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Abstract

In this thesis, we introduce stochastics to rectangular automata models and

discuss two generalized formalisms for stochastic hybrid automata. Stochastic

hybrid automata are based on probability distributions, that globally decide the

timing when some transition is taken. We try to give an intuitive reasoning why

those two stochastic hybrid automaton models using global probability distribu-

tions are equivalent. In contrast to the global models, we introduce a stochastic

hybrid automaton model which is based on local probability distributions, us-

ing an approach similar to stochastic hybrid Petri nets. Instead of a global

probability distribution for all transitions, this model uses a local probability

distribution for each jump. Since this model is not very practical, problems of

using the local approach are highlighted.
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Chapter 1

Introduction

Stochastic hybrid automata allow modeling of complex real-time systems that de-
scribe the interaction between discrete-continuous behaviour and random behaviour
in�uencing the discrete and continuous choices that are made in such a model. The
model checking problem for stochastic hybrid automata asks the question, whether the
probability to reach states with certain properties is within some bounds [FHH+11].

The need for stochastic hybrid automata arises from the issue of nondeterminism in
hybrid automata. Hybrid automata involve uncertainities which need to be resolved.
There have been several approaches to resolve this nondeterminism by probability
distributions already. Jeremy Sproston for example solved the nondeterminism, when
multiple transitions are enabled at the same time, by adding discrete probability dis-
tributions [Spr00]. The issue, when a transition can be taken and what transition can
be taken after that time has been analyzed for stochastic timed automata [BBB+14].
For rectangular automata, no stochastic model existed yet. The nondeterministic
choices in rectangular automata involving when a discrete transition will be taken,
with what rate the continuous time evolves, what transition will be taken and how the
values of variables are reset, still need to be resolved. This thesis will deal with this
topic by summarizing existing hybrid automaton models to then be able to introduce
a new model, stochastic rectangular automata. Stochastic rectangular automata are
a combination of the existing rectangular automata and stochastic timed automata
and will be used to �nd a general de�nition of stochastic hybrid automata using global
probability distributions. Due to numerous di�erent existing formalisms, our objetive
is to provide a uni�cation that compares these formalisms and highlights problems.

Other related work dealt with hybrid Petri nets [HPS+19]. In that model, stochas-
tics have been introduced not by global probability distributions as in the hybrid
automata cases, but instead using local probability distributions. Due to the control
modes in Petri nets running in parallel, probability distributions needed to be intro-
duced locally for each event. This raised the question, whether a local approach could
be used to model stochastic hybrid automata too and will be dealt with in this thesis.
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Chapter 2

Preliminaries

2.1 Timed Automata

In hybrid automata, both discrete modes and continuous time is used to model real-
time systems. The following preliminaries , especially syntax and semantics of several
modeling formalisms that will be introduced, are taken from the lecture "Modeling
and Analysis of Hybrid Systems" [Ábr12] to build the foundation of this thesis.
The model consists of discrete modes and a continuous time evolution within those
modes. With discrete transitions or jumps, the discrete mode can be changed. Clocks
are used to measure continuous time and automata will be used to model the discrete
modes of the system. Each clock has a value that continuously develops with time,
the change over time is de�ned by a real-valued �ow function. For a clock x, the �ow
is denoted as its derivative ẋ; hence, the �ow in the below timed automata de�nition
is implicitely set to ẋ = 1 to indicate a clock rate of 1.
Timed automata use clocks from a set C to model real-time systems. The clock val-
uation is a map ν : C → R≥0 assigning a real value to each clock. In the following
thesis, we also write g ⊆ Rn and we also write ν ∈ g to denote that the real vector of
variables values de�ned by ν is in g, assuming a silently �xed order of the variables.
Let x be a clock and c ∈ N a number. The value of x can be compared to c, denoted
by x ∼ c with ∼ being an element of {<, ≤, =, ≥, >}. We call comparisons atomic
and conjunctions of those atomic clock constraints build a set of clock constraints
CC(C). Jumps are guarded by clock constraints and might reset part of the clocks to
zero. Discrete modes are restricted by clock constraints called invariants.
In the following de�nition, a labelling of atomic propositions to model parallel con-
struction will be left out. For timed automata, it is easy to introduce but it is not
trivial anymore for following models using stochastics.

De�nition 2.1.1 (Syntax of Timed Automata). A timed automaton (TA) is a tuple
A = (Loc, C,Edge, Inv, Init) with

� Loc is a �nite set of locations;

� C is a �nite set of real-valued clocks. Let V denote the set of clock valuations
ν : C → R≥0.

A state is a pair (l,ν) where l ∈ Loc and ν ∈ V . Σ denotes the set of states;
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� Edge is a �nite set of transitions. A transition ε ∈ Edge is a triple (`, ρ, `′)
such that `, `′ ∈ Loc and ρ is the edge relation: ρ ∈ CC(C) × 2C such that every
edge consists of a clock constraint(guard) and a set of clocks to be reset to zero
upon taking the edge;

� Inv is a labeling function, assigning an invariant Inv(l) ⊆ V to each location
l ∈ Loc;

� Init is a set of initial states Init ⊆ Σ with ∀ (l, ν) ∈ Init and x ∈ C. ν(x) = 0.

In the graphical interpretation of A, vertices represent pairs of a location and
its invariant, edges model the transitions between the vertices and clocks generate
constraints for enabling or disabling edges.
In a timed automaton, there are two possibilities for a clock constraint: it can either
be used as an invariant for locations to set a condition for staying in a location or it
can be used as a guard for edges in order to form an enabling/disabling criterion for
edges. The �ow for all clocks x ∈ C is limited to ẋ = 1. All clocks proceed at rate 1,
thus a �ow function can be omitted in the de�nition.

