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Abstract

Methods in reachability analysis and veri�cation of hybrid systems have been

well-developed over the years, but there are still some challenges to be solved.

One of these challenges is the support of the usage of urgent transitions. Urgent

transitions force the system to take a jump as soon as such a transition is

enabled, so urgent transitions are an alternative to invariants. Most current

tools don't support urgent transitions. Here we present a possibility how to treat

urgent transitions in the �owpipe-based reachability analysis of hybrid systems

by giving an implementation of computing the set-di�erence in the context of

reachability analysis.
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Chapter 1

Introduction

There are many models in computer science, used for di�erent problems. But most of
the common models, like transition systems or �nite automata, only model discrete
behaviour. In this sense hybrid systems are di�erent than most of these models,
because hybrid systems model both, discrete and continuous behaviour. Therefore,
hybrid sytems are more applicable in processes, that are time-dependent, for example
processes, that involve physics.
An example for such a system is a lawn mower as shown in [Her10, ZSR+10]. The lawn
mower has to mow the lawn, but may not mow the �owers. For example Figure 1.1
shows a simpli�ed version of the lawn mower. The mower moves with velocity v. The
direction it runs can be changed non-deterministically in a 90-degree angle. So if the
mower runs out of the lawn �eld, it will at some point change the direction, but it is
not that safety critical, if the mower changes direction right when it leaves the lawn
or a few meters later. Therefore, the non-deterministic direction change is su�cient
to model this behaviour. In contrast to that the lawn mower should never mow the
�owers. Therefore, this is a safety critical behaviour and the mower should change
direction before it mows the �owers. This behaviour is easy to model, if we model the
lawn mower as a hybrid automaton with urgent transitions, where an urgent transition
must be taken, if its guard is enabled. An abstract model of this lawn mower is shown
in �g. 1.2, where the name of the state stands for the moving direction of the mower,
the urgent transitions are labeled with * and the non-deterministic direction change
is represented by the edges labeled with dc.
In this work we want to examine the adaptations, that have to be made in �owpipe-
based reachability analysis of hybrid systems, if we consider urgent transitions. The
�owpipe-based reachability analysis is a symbolic and iterative method to compute
the paths of a system and determine if some safety critical behaviour is possible. It
iteratively computes state sets of the system over a given time step to let time evolve.
These state sets represent the states, that are reachable in this time step from the
step before. In this way the result is a �owpipe of segments representing a path of
the system. This method will be explained in more detail in Section 2.4 and ??. One
challenge in the �owpipe-based reachability analysis of the lawn mower lies in the
urgent transitions. The characteristics of an urgent transition is, that as soon as it is
enabled the transition should be taken and therefore the system should no longer be
in the same state. Considering the �owpipe construction, it is possible, that not the
complete state set s for one time step satis�es the guard g of an urgent transition, but
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Figure 1.1: Example of a lawn mower
* labels urgent transitions, dc= non-deterministic direction change

a part of it does. Then we do not want, that time evolves from the part satisfying the
guard anymore. Therefore, we need to calculate the set di�erence between the state
set and the guard of the urgent transition in order to continue the computation. The
computation here has to be split o� to the further time evolution of the set s∖ g and
the handling of taking the urgent transition as soon as it is enabled. An example of
the reachability analysis for this lawn mower is shown in Chapter 4.
To implement such a reachability anaylysis, we will use the C++ library HyPro. This
library o�ers several state set implementations, conversions between them and already
implements a �owpipe-based reachability analysis. This given implementations will be
adapted and expanded in order to realize the reachability analysis of hybrid systems
with urgent transitions.
To implement such a reachability analysis, that respects urgent transitions, this work
�rst gives some needed theoretical background in Chapter 2. After that we will have
a look at some related work of this topic and an algorithm for the set di�erence, that
is needed during the analysis, is introduced in Chapter 3. Chapter 4 then shows how
the urgent reachability analysis can be implemented using the HyPro library. At the
end in Chapter 5 some benchmarks using urgency are presented.
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Chapter 2

Preliminaries

Before we implement an algorithm to compute the set-di�erence, we �rst need to have
a look at some theoretical background.

2.1 Hybrid Systems

As we have seen a hybrid system contains of discrete and continuous behaviour. A
popular way to model hybrid systems with such behaviour are hybrid automatons.
There are also some common subclasses of general hybrid automaton, that we will
have a look at later. First, we will introduce a formal de�nition. The following
de�nition gives the syntax of a hybrid automaton without urgent transitions.

De�nition 2.1.1 (Hybrid Automaton without urgent tarnsitions (Syntax) [SÁC+15,
SFÁ19] ). A hybrid automaton is a tuple H = (Loc, V ar,Lab,F low, Inv,Edge, Init),
where:

� Loc is a �nite set of Locations,

� V ar = {x1, . . . , xn} is a �nite ordered set of real-values Variables. We also use
the vector notation x = (x1, . . . . , xn). The number n is called the dimension of
H. By ˙V ar we denote the set {ẋ1, . . . , ẋn} of dotted variables (which represent
the �rst derivatives during continuous change), and by V ar′ the set {x′1, . . . , x′n}
of primed variables (which represent values directly after a discrete change).
Furthermore, PredX is the set of all predicates with free variables from X.

� Lab is a �nite set of synchronisation label (used for the parallel composition of
hybrid systems).

� Flow: Loc→ PredV ar∪ ˙V ar speci�es the dynamic behaviour in each location, the
so called �ow.

� Inv: Loc→ PredV ar speci�es an invariant for each location.

� Edge ⊂ Loc×Lab×PredV ar×PredV ar∪V ar′×Loc describes the discrete behaviour
of the system. (l1, a, g, r, l2) ∈ Edge also is called a jump. For such a jump there
exists a discrete transition from l1 to l2, which can be taken if the guard g is
satis�ed. If the transition is taken, its reset function r speci�es the valuation
after this jump.
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� Init: Loc→ PredV ar assigns to each location an initial predicate.

A valuation is a function v ∶ V ar → Rn, which assigns a value to each variable in
V ar. The set of all valuations v in called V al.

To de�ne the behaviour of a hybrid system, there are some more general de�ni-
tions.
First, we introduce the state of a hybrid automaton. The states of an automaton are
pairs (l,v), where l ∈ Loc is the current location and v ∈ V al is the current valuation.
In order to model the discrete and continuous behaviour, there are discrete and con-
tinuous transitions, which can be obtained by the following rules:
Hybrid Automaton (Semantics)[Sch19].

(l, a, g, r,l′) ∈ Edge v,v′ ∈ Rn v ⊧ g v′ ⊧ Inv(l′) v,v′ ⊧ r
Rulejump

(l,v) e→ (l′,v′)

f ∶ [0,δ] → Rn ḟ ∶ (0, δ) → Rn f(0) = v f(δ) = v′
l ∈ Loc v,v′ ∈ Rn ∀ε ∈ (0, δ) ∶ f(ε) ∧ ḟ(ε) ⊧ Flow(l) ∀ε ∈ [0,δ] ∶ f(ε) ⊧ Inv(l)

Ruleflow
(l,v) δ→ (l,v′)

In addition to those general de�nition, there is one more important point for this
work. As we have already seen, we want to work with urgency. Respecting this, we
need to add one more component to the hybrid automaton.

De�nition 2.1.2 (Hybrid automaton with urgent transitions). A hybrid automaton
with urgent transitions is a tuple H = (Loc, Var, Lab, Flow, Inv, Edge, Init, Urgent),
where Loc, Var, Lab, Flow, Inv, Edge, Init are de�ned like before in De�nition 2.1.1
and Urgent ⊂ Edge is the set of urgent edges of the system.

With this de�nition and the semantics of an urgent edge, we can model urgent
behaviour.
The semantics of a hybrid automaton with urgent transitions can be modeled in the
same way as for automatons without urgent transitions. The di�erence in this case is
the �ow -rule, which ensures, that no time evolves once an urgent transition is enabled.

f ∶ [0,δ] → Rn ḟ ∶ (0, δ) → Rn f(0) = v f(δ) = v′
l ∈ Loc v,v′ ∈ Rn ∀ε ∈ (0, δ) ∶ f(ε) ∧ ḟ(ε) ⊧ Flow(l)

∀ε ∈ [0,δ] ∶ (f(ε) ⊧ Inv(l) ∧ ¬∃(l, a, g, r,l′) ∈ Urgent∶ f(ε) ⊧ g)
Ruleflow

(l,v) δ→ (l,v′)
To sum up this semantics: an urgent transition is de�ned by the condition, that as
soon as its guard is enabled, the transition has to be taken. So as soon as the jump
is enabled, there must no more time evolve in the current state of the system.
In the following we will call hybrid automaton with urgent transitions simply hybrid
automaton.
The subclasses of hybrid systems generally di�er in the restrictions for the �ow and
the conditions of the system. Table 2.1 shows such di�erent restrictions.

