of the threaded
variant using only one thread and the non-threaded baseline, is significantly worse for
large datasets (large infrastructure and timetables) using the GranularityLevel Region
instead of OrgaUnit.

Nevertheless, this approach resulted in a noticeable speed-up compared to the
baseline results. Similarly to the previous approach, the results showed no worse
decrease in speed-up with increased thread count. However, when considering the
5h/D dataset, a spike in runtime when using more than four threads can be observed.
This is not present in the other dataset runs. This dataset was run again at a later
point in time to rule out an overloaded system, but the pronounced curve persisted.
As for why this might be, is currently not clear.

Analytical Results. The runtimes observed during the benchmark run over all
available datasets were noted. The averaged times, as calculated previously, can be
fund in Table 5.1.

From the overall results, it can be noted that a speed-up to the baseline results
were achieved. However, in comparison to the previous attempt from Chapter 4, the
fastest runs were not the ones with the highest thread count but often ranged from
four to six, with an average of 4.1 for the coarse GranularityLevel OrgaUnit and 4.0
for the finer Region level. This already indicates to some limitations. Nevertheless,
the overall runtimes and speed-ups are very similar to those of the previous iteration.
Therefore, the speed-up and efficiency shall be examined in the following.
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(a) Runtimes for GranularityLevel OrgaUnit.

(b) Runtimes for GranularityLevel Region.

Figure 5.3: Runtimes of sub-graph approach on the desktop with various datasets for
differing thread counts.
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Speed-Up. The speed-up for each dataset has, again, been calculated for the best
average non-baseline run. The resulting numbers can be found in column Speed-Up
in Table 5.1. Like in the previous iterations, we investigate the value for the 1h/D
dataset for the coarse GranularityLevel OrgaUnit as example below.

tB = 68.7s (average baseline)
t6 = 53,7s (average runtime with N = 6 threads)
S6 = tB/t6 ≈ 1.28

The resulting speed-up value is, with a value of 1.28, only marginally higher as
recorded previously. Similarly, the values from other datasets are in line with this
result. Consulting the table, it can be seen that the typical speed-up ranges from
about 1.188 (GL OrgaUnit) / 0.892 (GL Region) to approximately 1.6 for both Gran-
ularityLevels (GL). While the runs measuring the slowest for the new implementation
are mostly observed in the larger datasets (longer timetables and larger networks) and
the faster runs in the smaller ones. However, it can be seen that the smaller networks
regardless of timetable size overall did not profit much from the additional threads
as their best thread ranged between two to four threads whereas the larger networks,
also regardless of timetable size, performed best with four to six threads. With an
average speed-up of 1.38 this approach only performed marginally better than the
previous attempt.

However, when comparing the baseline values to those of the previous attempts, it
can be seen that in general the algorithms ran noticeably faster: approx. 69 seconds
versus 79 seconds and 86 seconds for this particular dataset. So, while the algorithm
did not gain any significant improvements in parallel runtime, the overall performance
seemed significantly better to the initial one. Which is interesting as the algorithm
in its baseline configuration was not changed much with the exception of only some
small adjustments for the statistics class and optimizations.

Efficiency. Like for the speed-up, the efficiency has been calculated in Table 5.1 on
the basis of the average runtime with only one thread compared to the non-threaded
baseline. As for the example results for the 1h/D dataset:

tB = 68.7s (average baseline)
t1 = 76.0s (average of parallel w/ 1 thread)
r = t1/tB ≈ 1.11

In the table above, it can be seen that the efficiency ranges from 0.936 to 1.299
with a mean value of 1.039 for GranularityLevel OrgaUnit. This indicates that this
approach fared reasonably well when comparing the threaded variants against the
baseline. The overhead induced by the parallelization of the simulation depends on
the dataset but mostly is only within 5-10 %. In a number of cases the metric was
smaller than one, indicating that the application ran faster in the threaded variant
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and thus having “negative” overhead.1 Overall, an average value of around 1.04 is
very reasonable good hinting at no significant overhead, especially considering the
theoretically more computation intensive chunk division.

The results using the GranularityLevel Region, showed similar numbers. However,
due to the higher number of chunks the management overhead seemed to weaken the
efficiency. The efficiency values for the GL Region ranged from 1.3 to 1.04 with
an average of 1.13 and thus indicate a significantly higher management overhead
compared to the coarser GranularityLevel.

Profiling. After analysing the profiler results for the 5h/D data, the changes showed
effect. As most of the mutex locks could be removed due to the data separation, the
time needed for locking logically reduced to only 3.4%. This is a reduction of about
one order of magnitude. As this reduction only partially could be observed in a speed-
up, it appears that the major bottleneck in this implementation seems to be due to
the sequential calculation of time.

The introduction of the Chunk class and handling of such, took about 1.3% of the
runtime. The handling of the task queue added approximately another 1%.

Most of the other time consuming operations were obviously still introduced by
boost calls such as iterator advancements and graph access.

As mentioned in the approach description, the simulation with the sub-graph
implementation used more RAM than the previous iteration: the run on the 5h/D
dataset showed a typical memory usage of 500 MiB to 1GiB. While this is a bit more,
this still a very acceptable value for this large dataset. Therefore, it seems viable to
continue to use a map-approach.

Learnings. The algorithms was modified in this chapter slightly to accommodate
for the changes regarding the advanced data division and the TaskQueue. These
changes did introduce some overhead, however it appears as if it cancels itself out
with the performance gained in general. We noticed that the simulation did not
perform much better when compared to the baseline in this approach but increased
overall performance when compared to previous iterations. Furthermore, in contrast
to the previous approach, the runtimes of the threaded variants performed similarly
with increased thread count and did not loose efficiency after a certain point.

5.3 Summary

In this chapter, a refined approach with optimized chunk assignment and processing
was presented. While the implementation resulted in slightly faster processing times,
the algorithm still does not run as fast and efficient as it could. The division into
smaller chunks by defining different GranularityLevel, showed only few differences in
processing speed. The profiling results did not show any large proportion of waiting
times for locks or variable assignment. This leads to the conclusion that possibly the
sequential processing of the simulation with regard to the stages and time steps is the
next larger bottleneck. However, the parallelization of time steps comes with some
issues: further constraints need to be put in place to assure correct order of processing.

1To recall, the baseline used the original scheduling mechanism while the variant using one thread
used the newly implementation with the TaskQueue. Therefore, it is possible that the simulation
runs faster in the new implementation as in the original one.
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Due to the fact that currently the passing requests need to processed at the end of
each time step and prior to starting the next, with the current implementation this
is not possible. Therefore, the project needs to be restructured slightly.
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Chapter 6

Approach 4: Parallel Time
Processing

In the previous chapter, we improved the algorithm by making the processing of
chunks more versatile and further optimized the subdivision of the infrastructure
network. These changes decreased the overall runtime and also improved the effi-
ciency. However, the evaluation revealed further headroom with regard to efficient
usage of threads. Therefore, in this chapter, we will investigate how far the relaxation
of sequential time execution and discretization in conjunction with the previously
presented changes may help in this regard.

The goal of this approach is to resolve the sequential simulation of time steps in
such a way that, whenever possible, the next time step is simulated without waiting
for all other calculations to finish. To allow for time steps to be simulated in parallel,
firstly the behaviour of the passing requests needed to be adjusted. To recall the
issue, the passing trains—passing multiple infrastructure elements in one discrete
time step—currently block the next time step from being simulated. To solve this,
the time is modelled as a decimal, or double-precision floating-point to be precise,
instead of integer values.

Therefore, we define a new time horizon for the decimal time: let T′ be the time
horizon for floating point number so that

T = {t | TMIN ≤ t ≤ TMAX, t ∈ R≥0} ⊆ R≥0

where TMIN and TMAX are the lower and upper bounds of the simulation, as known
from before.

The original inputs were not modified so that these can be used further. Thus,
all trains that have nodes with the same departure time as the arrival time, need to
be handled and adjusted within the algorithm so that these don’t get stuck or only
moved one element per scheduling event. Thus the algorithm has been adjusted so
that passing requests are recognized on the fly and will be scheduled at the technically
nearest future point in time. As computers have a finite precision for decimals, there
are finitely many numbers that can be modelled. The difference between these double-
precision floating-point numbers is thus used to go to the technically next possible
time step.