Example 2.1.1. This �gure shows a timed automaton A1 = (Loc1, C1, Edge1,
Inv1,Init1) where:

� Loc1 = {`0, `1, `2, `3 },

� C1 = {x, y},

� Edge1 = {
(`0, ε1, x≤2, {y}, `1),
(`1, ε2, y≥3, {x}, `0),
(`1, ε3, x≥0, {}, `2),
(`2, ε4, x≥0, {x}, `1),
(`2, ε5, x>2, {y}, `2),
(`1, ε6, x=0,{}, `3),
(`3, ε7, y≥1, {x}, `3)
}

� Inv1(`0) = x ≤ 2 ∧ y ≥ 0, Inv1(`1) = x ≥ 0 ∧ y ≥ 0, Inv1(`2) = x ≤ 5 ∧ y
≥ 0, Inv1(`3) = x < 3 ∧ y ≥ 0,

� Init1 = (`0, x=0 ∧ y=0).
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l0
x ≤ 2 ∧
y ≥ 0

l1
x ≥ 0 ∧
y ≥ 0

l2
x ≤ 5 ∧
y ≥ 0

l3
x < 3 ∧
y ≥ 0

x := 0 ∧ y := 0

ε1, x ≤ 2, y := 0

ε2, y ≥ 3, x := 0

ε3, x ≥ 0

ε6, x = 0

ε5, x > 2, y := 0

ε4, x ≥ 3, x := 0

ε7, y ≥ 1, x := 0

This timed automaton models a system with one bad location `3. Since `3 only has
one outgoing transition ε7 that is a self loop, once the system reaches `3 it can not get
out. The transitions describe the discrete jumps between locations. For example, the
system can go from `0 to `1 with transition ε1, if x ≤ 2 is satis�ed and the invariant
of the target location is satis�ed. Since the invariant of `0 requires x ≤ 2, the system
has to take the transition ε1 within 2 time steps, because the invariant of a location
may not be violated. Upon taking the transition ε1 y := 0 is executed, meaning the
clock value of y is reset to 0.

Now that the syntax of timed automata has been introduced, semantics are necessary.
Since timed automata are a subclass of rectangular automata, the semantics will be
omitted here and introduced in the next section.

2.2 Rectangular Automata

With timed automata, the clock valuations were limited to linear evolution, especially
only allowing ẋ = 1 for a clock x ∈ C. This limitation changes with rectangular
automata.
Rectangular automata are timed automata with two major extensions: The clock
value can change within values from a rectangular interval and the clock reset can set
clocks to arbitrary values, not only to zero. All invariants, activities and valuations
are described by rectangular sets. A set R ⊂ Rn is called rectangular if it is a cartesian
product of (possibly unbounded) intervals, all of whose �nite endpoints are rational.
Rn denotes the set of all n-dimensional rectangular sets [Ábr12].

De�nition 2.2.1 (Syntax of Rectangular Automata). A rectangular automaton (RA)
A is a tuple A = (Loc, C,Edge,Act, Inv, Init) with

� Loc is a �nite set of locations;

� C is a �nite set of real-valued variables.

A state is a pair (l,ν) where l ∈ Loc and ν ∈ V . Σ denotes the set of states;

� Edge ⊆ Loc×Rn ×Rn × 2C × Loc is a set of transitions;
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� Act: Loc → Rn is a �ow function

� Inv is a labeling function, assigning an invariant Inv(l) ∈ Rn to each location
l ∈ Loc;

� Init is a set of initial states Init ⊆ Σ with
⋃
s∈Init(l,ν) such that ν ∈ Rn and

ν ∈ Inv(l).

The de�nitions of timed and rectangular automata are similar, but with rectan-
gular automata the �ow function Act is added to the de�nition. Act(`) consists of
�rst time derivatives of the �ow trajectories of all variables in location ` ∈ Loc. A
transition ε ∈ Edge is a triple (`, ρ, `′) such that `, `′ ∈ Loc and ρ is the edge relation:
ρ ∈ Rn×Rn × 2C . In contrast to timed automata, jumps can reset values to arbitrary
values of a rectangular set, not only to zero. A jump (l, g, r, jump, l′) is enabled if the
valuation satis�es the guard g, the successor valuation of variables in r satis�es the
invariant of l' and the values of variables not in r do not change.

Example 2.2.1. This example shows the di�erence between timed automata and
rectangular automata. The di�erence is the set of values for all activities and transi-
tions. In Example 2.1.1, all clock derivatives were restricted to 1. With rectangular
automata, for example in `0, derivatives like ẏ=2 are allowed. Furthermore, for a
transition, the reset set is allowed to be arbitrary. Upon taking a transition, a vari-
able does not have to be reset to 0, but can be reset to any value like the value of y is
set to 10 in ε2.

l0
ẋ = 1
ẏ = 2
y ≤ 5

l1
ẋ = −1
ẏ ∈ [1,2]

x := 0 ∧ y := 0

ε2, y ≤ 5

x := 0 ∧ y := 10

ε1, y ≤ 5

x := 0 ∧ y := 0

ε3, y ≥ 5

x := 0 ∧ y :∈ [0,10]
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2.2.1 Semantics of Rectangular Automata

Now that the base model for this thesis has been introduced, operational semantics
of rectangular are necessary to allow describing executions on rectangular automata.
Furthermore, a path de�nition needs to be de�ned.

De�nition 2.2.2 (Semantics of Rectangular Automata). The semantics of a rectan-
gular automaton A = (Loc, C,Edge,Act, Inv, Init) consists of discrete instantaneous
steps (jumps) and continuous time steps (�ow):

1. Discrete step semantics

e = (`, (g, r), jump, `′) ∈ Edge
ν ∈ g ν′ ∈ r ∀i /∈ jump.ν(i)′ = ν(i) ν′ ∈ Inv(l′)

(`, ν)
e−→ (`′,ν′)

Rulediscrete

for state s = (l, ν) ∈ Σ and for each discrete transition e = (l, (g, r), jump, l′) ∈
Edge of l we say that e is enabled if and only if the valuation ν satis�es the
guard g, the system may take the transition e and meanwhile update the value of
variables in jump to r only if updated valuation ν′ does not violate the invariant
of target location.

2. Time step semantics

(t = 0 ∧ ν = ν′) ∨ (t > 0 ∧ (ν′ − ν)/t ∈ Act(l)) ν′ ∈ Inv(l)

(l,ν)
t−→ (l,ν′)

Ruletime

for state s = (l, ν) ∈ Σ the system may stay at location for t time steps and
update valuation to ν′ only if either t is zero and the clock valuation does not
change or the ratio of di�erence between ν′ and ν to t meets the continuous
activities given by the function Act(l) and ν′ does not violate the invariant of l.

Given a rectangular automaton H = (Loc, C,Edge,Act, Inv, Init) with states set
Σ, a �nite run [AD94] % of H is a sequence of transitions

% = s0
t1,e1−−−→ s1

t2,e2−−−→ . . .
tn,en−−−→ sn

where n ∈ N, (si) = (li,νi) ∈ Σ with 0 ≤ i ≤ n, such that for all i ∈ [1, n] there is

a σi such that σi
ti−→ σ′i

ei−→ σi+1. We say that n is the length of the run %. We use
Runf (H,s0) to denote the set of all �nite runs from s0 in H. Similarly an in�nite run
[AD94] % of H is a sequence of transitions without end state

% = s0
t1,e1−−−→ s1

t2,e2−−−→ s2
t3,e3−−−→ . . .

with (si) ∈ Σ ∀i ∈ N, (ti)i∈N+ ∈ R≥0 and (ei)i∈N+ ∈ Edge, satisfying the above
requirements. We use Run(H,s0) to denote the set of all in�nite runs from s0.
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De�nition 2.2.3 (Direct Successors [BK08]). Let H = (Loc, C,Edge,Act, Inv, Init)
be a rectangular automaton. For s ∈ Σ and e ∈ Edge, the set of direct e-successors
of s is de�ned as:

Post(s,e) = {s′ ∈ Σ | ∃t ∈ N.s t,e−−→ s′},

and the set of direct successors of s is de�ned as:

Post(s) =
⋃
e∈Edge Post(s,e).