As this table shows the di�erent restrictions also lead to di�erent results in the
decidability of the reachability analysis of the system. In this work we will focus on
RA or LHA I and therefore restrict to bounded reachability analysis, as Section 2.4
shows.
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Table 2.1: Subclasses of hybrid automata [Sch19]
TA = timed automata, IRA = initialized rectangular automata, RA = rectangular
automata, LHA = linear hybrid automata, HA = general hybrid automata
c,c1,c2 ∈ R are constants, flinear represents linear derivatives, glinear represents linear
guard, ∼∈ {< , > , ≤ , ≥}

subclass derivatives conditions bounded reach-
ability

unbounded
reachability

TA ẋ = 1 x ∼ c ✓ ✓
IRA ẋ ∈ [c1; c2] x ∈ [c1; c2],

jump resets x
when ẋ changes

✓ ✓

RA ẋ ∈ [c1; c2] x ∈ [c1; c2] ✓ ×
LHA I. ẋ = c x ∼ glinear ✓ ×
LHA II. ẋ = flinear x ∼ glinear × ×
HA ẋ = f x ∼ g × ×

2.2 Intervals

In this work we want to analyze hybrid systems for safety. To do that we will use sets
in Rn to represent the state of a hybrid automaton. In order to do that, we will �rst
have a look at one dimensional sets in R and some other mathematical background.
A convenient way to represent a set is an interval. An Interval is de�ned by a lower
an an upper boundary and contains all values between them, may include them, if it
is a closed boundary. Intervals can be de�ned over every ordered set, but in this work
we will de�ne them over the real numbers, R.

De�nition 2.2.1 (Interval [SFÁ19]). An interval I = ⟨l,u⟩ is de�ned by its lower
boundary l ∈ R ∪ {−∞}, its upper boundary u ∈ R ∪ {+∞} and the two boundary types
⟨∈ (,[, ⟩ ∈),] as the set

I = {x ∣ l ∼l x ∼u u},

where for the relation symbols ∼l, ∼u∈ {<,≤} the following holds:

∼l=
⎧⎪⎪⎨⎪⎪⎩

< if ⟨= (
≤ if ⟨= [

,∼u
⎧⎪⎪⎨⎪⎪⎩

∼u=< if ⟩ =)
∼u=≤ if ⟩ =]

In addition to this de�nition a boundary is called closed, if the corresponding
relation symbol is ≤, where +∞ and −∞ always have to be open boundaries. The
function relation ∶ {(,[,),]} → {<,≤} maps the relation symbol to the boundary types.
In this work we use round brackets (,) to denote open boundaries and squared brackets
[,] for closed boundaries, as the de�nition already shows. Additionally an interval is
empty, if the upper boundary is smaller than the lower boundary, as Lemma 2.2.1
shows.
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Lemma 2.2.1 (Emptiness of an interval ). An interval I = {x ∣ l ∼l x ∼u u} is empty
i� the upper boundary u is smaller than the lower boundary l or equal if at least one
relation symbol is <.

I = {x ∣ l ∼l x ∼u u} = ∅ i� u < l or u = l ∧ (∼l=< ∨ ∼u=<).

The proof of this lemma follows by the de�nition of an interval from the set theory.
In addition to these de�nitions there are some more operations on intervals, that will
be needed.

De�nition 2.2.2 (Intersection of Intervals [Sch19]). Let I1⟨1l1;u1⟩1 and I2 = ⟨2l2;u2⟩2
be two intervals. The intersection I = I1 ∩ I2 is

I = ⟨max(l1,l2);min(u1, u2)⟩,

where ⟨=
⎧⎪⎪⎨⎪⎪⎩

⟨1 if max(l1, l2) = l1
⟨2 if max(l1, l2) = l2

and ⟨=
⎧⎪⎪⎨⎪⎪⎩

⟨1 if max(l1, l2) = l1
⟨2 if max(l1, l2) = l2

As De�nition 2.2.2 shows the intersection of two non empty intervals can be com-
puted by �nding the minimum or maximum of the pairs of lower and upper boundaries.
For the set di�erence of two intervals this is a bit more complex. In general the set
di�erence for two intervals is not only one interval. Therefore, De�nition 2.2.3 de�nes
the set di�erence for two intervals as a set of up to two intervals.

De�nition 2.2.3 (Set di�erence for intervals ). Let I1 = ⟨1l1;u1⟩1 and I2 = ⟨2l2;u2⟩2
be two intervals. The set di�erence I = I1 ∖ I2 is the set

I =
⎧⎪⎪⎨⎪⎪⎩

{I ′1,I ′2} ∖ ∅ if ¬(I ′1 = ∅ ∧ I ′2 = ∅)
∅ otherwise

where

I ′1 = ⟨1l1;min(u1,l2)⟩′1,
I ′2 = ⟨′2max(u2,l1);u1⟩1

and the choice of ⟩′1, ⟨′2 is de�ned as follows:

⟩′1 =
⎧⎪⎪⎨⎪⎪⎩

⟩1 if min(u1, l2) = u1
⟨2 if min(u1, l2) = l2

, ⟨′2=
⎧⎪⎪⎨⎪⎪⎩

⟨1 if max(u2, l1) = l1
⟩2 if max(u2, l1) = u2

.

In this de�nition ⟨, ⟩ means, that the boundary is inverted. This means for the
possible boundary types:

( =]
[ =)
) = [
] = (

The min and max function in this de�nition results from the fact, that two intervals
might not intersect. Figure 2.1 shows the di�erent cases, that are possible exemplary
for the lower end of the intervals. In this example the type of the boundaries is not
considered. Additionally, there are some arithmetical functions on intervals, that will
be needed. The �rst one is the addition of two intervals.
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l2 u2 l1 u1

I ′1 = [l1, l2] = ∅
min(u1,l2) = l2

I ′2 = [l1, u1] = I1
max(u2,l1) = l1 u1

l2 u2l1 u1

I ′1 = [l1, l2] = ∅
min(u1,l2) = l2 l1

I ′2 = [u2, u1]
max(u2,l1) = u2 u1

l2 u2l1 u1

I ′1 = [l1, l2]
min(u1,l2) = l2 l1

I ′2 = [u2, u1]
max(u2,l1) = u2 u1

Figure 2.1: Set di�ernce for intervals.

De�nition 2.2.4 (Addition of intervals [Sch19]). Let I1 = ⟨1l1;u1⟩1, I2 = ⟨2l2;u2⟩2 be
two intervals. The sum I = I1 + I2 is

I = ⟨l1 + l2;u1 + u2⟩,

where

⟨=
⎧⎪⎪⎨⎪⎪⎩

( if relation(⟨1) = (∨relation(⟨2) = (
[ otherwise

,

⟩ =
⎧⎪⎪⎨⎪⎪⎩

) if relation(⟩1) =) ∨ relation(⟩2) =)
] otherwise

Note, that we can express a constant c ∈ R as a point interval [c; c] and there-
fore the sum of an interval and a constant simply adds up the constant two both
boundaries. Besides addition, we will also use multiplication. This is de�ned by
De�nition 2.2.5. We could also express a constant as a point-interval in that case,
but since it simpli�es the multiplication, the multiplication by a constant is de�ned
seperatly.

De�nition 2.2.5 (Multiplication with intervals [Sch19] ). Let I1 = ⟨1l1;u1⟩1, I2 =
⟨2l2;u2⟩2 be two intervals and c ∈ R a constant. Then

I = I1 ⋅ I2 = ⟨min(l1 ⋅ l2, l1 ⋅ u2, u1 ⋅ l2, u1 ⋅ u2);max(l1 ⋅ l2, l1 ⋅ u2, u1 ⋅ l2, u1 ⋅ u2)⟩ is the
product of I1 and I2,

where the boundary type of the result is strict, if at least one of the boundaries of the
min/max of the multiplication is strict and

I = c ⋅ I1 =
⎧⎪⎪⎨⎪⎪⎩

⟨c ⋅ l1; c ⋅ u1⟩ if c ≥ 0

I = ⟨1c ⋅ u1; c ⋅ l1⟩1 otherwise
is the product of c and I1.