The way how the simulation processes each chunk does not need to change much
except for that it need to account for the time parallel execution. To recall: for each
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time step that a chunk needs to be scheduled, a SchedulingTask is created starting at
stage V indicating that the vertices are to be scheduled next, then followed by Einner
and Eouter for scheduling the inner and outer edges of the respective chunk. If the
outer edges cannot be scheduled, then the simulation enters a lower priority waiting
state W. Each thread then works on one of these tasks.

The introduction of non-integer time steps and the possible parallel execution
furthermore introduce more issues: firstly, the conditions for when the vertices and
outer edges, i. e. the edges connecting two chunks, can be computed, change.

To reliably tell, when the vertices of a sub-graph can be scheduled at a given point
in time, it is now important to know when the last relevant changes occur and when
only changes are made that can not effect the current scheduling anymore. That is,
it typically takes a certain amount of time to traverse a route section. For example,
when a train enters an edge from vertex u to v at time t1 = 1 and the minimal time
to traverse the edge (u, v) is δt(u, v) = 5 then the arrival time t2 of the train at the
next vertex must be t2 ≥ t1 + δt = 6. That, means, when scheduling a vertex, all
trains having a later arrival time than the current one, will not arrive on time at v
and are thus not relevant to v’s scheduling. If no trains pass along the given edge,
then there is no need for waiting.

Therefore, for all edges E′′ of G′′ we define the minimal travel time as δt : E′′ →
R≥0 ∪ {∞} as the fastest time a train with ID id has travelled across this edge
according its timed path πid in the given timetable. If no train passes along the edge
(u, v) then δ(u,v) = ∞. We can then define the vertex scheduling constraint more
generally: a chunk G′′i for i ∈ [1, p] can schedule its vertices at time t ∈ T′, iff:

∀j ∈ [1, p]. tout,j + min
(u,v)∈E′′

j

(δt(u,v)) ≥ t ∨ δt(u, v) =∞

where i 6= j, (u, v) ∈ E′′i , (u, v) ∈ E′′j , u ∈ V ′′j , v ∈ V ′′i and tout ∈ (T′ ∪ {−∞})p is the
last successful processed point in time for each of the p chunks.

The scheduling of a chunk’s inner edges still does not require any checks, as all con-
nected vertices are within the respective chunk and are inherently already processed
in sequence.

When considering the processing of the outer edges, i. e. the edges that connect
two chunks, further conditions apply: if an outgoing edge is scheduled, the target
vertex must already be scheduled in the current time step. If that is not the case,
then the worst case, a train would get delayed due to insufficient capacity on the
track despite a potential free at the target node. Hence, similarly to the conditions
for the scheduling of vertices described above, the target vertex v ∈ V ′′ of the edge
(u, v) ∈ E′′ needs to have cleared all occupiers that could reach the target at time
t. To realize this, each chunk now keeps track of all the potential times in which an
update needs to be done. This is done in form of an ordered list C ⊆ T′p that contains
all future update times ordered in ascending order of its elements. The list Cj gets
updated, whenever the respective chunk j is scheduled. All newly found times are
added and the current time is removed.

This list can now be used to formalize the constraint for the scheduling of outer
edges: when edge (u, v) ∈ E′′ is to be scheduled at time t ∈ T′, the chunk j ∈ [1, p]
the target vertex v ∈ V ′′ resides in, needs to have been updated its vertices at latest
point in time prior to t. In other words, as long as the next time to consider is prior
to t, the edge may not yet be scheduled. Formally: the outer edges of chunk G′′i with
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i ∈ [1, p] may be scheduled iff:

∀j ∈ [1, p]. min(Cj) ≥ t

where i 6= j, (u, v) ∈ E′′i , (u, v) ∈ E′′j , u ∈ V ′′i , v ∈ V ′′j .

6.1 Implementation
As for the implementation, the changes were based on the previous iteration as pre-
sented in Chapter 5.

To begin, the data type of Time was changed from integer to double. This
involved only a few changes within the code. Most of the logic resulting from this
relaxation were handled by the changes in the algorithm.

While it appears by the approach described above as if only a few things need to
be changed, in practice this was not the case. Due to the relaxation and the time
parallel simulation, a lot of changes needed to be made implementation-wise.

First, during the initialization phase of the algorithm, the minimum travel distance
per edge gets calculated. This is done by inspecting all trains in the timetable and
for each edge transition, the travel distance is noted and the minimum from all trains
that pass this edge is then saved in a std::map minIncomingTravelTime which
mapped the chunk id of all connected chunks to its minimal travel to the current one.
Furthermore, the list of time points to consider was implemented in the chunk object
as a std::set<Time> property.

With this information, the constraints ultimately could be adjusted: first, to the
scheduling of vertices. As described above, the vertices of a chunk can be scheduled
if no relevant changes may occur at the given time. However, some smaller other
constraints were needed to correctly schedule the vertices. A chunk’s vertices can be
scheduled at time t if one of the following constraints is fulfilled:

• the chunks are physically connected but no trains are passing on the connecting
edges in the current configuration. In this case, the minimal travel distance δt
for all connecting edges is infinite.

• the source chunk has been processed at time tout,j < t added to the absolute
minimal travel distance min(u,v)∈E′′

j
δt(u, v) for all connecting edges is equal or

later than the current time step (tout,j +min(u,v)∈E′′
j
(δt(u,v)) ≥ t)

• the source chunk has been processed at all time points prior to t and the next
time to consider t′ is in the future (t′ > t), if it one exits.

As for the outer edges, the only constraint that needs to be fulfilled is that all
time steps prior to the currently inspected one have been finished.

Furthermore, a small change to the scheduling was done. Instead of inserting the
tasks for the next time step once the queue is empty and all tasks have finished, this
is now done dynamically. Once a thread finishes and tries to find new tasks. If no
new tasks are available, it tries to generate new tasks from the list of which times
to consider. For that, for each chunk the next point later than the last worked on is
selected and inserted into the queue. If this is not possible, for example as no new
time steps to consider are known, the thread enters one of the two following states:
it either goes to a sleep state to spare resources if other threads are still working and
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may find further times to be considered. Alternatively, it terminates when all other
threads are not actively working anymore as no new time points can be found and the
simulation is finished. In the former case, once other threads then finish their work,
they send a notification for the sleeping threads to wake up and try again.

Furthermore, the algorithm has been modified to accommodate passing requests.
Passing requests have previously locked up the simulation in such a way that the next
time step could only be calculated once these special cases had been addressed. Now
that we have (nearly) continuous-time between two integer time points, passing re-
quests will be scheduled in the next smallest time step. This was realized, by inserting
task to the queue at t+ std::numeric_limits<Time>::epsilon() which rep-
resents the difference between 1.0 and the next larger double-precision floating-point
number representation. That is, a small amount of time is considered to have passed
which in turn means that passing requests are scheduled in a separate time step and
thus do not completely block the scheduling any more.

As a closing remark, it shall be mentioned, that the introduced changes, especially
the relaxation of time from integers to floating point, required also changes to the non-
threaded baseline. Due to the time constraints of this thesis, it was not possible for
me to implement a dedicated non-threaded baseline variant. If started with the flag
-t 0, i. e. the baseline, a variant with one thread is used. Furthermore, instead
further optimizations beyond a working implementation were not possible.

6.2 Analysis

The implementation for time parallelism was tested on the desktop computer for all
of the given datasets for thread counts from one to eight. The baseline could not be
tested in the current implementation as indicated above. Tests with the laptop were
again omitted. If not stated otherwise, the results are shown for GranularityLevel
ORGA_UNIT (see Chapter 5). For a detailed graph of the 5h datasets, refer to Figure
A.1d in the appendix.

Visual Results. Like in the previous chapters, the test results were visualized
through Python, Seaborn and Pandas. The results can be found in Figure 6.1.

It can be seen that for increasing thread count the runtime follows exponential
growth for large datasets with regard to network and timetable size. For smaller
datasets, the increase is not as pronounced but still clearly visible. As the baseline
variant could not be tested due to timely constraints, a direct comparison is not
possible. However, only a slightly better runtime is observable with two to three
threads.

Nevertheless, it can clearly be seen that the results are far from optimal. In the
current form, this implementation is not practical and needs further refinements to
provide a benefit.

Also, when comparing the results with a finer GranularityLevel, as can be seen in
Figure 6.1b, some improvements can be seen towards the three to four threads mark.
However, despite the improvements, if more threads are used, these gains deteriorate
quickly.