Given a rectangular automaton H = (Loc, C,Edge,Act, Inv, Init) with states set
Σ, a �nite path π̂(s0, e1 . . . en) of H is a set of all �nite runs starting from s0 by taking

e1,e2, . . . ,en, i.e. π̂(s0, e1 . . . en) = {s0
t1,e1−−−→ s1

t2,e2−−−→ . . .
tn,en−−−→ sn ∈ Runf (H,s0)}.

An in�nite path π(s0, e1e2 . . .) of H is a set of all in�nite runs that start from s0

and take e1,e2, . . . in sequence, we de�ne π(s0, e1e2 . . .) = {s0
t1,e1−−−→ s1

t2,e2−−−→ s2
t3,e3−−−→

. . . ∈ Run(H,s0)}.
These de�nitions will be used later in this thesis to calculate path probabilities for
stochastic hybrid automata.

2.3 Probabilistic Rectangular Automata

A problem with rectangular automata involves nondeterminism. When multiple out-
going transitions from one location are enabled at the same time, one transition is
taken nondeterministically. To solve this nondeterminism, probabilistic rectangular
automata extend rectangular automata with discrete probability distributions. In
that case, a random factor decides which transition is taken.

De�nition 2.3.1 (Syntax of Probabilistic Rectangular Automata). A probabilistic
rectangular automaton (PRA) is a tuple A = (Loc, C,Edge,Act, Inv, Init,P) where

� (Loc, C, Edge, Act, Inv, Init) is a rectangular automaton.

� P is a transition probability function P : Edge→ [0,1] such that:

∀l ∈ Loc ∀g ∈ {g ∈ Rn | ∃e = (l,g,r,jump,l′) ∈ Edge}.

 ∑
e=(l,g,r,jump,l′)∈Edge

P (e) = 1


Example 2.3.1. This example illustrates the di�erence between rectangular automata
and probabilistic rectangular automata. In Example 2.2.1, the rectangular automaton
had a nondeterministic choice. At location `0, two discrete transitions can be enabled
at the same time. Discrete transitions or jumps in probabilistic rectangular automata
are urgent, meaning if a jump is enabled, some jump must be taken. If a jump should
be taken, then the probabilistic automaton resolves this nondeterminism by a probabil-
ity distribution, marked with blue in the graphical representation. The two outgoing
transitions of `0 now have a probability, meaning that with a probability of 0.9, the
system will take transition ε2 and with a probability of 0.1, it will take transition ε1
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and stay in `0.

l0
ẋ = 1
ẏ = 2
y ≤ 5

l1
ẋ = −1
ẏ ∈ [1,2]

y ≤ 5x := 0 ∧ y := 0

ε2, x := 0 ∧ y := 10

0.9

ε1, x := 0 ∧ y := 0

0.1

ε3, y ≥ 5

x := 0 ∧ y :∈ [0,10]

Now that the syntax of probabilistic rectangular automata has been introduced,
semantics are necessary. For the semantics, urgency states that when a transition is
enabled, some jump is taken. When multiple di�erent guards are enabled at the same
time, a random guard is chosen.
Since probabilistic rectangular automata can still contain nondeterminism in the
derivatives of variables and in the reset sets, we can not clearly de�ne semantics yet.
In the above example, in location l1, the derivative of y can be within the rectangular
set [1,2]. This nondeterminism can not be resolved by using the discrete probability
distributions of probabilistic rectangular automata, hence a model using continuous
probability distributions needs to be introduced.
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Chapter 3

Global Probability Distributions

3.1 Stochastic Rectangular Automata

In this section, the main model of this bachelor thesis - stochastic rectangular au-
tomata - will be introduced. Stochastic rectangular automata are based on rectan-
gular automata [Ábr12] and stochastic timed automata [BBB+14]. It involves both
nondeterministic and probabilistic behaviour. Stochastic Rectangular Automata are
an extension of Probabilistic Rectangular Automata to continuous state spaces and
continuous probability measures. The motivation behind introducing them is that
with timed automata, jumps are not always urgent. This is not always the case in
practice, for example the measuring of time with digital clocks might be less precise
than the timed automaton demands. With continuous probability measures, this be-
haviour can be approximated so that stochastic hybrid automata provide a less strict
handling than timed automata.

This thesis restricts the �ow of clocks within stochastic rectangular automata to lin-
ear behaviour, meaning derivatives of clock valuations are only allowed to be constant
upon entering a location. In this case, for each location, each outgoing transition is
only enabled for one continuous, possibly in�nitely large interval. That is due to the
convex guards of a transition only being able to be satis�ed at most once, and then
disabled at most once.
When allowing non-linear behaviour for stochastic rectangular automata, the interval
of enabledness for a transition is not necessarily continuous. A �ow ẋ = [-1, 1] for
example allows to enable and disable a transition multiple times. This would create
a nondeterminism that cannot be solved with here proposed formalisms.

In the following paragraphs, the de�nitions of stochastic timed automata [BBB+14]
will be used and adapted to rectangular automata to de�ne models for stochastic rect-
angular automata, which resolve all possible nondeterministic choices. The possible
nondeterministic choices are the same as in [BBB+14], namely when a transition is
taken and which transition is taken. Since we introduce stochastics to rectangular
automata and not timed automata, derivatives of variables and resets can be within
rectangular sets. This yields two new nondeterministic possibilities that need to be
solved, random derivatives for variables and random resets. First, the intervals of
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enabledness for transitions will be de�ned to build a foundation for a probability
distribution over delays, deciding when some transition is taken. As in [Spr00], this
interval will be extended from a time interval to a state set. We will de�ne a set of
states that can be reached with any derivative in any amount of time, such that some
jump from those states can be taken.

De�nition 3.1.1 (Interval of enabled transitions).
Let A = (Loc, C,Edge,Act, Inv, Init) be a rectangular automaton with s ∈ Σ a state

of A and e ∈ Edge. The set I(s,e) = {s′ ∈ Σ | ∃s′′ ∈ Σ.s
t−→ s′

e−→ s′′} describes
all states which can be reached from a state s by waiting an amount of time with
arbitrary derivatives of the variables, such that a discrete transition can be taken from
those states. I(s) =

⋃
e∈Edge I(s,e) is a �nite union of the sets over all outgoing

edges describing all possible intervals with all possible derivatives where a jump can
be taken.