To illustrate these de�nitions we will have a look at a small example.
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Example 2.2.1 (Intervaloperations). Let I1 = [3,7) and I2 = [5; 9] be two intervals
and c = 2 a constant.Then we can compute the di�ernt operations, that were intro-
duced, as follows:

� intersection: I1 ∩ I2 = [3,7) ∩ [5; 9] = ⟨max(3,5);min(7,9)⟩ = [5; 7)

� set di�ernece: I2 ∩ I1 = [5,9] ∖ [3; 7) = {[5;min(9; 3)⟩, ⟨max(7; 5); 9]}
= {[5; 3), [7; 9]} = {∅, [7; 9]} = {[7; 9]}

� addition: I1 + c = [3; 7) + 2 = [3; 7) + [2; 2] = [5; 9)

� multiplication: I2 ⋅ I1 = [5; 9] ⋅ [3; 7) = ⟨min(5 ⋅ 3,5 ⋅ 7,9 ⋅ 3,9 ⋅ 7);
max(5 ⋅ 3,5 ⋅ 7,9 ⋅ 3,9 ⋅ 7)⟩ = ⟨min(15,35,27,63);max(15,35,27,63)⟩ = [15; 63)

2.3 State Set Representation

In the reachability analysis we will use state set representations. State set representa-
tions are used to represent the state of a hybrid system in a geometric way. In general
all common representations use over-approximation of the state space to de�ne it
geometrically. There are di�erent state set representations, e. g. boxes, polytopes,
ellipsoids, oriented rectangular hulls, orthogonal polyhedra, template polyhedra and
zonotopes. All of them have their advantages and disadvantages. It is always a
trade o� between precision, meaning less over-approximation, computational e�ort
and memory e�ciency.
In this work we will focus on two state set representations for hybrid systems, boxes
and polytopes. As we will see, these two representations also focus on di�erent ad-
vantages. Since we need to implement such representations and operations on them,
we will always de�ne the mathematical set together with a representation of the set,
in order to operate on such representations.

2.3.1 Boxes

With the de�nitions in Section 2.2 we can de�ne a n-dimensional box as a cross
product over n intervals.

De�nition 2.3.1 (Interval box representation [LG09, Sch19]). Let BI = (I1, . . . , In)
be a vector of n intervals. Then BI represents the set

B ⊂ Rn, where B = {x ∣ x ∈ Ii∀i ∈ {1, . . . , n}}.

So BI is the interval representation of the box B, where BI = ⟨l1;u1⟩ × ⋅ ⋅ ⋅ × ⟨ln;un⟩ is
the cross product of n intervals.

The interval de�nition is one possibility to de�ne a box. Another one is to use
two n-dimensional points vmin, vmax instead of n intervals. One point contains all
lower boundaries and the other one all upper boundaries. The Figure 2.2 shows a
2-dimensional box once de�ned by the intervals [1; 4] and [1; 3] on the left and once
de�ned by the two points vmin = (1,1) and vmax = (4,3) on the right.
Regardless of the de�nition of a box there are 2 ⋅n values and 2 ⋅n relation symbols,
that have to be stored for a n-dimensional box. For that reason we will mostly use
the interval representation in this work. This shows, that boxes are very memory
e�cient and ensure fast computation. At the same time boxes may lead to a huge
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x1

x2 l1 u1

l2
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1 4

x1

x2

vmin
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1

3

1 4

Figure 2.2: Example of a box in 2 dimensions

over-approximation.

There are also some operations on boxes, that will be used in the reachability
analysis for hybrid systems. As already mentioned all these operations are de�ned for
boxes by the set theory, but since we want to use them in the implementation, we also
have to de�ne them for the representation of a box. The �rst one is the intersection
of two boxes. As Lemma 2.3.1 shows, the intersection of two boxes can be computed
in a component-wise manner.

Lemma 2.3.1 (Intersection of boxes [Sch19]). Let B1 = I1×⋅ ⋅ ⋅×In, B2 = I ′1×⋅ ⋅ ⋅×I ′n be
the representations of two boxes. The intersection B = B1 ∩B2 is the box represented
by:

B = (I1 ∩ I ′1) × ⋅ ⋅ ⋅ × (In ∩ I ′n).

The next operation is an a�ne transformation. This operation transforms a n-
dimensional box B = {x ∣ ∀i ∈ {1, . . . , n} ∶ x ∈ Ii} to another box B′, where for all
x′ ∈ B the equation x′ = A ⋅x+ b for some A ∈ Rn×n and b ∈ Rn must be satis�ed. This
also can be done iteratively. The interval representation of the new box B′

I can be
computed by using interval multiplication and addition. This algorithm intuitively

Algorithm 1 A�ne transformation of a box [Sch19]

Input: interval box representation BI = I1 × ⋅ ⋅ ⋅ × In, matrix A ∈ Rn×n, vector b ∈ Rn
Output: interval box representation B′

I = I ′1 × ⋅ ⋅ ⋅ × I ′n = A ⋅B + b
for i = 1, i ≤ n, i + + do

I ′i = bi
for j = 1, j ≤ n, j + + do

I ′i = I ′i +Aij ⋅ Ij
end for

end for

transforms every boundary of the new interval iterativly.
The last operation, that is mentioned, is the test for emptiness. Since a box is de�ned
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x1

x2 h

x1

x2 h

Figure 2.3: Example of hyperplane, halfspace in 2 dimensions

as a cross product of intervals, it gets empty as soon as one interval de�ning it is
empty.

Lemma 2.3.2 (Emptiness of a Box ). A Box B = I1 × ⋅ ⋅ ⋅ × In is empty, denoted as
B = ∅, i� ∃i ∈ {1, . . . , n} ∶ Ii = ∅.

2.3.2 Polyhedra

The second state set representation are polyhedra. Polyhedra will be represented as
an intersection of a �nite number of half-spaces. Therefore, we will �rst have a look
at some mathematical background, too.

De�nition 2.3.2 (Hyperplane [Grü13, Bao05]). A hyperplane in Rn is a set of the
form

h = {x ∈ Rn ∣ a ⋅ x = b}, where a ∈ Rn, a ≠ 0, b ∈ R

De�nition 2.3.3 (Halfspace [Grü13, Bao05]). A halfspace in Rn is a set of the form

H = {x ∈ Rn ∣ a ⋅ x ≤ b}, where a ∈ Rn, a ≠ 0, b ∈ R.

These de�nitions are illustrated in Figure 2.3. On the left we see the hyperplane
h represented by h = {x ∈ R2 ∣ 4

3
⋅x1 +x2 = 29

6
} and on the right there is the half-space

H = {x ∈ R2 ∣ 4
3
⋅ x1 + x2 ≤ 29

6
}. h is also called the bounding hyperplane of H.

With this de�nitions we can formally introduce the de�nition of a polyhedron.

De�nition 2.3.4 (Polyhedron [Grü13, Bao05]). A polyhedron P ⊂ Rn is a convex set
given as the intersection of a �nite number of closed half-spaces:

P = ⋂mi=1 hi, where m ∈ N is the number of halfspaces de�ning P .

In addition to polyhedra, we also introduce polytopes, where polytopes are bounded
polyhedra, as De�nition 2.3.5 shows.

De�nition 2.3.5 (Polytope [Grü13, Bao05] ). A polytope in Rn is a bounded poly-
hedron and therefore a bounded convex set P ⊂ Rn given as an intersection of a �nite
number of closed half-spaces:
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Figure 2.4: Example of a polytope in 2 dimensions

P = ⋂mi=1 hi, where m ∈ N is the number of halfspaces de�ning P .

In this work we use the standard de�nitions of convex, bounded and closed sets
as it is explained in [Bao05].
With this de�nitions we can introduce the representation, that is used for polyhedra
and polytopes. As both sets are represented by a �nite number of half-spaces, these
half-spaces can be combined to one matrix and one vector, such that

P = ⋂mi=1 hi = {x ∈ Rn ∣ x ∈ hi∀i ∈ {1, . . . ,m}} = {x ∈ Rn ∣ A ⋅ x ≤ b},
with A ∈ Rm×n, b ∈ Rm.