Analytical Results. To investigate the runtime behaviour, the results have been
noted in Table 6.1.
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(a) Runtimes on desktop for various datasets with GranularityLevel OrgaUnit.

(b) Runtimes on desktop for 5h/D with GranularityLevel Region.

Figure 6.1: Runtimes of parallel time approach with various datasets for differing
thread counts.
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It can clearly be seen that this approach did not fare well in its current implemen-
tation. The best runs were mostly performed when run with one thread but never
better than four threads. This shows, that the algorithm in most cases did not profit
from any multi-threading at all.

Not only does it not benefit well with more threads, but in some cases also per-
forms severely worse when compared to the previous implementation (see Table 5.1).
Comparing the 1h/D data: this time the best run took 338 seconds whereas the
previous attempt finished in 77.8 seconds.

However, in other cases the new approach is much quicker: for example, the best
average run with four threads for the 1h/D dataset took 35.4 seconds whereas the
best run in the sub-graph implementation and the same dataset ran in 53.7 seconds
(run with six threads).

But it becomes clear where this issue originates from when comparing the given
two datasets: as both datasets use the D infrastructure graph, the network is exactly
the same. The only difference is the timetable size: 5450 trains in 1h versus 15744
in 5h. While the number of trains only tripled (15744/5450 ≈ 2.89), the runtime
increased nearly ten-fold (338s/35.4s ≈ 9.55). This shows that the runtime is heavily
influenced by the timetable size.

Nevertheless, this behaviour is actually to be expected. Previously, the number of
times that needed to be considered was fixed. Furthermore, all steps from TMIN up to
TMAX were planned, regardless of the actual time window, the trains were using. For
example, if the timetable has one train from 500 to 700, and TMIN = 0, TMAX = 1500
then only 200 of the 1500 steps would be necessary.

However, due to the relaxation of the time, scheduling times are generated on-
demand. When there are only a few trains, very few time steps have to be considered.
Coming back to the example from above, now (assuming no passing requests occur)
then only the 200 time steps are simulated. However, when there are many trains,
then there are possibly also more time steps that have to be considered. This also
multiplies when delays or passing requests occur as those events introduce even more
times to consider. Furthermore, many of those events, especially delays, create “alter-
native timelines” that not only introduce one new time to schedule but multiples—a
delayed train keeps getting delayed with a certain possibility, but also the non-delayed
version needs to be tracked and so on. Furthermore, these issues are intensified by the
constraint checking for each scheduling step and point in time, which, while looking
simple on paper, do require a certain amount of processing power.

Speed-Up. For speed-up in this approach, we use a modified variant of the Defini-
tion 2.4.1. Instead, to compare the fastest run with the baseline run, we compare it
to the one-threaded variant. This allows us to get a rough estimation of a possible
speed-up.

For the 1h/D dataset the speed-up can therefore be calculated by:

t1 = 49.578s (average of N = 1 thread)
t4 = 35.321s (average runtime with N = 4 threads)
S4 = t1/t4 = 1.4

However, as can be seen from the table, for many other datasets the speed-up is
practically not given in most of the cases as the fastest runs were with one thread.
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This is reflected in an average of 1.06 as a speed-up value for all datasets.

Efficiency. The efficiency cannot reliably be measured in this iteration, as the con-
crete baseline is not implemented. Thus we omit this value here. However, this
value is expected to be in line with the above results and thus show no significant
improvements.

Profiling. Like before, the implementation was profiled using Perf in conjunction
with CLion.

While running the profiling, only an average CPU usage of 40% across all active
cores regardless of the dataset was noticed, indicating that the potential of the cores
could not be used. This is probably due to unsatisfied constraints preventing the
threads to efficiently schedule the respective chunks, slowing down the entire simula-
tion.

The evaluation of the Perf run with dataset 1h/N 1 revealed that more than 15%
of this approach’s runtime was due to the output of the current step to the command
line. Unfortunately, this was discovered after the benchmark run and due to timely
constraints, I was not able to redo the benchmark with the output disabled. How-
ever, smaller manual tests showed roughly 15-25% improvements. Thus the overall
performance can easily be increased by disabling the status output.

Further, in this particular instance, approximately 25% of time was spent handling
the required mutexes for queue and chunk modification. Additionally, the insertion
and management of inserting new time steps to TaskQueue caused another 30% of
the overall runtime, most of which was due to further mutex handling.

Learnings. In the evaluation of this approach, we had to conclude that the current
implementation of time parallel execution does not offer any significant advantage
to the previous chapters. Except for few examples, most runs experienced severe
runtime increases when compared to the previous iterations. While this was partially
expected, as the introduction of floating-point time also was expected to add more
times that need to be rendered by the simulation. Despite the relaxation of the
algorithm to allow for parallel time simulation, it appears as if either the constraints
of the algorithm are too strong or due to the high dependence on each other not much
parallel execution of time steps is possible.

The wear results also are partly due to a non-optimal implementation as a large
portion of time was spent handling mutexes. While these are necessary for correct
synchronization between chunks and valid task extraction, here a possible point for
improvement can be found. If the synchronization and task handling can be reduced,
the overall runtime will benefit from these changes.

Part of the penalties added by the increased time steps could possibly be mitigated
by scheduling certain infrastructure elements in particular instead of chunks. Because,
in most cases, only a handful of elements is expected to change and thus the scheduling
of all other vertices or edges introduces preventable overhead.

However, it can be observed that the algorithm performs better if a finer Granular-
ityLevel is chosen compared to the coarse level used in the rest of the evaluation. This

1In previous examples the 5h/D dataset was chosen as it is both large in size and has a long
timetable. However, for this run, I chose the smaller 1h/N dataset as it could be analyzed faster
and but also showed no speed-up.
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1-Thread Fastest Speed-up* Best Thread
Dataset

1h/D 49.578 35.421 1.400 4
1h/N 6.715 6.715 1.000 1
1h/N_M 11.892 10.227 1.163 2
1h/N_SO 12.799 10.634 1.204 2
1h/W_M_SW 18.732 15.680 1.195 3
2h/D 103.936 85.752 1.212 3
2h/M_W_SW 41.227 37.160 1.109 2
2h/N 14.528 14.528 1.000 1
2h/N_M 25.100 25.100 1.000 1
3h/D 167.470 148.892 1.125 3
3h/M_W_SW 65.855 64.167 1.026 2
3h/N 22.834 22.834 1.000 1
3h/N_M 40.954 40.954 1.000 1
4h/D 240.170 227.288 1.057 3
4h/M_W_SW 92.820 92.820 1.000 1
4h/N 33.213 33.213 1.000 1
4h/N_M 58.626 58.626 1.000 1
5d/D 367.966 367.966 1.000 1
5d/N 50.079 50.079 1.000 1
5d/N_M 85.453 85.453 1.000 1
5d/N_SO 91.650 91.650 1.000 1
5d/W_M_SW 139.412 139.412 1.000 1
5h/D 341.481 338.163 1.010 2
5h/M_W_SW 132.802 132.802 1.000 1
5h/N 45.532 45.532 1.000 1
5h/N_M 81.490 81.490 1.000 1

Max 367.966 367.966 1.400 4
Min 6.715 6.715 1.000 1
Mean 90.089 87.022 1.058 1.615

Table 6.1: Results from the benchmarks run on the desktop computer. Baseline,
1-Thread, Fastest in seconds.
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shows that the implementation benefits from smaller more independent sub-graphs
and which alleviates the negative aspects observed above slightly. Nevertheless, the
overall runtimes are still much worse as in the previous attempts.

At last, there are two other takeaways from the profiling: always profile the al-
gorithm prior to running any enduring tests and don’t underestimate the impact of
logging to the console.

6.3 Summary
In this approach, we modified the algorithm to allow for non-discrete floating point
time and thus too parallel execution of time steps. For this, the constraints of the
scheduling steps have been adjusted so that all trains are scheduled correctly.

The results have shown that, in its current form, the implementation does not
offer significant improvements. I believe this is due to the strong coherence and de-
pendences of the infrastructure network. This hinders the execution of scheduling
tasks in parallel. Due to the time now being non-discrete, more points have to be
considered, increasing the overall workload. Additionally, the increased scheduling
load is slowed down further by a non-optimal implementation. With an revised im-
plementation, the overall results can be improved. However, it is noted that due to
the current scheduling order, not much time-parallelism is expected as many points in
time require others to finish. However, if the constraints can be relaxed further and
scheduling steps are more independent, then this approach might benefit from this.
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Chapter 7

Approach 5: On-Demand
Scheduling

After the time parallel approach, we decided to investigate the effect of only scheduling
the infrastructure elements at a time where an update might occur. Previously,
all vertices and edges of the infrastructure graph were scheduled in each time step
regardless if a train is waiting, arriving or departing. This meant that, especially
for large infrastructures with small timetables, a lot of elements were unnecessarily
inspected each time step.