To de�ne the stochastic processes behind stochastic rectangular automata, an
intuitive understanding of the behaviour of such an automaton is helpful. Stochastic
rectangular automata involve both continuous �ows and discrete transitions. The
stochastic process, from a state s, �rst chooses a random delay with random variable
derivatives to stay inside the same location, then a random transition out of all at
that state enabled transitions is chosen and randomly reset according to the transition
relation. Now, probability distributions over delays, which is a combination of when
a jump will be taken and the derivatives of the variables, will be de�ned.

De�nition 3.1.2 (Probability Distribution over Delays).
Let A = (Loc, C,Edge,Act, Inv, Init) be a non-blocking rectangular automaton and
let s ∈ Σ be a state of A. The probability distribution on state s over delays is a
probability measure µs over R≥0 such that:

(H.1) µs(I(s)) = µs(R≥0) = 1, where I(s) is not empty as A is non-blocking. For a
state s, the probability of eventually taking an arbitrary enabled transition is 1.
The probability of taking a transition outside of those intervals is 0, meaning
µs(R≥0\I(s)) = 0;

(H.2) Let λ be the standard Lebesgue measure on R≥0. If λ(I(s)) > 0, then µs is
equivalent to λ on I(s). Otherwise, µs is equivalent to the uniform distribution
over points of I(s).

Notice that the probability measure µs is de�ned on Borel σ − algebra.

In this thesis, we decided to choose the global probability distribution according to
the intervals for transitions. Depending on the interval, the probability distribution
will be one of three cases:

� The interval contains �nitely many points→ the probability distribution is only
based on weights on transitions, so it will be computed like the probabilistic case.

� The interval is dense, but bounded→ the probability distribution is the uniform
distribution.

� The interval is unbounded → the probability distribution is the exponential
distribution.
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This global probability distribution imtroduces probabilities to the nondeterministic
choices of derivatives and time passage. To resolve the nondeterminism of choosing
a transition when multiple transitions are enabled at the same time, a probability
distribution over transitions using weights will be de�ned. By dividing the weight of
the discrete transition to be taken with the sum of weights of all enabled transitions,
a normalized factor for the probability distributions can be found.

De�nition 3.1.3 (Probability Distribution over Transitions).
Let A = (Loc, C,Edge,Act, Inv, Init) be a non-blocking rectangular automaton and let
s ∈ Σ be a state of A. The probability distribution ps over transitions, such that for
every transition e, ps(e) > 0 i� e is enabled in s, is given by weights on transitions.
By assigning a weight w(e) > 0 to each transition e ∈ Edge the probability of taking
e is de�ned as:

e is enabled in s ⇐⇒ ps(e) = w(e)∑
e′ is enabled in s

w(e′) > 0.

Now that probability distributions for time passage, variable derivatives and tran-
sitions have been de�ned, the only possibility for nondeterminism in rectangular au-
tomata is given by resets on transitions.
After a discrete transition out of all enabled transitions is chosen, the continuous state
can randomly be reset to values from a rectangular set. To solve this nondeterminism,
another probability distribution over resets has to be introduced, which will be done
by de�ning a probability distribution over the set of all possible resulting states, after
a reset was executed.

De�nition 3.1.4 (Successor States).
Let A = (Loc, C,Edge,Act, Inv, Init) be a rectangular automaton with s = (l,ν) ∈ Σ a
state of A and e = (l,g,r,jump,l′) ∈ Edge. Let s′ ∈ I(s,e). The set of successor states
Succ(s,e) = {(l′, ν′) with ν′ ∈ V | ν′ ∈ r∧∀c ∈ C \{jump}.ν′(c) = ν(c)∧ ν′ ∈ Inv(l′)}
is the set of possible resulting states after a discrete transition is taken and a reset is
executed.

De�nition 3.1.5 (Probability Distribution over Resets).
Let A = (Loc, C,Edge,Act, Inv, Init) be a non-blocking rectangular automaton. Let
s ∈ Σ be a state of A and e ∈ Edge. The probability distribution on state s and discrete
transition e over resets is a probability measure ψs,e such that ψs,e(Succ(s,e)) = 1.
For a state s, the probability of eventually resetting to an arbitrary successor state is
1. The probability of taking a transition outside of this set is 0. The probability for
each successor state s′ ∈ Succ(s,e) is uniformly distributed.

With probability measures over delays, transitions and resets of rectangular au-
tomata, a model for stochastic rectangular automata can be de�ned.
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De�nition 3.1.6 (Syntax of Stochastic Rectangular Automata). A stochastic rectan-
gular automaton (SRA) is a tuple A = (Loc, C,Edge,Act, Inv, Init,µ,W,ψ, ιinit) with
states set Σ where:

� (Loc, C,Edge,Act, Inv, Init) is a rectangular automaton;

� µ is a set of probability distributions over delays and derivatives: µ =
⋃
s∈Σ{µs}

where µs is de�ned as in De�nition 3.1.2;

� W is a set of weight functions: W =
⋃
e∈Edge{w(e)}, the probability ps(e) is

de�ned as in De�nition 3.1.3;

� ψ is a set of probability distributions over resets: ψ =
⋃
s∈Σ,e∈Edge{ψs,e} where

ψs,e is de�ned as in De�nition 3.1.5;

� ιinit is an initial distribution over the initial states Init.

To the de�nition of rectangular automata, a set of global probability distributions
for each state has been added, a set of weight functions, adding weights to each
transition and a set of probability distributions over resets. To understand executions
of stochastic rectangular automata, operational semantics for rectangular automata
are de�ned as in [Ábr12].
Operational semantics of stochastic rectangular automata are similar to operational
semantics of rectangular automata. The only di�erences to the operational semantics
of rectangular automata are that the continuous �ow within a location is limited to
being a constant value for each clock with an additional stochastic part that de�nes
probabilities of paths. To make use of the probability distributions and weights, a
formula to calculate probabilities for paths will be introduced as in [BBB+14], with
the extension of using rectangular automata instead of timed automata.

De�nition 3.1.7 (Probability Distribution over Finite Paths of SRA). Let A =
(Loc, C,Edge,Act, Inv, Init,µ,W,ψ, ιinit) with states set Σ be a stochastic rectangular
automaton and let π̂(s0, e1 . . . en) be a �nite path of A. The probability of π̂(s0, e1 . . . en)
starting from s0 and taking e1,e2, . . . ,en in sequence is de�ned as:

PA(π̂(s, e1e2 . . . en)) =∫
s′∈I(s,e1)

µs(s
′) · ps′(e1) ·

∫
s′′∈Succ(s′,e1)

ψs′,e1(s′′) · PA(π̂(s′′,e2 . . . en))ds′ds′′

where s′ is the state that results by staying at the location of s for a certain time and
changes the valuation according to the derivatives of the location. Initially we de�ne
PA(π̂(s0)) = 1. The integrals are to be understood as polytopes.