So the i-th half-space is represented by the i-th row of the matrix A and the i-th
component of the vector b.
Figure 2.4 shows a polytope represented by the �ve half-paces hi. This representa-
tion for polytopes is called H-representation. There is a second representation, the
V-representation, where a polytope is represented by its vertices. Both of these two
representations have their advantages as disadvantages during computations. Addi-
tionally the conversion between these two representations is computationally expen-
sive. In this work we will only use the H-representation, because the set di�erence
operation is easier to compute in this representation.

2.4 Reachability Analysis

The second big part, besides the implementation of the set di�erence operation, is the
integration of the usage of urgent transitions into to reachability analysis. Therefore,
we will have an intuitive look at the theoretical background here.
The reachability analysis of a hybrid system is used to compute all reachable states
of the system. A state s is reachable, if there exists a path starting in an initial state
leading to this state s. To decide, if a certain state is reachable, is undecidable for
general hybrid automaton and some subclasses, as Table 2.1 shows.
The goal in the veri�cation of hybrid systems is to check, whether a safety critical
state is reachable. The set of all safety critical states is called bad states Pbad. In this
sense reachability analysis is used to decide, if there is a reachable state, that is bad.
Generally, exact calculation are not possible, because the reachability problem for
hybrid systems in general is undecidable, therefore there are approaches using either
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under- or over-approximation depending on what should be proven. Considering the
usage of over-approximation of the state space we can just verify, that a system is
safe, if Preach ∩ Pbad = ∅. But if Preach ∩ Pbad ≠ ∅, hence a bad state is reachable,
we cannot tell, if the system is unsafe. The reason for that is, that we do not know,
if the found bad state really is reachable in the system or if it is the result of the
over-approximation. On the other hand the usage of under-approximation can only
ensure, that a system is unsafe, if some bad state is reachable, hence Preach∩Pbad ≠ ∅.
If no bad state is reached, it can still be the case, that the under-approximation cut
away some state, that would lead to an unsafe path. Therefore, under-approximation
cannot proof safety.
For this way of reachability analysis, there are two approaches, to check, if a system
is safe. The �rst one is the so called forward reachability analysis. The idea of this
method is, to start with a set of initial states and iteratively compute successor states,
by letting time elapse or taking discrete jumps. In this way the reachability analysis
can stop, once a bad state is reached or a �xed-point is detected, where a �xed-point
is a state, that has already been reached in the reachability analysis before and there-
fore does not have do be considered again. The other approach is called backward
reachability analysis. This method starts with the set of bad states and iteratively
computes predecessor states. So this analysis can stop once an initial state is reached
or a �xed-point is detected. Both of these approaches are not bounded in their run-
time, so to ensure the termination of such programs, there is the so called bounded
reachability analysis. The bounded reachability analysis determines a �xed number
of discrete transitions, that can be taken along one path, such as an upper boundary
on the total time duration of a path. These boundaries are called jump depth J and
time horizon T.
The last approach to mention is the �owpipe-construction-based reachability anal-
ysis. This approach is based on the bounded reachability analysis. The idea is to
divide the time horizon T into smaller segments δ, called time steps, and calculate
the corresponding state set to these segments. All these state sets together build the
�owpipe of the system.
There are also other approaches of reachability analysis, for example, using SMT-
solving, but in this work we �ll focus on �owpipe-construction-based forward reacha-
bility analysis.



Chapter 3

Set Di�erence

Related Work. There are already some theoretical approaches for computing the
set di�erence of polyhedra, like [BMDP02, Bao05] show. The implementation, that
is introduced in this work, is also based on these concepts.
Additionally, there are also approaches in integrating urgency in the reachability anal-
ysis of hybrid systems. Generally there are two ways to integrate urgency to a hybrid
system, urgent locations or urgent transitions. Urgent locations are for example de-
signed by the tcp (time can pass) predicate in [NOSY92], that controls the time, that
can pass, while the system stays in the same location. This concept is adapted by
[SM14] in order to allow no time to pass in a location. This variant of an urgent
locations is also similar to an urgent transition without a guard, that is also discussed
in [SM14]. More general urgent transitions are discussed in [vBRSR07] in detail.
Furthermore, there are approaches focusing on certain subclasses of hybrid automata
to integrate urgency. For example, [GV05] shows, how to add urgency to timed au-
tomata and discusses the di�erent possibilities in detail. Nevertheless, in most of
these researches there is no discrete implementation of urgency in the reachability
analysis of hybrid systems.
Moreover, Tristan Ebert is currently writing his master thesis about a CEGAR ap-
proach for handling urgency in hybrid systems, which uses the set di�erence functions,
that are introduced here.

After the introduction of the theoretical background, the �rst main part of this work,
the algorithms for the set di�erence between two boxes or two polyhedra, can be
introduced.

3.1 Boxes

The �rst representation, that is considered, are boxes. As we already mentioned, the
goal is to integrate urgency in the reachability analysis of hybrid systems by applying
the set di�erence to a state set and the guard of a transition. Generally the guard of
a transition does not have to be a box, but in the following, we assume, that also the
guard of a transition is represented by a box.
The basic idea of the algorithm for the set di�erence is illustrated in Figure 3.1. It
consists of the idea to iterate over all dimensions and check, if the interval represent-
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Figure 3.1: Example of the set-di�erence algorithm for boxes in two dimensions

ing the subtrahend in this dimension is at least partially contained in the interval
representing the minuend in this dimension. If that is the case, we can construct one
or two new boxes by letting the intervals of the minuend unchanged in all dimensions
besides the one we are checking. In this dimension the interval is constructed from the
lower bound of the minuend to the lower bound of the subtrahend or from the upper
bound of the minuend to the upper bound of the subtrahend. Before continuing with
the next dimension also the minuend box has to be adjusted. The adjusting lies in the
interval in the considered dimension. This interval has to be changed with respect to
which new boxes are constructed. In general, the interval extends from the maximum
of the lower bounds of minuend and subtrahend to the minimum of the upper bounds
of both.
For the example in �g. 3.1 the minuend is represented by the two intervals [l1,u1] =

[1; 4] in x1 and [l2,u2] = [1; 4] in x2 and the subtrahend is represented by the two
intervals [l′1,u

′

1] = [2; 3] in x1 and [l′2,u
′

2] = [2; 3] in x2. The �rst dimension, that
is considered, is x1. So the check, if [2,3] is contained in [1; 4] is true, and the two
boxes B1 and B2 are constructed. In addition to these two boxes the minuend box is
adjusted in this dimension x1 to the interval [2; 3]. With this adjusted box the next
dimension, x2, is considered. The same steps apply and the result of the set di�erence
of the blue minuend box and the red subtrahend box is the vector (B1,B2,B3,B4) il-
lustrated in the bottom right corner of �g. 3.1. Note, that this solution is not unique.
We could also consider the x2 dimension �rst and consequently get other boxes. If
we would do so, the �rst two boxes, that are computed, would be B′

1 = [1; 4] × [1; 2]
and B′

2 = [1; 4] × [3; 4].
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So theoretically the set di�erence for two boxes consists of set di�erences over inter-
vals and adjusting the box after each set di�erence. With the knowledge about the set
di�erence for intervals from section 2.2 we can introduce an algorithm, that calculates
the set di�erence for two boxes. This procedure can be done by the algorithm 2,where
the function add(B,Bi) adds the box Bi to the vector of boxes B. The check, if a box
is empty, is done by iterating over all intervals de�ning the box and check for each,
if it is empty, as shown in section 2.3.1. In this scenario we have to take care of the

Algorithm 2 Set Di�erence Boxes

Input: box BI = [l1;u1] × ⋅ ⋅ ⋅ × [ln;un], box GI = [l′1;u
′

1] × ⋅ ⋅ ⋅ × [l′n;u
′

n]
Output: vector of boxes B = BI ∖GI
B = ∅
for i = 1, i ≤ n, i + + do

Blow = [l1;u1] × ⋅ ⋅ ⋅ × [li;min(ui,l
′

i)] × ⋅ ⋅ ⋅ × [ln;un]
Bup = [l1;u1] × ⋅ ⋅ ⋅ × [max(u′i,li),ui] × ⋅ ⋅ ⋅ × [ln;un]
if Blow ≠ ∅ then

add(B,Blow)
BI = [l1;u1] × ⋅ ⋅ ⋅ × [min(ui,l

′

i),ui] × ⋅ ⋅ ⋅ × [ln;un]
end if

if Bup ≠ ∅ then

add(B,Bup)
BI = [l1;u1] × ⋅ ⋅ ⋅ × [li,max(u

′

i,li)] × ⋅ ⋅ ⋅ × [ln;un]
end if

end for

return B

boundary types of the intervals again. We already discovered the bounds that have
to be taken by computing the new boxes Blow and Bup. In addition to that, there
are also the boundaries for the adjustment of the minuend box after each dimension.
Here the boundary types are just the boundary types of the boundaries that it arises
from without any inversion.
In addition to this algorithm depending on the scenario, it might be helpful to check,
if the result of the set di�erence equals the original minuend box or the empty box,
to save some computational e�ort. Only if that is not the case the set di�erence is
computed. This additional check can be done by algorithm 3. If this additional check
is performed, we can adapt the set di�erence computation slightly. Since we know,
that we only perform the set di�erence, if the result is not the original box, it cannot
be the case, that both boxes are disjunct and therefore we do not need the min,max
functions anymore. In this case we can just take the corresponding bound of the
interval of the subtrahend box instead of the min/max.