Therefore, in this chapter, the algorithm is modified in that way, that all infrastruc-
ture elements are scheduled on-demand and thus reducing the overall computational
complexity. As it was observed in Chapter 6, enabling time-parallel simulation in-
creases the need for bookkeeping and validity checks to such a degree that any benefits
by the possible relaxation of time were mostly diminished. Thus, in this approach we
again focus on the sequential simulation of time steps.

If the scheduling is to be done in parallel, within each time step, the infrastructure
elements to be scheduled in that particular step are firstly checked for dependencies on
each other: that is, if edges are planned, their source vertices are required to be sched-
uled first and thus have priority. These priority vertices are scheduled sequentially
in advance. Once completed, the rest of the vertices and edges is then distributed to
the available threads and processed in parallel. If the simulation is executed in non-
threaded mode, the scheduling of vertices is done first, followed by the scheduling of
edges, thus ensuring the correct order and not requiring the prioritization. For the
parallel part, only few requirements need to be made when compared to the time-
parallel simulation: vertices are independent of each other and do not interfere, thus
they can be scheduled parallelly without the need for further checks. For the edges, if
the source vertex was scheduled, the only possible point of conflict is if two edges that
share the same source vertex are processed simultaneously. However, as this occurs
seldomly, in this attempt this will be handled by mutual exclusion when accessing the
data. Furthermore, this on-demand scheduling has the advantage that the division
into chunks can be spared. Additionally, due to this reduction, the overall number of
boost references and iterator calls are reduced which were diagnosed in the previous
iterations to be one of the largest non-threading related contributors to the runtime.

During the initialization, the trains to be scheduled according to the given timetable
are loaded. As the trains are placed on the edges from the artificial start vertex to
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their first stop, this first target element is inserted in the list of elements to consider
for the respective starting time.

Once initialization has concluded, the algorithms then finds the first point in time
t ∈ T′ that is larger than TMIN and smaller than TMAX. For this time step, all
necessary vertices are then scheduled as before. During the scheduling phase, new
points in time are discovered when updates to the network and the train’s location are
made. These changes include the removal of Blockers and the next waypoint in the
itinerary of the train either as a regular next point or as passing train. Blockers are
emplaced on the infrastructure elements as safeguards to prevent other trains from
entering until a safe amount of time has passed. This is defined globally. To ensure
that the complete time span is blocked correctly, a the next scheduling may only
occur just slightly after the time has passed. For that a new variable EPS ∈ R≥0
is introduced which defines a small time delta that is added to the blocking time
before inserting it in the list of points to consider. Passing requests are modelled
similarly; if a train would pass multiple infrastructure elements, for each element on
this passing itinerary, a limited amount of time shall pass. For that, once a train
enters an infrastructure element only passing by, the next element is considered only
reachable in time t+EPS. All other arrivals and departures are considered as before,
i. e. when on time, the arrivals and departures according to the timetable are used
and when delayed possible compensation methods are applied.

Once a time step has completed, the algorithm checks the list of time steps to
consider for the next largest point in time t′ > t within the time horizon T′, repeating
the steps described above, until no suitable point in time can be found or the end of
the time horizon is reached.

7.1 Implementation

In this approach, some of the changes of the previous implementation were reverted.
The TaskQueue and the handling of chunks were not needed and could be removed.
The double-precision floating point representation of time was kept on the other hand.

After removing the legacy code, two variables—vertices2consider or edges2-
consider—, one for vertices and one for edges, were introduced. These map the
points in time to the respective vertices and edges that require scheduling in this time
step.

Starting with time TMIN all further point in time are calculated during the schedul-
ing of elements. For each of the points in time that are discovered during the schedul-
ing, the associated vertex or edge is inserted into the respective map. For each
scheduled point in time, the infrastructure element is blocked a certain time. Thus
the next possible change is shortly after the blockage is released. To ensure that
the entire blocking period is spend, the next point to considerer is scheduled at t
+ BLOCKING_TIME + EPS where EPS is a small offset. In this implementation it
was set to EPS = 0.001. Furthermore, if the train was able to enter the respective
infrastructure element, the next point in time is its earlies possible departure time
epdt at the current element, which is its departure adjusted for possible abbreviated
stop times or faster travel time to counteract delays. If a train was not able to enter
a given infrastructure element due to it being blocked, it will automatically be con-
sidered when the blockage is resolved. Should a train depart only partially, both, the
current and next waypoint are considered at their respective next possible departure
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times. Lastly, the passing requests need to be handled. In this case, we used a similar
approach to the previous implementation: as the time is modelled as floating point,
we insert a new time to be considered which is slightly in the future. For this, we
schedule the respective next infrastructure element at t + EPS.

The simulation processes each time step on demand, that is, it searches for the
next available time step. As vertices and edges are decoupled, it might occur that in a
time step only vertices and no edges need to be scheduled, or vice versa. Therefore, the
respective smallest points in time of vertices and edges larger than the last processed
one, need to be compared and only the smallest one will be processed accordingly.
Once the correct time step has been found, the vertices and edges that are to be
scheduled will be extracted. Before starting the scheduling, the source vertices of
all edges are compared to the list of vertices that are to be scheduled at that point
in time. If a vertex and the corresponding edge is planned to be scheduled in the
same time frame, the vertex is transferred into a priority list as it is required to be
scheduled first. Once the prioritization is complete, these vertices will be scheduled
first in sequence and non parallelly. Concludingly, all remaining vertices and edges are
scheduled by enqueueing the respective scheduling tasks in the ThreadPool. This will
then use all available user-defined threads. In the baseline variant, this prioritization
can be omitted, as all vertices are scheduled first in sequence followed by the edges.
Once all infrastructure elements have been scheduled in one time step, the simulation
proceeds with the next smallest point in time larger than the just completed one. As
the vertices and edges might have different points in time that need to be considered
next, only the smallest one is processed in this time step, while the other is scheduled
in the future.

7.2 Analysis

In the following, we will analyse the results from these changes. As before, the
simulation was executed on the desktop computer using the benchmark. In total ten
rounds per thread and dataset were conducted. The resulting runtimes were noted in
a CSV-file.

Visual Results. After executing the simulation, the resulting runtimes per dataset
were plotted using Python, Pandas and Seaborn and are depicted in Figure 7.1 with
a more detailed graph of the 5h datasets in Figure A.1e in the appendix.

It clearly be seen that using only one thread introduces a slight but noticeable over-
head compared to the non-parallelized baseline (“0 threads”). However, the longer a
simulation run took, the higher the overall speed-up when using the threaded variant.
This is especially visible with the longest three results in the graph corresponding to
the 4h/D, 5h/D and 5d/D. All three represent datasets with both large infrastructure
networks and large timetables. This indicates that the new algorithm makes the best
use of threads when there are many trains to be scheduled in a large network. This is
to be expected from the implementation, as only the scheduling of vertices and edges
is done in parallel per time step. And as the number of infrastructure elements to be
scheduled per time step increases with the size of the time table, the improvements
by parallelization are expected to be the best in this case.

It can also be noted that the observed variance in runtime was very low for all
datasets indicating a very stable result.
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Figure 7.1: Runtimes of On-Demand approach on desktop.

While the improvements within this approach appear to be adequate, when com-
pared to the results from the Sub-Division Approach presented in chapter 5, the over-
all improvements are very good. To compare the results, we compiled two additional
graphs: the first showing the runtimes of both approaches (Sub-Graph Approach with
GranularityLevel OrgaUnit and this one) and can be seen in Figure 7.2. The second
shows relative runtime improvements when comparing the baseline and fastest runs
of the respective datasets. It is presented in Figure 7.3.

In Figure 7.2 the runtimes of the simulation per dataset is shown on the desktop.
On the left, the baseline runs are compared whereas on the right the respective fastest
runtime is depicted. Errors are shown in form of standard deviation. It becomes clear
that this new on-demand approach reduces the runtime of the simulation in both
cases significantly, regardless of threading. Especially, for large datasets with only a
small timetable, e.g. 1h/D, the reduction in runtime is from over 60 seconds in the
baseline or approximately 55 seconds for the fastest run to less than ten using the
new on-demand scheduling.