For each consecutive transition in the path π̂, two new integrals will be added.
The �rst integral describes the state s′ ∈ I(s), with s being the current state of the
system, solving the nondeterminism of when a transition is taken and the derivative
of variables, and a probability distribution over normalized weights randomly chosing
what transition will be taken. The second integral describes the possible resulting
states s′′ and gives a probability for the resets. Iterating over all transitions yields a
probability of taking the path π̂.
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Example 3.1.1. This �gure shows a simple stochastic rectangular automaton A =
(Loc, C,Edge,Act, Inv, Init,µ,W,ψ, ιinit). Assume that s0 = (l0,{x = 0,y = 0}) is a
state of A, µs0 is the uniform distribution over I(s0) and ιinit(s0) = 1. The weight
of each transition is marked with numbers in blue. The probability of starting from s0

and taking ε1, ε1 in sequence is:

PA((s0, ε1ε1)) = ι(s0) · PA(π̂(s0,ε1ε1))

Using 3.1.7 yields following calculation:

=1 ·
∫
s1∈I(s0,ε1)

µs0(s1) · ps1(ε1) ·
∫
s2∈Succ(s1,ε1)

ψs1,ε1(s2) · PA(π̂(s2,ε1))ds1ds2

=

∫
s1∈I(s0,ε1)

1

|I(s0)|
· w(ε1)

w(ε1) + w(ε2)
· 1 · PA(π̂(s2,ε1))ds′

=

∫
s1∈I(s0,ε1)

1

2.5
· 2

3
· PA(π̂(s2,ε1)ds′

=
1

2.5
· 2

3

∫
s1∈I(s0,ε1)

·

(∫
s3∈I(s2,ε1)

µs2(s3) · ps3(ε1) ·
∫
s4∈Succ(s3,ε1)

ψs3,ε1(s4) · PA(π̂(s4))ds3ds4

)
ds1

=
1

2.5
· 2

3

∫
s1∈I(s0,ε1)

·

(∫
s3∈I(s2,ε1)

1

|I(s2)|
· w(ε1)

w(ε1) + w(ε2)
· 1 · PA(π̂(s4))ds3

)
ds1

=
1

2.5
· 2

3

∫
s1∈I(s0,ε1)

·

(∫
s3∈I(s2,ε1)

1

2.5
· 2

3
· PA2(π̂(s4))ds3

)
ds1

=
1

2.5
· 2

3

∫
s1∈I(s0,ε1)

·
(

1

2.5
· 2

3

∫ 2.5

0

1ds3

)
ds1

=
1

2.5
· 2

3

∫ 2.5

0

·
(

1

2.5
· 2

3
· 2.5

)
ds1

=
1

2.5
· 2

3
· 2.5 · 2

3

=
4

9

The probability of starting from s0 and taking transition ε1 n-times is PA2((s0,ε
n
1 )) =

1 ·
(

2
3

)n
with n ∈ N. The higher n is, the lower is the probability to continuously take

ε1.

l0
ẋ = 1
ẏ = 2
y ≤ 5

l1
ẋ = −1
ẏ ∈ [1,2]

x := 0 ∧ y := 0

ε2 : 1,y ≤ 5

x := 0 ∧ y := 10

ε1 : 2, y ≤ 5

x := 0 ∧ y := 0

ε3 : 1,y ≥ 5

x := 0 ∧ y :∈ [0,10]
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Due to the resets and derivatives in this example being deterministic, the cal-
culation is easier. The second integral for the reset always evaluates to 1 and the
probability distribution µ over the time and the derivatives evaluates to a probability
distribution purely based on the time interval, in this case [0,2.5].

3.2 Stochastic Hybrid Automata with Global Prob-

ability Distributions

In the �rst half of this chapter, the model of stochastic rectangular automata was
described with a global probability distribution that will randomly sample a deriva-
tion and a delay among all possible derivations and delays, then pick a transition
out of all enabled transitions and then reset the variables according to the transition
relation. In this section, a generalized de�nition to stochastic hybrid automata will
be introduced using two di�erent modeling formalisms.
The �rst modeling approach is inspired by the stochastic rectangular automaton
model. The de�nitions are almost the same, the only di�erence being that the un-
derlying automaton is not restricted to being rectangular, but it can be an arbitrary
hybrid automaton. The di�erence to rectangular automata is that all values and
variables which were given by rectangular sets in rectangular automata can now be
arbitrary values from a set of real values.
For simplicity, in the following section we restrict the model to unique derivatives and
resets.

De�nition 3.2.1 (Syntax of Stochastic Hybrid Automata with Global Probability
Distributions). A stochastic hybrid automaton (SHA) using global probability distribu-
tions is a tuple A = (Loc, C,Edge,Act, Inv, Init,µ,W,ψ, ιinit) with states set Σ where:

� (Loc, C,Edge,Act, Inv, Init) is a hybrid automaton with

� Loc is a �nite set of locations;

� C is a �nite set of real-valued variables;

� Edge ⊆ Loc× 2V × (2V → 2V )× Loc is a set of transitions;

� Act: Loc → (Rn → Rn) is a �ow function;

� Inv is a labeling function, assigning an invariant Inv(l) ∈ Rn to each
location l ∈ Loc;

� Init is a set of initial states Init ⊆ Σ with
⋃
s∈Init(l,ν) such that ν ∈ Rn

and ν ∈ Inv(l).

� µ is a set of probability distribution over delays: µ =
⋃
s∈Σ µs;

� W is a set of weight functions: W =
⋃
e∈Edge w(e) with probability ps(e);

� ιinit is an initial distribution over the initial states Init.

As depicted above, this de�nition is similar to the stochastic rectangular automa-
ton de�nition, the only di�erence is the underlying hybrid automaton. All variables
in the rectangular automata model which could be values from rectangular sets can
now be arbitrary real values. The variables evolve according to the activity function
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Act, which is typically speci�ed as an ordinary di�erential equation. In the following
paragraph, we will give operational semantics for this model.