3.2 Polytopes

The second considered representation are polytopes. For polytopes the idea of an
algorithm for the set di�erence is shown in �g. 3.2. In this example the set di�erence
of the blue polytope without the red polytope should be computed. The underlying
concept for that is similar to the concept of the algorithm for boxes. The di�erence
is, that instead of changing intervals in a speci�c dimension to compute a new box,
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Algorithm 3 Check for containmend or disjunction

Input: box BI = [l1;u1] × ⋅ ⋅ ⋅ × [ln;un], box GI = [l′1;u
′

1] × ⋅ ⋅ ⋅ × [l′n;u
′

n]
Output: vector of boxes B = BI ∖GI
bool empty = true, bool unchanged = false
for i = 1, i ≤ n, i + + do

if l
′

i ≤ li then
if u

′

i ≤ ui then
unchanged = true

end if

if u
′

i < ui then
empty = false

end if

else

empty = false
if l

′

i ≥ ui then
unchanged = true

end if

end if

end for

if empty then
add(B,∅)
rerunt B

end if

if unchanged then
add(B,BI)
rerunt B

end if

calculate di�erence

now half-spaces are added to the original box, to compute a new one. The core of
the algorithm is to iterate over all half-spaces de�ning the subtrahend polytope and
compute a new polytope, which is de�ned by the half-spaces of the minuend polytope
and the inverted half-space of the subtrahend polytope. If this polytope is not empty,
it is added to the result vector and the considered half-space is added to the minuend
polytope. Like before for boxes, the result of the set di�erence for polytopes, is also
not unique. It depends on the order, in which the half-spaces of the subtrahend
polytope are considered.

Lemma 3.2.1 (Emptiness of o polytope ). A polytope P = {x ∈ Rn ∣ A ⋅ x ≤ b} is not
empty i� ∃x ∈ Rn ∶ A ⋅ x ≤ b. A polytope is empty if such a x does not exist.

With lemma 3.2.1 checking whether a polytope is empty requires to solve one linear
program. In the example in �g. 3.2 the �rst considered half-space of the subtrahend
polytope is h

′

1. The polytope de�ned by h1, h2, h3, h4 and h
′

1, P1, is not empty, so it
is added to the result vector and the iteration continues with the next half-space, h

′

2.
At the end the �ve polytopes P1, P2, P3, P4, P5 are computed as the result of the set
di�erence blue∖red.
Although this basic idea is relatively simple, there are some challenges in the calcula-
tion of the set-di�erence for polytopes. The challenges in this approach are depicted
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Figure 3.2: Example of the set-di�erence algorithm for polytopes in two dimensions

in �g. 3.3. The �rst challenge, depicted on the left, is to identify those half-spaces,
de�ning the polytope G, which do not bound the polytope. These half-spaces are
called redundant.

De�nition 3.2.1 (Redundancy of a halfspace). Given a polytope P = ⋂mi=1 hi. Then
hi is redundant, if

P ′ = ⋂nj∈{1,...,m}∖i hj = P .

If a polytope only consists of non-redundant half-spaces, it is in minimal repre-
sentation.

Lemma 3.2.2 (Minimal representation [Bao05] ). A polytope P = ⋂mi=1 hi is in min-
imal representation i� the removal of any half-space hi would change P .

With lemma 3.2.2 redundant half-spaces are those, that can be removed, without
changing the polytope. These half-spaces should not be considered in computing the
set di�erence, as they may lead to an avoidable overhead. In order to do that, we will
make sure, that both polytopes are in minimal representation.

Lemma 3.2.3 (Calculation Redundancy of a Halfspace ). Given a polytope P =
⋂mi=1 hi, represented by P = {x ∈ Rn ∣ A ⋅ x ≤ b}. Checking whether hi is redundant can
be done by checking if it exists a x such that:

(1) A′ ⋅ x ≤ b′, where A′, b′ are obtained from A,b by removing the i-th row
(2) −Ai ⋅ x < −bi

If no such x exists, hi is redundant.

If there exists a x such that (1) and (2) are satis�able, then hi is not redundant.
According to lemma 3.2.3 this can be done by solving one linear program for every
halfspace. For example, in �g. 3.3 the half-spaces h′6 and h

′
7 are removable.

The second challenge is, to decide, which half-spaces of G intersect with P . This is
helpful, because half-spaces of G, that do not intersect with P , do not have an e�ect
on the set-di�erence P ∖G. In �g. 3.3 the half-spaces h′2 and h

′
3 in the picture in the

middle do not intersect with P , so those do not have to be considered in computing
the set-di�erence. Only the half-spaces h′1, h

′
4 and h

′
5, which we will call active bounds

of G, will be considered in the iteration over the half-spaces of G.
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Figure 3.3: Challenges set-minus polytopes

Lemma 3.2.4 (Active bounds ). Given the two polytopes P = ⋂mi=1 hi, represented by
P = {x ∈ Rn ∣ A ⋅ x ≤ b} and G = ⋂ki=1 h′i, represented by G = {x ∈ Rn ∣ A′ ⋅ x ≤ b′} in
minimal representation. A half-space h′i of G is called active i� ∃x such that:

(1) −A′i ⋅ x ≤ −b
′

i ∧A ⋅ x < b
(2) A′ ⋅ x ≤ b′

The third challenge is shown on the right in �g. 3.3. Here the red polytope G is
already in minimal representation, additionally we can identify h′3 as not active. The
challenge in this case lies in the half-space h′4. This half-space intersects with P , but
the set-di�erence can (and should) be computed without it. Therefore, h′4 should also
not be an active bound. This is the reason for the constraint (2) in lemma 3.2.4. This
constraint ensures, that there is a point x that lies on the facet of G which is part
of h′i, in this case h′4. While the (1) constraint in lemma 3.2.4 makes sure, that the
intersection of the inverted considered half-space an the polytope P is not empty and
even not just a hyperplane or a point. Again for the decision if a half-space is active
or not one linear program has to be solved for every halfspace.
The algorithm 4 shows, how the set di�erence for two polytopes can be computed, by
representing the polytopes as sets. This is an intuitively easy to understand possibility
to comprehend the idea of the algorithm. But because we also want to implement
the algorithm later (chapter 4), the algorithm 5 shows an implementation in pseudo
code, where a polytope represented by a pair of a matrix A and a vector b, such that
the polytopes contains all points x which satisfy A ⋅ x ≤ b.