The improvements in runtime can be found in Figure 7.3. The graphs show the
relative improvement in runtime. The blue F/F bars show the relative improvements
when comparing the baseline runs of the on-demand and the sub-graph approaches.
The orange F/B represent the relative runtime improvements of the fastest run of the
on-demand to the baseline of the sub-graph approach and lastly the green F/F bars
depict the comparison of the respective fastest runs. Each bar group is per dataset.

Here too, the extend of speed-up becomes more clear. In many cases, the relative
improvement is larger than 80% when comparing the results of the on-demand to the
sub-graph approaches. This graph, too, shows that this on-demand algorithm reduces
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Figure 7.2: Runtimes of Sub-Graph approach (GL OrgaUnit) and On-Demand ap-
proach on the desktop computer. Error bars show standard deviation. Left graph
compares baseline runs, right one compares the fastest runs of each approach.

the load significantly for especially small timetables.

Analytical Results. To put the visuals into numbers, the runtime results are com-
piled in Table 7.1.

It can be seen that the this approach benefited from multithreading, too. For all
datasets, the on average fastest multithreaded run was achieved with at least four
threads. The most relevant influencing factor is the size of the timetable, as for most
datasets using a small timetable (1h–3h), the fastest variant seldomly used more than
four or five threads. Datasets using a larger timetable, such as the 4h and 5h ones,
more often were able to achieve faster runtimes utilizing five to seven threads. This is
also expected as the larger datasets require more scheduling operations per time step
and thus can make use of the available threads for parallel computation.

Speed-Up. Next, we will compare the achieved speed-up as has been done in the
previous chapters. For this, the formula as in Definition 2.4.1 is used. As exemplary
values, we will use the results of the 1h/D dataset as reference:

t0 = 4.984s (average of N = 0 thread)
t5 = 5.002s (average runtime with N = 5 threads)
S5 = t1/t5 = 0.996

As this value is below 1.0, this indicates that for this dataset, the threaded variant
was slightly slower. However, previously we have seen that the on-demand approach
benefits from larger timetables. Therefore, if we compare this value to the speed-
up for the 5h/D or 5d/D datasets, we get a speed-up of approximately 1.24. This
means, that the threaded variant was about 25% faster than the baseline. While
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Figure 7.3: Relative improvements of runtimes comparing the Sub-Graph approach
(GL OrgaUnit) and On-Demand approach on the desktop computer. Blue (B/B)
shows the relative improvement of the baseline runs, orange (F/B) compares the
fastest run of the on-demand approach to the sub-graph baseline, and lastly the green
(F/F) depicts the relative improvement of the fastest runs.

these results are not as good as the previous, approaches when only comparing the
results within the approach, the overall speed-up to the previous variants is significant.
Furthermore, it can be seen in the Table 7.1 that speed-up increased with the size of
the timetable. This might indicate, that the improvements could be better for larger
timetable datasets as more scheduling tasks per time step would be necessary and
could be executed in parallel.

Efficiency. Like for the previous attempts, we also calculate the efficiency of the
threaded variants. This is done as described in the formula of Definition 2.4.2. For
the example calculation, we again use the 1h/D dataset for reference.

tB = 4.984s (average baseline)
t1 = 6.380s (average of parallel w/ 1 thread)
r = t1/tB ≈ 1.28

A value of 1.28 indicates an overhead of 28% when using the threaded variant
compared to the baseline approach. This result is in the middle of the remaining
datasets. The values range from 1.080 for the 5h/D and 5d/D datasets to 1.433 for
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Baseline 1-Thread Fastest Speed-up Efficiency Best Thread
Dataset [s] [s] [s]

1h/D 4.984 6.380 5.002 0.996 1.280 5
1h/N 0.424 0.604 0.434 0.976 1.426 4
1h/N_M 0.855 1.225 0.904 0.946 1.433 4
1h/N_SO 0.949 1.297 0.959 0.990 1.367 4
1h/W_M_SW 1.492 2.122 1.501 0.994 1.422 4
2h/D 11.868 14.254 11.029 1.076 1.201 6
2h/M_W_SW 3.801 4.713 3.474 1.094 1.240 5
2h/N 0.732 1.040 0.746 0.982 1.421 4
2h/N_M 1.788 2.433 1.808 0.989 1.361 4
3h/D 23.373 26.775 20.75 1.126 1.146 7
3h/M_W_SW 6.944 8.269 6.184 1.123 1.191 6
3h/N 1.146 1.573 1.158 0.990 1.373 4
3h/N_M 3.056 3.976 3.058 0.999 1.301 4
4h/D 40.614 45.026 33.752 1.203 1.109 7
4h/M_W_SW 11.661 13.362 9.964 1.170 1.146 6
4h/N 1.672 2.281 1.661 1.007 1.364 4
4h/N_M 4.704 5.948 4.580 1.027 1.264 4
5d/D 73.873 79.759 59.577 1.240 1.080 8
5d/N 2.633 3.351 2.503 1.052 1.273 4
5d/N_M 7.812 9.461 7.322 1.067 1.211 6
5d/N_SO 7.844 9.354 7.085 1.107 1.193 5
5d/W_M_SW 19.58 22.109 16.371 1.196 1.129 7
5h/D 68.223 73.687 55.114 1.238 1.080 7
5h/M_W_SW 18.644 20.659 15.447 1.207 1.108 7
5h/N 2.216 2.909 2.167 1.023 1.313 4
5h/N_M 6.899 8.427 6.621 1.042 1.221 4

Max 73.873 79.759 59.577 1.240 1.433 8.0
Min 0.424 0.604 0.434 0.946 1.080 4.0
Mean 12.142 13.742 10.341 1.067 1.248 5.0

Table 7.1: Evaluation results of the on-demand approach on the desktop. Runtimes
in seconds.

1h/N_M dataset. From the results it can be seen that datasets with both, a large
infrastructure network and timetables, tend to result in a better efficiency.

Comparison to previous iterations. In the visual analysis, we already started to
compare the new on-demand approach to the previous non-time-parallel implemen-
tation, the sub-graph approach as presented in Chapter 5.

Figure 7.3 already indicated that depending on the dataset, improvements in run-
time of over 80% could be achieved. In the following, we want to investigate this
further and therefore compiled a table containing the numerical improvements. This
can be found Table 7.2.

With the help of the table, we can confirm the visual results: for short timetables
that are scheduled on large infrastructure networks, the runtime of the algorithm can
be reduced up 96.6% (see 1h/N_SO) for the baseline comparison and up to 95.3%
(see 1h/N ) for the comparison of the respective fastest threaded runs.
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Baselines Fastest
Absolute Difference Relative Difference Abs. Diff. Rel. Diff

Dataset [s] [%] [s] [%]

1h/D 63.755 92.749 48.656 90.677
1h/N 12.028 96.596 8.883 95.338
1h/N_M 21.417 96.160 15.622 94.527
1h/N_SO 26.941 96.596 16.993 94.656
1h/W_M_SW 35.140 95.927 21.740 93.540
2h/D 65.970 84.753 47.011 80.997
2h/M_W_SW 37.260 90.743 21.752 86.230
2h/N 12.946 94.648 9.538 92.750
2h/N_M 21.836 92.430 15.870 89.770
3h/D 52.992 69.393 40.307 66.016
3h/M_W_SW 37.069 84.223 21.271 77.475
3h/N 13.277 92.055 9.724 89.358
3h/N_M 22.046 87.826 15.761 83.750
4h/D 41.587 50.592 33.610 49.894
4h/M_W_SW 35.609 75.331 20.106 66.864
4h/N 13.606 89.055 9.847 85.570
4h/N_M 21.461 82.022 15.438 77.122
5d/D 20.077 21.370 19.538 24.696
5d/N 12.032 82.048 8.808 77.869
5d/N_M 19.577 71.478 13.966 65.604
5d/N_SO 26.375 77.077 15.873 69.140
5d/W_M_SW 27.687 58.576 16.345 49.959
5h/D 31.915 31.871 22.748 29.216
5h/M_W_SW 31.540 62.849 17.627 53.295
5h/N 13.491 85.892 9.725 81.778
5h/N_M 17.570 71.805 10.050 60.287

Table 7.2: Numerical improvements of Baseline variants and the fastest variants for
each approach and dataset respectively comparing Sub-Graph (GL OrgaUnit) and
On-Demand approaches.