De�nition 3.2.2 (Semantics of Stochastic Hybrid Automata). The semantics of
a stochastic hybrid automaton A = (Loc, C,Edge,Act, Inv, Init) consists of discrete
instantaneous steps (jumps) and continuous time steps (�ow):

1. Discrete step semantics

e = (`, g, r, `′) ∈ Edge
ν ∈ g ν′ ∈ r(ν) ν′ ∈ Inv(l′)

(`, ν)
e−→ (`′,ν′)

Rulediscrete

2. Time step semantics

(t = 0 ∧ ν = ν′)∨
(∃f : [0,t]→ V.f(0) = ν ∧ f(t) = ν′ ∧ ∀τ ∈ (0,t).dfdt (τ) = Act(l)(f(τ))

∀ 0 ≤ τ ≤ t. ν′(τ) ∈ Inv(l)

(l,ν)
t−→ (l,ν′)

Ruletime

John Lygeros, Maria Prandini and Manuela L. Bujorianu used a di�erent approach
to de�ne generalized stochastic hybrid systems. The main idea of these papers will be
adapted in the following paragraphs to model stochastic hybrid automata using global
probability distributions [LP10] [BL06]. In these papers, the continuous evolution of
variables is given by stochastic di�erential equations, but this will be omitted in this
thesis since we use the action function in our stochastic hybrid automata models.
The foundation is similar to the �rst approach, which was derived from stochastic
rectangular automata. There exists a probability distribution, which determines a
time delay after which a transition will be taken and after that time, a transition
among all enabled transitions will be chosen. Instead of adding weights to the tran-
sitions, this approach requires the modeler to declare a transition kernel.

De�nition 3.2.3 (Syntax of Stochastic Hybrid Automata with Global Probability
Distributions and Transition Kernel). A stochastic hybrid automaton (SHA) using
global probability distributions and a transition kernel is a tuple
A = (Loc, C,Edge,Act, Inv, Init, λ,R, ιinit) with states set Σ where:

� (Loc, C,Edge,Act, Inv, Init) is a hybrid automaton;

� λ : Σ → R+ is a transition rate function;

� R is a transition kernel;

� ιinit is an initial distribution over the initial states Init.

This stochastic hybrid automaton model requires a hybrid automaton, a transi-
tion rate function and a transition kernel. The transition rate function λ will be used
to simulate a new clock that will determine the jump times of transitions and the
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transition kernel R will decide, which transition is taken after the clock ran out.
The execution of such a model can informally be de�ned similar to the previous mod-
els. Continuous time evolves according to the activity function Act and discrete states
change when a transition occurs. In this model, as declared in [LP10], we de�ne two
types of jump times which as a result, yield a transition:

� forced transitions: τf = inf{ t ≥ 0 | (`, ν(t)) /∈ Inv(l)}
Forced transitions occur, when the continuous state reaches the boundary of a
location, that is given by invariants and guards. The continuous state would
leave the state set Σ, so a transition has to be taken beforehand.

� spontaneous transitions occur according to a Poisson arrival process with a time
varying rate of λ.

Forced transitions just specify the boundary of a location, but spontaneous transi-
tions can execute at every time where they are enabled. To �nd the jump time for
the next transition, an auxiliary continuous state variable xn+1 ∈ R is introduced
that is evolving with a given transition rate function λ. This variable will be used
to simulate an independent clock, such that whenever the clock runs out of time, the
hybrid automaton reaches the jump time for a spontaneous transition.

De�nition 3.2.4 (Spontaneous Jump Time). A spontaneous jump time is a time τs
∈ R such that:

� xn+1 is the auxiliary continuous state variable;

� xn+1(0) = ln(z0), where z0 is uniformly distributed in (0,1);

�

dxn+1

dt (t) = λ(`, ν(t));

� τs = inf{ t ≥ 0 | xn+1 ≥ 0}.

The clock xn+1 is initialized with a uniformly distributed random variable z0, and
is a negative value. This clock simulates the Poisson arrival process, it evolves with
the negative exponentially distributed transition rate λ. The spontaneous jump time
is given as the time t, at which that clock, that is starting from a random negative
value and evolves with λ, reaches the value 0.
The system now has a jump time for forced transitions upon leaving the boundary
of a location and a jump time of spontaneous transitions when the Poisson process
event occurs [LP10].

De�nition 3.2.5 (Next Jump Time). The next jump time, when the system takes a
transition, is given by τnext = min{τf , τs}.

The next jump time is given by the minimum of forced and spontaneous jump
time. If the Poisson process shoots fast enough, a spontaneous transition can be
taken. Once a transition takes place at time τnext, the variable xn+1 will be reset to
a new negative value ln(z1), where z1 is again unformly distributed in (0,1).
The system now has a jump time, when a transition will be taken. Which transition
will be taken, is given by the transition kernel R. At each jump time, R states a
probability for each transition to be taken. That can be a priority list, a weight
function or similar and is given by the modeler. We use the notion of the Poisson
process P and the transition kernel R as in [LP10].
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Example 3.2.1. We illustrate the above de�nitions on the hybrid automaton below.
The Poisson process P is running parallel to the system, according to Pλ(1) = λ ·e−λ,
and yields spontaneous jump times. Location `0 is bounded by x ≤ 6. Let the transition
kernel R be given by weights, depicted in blue color in the graphical representation.
An exemplary path could be π(s0, ε1ε1ε2), depending on the random behaviour of the
system.
Assuming the system starts with x=0 in `0, P could shoot for the �rst time after
t=2 time steps. Now τs = 2 and τf = 6, so the next jump time is 2. Since only
ε1 is enabled, it will be taken. The auxiliary clock will be reset and P starts running
again. The next spontaneous jump time will be sampled, for example τs = 4. Since
τs = 4 < 6 = τf , the next jump time will be 4. The transition kernel R decides based
on probabilities for all enabled edges, in this case ε1 and ε2. Assume the system takes
ε1, the auxiliary clock will be reset. Now the Poisson process could shoot at time t=7.
It holds that τs = 7 > 6 = τf , so a forced transition will be taken. Since only ε2 is
enabled in `0 at t=6, ε2 will be taken.