In this algorithm the function get_active_bounds(G, P ) returns the active bounds
of G with respect to P according to lemma 3.2.4. Then it iterates over all active
bounds and constructs a new polytope Pi. The function addrow() adds a new row
to the according matrix/vector. So that the two addrow()-operations on A′p and b

′

p

together represent the addition of a new half-space to the (A,b) representation of a
polytope. The same principle later applies for P . Here P is adjusted with respect
to the considered active bound, if the computed Pi is part of the result, i. e. is not
empty.
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Algorithm 4 SetMinus Polytopes - set representation

Input: fulldimensional polytopes P = {x ∈ Rn ∣ P x ⋅ x ≤ P c}, G = {x ∈ Rn ∣ Gx ⋅ x ≤
Gc} in minimal representation
Output: polytope- collection P ∖G
Ga = {active bounds of G}
if Ga = ∅ then

return ∅
else

for all bounds gi ∈ Ga do
Pi = P ∩ {x ∈∣ gxi ⋅ x ≥ gci }
if Pi ≠ ∅ then

PS = PS ∪ Pi
P = P ∩ {x ∈∣ gxi ⋅ x ≤ gci }

end if

end for

return PS
end if

Algorithm 5 SetMinus Polytopes- (A,b)-tupel representation

Input: representations of fulldimensional polytopes P = {x ∈ Rn ∣ Ap ⋅ x ≤ bp}:
P = (Ap,bp), G = {x ∈ Rn ∣ Ag ⋅ x ≤ bg}: G = (Ag, bg) in minimal representation
Output: set of polytopes P ∖G
Ga = get_active_bounds(G, P )
if Ga = ∅ then

return ∅
else

for all rows (Ag,i, bg,i ∈ Ga) do
(Ag,i,bg,i) = getInverse((Ag,i,bg,i))
A
′

p,i = addrow(Ap,Ag,i)
b
′

p,i = addrow(bp,bg,i)
Pi = (A′p,i,b

′

p,i)
if Pi ≠ ∅ then

PS = PS ∪ Pi
A
′

p = addrow(Ap,Ag,i)
b
′

p = addrow(bp,bg,i)
P = (A′p,b

′

i)
end if

end for

return PS
end if
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Chapter 4

HyPro

The C++ library HyPro o�ers several state set representations for hybrid systems.
These representations can be used for reachability analysis of hybrid systems, espe-
cially for �owpipe construction based algorithms. HyPro also o�ers operations on
these representations and conversion methods between them. Additionaly, there are
some more tools provided by HyPro, as �g. 4.1 shows. This work shows an algorithm,
that implements the set di�erence for two of the representations used in HyPro. In
addition, it provides a method which supports urgent transitions in hybrid systems by
using the set di�erence methods in the �owpipe-based reachability analysis of these
systems.

4.1 General Reachability Analysis

As mentioned in chapter 2 we will focus on �owpipe-based forward reachability anal-
ysis. So the reachability analysis is bounded in the number of discrete and continuous
transitions, that can be taken. In HyPro these bounds can be set by so called Anal-
ysisParameters. The general concept of the reachability analysis in HyPro works as
follows. There is an analyser, a worker and some handlers, where the analyser coordi-
nates the reachability analysis. It checks, if the jump depth is reached or a �xed-point
is detected. If there is no reason to stop the analysis, the analyser creates tasks for
the worker. These tasks are for example computing the time evolution of the sys-
tem in a given state or computing the jump successors in a given state. During this
computations the worker and the analyser need to check and perform various steps,
for example, checking the invariant of a location, applying the reset for a discrete
transition or checking if a bad state is reached. For each of these tasks there is one
handler, which performs the needed tasks.
This concept uses a ReachTree to coordinate the work. The ReachTree basically
stores the paths of the system together with their �owpipe in each location. So the
ReachTree starts with just a root, which is the inital con�guration and every time a
discrete transition is taken a child node is added.
The general implementation of this concept is shown in algorithm 6. As this algo-
rithm shows, the basic concept is, to calculate all time successor states in the current
location, which leads to a �owpipe of time segments and then check for every �owpipe
segment, if the guard of a discrete transition is enabled. Remembering the ReachTree
concept this way of computing jump successors may lead to a strong branching in the
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Figure 4.1: Organizational structure of HyPro [SAMK17]

Algorithm 6 Analyser

while there exists unprocessed ReachTreeNode do
currentNode = nextNode()
currentNode.computeTimeSuccessors()
if badstatereached then

return UNSAFE
end if

if !�xedPointDetected then
currentNode.computeJumpSuccessors()
for all JumpSuccessor do

addNewNode();
end for

end if

end while

tree, because for every �owpipe segment satisfying the guard of a discrete transition,
a new Node is added to the ReachTree. In order to somehow control the branching,
there a concepts like Aggregation or Clustering which are discussed in chapter 4.
But �rst we need to understand the general concept. As algorithm 6 shows, we need
to compute time- and jump successors and check for bad states or �xed points.

4.1.1 General TimeSuccessor Computing

Generally the time successor computation has to let time evolve until the time horizon
is reached. This computation can be done by applying an a�ne transformation to
the state set, since we consider linear systems in this work. The �ow of linear systems
can be expressed by an equation of the form x′ = A ⋅ x + b.

Example 4.1.1. For example, let there be two variables in the system, x1, x2. We
want x1 to have a constant change ẋ1 = 5 over time and x2 a linear change depending

on x1, ẋ2 = x1. Then we can specify this �ow by the matrix A = (0 0
1 0

) and the vector
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b = (5
0
) And consequently get the intended �ow of the system by the equation

(x
′
1

x′2
) = A ⋅ (x1

x2
) + b = (0 0

1 0
) ⋅ (x1

x2
) + (5

0
) = ( 5

x1
)

Note that we could also use equations of the form x′ = A ⋅ x without the addition
with a vector b, if we add an extra dimension with zero �ow to represent the constant
�ow, as in [Sch19]. But since we already know how to apply an a�ne transformation
to the considered state set representations, we stay with the above de�nition. Before
this time evolution even starts there is one more task to handle, that is shown in
algorithm 7. We have to compute the �rst segments, that is the starting point for the
�owpipe construction. We will not go into detail how this computation works, but
basically we have to make sure, that at every time, the actual reachable states are
contained in the state set, that is computed by the time evolution. Because the time
evolution just computes the state after a �xed time step, we do not know for sure,
that in between these two time points, we have not left the set of the actual reachable
states. Therefore, some bloating is applied to the �rst computed segment.
In addition to that during the time evolution computation, two other properties must
be checked, (1) the invariant of the current location may not be violated, (2) a bad
state should not be reached.
With lemma 4.1.1 (1) can be done by intersecting every new time segment with the
invariant of the system and only continue the computation, if the intersection is not
empty.

Lemma 4.1.1 (Satisfying a Invariant ). A segment s does not ful�ll the invariant of
a location loc, if s ∩ inv(loc) = ∅

For (2) the segment has to be intersected with the bad states and if this inter-
section is not empty a bad state has been reached and the computation can stop.
With this knowledge algorithm 7 shows how such a computeTimeSuccessor()-method
would look like. In this algorithm new segments are computed until the time bound
is reached, no part of the segment ful�lls the invariant or a bad state is reached. So
after this algorithm the �owpipe for the current ReachTree-Node is computed.

4.1.2 General Jump Successor Computation

As we have already mentioned before, the jump successor computation generally
checks for every �owpipe segment, if it at least partially satis�es a guard of a discrete
transition. If a guard is enabled the jump should be taken to continue the reachability
analysis. Now there is one more concept to control the branching in the ReachTree,
that arises from this working concept.
It might be the case, that during the �owpipe construction a number of segments, that
all enable the same discrete transition, is computed. In order to reduce the number
of new ReachTree-Nodes, that are created, these segments can be combined to larger
segments. This concept is called Aggregation or Clustering. Both approaches take
several segments of the �owpipe, that all satisfy the same guard and unify them to
a larger segment. The di�erence is, that Aggregation takes all segments, that satisfy
one guard and uni�es it to one new segment, while Clustering uses a �xed number
of segments, that are uni�ed [Sch19]. Figure 4.2 shows no aggregation on the left,
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Algorithm 7 ComputeTimeSuccessors-function

�rstSegment = constructFirstSegment();
if �rstSegment ∩ loc.getInvariant() != ∅ then continue
end if

if �rstSegment ∩ badStates != ∅ then

return UNKNOWN
else

�owpipe.add(�rstSegment)
end if

while !TimeBoundReached do
segment = applyTimeEvolution()
if segment ∩ loc.getInvariant() == ∅ then

return SAFE
end if

segment = segment ∩ loc.getInvariant()
if segment ∩ badStates != ∅ then

return UNKNOWN
end if

�owpipe.add(segment)
end while

no aggregation aggregation clustering

Figure 4.2: Controlling the ReachTree Branching: Aggregation vs Clustering

aggregation in the middle and clustering on the right.
With this knowledge algorithm 8 shows, how the TimeSuccessor Computation can

be implemented. This algorithm �rst computes pairs of a transition and �owpipe
segments, that satisfy this transition with the function getenabledsegments. This
computation can be done by iterating over all transitions and segments and check, if
the intersection of the guard of the transition with the segment is not empty. When
these pairs are computed, they can be used to compute the aggregation or clustering
by building the union of the segments, that should be uni�ed. This is done in ap-
plyAggregation. With this new segment or new segments, if clustering is applied, the
reset of the considered transition can be applied to the new segment and a new node
is added to the ReachTree.