This, again, is very logical when comparing the two scheduling mechanisms. In
the sub-graph variant, the entire infrastructure network was checked in each time
step even though only a handful of trains are scheduled within. This resulted in a
large overhead. In the on-demand variant, only the particular infrastructure elements
at which some change occurs are scheduled for each time step. With increasing
timetable size, the number of elements that need to be scheduled increase as well
thus leading to more scheduling steps. Therefore, the improvements in runtime get
smaller. Nevertheless, for the given datasets, in the worst case a reduction of 21.4%
(5d/D baseline) or 24.5% (5d/D) are observed.

Profiling. To investigate possible bottlenecks with regard to parallel execution, the
on-demand simulation was profiled using the 5h/D dataset. Analysis was done using
Perf in conjunction CLion.

In the results, no significant bottlenecks were found. The scheduling of vertices
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consumed about 41% of the time. However, 77% of this or 32% in total were due to
the calculation of capacities. Scheduling the edges utilized roughly 5% of the time.
As for using the ThreadPool for managing and distributing the tasks to threads, this
introduced roughly 1% to 2% of additional overhead. The required mutex locks for
management and safe access did not appear in the listing and thus made up of less
than 1% of the time.

The CPU utilization during the scheduling was around 40% and used about 500
MiB of RAM.

This indicates that the simulation does not suffer from any direct bottleneck with
regard to parallel execution but rather from the lack of parallelly executable tasks.

Learnings. The implementation of the on-demand scheduling improved the overall
runtime significantly. While the improvements of parallelized variants is relatively
small, these are nevertheless promising. As optimization of this approach was not
possible due to the limited time of this thesis, further improvements could be made.
For example, as the algorithm benefits from parallel scheduling of elements per time
step, it would be feasible to increase the effectiveness of parallel computation if certain
time segments would be merged and thus more trains being scheduled at the same
time. This would also mitigate problems with high train loads and the discovery
of to many fine granular time steps, overloading the simulation. One could also try
to completely revert the floating point representation and use discrete integer time,
however this would invoke special handling of passing trains.

Regardless, this implementation showed that the algorithm has much optimiza-
tion potential. However, it is hard to do so with parallel execution: as only a few
calculations can be split so that these can be processed in parallel.

7.3 Summary
In this chapter, we presented an overhaul of the way the fundamental way the network
is scheduled. Instead of checking the entire infrastructure network in each time step
for possible updates, only elements that are known to change during a certain time
step will be processed. This reduced the overall execution time of the simulation
significantly, especially for large networks with only a small number of trains being
scheduled. In its current implementation, the simulation benefits of parallel scheduling
the best with regard to runtime when a large number of independent elements are
scheduled in one time step. However, in the datasets and current implementation this
is rather rarely the case and thus only limited improvements in threaded execution
were observer. This, nevertheless, offers point for improvement in future iterations
which were not possible due to the limited time available for this thesis.
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Chapter 8

Conclusion

To conclude this thesis, I will summarize what approaches were implemented to
achieve parallelization in the probabilistic train timetable simulation. The summary
is followed by a discussion about the results and learnings that were found while
working on this topic. Lastly, this chapter and with it this thesis will conclude by
presenting some thoughts on possible future work.

8.1 Summary
In this thesis, we investigated the probabilistic railway timetable simulation, as pre-
sented by Haehn, Ábrahám and Nießen in [15] with regard to parallelization
approaches in order to make the best possible use of available hardware. To achieve
parallelization, different approaches inspecting several aspects with regard to the par-
allel execution of simulation steps were developed in an iterative manner.

The initial implementation brought basic parallelism to the simulation algorithm,
by dividing the available input network into equal sized parts. This approach, how-
ever, did not yield any significant improvement due to extensive locking and waiting
of threads as well as the rudimentary parallelism technique implemented.

In the following, second attempt, the issues that were discovered during the initial
implementation and its analysis, were addressed. With these changes, we were able
to reduce the overall runtime of the algorithm by approximately 36% on average.
However, while these improvements were not neglectable, the resulting gains are rather
small when compared to the available hardware power.

Thus, in the subsequent third attempt, we tried to achieve better hardware utiliza-
tion and thus faster runtimes by splitting the infrastructure into logical sub-graphs.
With this, the amount of synchronization was aimed to be reduced. However, the
implemented changes were only able to reduce the runtime marginally.

The next attempt inspected the implications of parallelly processing time steps.
This task was found to be quite difficult, as conditions and constraints needed to be
put in place in order to guarantee a correct simulation result. While the time parallel
approach was able to reduce the overall runtime from datasets with a small time table
due to on-demand scheduling, for larger datasets the increased amount of time steps
due to the on-demand scheduling and the relaxation of time from integer to floating-
point numbers, the runtime increased drastically the more threads were used. The
combination of additional constraints and checks along with the increased number of
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time steps resulted in relatively poor parallel performance, with exponential runtime
in the worst cases. Due to time constraints of this thesis, no further optimization
could be implemented, resulting in sub-par algorithm runtimes.

In a final approach, some parts of the previous iteration were kept, such as the
floating-point representation of time and the concept of on-demand scheduling was
extended. The time-parallel simulation was reverted due to its issues described above.
To reduce the number of unnecessary scheduling steps for infrastructure elements at
points in time where nothing happens, a list of elements and time steps is dynami-
cally generated throughout the simulation. This leads to an on-demand scheduling
of elements at only those points in time, when an update is required. This showed
to be very effective in reducing the overall runtime of the simulation, especially for
large networks with only a small timetable. This resulted in runtime reductions of
up to 95%. This approach implemented parallelization during each time step, simi-
larly as before. As only a limited number of updates occurs, many of the elements
can be scheduled parallelly without the need for many constraints. However, due to
the current implementation, only few elements are simulated in a time step and thus
reducing the effectiveness of the parallel execution. This and a possible flooding of
time steps, like observed in the previous iteration, can lead to severe issues regarding
the runtime if not accounted for. A possible solution would be to merge certain time
steps, on the one hand increasing the number of parallelly schedulable trains and on
the other hand reduce the overall points in time to consider. Nevertheless, an average
increase of only 7% was noted, however datasets with larger timetables benefited sig-
nificantly from parallelization for a speed-up of up to 24%. Due to timely constraints,
this could not be optimized within the scope of this thesis, offering potential future
work.

8.2 Learings

In the course of this theses, we were able to establish that threads offer an relatively
easy way to enable parallel computing for an algorithm. Modern C++ standards offers
many interfaces for the inclusion of threads in C++ projects. While it might be easy
to add multi-threading, doing so efficiently is far from easy. During the work on this
thesis, we implemented several different approaches making use of multi-threaded
computing and parallel computation of tasks within the simulation. We learned that,
due to the shared memory in the nature of threads, synchronization is important to
avoid conflicts and data corruption. However, this also introduces bottlenecks and
waiting points which can severely influence the effectiveness of the parallelization.
Hence, it is important to find a balance in pre-processing and dividing the shared
data in such a way, that conflicts are avoided and the need for synchronization is
reduced to a minimum. Regardless of the data, it may also be the case that some
operations that might be scheduled in parallel are severely dependent on each other
so that the effective simultaneous processing is not possible.

Thus concluding, while achieving simple parallelism in a given algorithm can be
achieved relatively fast with modern C++. But how to achieve efficient parallel execu-
tion is dependant on various factors, such as the algorithm itself, the operating system
and the hardware. Further, dependency management and synchronization overhead
are the main initiators of increased runtime and the goal is therefore, to reduce such
as much as possible.
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8.3 Future work

As the scope of this master’s thesis was limited and due to timely constraints, only a
couple of approaches and optimizations could be implemented and evaluated. As the
results so far show, there is still headroom for optimization and improvements with
regard to the runtime of the simulation algorithm, thus offering interesting topics for
future work.

To optimize the utilization of available hardware and thus allow for faster runtimes,
the algorithm itself can be investigated. As this thesis only introduced rather minor
changes to the simulation mechanics, in particular the scheduling of trains, the results
are limited to what this current state allows for. As we have seen in the results above,
the parallel execution is often times severely limited by the dependencies of the vertices
and edges especially with regard to their timely execution. Hence, when the algorithm
would be rewritten and customized so that those limiting dependencies are minimized,
it would allow for better parallelizability. Here, especially the possible focus on train-
based simulation instead of an infrastructure-base one could be of advantage.