l0
ẋ = 1
x ≤ 6

l1
ẋ = 1
x ≥ 0

x := 0 ε2 : 1, x > 3

ε1 : 2, x ≤ 5

x := 0

ε3 : 1, x ≥ 0

3.2.1 Comparing the Global Approaches

We summarized two existing models of stochastic timed automata [BBB+14] and
stochastic hybrid systems [LP10] and de�ned two generalized stochastic hybrid au-
tomaton de�nitions based on them. The foundation of both models is an underlying
global probability distribution, which yields a time when a transition will be taken
and after that time, a decision will be made which transition to take. This leaves space
for the question, where the di�erences between those two models are or whether they
are equivalent.
The di�erences are easy to determine. Whereas the �rst approach uses a global proba-
bility distribution for each state of the system to sample a transition delay, the second
approach uses an independent Poisson process. However, in our stochastic hybrid au-
tomaton model, we distinguish between di�erent probability distributions depending
on the enabled intervals of transitions. In the other approach [LP10], the jump time
is always given according to a negative exponentially distributed Poisson process.
The second di�erence is given by the weight function in the �rst approach and the
transition kernel in the second approach. The transition kernel R is very powerful,
the modeler is given a lot of freedom and decisive power over the system. That makes
the approach easy to simulate but less useful for model checking. By only assigning
weights to transitions, a probability for paths is easy to calculate, hence reachabil-
ity problems that require a certain minimal probability are more simple to verify
[BBB+14].
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The di�erences between both models are little, but equivalence still needs to be veri-
�ed. Intuitively, their essence is to rely on a probability distribution to give a jump
time and after that jump time, a transition will be taken. To formally prove this,
an algorithm needs to be found that translates each generalized stochastic hybrid
automaton model from one approach to the other approach and vice versa. Since the
Poisson process is a �xed independent system from the stochastic hybrid automaton,
the translation from the �rst approach to the second approach needs to be coded into
the transition kernel R. Due to R being so powerful, it could be possible to code
all information on weights and di�erent probability distributions for intervals into
the transition kernel. For simple intervals where only one transition is enabled, this
might be easy because then the transition kernel would be exactly the probability
distribution over the interval from the �rst approach. But once the system gets more
complex, this does not need to be the case anymore. Hence the intuitive reasoning to
explain equivalence is not enough, and future work will have to verify it.
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Local Probability Distributions

In this chapter, an example will be given of how stochastic hybrid automata can be
modeled with local probability distributions instead of a global probability distribu-
tion. This main idea is derived from stochastic hybrid Petri nets and will be used to
not give a de�nition, but an intuition of such a model.
Stochastic hybrid Petri nets, just like stochastic hybrid automata, are a subclass of
stochastic hybrid systems. For a more detailed understanding of hybrid Petri nets,
we refer to [HPS+19].
In essence, in a stochastic hybrid Petri net, each transition can take an action indepen-
dent from the other transitions, but the result of an action can a�ect other transitions.
A simple example would be one location with one token and two outgoing transitions.
Upon execution of one transition, the token moves from the previous location to the
resulting location of this transition. If one transition shoots, the token moves and
the other transition is blocked because the precondition of an existing token is not
satis�ed anymore.

4.1 Stochastic Hybrid Automata with Local Proba-

bility Distributions

This idea, each transition having an impact on the random behaviour of the stochastic
hybrid system will be used in this modeling attempt. Instead of one global probabil-
ity distribution that randomly picks a delay when a transition should be taken, this
approach uses a local probability distribution for each transition or possible jump
that can be taken from a state. Each probability distribution yields a jump time for
a transition, when it would be taken. The jump time indicates the resulting state.
In the following section, a modeling idea of stochastic hybrid automata with local
probability distributions will be given that neither claims to be complete, nor com-
pletely correct. It is meant to give an intuition on modeling with local probability
distributions and highlight problems with this approach. In the scope of this thesis,
we underestimated the complexity of this issue. We could not �nd a satisfactory def-
inition, but will instead give our modeling attempt.
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4.1.1 Modeling Approach

Proposition 4.1.1 (Syntax of Stochastic Hybrid Automata with Local Probability
Distributions). A stochastic hybrid automaton (SHA) with local probability distribu-
tions is a tuple
A = (Loc, C,Edge,Act, Inv, Init,Λ) with states set Σ where:

� (Loc, C,Edge,Act, Inv, Init) is a hybrid automaton;

� Λ is a set of probability distributions over jumps: Λ =
⋃
s∈Σ,e∈Edge λe(s).

This exemplary de�nition of stochastic hybrid automata with local probability
distributions is similar to the de�nition of stochastic hybrid automata with global
probability distributions. The di�erence is that there are no weights anymore and the
probability distributions now exist for each jump, so for each enabled transition e in
each state. To be able to use this as a model, an algorithm of executions on stochastic
hybrid automata with local probability distributions needs to be given. As indicated
earlier, the local probability distributions yield a jump time for each possible jump.
The shortest jump time of that system will be executed. The question is, how jump
times can be determined.

Example 4.1.1 (Determining Jump Times). This paragraph is an example for cal-
culating the jump times of each transition. The idea is to simulate a clock for each
transition, a timer that is running out. When the timer runs out, the jump time is
reached.

� For each transition e1, ..., en ∈ Edge that is enabled in a state s=(l,v), an aux-
iliary continuous variable νi ∈ R with dνi

dt (t) = λi(`, ν(t)) for each i ∈ [1,n] will
be added, with λ being a probability distribution over each transition.

� Each of those clocks will be initialized with νi(0) = ln(z0), where z0 is uniformly
distributed in (0,1). The advantage of using the natural logarithm of a value
between zero and one is that the result is always a negative value.

� To simulate a timer, the valuations of these negative clocks evolve according to
νi(t) = νi(τlast) +

∫ t
τlast

λi(`, v(t))dt with τlast being the time the last jump was

taken and νi(τlast) being the randomly sampled negative value with the natural
logarithm. This formula is a negative value getting increased by the integral of
a probability distribution.

� The clocks are negative timers that run out when the time reaches 0. The re-
sulting jump time for each transition is then given by τsi = inf {t ≥ 0 | νi(t) ≥
0}, so the smallest amount of time t, such that the clock νi of a transition ei
reaches 0. For each enabled transition e1, ..., en, the algorithm yields a possible
jump time τs1, ..., τsn, a spontaneous jump time for each transition.

� The next transition to be executed is given according to the minimal possible
jump time of all spontaneous and the forced transition τnext = min(τs1, ..., τsn, τf ).
The resulting state is given by the transition relation of the transition with min-
imal jump time. After each jump, all clocks will be reset to a random negative
value νi(0) = ln(zlast), where zlast is uniformly distributed in (0,1). Boundary
hitting transitions τf similar to the second global approach will not be considered
any further.
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In essence, this exemplary algorithm to calculate jumps of a stochastic hybrid
automaton with local probability distributions simulates negative clocks, whose values
evolve with a rate that is given by the local probability distributions. The �rst clock
that expires determines the transition that will be executed by the system. For
completeness, possible operational semantics for such a system will be given. As a
reminder, this chapter only claims to be an intuitive modeling idea for using local
probability distributions and no formal de�nition of a correctly running system.