4.2 Urgent Reachibility Analysis

After introducing the general concept of the reachability analysis implementation, we
now want to add the possibility of urgent transitions to it. For this reason we will
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Algorithm 8 ComputeJumpSuccessors-function

Input: ReachTreeNode: location loc, �owpipe of this location �owpipe
vector (vector(segments), transition) enabledsegments
enabledsegments = getenabledsegments(�owpipe, loc)
for all (segments, transition) ∈ enabledsegments do

vector newsegments = applyAggregation(segments, transition)
for all newsegment ∈ newsegments do

resetedsegment = applyReset(newsegment, transition)
addNode(resetedsegment, transition)

end for

end for

again have a look at the time- and jump successor computation.

4.2.1 Urgent TimeSuccessor Computing

When using urgent transition the algorithm 7 we have seen before has to be adapted
in the following way. The characteristic of urgent transitions is, that the transition
has to be taken as soon as it is enabled. Therefore, the control should no longer
stand in the current state once an urgent transition is enabled. The problem here
comes from the �owpipe construction. One time step has a chosen, but �xed size.
So at one point it might be the case, that a time segment only partially satis�es the
guard of a transition. At this point this segment has to be adapted. Because the
urgent transition has to be taken has soon as it is enabled and not sometime later,
we must make sure, that at the timesuccessor -computation not the whole segment
is mentioned. For the computation of the time successors this means, that during
the computation there must be a set di�erence operation subtracting the guard of an
enabled urgent transition from the time segment. Such an algorithm must (1) iterate
over all urgent transitions of the current location and check for each, if it is enabled
and (2) if a transition is enabled compute the set di�erence of the time segment with
the guard of this transition.
(1) Can be done by computing the intersection of the time segment and the guard
of the respective transition. If this intersection is not empty, the guard is enabled.
If an enabled urgent transition is found in (1), (2) can be done by computing the
set di�erence of the segment and the guard using the algorithms shown in chapter 3.
Algorithm 9 shows a pseudo code algorithm, that focus on the urgent computation
and does not mention other checks, like for the invariant or bad states. A detailed
algorithm is shown in Algorithm 10, which is an implementation in HyPro.

Compared to algorithm 7 this implementation has the same structure. The dif-
ference is the one additional check, if an urgent transition is enabled. If that is the
case the result is computed by using the SetMinus-function. Because the result of
this set di�erence in general is not only one segment, all resulting segments have to
be mentioned in the further computation. That is the reason for the segments-vector
used in this algorithm. This vector stores all segments, that are computed during the
set di�erence operation. In addition to that, we also have to consider, that there is
maybe more than one urgent transition. The existence of multiple urgent transition
leads to additional computational e�ort. All segments, that are the result of the set
di�erence with one urgent transition, have to be checked by the next urgent transi-
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Algorithm 9 ComputeTimeSuccessors-function using urgent transitions

�rstSegment = constructFirstSegment()
vector segments = urgencyCheck(�rstSegment)
addToFlowpipe(segments)
while !TimeBoundReached do

for all seg ∈ segments do
seg = applyTimeevolution(seg)
vector tmpsegments = urgencyCheck(seg)

end for

segments.clear()
for all tmpseg ∈ tmpsegments do

if tmpseg ! = ∅ then

segments.add(tmpseg)
addToFlowpipe(tmpseg)

end if

end for

end while

Figure 4.3: Example of an urgent guard casting a shadow

tion again. For this reason there is the tmpsegmets-vector. This vector keeps track
of the computation for one segment during the urgent transition check and adds all
non empty segments to the segments-vector afterwards. To keep track of these both
vectors there are lower and upper bounds storing the indices needed for the compu-
tation.
Additionally, there is one more point to mention for the time successor computation
supporting urgent transition. The guard of a transition casts a shadow to the seg-
ment, which represents the parts of the segment, that would not be reached, if the
urgent transition has been taken as soon as it is enabled. Figure 4.3 shows such a
case. In this example the �ow is directed left to right and bottom up. Therefore,
the red urgent guard forces the system to leave the current state on the left and the
lower side of the guard. So the white space would not be reached, because the system
left the state before. This leads to a problem in the reachability analysis supporting
urgent edges, since the set di�erence of the timeevelotion of the blue set with the red
guard set would compute a result that includes the white space, that should not be
reached.
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4.2.2 Urgent Jump Successor Computation

Our implementation of the computation of the jump successors for a �owpipe in a
location does not di�er much from the general implementation. Only the aggregation
step would have to be adapted, but this is not part of this work.
The reason, that there is no real need to adapt the computation is the usage of
over-approximation. As we have seen in chapter 2 there is much e�ort for boxes to
keep track of the bound types and for polytopes we do not even use strict inequalities.
This is why the set di�erence operations used in the time successor computation over-
approximate the real di�erence. The over-approximation there lies in the borders of
the boxes and polytopes. For example, in �g. 2.1 we discussed the theoretical result
of the set di�erence for intervals, which can be used in a component wise manner
to compute the set di�erence for boxes. Although in the implementation we do not
use this exact computation, since we only consider the values of the bounds for the
result of the set di�erence but not the bound type. We only use weak inequalities
for the minuend, the subtrahend and the di�erence. This leads to a useful advantage
in the jump successor computation. Since an urgent transition should be taken as
soon as it is enabled, for linear hybrid systems this means, that the jump should be
taken at the borders of the guard. Exactly these borders are still contained in the
�owpipe of the system, so that there is no additional e�ort for the jump successor
computation. Of course we could also do exacter computations by using the interval
set di�erence for boxes and a symbolic representation for polytopes, but this would
lead to additional e�ort during the whole reachability analysis process. We would have
to store the segments intersecting urgent guards in the time successor computation
and remember them for the jump successor computation, where then exactly the �rst
time point, that the guard is enabled, has to be computed in order to apply the reset.
This would again lead to another problem, since we can only determine that for linear
systems, with weak guards.
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Chapter 5

Benchmarks

In this chapter we want to have a look at some hybrid systems, that use urgent tran-
sitions. We will analyse the relevance of the support of urgent transitions and the ad-
vantages and disadvantages, that it brings. To do so, we will apply the �owpipe-based
forward reachability analysis, that is introduced in Chapter 4 without aggregation or
clustering. We will have a look at two di�erent systems. For the �rst one we will use
boxes as state set representation and for the second one polytopes.

5.1 Lawn Mower

The �rst system is the lawn mower, that we already introduced. The automaton
representing the system, that is discussed is shown in Figure 5.1. This automaton is
slightly di�erent than the one before. In this automaton the direction can not change
non deterministicly, but when the mower leaves the lawn or before it mows the �owers.
The safety critical behaviour of this system is the lawn mower mowing the �owers.
So regardless of the location the system is in, the valuation should never satisfy the
condition 30 > x > 70 ∧ 100 > y > 150. Therefore, the transitions to ensure, that such
behaviour does not happen, are urgent. Indeed, this urgency ensures safety of that
system. Without the transitions being urgent the system is no longer safe, because the
system can take these transitions as soon as they are enabled, but without urgency,
it does not have to. It can stay longer in the location and enter the bad states by
letting time elapse. In conclusion the urgency in this automaton ensures safety of the
system, but we also want to have a look at another automaton modeling a similar
safe system without urgency.
This automaton splits the lawn �eld in nine parts, like Figure 5.2 shows. The �owers
build the middle part and around the �owers, there are eight �eld parts that have to
be mowed. For each of these parts there are four locations, that manage the direction
the mower is going, like before. There are also transitions like before to control, that
the mower does not leave the �eld and does not mow the �owers, but additionally
there are transitions that manage the switch between the �eld parts. A model of this
automaton can be found in the HyPro library.
If we now compare the two safe automatons of the lawn mower, we notice, that the
time of computations, where the mower mows the same route in both automatons,
meaning the same number of direction changes is applied, is not that di�erent, as
Table 5.1 shows. The reason for that is, that the urgent automaton introduces more
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direction: ↗