Concerning the first approaches where the infrastructure network was divided into
separate chunks, it can be investigated in how far this can be improved on. With better
chunk generation, the dependencies between to chunks could potentially minimized
and thus result in less synchronization and bookkeeping.

Furthermore, as it was noted in Chapter 7, the reduction of constraints and on-
demand scheduling reduced the overall runtime of the simulation significantly, regard-
less the use of multi-threading. Threads were only able to speed up the already good
results by only a bit. The issue here is, that only a handfull of trains are scheduled
in each time step and that the time step resolution might be to fine. As a detailed
resolution of time steps might also lead to problems and slowdowns, the investigation
of either reverting to integer-based time steps or an optimized merging procedure of
times might offer better utilization of threads. This approach in general, seems to be
an interesting starting point for further inspection due to its good performance and
few bottlenecks.

Additionally, the time-parallel approach may be revisited. Here, improvements in
runtime might be possible by reducing the number of required checks and constraints.
For this, an optimized hybrid time-parallel on-demand approach might offer further
improvements. Furthermore, a revised implementation might also resolve some issues
with regard to the prolonged execution time for long timetables on large networks.

Also other implementations of multithreading in C++ for example by using OpenMP1

could be used instead of the native C++11/14/17 standards. While this requires severe
changes in the implementation as it works quite different2 to the standard C++one.
However, depending on the workload, it may also affect the overall runtime, as it has
been found to perform better in certain situations [37].

Furthermore, this thesis focussed on the usage of threads for parallelization as it
is a very powerful resource for this task with relative easy implementation possibil-
ities. However, as presented in Chapter 2, multiple processes can be used besides
threads. These require some additional work with regard to distributed data and its
consistency, as well as harder communication overhead.

Lastly, the simulation could extended with further features such as delay predic-

1https://www.openmp.org/
2OpenMP uses compiler directives instead of active code. Thus requiring other implementations

and a compatible compiler. However, most modern popular compiler support it.

https://www.openmp.org/


74 Chapter 8. Conclusion

tion. Another interesting extension could the implementation of other methods to
recover from delay, for example re-routing delayed trains when certain infra structure
element capacities are stressed. Furthermore, the introduction of events influencing a
trains arrival or departure times, such as passengers blocking the doors, bad weather
or other incidents could be examined.



Bibliography

[1] Umut A. Acar, Arthur Chargueraud and Mike Rainey. An Introduction to Par-
allel Computing in C++. Version 1.2. Archived on 2021-02-12. Mar. 2016. url:
https://web.archive.org/web/20210212165921/https://www.
cs.cmu.edu/~15210/pasl.html (visited on 12/02/2021).

[2] Advanced Micro Devices Inc. Ryzen 5000 Series Desktop Processors. 2020. url:
https://web.archive.org/web/20210211184208/https://www.
amd.com/en/processors/ryzen (visited on 11/02/2021).

[3] Gene M. Amdahl. ‘Validity of the single processor approach to achieving large
scale computing capabilities’. In: AFIPS Joint Spring Conference Proceedings
30. ACM Press, 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[4] Keith Briggs and Christian Beck. ‘Modelling train delays with q-exponential
functions’. In: Physica A: Statistical Mechanics and its Applications 378 (2
10th Nov. 2006), pp. 497–504. doi: 10.1016/j.physa.2006.11.084.

[5] Beda Büchel, Thomas Spanninger and Francesco Corman. ‘Empirical dynamics
of railway delay propagation identified during the large-scale Rastatt disrup-
tion’. In: Scientific Reports 10.1, 18584 (29th Aug. 2020). issn: 2045-2322. doi:
10.1038/s41598-020-75538-z.

[6] Francesco Corman and Pavle Kecman. ‘Stochastic prediction of train delays
in real-time using Bayesian networks’. en. In: Transportation Research Part C:
Emerging Technologies 95 (Oct. 2018), pp. 599–615. doi: 10.3929/ETHZ-B-
000281218.

[7] Marco Danelutto et al. ‘Parallelizing High-Frequency Trading Applications by
Using C++11 Attributes’. In: 2015 IEEE Trustcom/BigDataSE/ISPA. IEEE,
Aug. 2015. doi: 10.1109/trustcom.2015.623.

[8] DB Netz AG. Betriebsstellenverzeichnis – Open Data. German. 2018. url:
https://data.deutschebahn.com/dataset/data-betriebsstellen
(visited on 26/02/2021).

[9] Deutsche Bahn AG.Wettbewerbskennzahlen 2019/2020. German. Archived. June
2020. url: https://web.archive.org/web/20210118235716/https:
//www.deutschebahn.com/de/konzern/Wettbewerb/verkehr_
politik-3844352 (visited on 18/01/2021).

[10] European Environment Agency. Passenger and freight transport demand in Eu-
rope. 19th Dec. 2019. url: https://www.eea.europa.eu/ds_resolveuid/
653cb59bd80f49de891d49195f159971 (visited on 08/12/2020).

https://web.archive.org/web/20210212165921/https://www.cs.cmu.edu/~15210/pasl.html
https://web.archive.org/web/20210212165921/https://www.cs.cmu.edu/~15210/pasl.html
https://web.archive.org/web/20210211184208/https://www.amd.com/en/processors/ryzen
https://web.archive.org/web/20210211184208/https://www.amd.com/en/processors/ryzen
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1016/j.physa.2006.11.084
https://doi.org/10.1038/s41598-020-75538-z
https://doi.org/10.3929/ETHZ-B-000281218
https://doi.org/10.3929/ETHZ-B-000281218
https://doi.org/10.1109/trustcom.2015.623
https://data.deutschebahn.com/dataset/data-betriebsstellen
https://web.archive.org/web/20210118235716/https://www.deutschebahn.com/de/konzern/Wettbewerb/verkehr_politik-3844352
https://web.archive.org/web/20210118235716/https://www.deutschebahn.com/de/konzern/Wettbewerb/verkehr_politik-3844352
https://web.archive.org/web/20210118235716/https://www.deutschebahn.com/de/konzern/Wettbewerb/verkehr_politik-3844352
https://www.eea.europa.eu/ds_resolveuid/653cb59bd80f49de891d49195f159971
https://www.eea.europa.eu/ds_resolveuid/653cb59bd80f49de891d49195f159971


76 Bibliography

[11] Stefano de Fabris, Giorgio Medeossi and Giuliano Montanaro. ‘trenissimo: Im-
proving the microscopic simulation of railway networks’. In: Computers in Rail-
ways XVI : Railway Engineering Design and Operation. Vol. 181. WIT Press,
July 2018, pp. 199–211. doi: 10.2495/CR180181.

[12] Jesús Fernández-Villaverde and David Zarruk Valencia. A Practical Guide to
Parallelization in Economics. Working Paper. National Bureau of Economic
Research, Apr. 2018. doi: 10.3386/w24561.

[13] Burkhard Franke et al. ‘OnTime – Network-wide Analysis of Timetable Stabil-
ity’. In: 5th International seminar on railway operations modelling and analysis
(Copenhagen, Denmark). May 2013.

[14] HaCon. Train & Capacity Planning. url: https://web.archive.org/
web/20210214130258/https://www.hacon.de/en/solutions/
train-capacity-planning/ (visited on 14/02/2021).

[15] Rebecca Haehn, Erika Ábrahám and Nils Nießen. ‘Probabilistic Simulation of
a Railway Timetable’. en. In: 20th Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2020). Ed. by
Dennis Huisman and Christos D. Zaroliagis. Vol. 85. OpenAccess Series in In-
formatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020, 16:1–16:14. isbn: 978-3-95977-170-2. doi: 10 . 4230 /
OASICS.ATMOS.2020.16.

[16] Intel Corporation. Intel Core i3 Processors. 2020. url: https://web.archive.
org/web/20210126021409/https://www.intel.com/content/www/
us/en/products/processors/core/i3-processors.html (visited on
26/01/2021).

[17] Intel Corporation. Intel Core i9 Processors. 2020. url: https://web.archive.
org/web/20210211183010/https://www.intel.com/content/www/
us/en/products/processors/core/i9-processors.html (visited on
11/02/2021).

[18] L. Muller J-P. Bendfeldt U. Mohr. ‘RailSys, A System To Plan Future Rail-
way Needs’. In: International Conference on Computers in Railways. Vol. VII.
Bolgna, Italy: WIT Press, 2000, pp. 249–255. doi: 10.2495/CR000241.