De�nition 4.1.1 (Semantics of Stochastic Hybrid Automata with Local Probality
Distributions). The semantics of a stochastic hybrid automaton
A = (Loc, C,Edge,Act, Inv, Init) with local probability distributions consists of discrete
instantaneous steps (jumps) and continuous time steps (�ow):

1. Discrete step semantics

e = (`, g, r, `′) ∈ Edge
ν ∈ g ν′ ∈ r(ν) ν′ ∈ Inv(l′)

(`, ν)
e−→ (`′,ν′)

Rulediscrete

2. Time step semantics

(t = 0 ∧ ν = ν′)∨
(∃f : [0,t]→ V.f(0) = ν ∧ f(t) = ν′ ∧ ∀τ ∈ (0,t).dfdt (τ) = Act(l)(f(τ))

∀ 0 ≤ τ ≤ t. ν′(τ) ∈ Inv(l)

(l,ν)
t−→ (l,ν′)

Ruletime

4.2 Problems of Using Local Probability Distribu-

tions

Common literature rarely uses local probability distributions to model stochastic hy-
brid systems. Modeling with global probability distributions is highly preferred, be-
cause there are several issues making the understanding and execution of the local
approach harder than the global approach.
The biggest problem with local probability distributions is usability for model check-
ing. Whereas with stochastic hybrid systems using global probability distributions,
�nding probabilities for a certain path was given by one formula PA(π̂(s, e1e2 . . . en))
for a �nite path π̂(s, e1e2 . . . en), it is not that simple using local probability distri-
butions. The global approach only considers the probability of taking a transition
ei that is given by the global probability distribution, but in the local approach, one
would need to consider the probabilities of all transitions. To calculate the probability
of one path, the probabilities of all other transitions for each step need to be calcu-
lated. The probability of taking a transition does not only depend on the own jump
time, but the jump times of all other enabled transitions, because only the transition
with the lowest jump time will be executed. This makes it very di�cult to �nd a for-
mula for calculating path probabilities. In fact, it is not only hard to calculate path
probabilities. This model does not have the linear restriction of derivatives within
locations as introduced in stochastic rectangular automata, so the intervals used in
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the de�nitions might not be continuous. We can de�ne semantics for such a model,
but without continuous intervals of enabledness for discrete transitions, the model
checking problem is undecidable.

Another problem with model checking is reachability. The modeling decision to choose
the transition with the minimal jump time can be very limiting, and in extreme sit-
uations it can even block transitions completely.

Example 4.2.1. This example shows a simple stochastic hybrid automaton to visual-
ize the problem with reachability. The interesting parts are the transitions ε1 and ε2.
Assuming this automaton is executing according to the local approach, the minimal
jump time always wins. If the system is in location `0 with x = 0, both transitions
will always yield a jump time. Because of the given guards on those transitions, the
jump time of ε1 will always be less than 5, and of ε2 always be greater than 5. Using
local probability distributions, the system would stay in `0 forever and do the self loop.
Assuming this system is executing according to the global approach, �rst a random
delay when a transition is taken will be sampled, and then a transition will be taken
according to weights. In that case, the system could sample a delay of t > 5, so ε2
would be taken.

l0
ẋ = 1
x ≥ 0

l1
ẋ = 1
x ≥ 0

x := 0 ε2 : 1, x > 5

ε1 : 2, x ≤ 5

x := 0

ε3 : 1, x ≥ 0

This example does not mean that the global approach is more expressive than the
local approach, but it shows the limits of reducing the next jumps to the minimal
jump time. That problem could be avoided by several ways, that again yield new
problems:

� Change the minimal jump time condition: If any other jump time but the
minimal is picked, the same problem occurs but in a di�erent scenario.

� Pick a random jump time out of the calculated ones: This would solve the
problem, but at the cost of introducing another random variable that would
need to be considered in all executions.

� Introduce a scheduler that can enable/disable transitions: That way, ε1 could
be enabled such that ε2 could be taken, but introducing such a scheduler would
make the model even more di�cult.
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The last problem already concurrently mentioned introducing a new random variable
which addresses another problem. The stochastics behind this stochastic hybrid au-
tomaton model using local probability distributions do not only depend on the local
probability distributions, but on the uniformly distributed random variable z0/zlast.
The probability of taking a transition is heavily in�uenced by this random variable,
because it sets the value of the negative timers for all transitions. If the timer is small,
the probability of taking the transition is very high.
Because of this, the expressivity of probabilities of such a system is di�cult to in-
terpret, because transitions that would probably never be executed could suddenly
be executed every time due to the random variable being convenient. This problem
could be avoided by resetting all clocks to the same value, for example νi = −0.5 for
all enabled transitions i, but then new problems appear. How to pick such a value for
all clocks? The clocks do not expire with the same rate, so -0.5 could be very much
for one clock, but almost nothing for another one. This could cause fairness problems.
Due to those problems, the approach with local probability distributions is less prac-
tical than the global approach and using one of the global de�nitions in future work
is highly preferred.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we summarized several already existing hybrid automaton models and
introduced them in an order such that each subsequent model either is an extension
to the previous model or resolves more nondeterminism. We started with a de�nition
of the basic timed automaton model and extended the continuous time evolution to
rectangular sets. To solve the nondeterminism between jumps which can occur in
rectangular automata, weights were added to competing transitions to create a sim-
ple probabilistic choice.
This bachelor thesis then dealt with introducing new models based on the existing
ones. The existing models of stochastic timed automata and rectangular automata
have been combined to introduce a new model of stochastic rectangular automata.
Due to several di�erent modeling strategies, the issue to �nd a general de�nition of
stochastic hybrid automata appeared. General de�nitions of stochastic hybrid au-
tomata using global probability distributions have been introduced, based on the
stochastic rectangular automaton and a stochastic hybrid system de�nition.
Another main goal of this thesis was to �nd a di�erent approach for stochastic hybrid
automata, but instead using local probability distributions for each jump. We could
not de�ne such a model, but gave a modeling idea instead and discussed problems,
why this approach is not very practical.

5.2 Future work

This thesis can be used as a foundation for several future topics, there are still open
questions needing to be solved.
First, the stochastic rectangular automaton model might not be complete. For sim-
plicity, this thesis restricted the continuous time evolution to linear change within
a location. The question would be, if and how the model would change when more
general derivatives are allowed, such that the enabled intervals for transitions are not
connected anymore. On that topic, a model checking algorithm regarding reachability
could be introduced for stochastic rectangular automata.
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Other possible future topics refer to the generalized stochastic hybrid automaton mod-
els. For the global approaches, a formal veri�cation to prove or disprove equivalence
needs to be found. For local probability distributions, it might be possible to de�ne
a probability space over that model to work out probability formulas for paths, thus
making this model more practical.
Further tasks could involve the implementation of these new models and their respec-
tive reachability analysis into the HyPro library, possibly doing benchmark analysis
with tools like Uppaal or Modest Toolset.
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