ẋ = 10
ẏ = 9

0 ≤ x ≤ 100 ∧ 0 ≤ y ≤ 200

x = 40,
y = 73

direction: ↖

ẋ = −10
ẏ = 9

0 ≤ x ≤ 100 ∧ 0 ≤ y ≤ 200

direction: ↘

ẋ = 10
ẏ = −9

0 ≤ x ≤ 100 ∧ 0 ≤ y ≤ 200

direction: ↙

ẋ = −10
ẏ = −9

0 ≤ x ≤ 100 ∧ 0 ≤ y ≤ 200

*uc

x ≥ 100

*uc

x ≤ 0

y ≥ 200 *ucy ≤ 0*uc

*uc

x ≥ 100

*uc

x ≤ 0

y ≤ 0*uc y ≥ 200 *uc

Figure 5.1: Lawn mower automaton .
* marks a transitions as urgent, uc stands for the urgent condition 30 ≤ x ≤ 70∧100 ≤
y ≤ 150
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BottomLeft Bottom BottomRight

Left Right

TopLeft Top TopRight

Flowers

Figure 5.2: Lawn/Flower Field

Table 5.1: Comparison Urgency vs. No-Urgency, Time in Seconds

Number of Direction Changes 3 5 7 10

Urgent Automaton 0.015 0.046 0.186 0.424
Non-Urgent Automaton 0.017 0.052 0.110 0.295

overhead in handling the urgent transitions, meaning checking, if they are enabled
and computing the set di�erence if that is the case, but the other automaton consists
of far more states, which leads to much more e�ort in handling the ReachTree of
the automaton, because it consists of much more nodes. If we have a closer look at
these times we notice, that the urgent automaton is faster at �rst, but gets much
slower the more transitions are taken. The reason here, is that the set di�erence
computation, that is used for the urgency handling, costs more computational e�ort,
that the intersect computation, that is used without urgency.
Independently from the time e�ciency of these two automatons we have to mention,
that the second automaton without urgency only works in this case, because we have
constant derivatives and always ensure, that we enter a location with a valuation,
that satis�es the invariant of this location.
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falling

ẋ = vx
ẏ = vy
v̇y = −9.81
v̇x = 0
ż = 0

y ≥ 0 ∧ 0 ≤ x ≤ 2

x = 0,
y = 5,
z = [−1; 1],
vx = 1,
vy = 0

rising

ẋ = vx
ẏ = vy
v̇y = −9.81
v̇x = 0
ż = 0

y ≥ 0 ∧ 0 ≤ x ≤ 2 ∧ vy ≥ 0

y ≤ 0 ∶ v̇y = −0.75 ⋅ vy

*0.5 ⋅ x + y ≤ 1 ∧ 0.5 ⋅ x − y ≤ −0.9∧
z ≤ 0.5 ∧ z ≥ −0.5 ∧ vy ≤ 0 :
v̇y = −0.75 ⋅ vy ∧ v̇x = vx − 0.1

vy ≤ 0

x ≤ 0 ∧ vx ≤ 0 ∶ v̇x = −0.8 ⋅ vx

x ≥ 2 ∧ −vx ≤ 0 ∶ v̇x = −0.8 ⋅ vx

x ≤ 0 ∧ vx ≤ 0 ∶ v̇x = −0.8 ⋅ vx

x ≥ 2 ∧ −vx ≤ 0 ∶ v̇x = −0.8 ⋅ vx

Figure 5.3: Bouncing Ball Automaton .
* marks a transitions as urgent

5.2 Bouncing Ball

The second benchmark is an adapted version of the bouncing ball. The system consists
of a ball, that bounces up and down and left and right. It starts at a given height
and a given velocity in the horizontal direction. While bouncing the ball is bounded
in its movement by two walls left and right and the �oor. In addition, there is a tilted
beam at some height, that the ball also can hit.
In this scenario, the automaton modeling this system, should ensure, that the ball
cannot move through the beam. In order to realize that, the transition, that controls
the bouncing onto the beam, is urgent. The automaton modeling this system is shown
in Figure 5.3. In this automaton the y-variable controls the height of the ball and
the x-variable the left to right movement. The v-variables control the corresponding
speed in each direction. In addition, there is a z-variable. This variable stands for
the position concerning the back and forth movement, but as we can see, there is no
movement in this direction, but a constant position value between −1 and 1. This
interval in the initial con�guration is the reason, why the set di�erence is needed in this
scenario. The beam, which causes the urgency, does not extend over the complete z
interval, but only over a part of it. Therefore, at one point in the reachability analysis
not the whole state set will satisfy the urgent guard, but part of it does.
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Table 5.2: Comparison Urgency vs. No-Urgency, Time in Seconds

Number of Jumps 1 2 3 4 5

Non-Urgent Automaton 11.6 23.1 52.0 206 669
Urgent Automaton 13.7 31.4 67.2 216 983

In a �rst test scenario the unsafe state is represented by the position y = 0, x = 1, z = 0
and the velocity vy ≤ 0 in the falling location. This corresponds to the position central
under the beam, which should not be reached. In this scenario we see, that the urgent
transition indeed has to be urgent to ensure safety. Without the urgency it shows,
that during the reachability analysis a bad state is reachable, while the system is safe
with urgency. The reason for that again is quite obvious. Without the transition,
that controls the bouncing on the beam being urgent, the transition can be taken,
but it does not have to. So the ball can bounce on the beam and start rising again,
but can also just fall through the beam and therefore reach the unsafe state.
In a second scenario we consider the system without any unsafe state, to compare
the runtime of the system with and without urgency. These times are shown in
Table 5.2. In this scenario we can already see a huge di�erence in the runtime with
a small number of jumps, that are taken. The reason for that is the set di�erence
operation, that has to be used every time the urgent transition is satis�ed. In addition,
especially the last column of Table 5.2 shows, that the more jumps can be taken and
correspondingly the more often the computation has to be split o� when using urgency,
the additional time, that is needed for the set di�erence, increases very much. In this
case the CEGAR approach, shown in [Ebe21], might be interesting. In both cases
the runtimes are already large for a small number of jumps. Here the reason is,
that polytopes require much more computational e�ort, than boxes. Although the
polytope is already reduced every time a new �owpipe construction starts, there are
still many half-spaces, that are used to represent every single one. Additionally, this
automaton consists of �ve variables, which requires even more computational e�ort.
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Chapter 6

Conclusion

The goal of this work wa to implement a set di�erence operation for the state set rep-
resentations boxes and polytopes and integrate urgency in the reachability analysis
of hybrid systems using this methods.
The set di�ernce methods have been introduced in Chapter 3 and are implemented
in the C++ library HyPro. Additionally, Chapter 4 shows, how to adapt the reach-
ability analysis of hybrid systems, in order to intregerate urgent transitions. These
implementations have also been tested in Chapter 5 with the result, that they work
correctly, but may have to be improve, in order to improve the runtime. Generally
we can say, that the integration of urgency in hybrid systems allows more scenarios
to be modeled, but also brings a lot more computational e�ort.

6.1 Future work

There are some interesting points related to the reachability analysis of hybrid systems
using urgency.

� Heuristics in the set di�erence computation: as shown in Chapter 3 the result
of the set di�erence of two sets, for both boxes and polytopes, is not unique.
It depends on the order, in which the dimensions for boxes or the half-spaces
for polytopes, are considered by computing the set di�ernce. In the context
of the reachability analysis of hybrid systems it might be interesting to design
heuristics for choosing the order. Such heuristics could for example depend on
the �ow of the system.

� Aggregation and clustering in the reachability anaylsis of hybrid systems using
urgency: in this work we did not use aggreration or clustering for the reason
shown in Chapter 4. Nevertheless these concepts could speed the computation
up for some hybrid system by reducing the number of ReachTree-Nodes, that
are computet. It would be interesting to implement di�erent approaches for
these concepts. There are possibilities to apply aggreration or clustering either
before or after computing the set di�erence.

� Shadow of urgent transitions: as shown inChapter 4 the guard of an urgent
transition casts a shadow, which has to be subtracted from the remaining state
set. This problem could maybe be approached by constructing a half-space
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from the �ow of the system or even apply time evolution to the guard, but
these approaches also lead to new challenges.

� General hybrid automata: in this work, we hab a look at linear system, but
urgency gets really useful, when there is for example also non linear �ow. Non
linear �ow could lead to cases, where the guard of a transition is just touched
at one point, which makes the whole scenario much more interesting.
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