[19] Ralf Jahr, Mike Gerdes and Theo Ungerer. ‘A pattern-supported parallelization
approach’. In: Proceedings of the 2013 International Workshop on Programming
Models and Applications for Multicores and Manycores - PMAM ’13. ACM
Press, 2013. doi: 10.1145/2442992.2442998.

[20] David Janecek. LUKS® Leistungsfähigkeitsuntersuchung Knoten und Strecken.
German. 14th June 2010. url: http://ifev.rz.tu-bs.de/RailAutomation/
RA2010/Internet/5_Janecek.pdf (visited on 14/04/2021).

[21] Peter Kipfer. ‘Distribution and Parallelization Strategies for Integrated Simula-
tion, Visualization and Rendering Systems’. PhD thesis. Universität Erlangen-
Nürnberg, 18th Feb. 2003.

[22] Wei Li and Wei Zhu. ‘A dynamic simulation model of passenger flow distribution
on schedule-based rail transit networks with train delays’. In: Journal of Traffic
and Transportation Engineering (English Edition) 3.4 (Aug. 2016), pp. 364–373.
doi: 10.1016/j.jtte.2015.09.009.

https://doi.org/10.2495/CR180181
https://doi.org/10.3386/w24561
https://web.archive.org/web/20210214130258/https://www.hacon.de/en/solutions/train-capacity-planning/
https://web.archive.org/web/20210214130258/https://www.hacon.de/en/solutions/train-capacity-planning/
https://web.archive.org/web/20210214130258/https://www.hacon.de/en/solutions/train-capacity-planning/
https://doi.org/10.4230/OASICS.ATMOS.2020.16
https://doi.org/10.4230/OASICS.ATMOS.2020.16
https://web.archive.org/web/20210126021409/https://www.intel.com/content/www/us/en/products/processors/core/i3-processors.html
https://web.archive.org/web/20210126021409/https://www.intel.com/content/www/us/en/products/processors/core/i3-processors.html
https://web.archive.org/web/20210126021409/https://www.intel.com/content/www/us/en/products/processors/core/i3-processors.html
https://web.archive.org/web/20210211183010/https://www.intel.com/content/www/us/en/products/processors/core/i9-processors.html
https://web.archive.org/web/20210211183010/https://www.intel.com/content/www/us/en/products/processors/core/i9-processors.html
https://web.archive.org/web/20210211183010/https://www.intel.com/content/www/us/en/products/processors/core/i9-processors.html
https://doi.org/10.2495/CR000241
https://doi.org/10.1145/2442992.2442998
http://ifev.rz.tu-bs.de/RailAutomation/RA2010/Internet/5_Janecek.pdf
http://ifev.rz.tu-bs.de/RailAutomation/RA2010/Internet/5_Janecek.pdf
https://doi.org/10.1016/j.jtte.2015.09.009


Bibliography 77

[23] Xuejun Liang, Ali A. Humos and Tzusheng Pei. ‘Vectorization and Paralleliza-
tion of Loops in C/C++ Code’. In: Frontiers in Education: Computer Sci-
ence and Computer Engineering. MERCURY LEARNING & INFORMATION,
1st Feb. 2018. isbn: 160132457X.

[24] Milos Ljumovic. C++ Multithreading Cookbook. over 60 recipes to help you
create ultra-fast multithreaded applications using C++ with rules, guidelines,
and best practices. Birmingham, UK: Packt Pub, 2014. isbn: 9781783289790.

[25] Arnoud Mouwen. ‘Drivers of customer satisfaction with public transport ser-
vices’. In: Transportation Research Part A: Policy and Practice 78 (Aug. 2015),
pp. 1–20. doi: 10.1016/j.tra.2015.05.005.

[26] A. Nash and D. Huerlimann. ‘Railroad Simulation Using OpenTrack’. In: WIT
Transactions on The Built Environment. Vol. 10. WIT Press, 2004, p. 10. isbn:
1-85312-715-9. doi: 10.2495/CR040051.

[27] OpenTrack. OpenTrack Railway Simulation. url: https://web.archive.
org/web/20210214125348/http://www.opentrack.ch/mobile/
opentrack_e/opentrack_e.html (visited on 14/02/2021).

[28] James Reinders et al. Data Parallel C++. Apress, 2021. doi: 10.1007/978-
1-4842-5574-2.

[29] REPARA Project. Reengineering and Enabling Performance and poweR of Ap-
plications. Site not reachable. Snapshot via archive.org. 2015. url: https://
web.archive.org/web/20190916033500/http://repara-project.
eu/ (visited on 16/09/2019).

[30] RMCon Internatonal. RailSys Software Suite. url: https://web.archive.
org/web/20210214131945/https://www.rmcon-int.de/railsys-
en/railsys-suite/ (visited on 14/02/2021).

[31] Sudhakar Sah and Vinay G. Vaidya. ‘A Review of Parallelization Tools and
Introduction to Easypar’. In: International Journal of Computer Applications
56.12 (Oct. 2012), pp. 30–34. doi: 10.5120/8944-3108.

[32] trafit. Punctuality prognosis with OnTime. 2020. url: https://web.archive.
org/web/20210214185016/https://www.trafit.ch/en/ontime
(visited on 14/02/2020).

[33] trenolab. tenissimo. An intuitive approach to railway simulation. url: https:
//web.archive.org/web/20210214124721/https://www.trenolab.
com/tools/trenissimo/ (visited on 14/02/2021).

[34] VIA Con. LUKS – Analysis of lines and junctions. url: https://web.
archive.org/web/20210214132552/https://www.via-con.de/
development/luks/.

[35] Anthony Williams. C++ Concurrency in Action. 2nd ed. Manning Publications,
22nd Feb. 2019. 592 pp. isbn: 1617294691.

[36] Jürgen Wolf. Grundkurs C++. eine kompakte Einführung in die Programmier-
sprache C++. 2nd ed. Bonn: Galileo Press, 2013. isbn: 9783836222945.

[37] Joel Yliluoma. SIMD and Vectorization: Parallelism in C++. Informal Study
on Parallelism in C++ and published on GitHub and YouTube. 10th Jan.
2019. url: https://github.com/bisqwit/cpp_parallelization_
examples (visited on 19/04/2021).

https://doi.org/10.1016/j.tra.2015.05.005
https://doi.org/10.2495/CR040051
https://web.archive.org/web/20210214125348/http://www.opentrack.ch/mobile/opentrack_e/opentrack_e.html
https://web.archive.org/web/20210214125348/http://www.opentrack.ch/mobile/opentrack_e/opentrack_e.html
https://web.archive.org/web/20210214125348/http://www.opentrack.ch/mobile/opentrack_e/opentrack_e.html
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1007/978-1-4842-5574-2
https://web.archive.org/web/20190916033500/http://repara-project.eu/
https://web.archive.org/web/20190916033500/http://repara-project.eu/
https://web.archive.org/web/20190916033500/http://repara-project.eu/
https://web.archive.org/web/20210214131945/https://www.rmcon-int.de/railsys-en/railsys-suite/
https://web.archive.org/web/20210214131945/https://www.rmcon-int.de/railsys-en/railsys-suite/
https://web.archive.org/web/20210214131945/https://www.rmcon-int.de/railsys-en/railsys-suite/
https://doi.org/10.5120/8944-3108
https://web.archive.org/web/20210214185016/https://www.trafit.ch/en/ontime
https://web.archive.org/web/20210214185016/https://www.trafit.ch/en/ontime
https://web.archive.org/web/20210214124721/https://www.trenolab.com/tools/trenissimo/
https://web.archive.org/web/20210214124721/https://www.trenolab.com/tools/trenissimo/
https://web.archive.org/web/20210214124721/https://www.trenolab.com/tools/trenissimo/
https://web.archive.org/web/20210214132552/https://www.via-con.de/development/luks/
https://web.archive.org/web/20210214132552/https://www.via-con.de/development/luks/
https://web.archive.org/web/20210214132552/https://www.via-con.de/development/luks/
https://github.com/bisqwit/cpp_parallelization_examples
https://github.com/bisqwit/cpp_parallelization_examples


78 Bibliography



Appendix A

Additional Visualizations

(a) Approach 1 (b) Approach 2

(c) Approach 3 (d) Approach 4

(e) Approach 5

Figure A.1: Runtimes for each approach on the desktop only showing the 5h datasets.
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