
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

SIMPLEX HEURISTICS IN SMT SOLVING

SIMPLEX-HEURISTIKEN IN SMT SOLVING

Fabian Alieff

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Christina Büsing

Additional Advisor:
Jasper Nalbach, M.Sc.

Aachen, 18.11.2020





Abstract

The standard in Satis�ability Modulo Theory solving is the Simplex for
DPLL(T) algorithm, proposed by Dutertre and de Moura. The SMT-solver
SMT-RAT being developed at the Theory of Hybrid Systems Research Group
also uses this algorithm as a basis for their LRA-module. In this work di�er-
ent heuristics for choosing variables during the pivoting operation of the simplex
method are researched and implemented in this module. Then all chosen heuris-
tics are tested on the QFLRA benchmarks from the SMT-LIB library and their
performance is compared to the performance of the original module. While one
heuristic could not be tested due to errors in the implementation which lead
to wrong results on the benchmarks, the other heuristics underperformed the
LRA-module in many of the benchmarks and overall produced more timeouts.
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Chapter 1

Introduction

Satis�ability Modulo Theories (SMT) solving is the process of deciding on the satis�-
ability of a given logical formula with respect to some �rst order theories. The theory
important for this work is quanti�er free linear real arithmetic, the �rst order theory
over R with signature {0,1,+, <}. Most modern Satis�ability Modulo Theories (SMT)
solvers use the Simplex algorithm introduced by [DDM06] for linear arithmetic rea-
soning in a DPLL(T) framework ([BCD+11][CGSS13][DMB08][CHN12][BPST10]).
Solvers using the simplex algorithm rely on variable choosing heuristics for the piv-
oting operation, to either prove unsatis�ability or �nd a satisfying assignment for a
given subset of formulas. The most basic heuristic being Bland's rule, which chooses
variables according to a �xed ordering. While guaranteeing termination, the runtime
of Bland's rule is in many cases suboptimal, as it converges slowly [KBD13]. For
this reason di�erent heuristics taking di�erent local or global criteria into account are
created.
At the Theory of Hybrid Systems Research Group, part of the Chair of Computer Sci-
ence I2 of RWTH Aachen University, SMT-RAT, an SMT-solver which implements
di�erent solvers in modules is being developed.

SMT-RAT includes an LRA-module, also based on [DDM06] for linear arith-
metic reasoning. All work in this thesis was done in this module.
The goal of this work is the implementation, testing and comparison of di�erent vari-
able ordering heuristics for the simplex algorithm in the context of SMT-solving.

1.1 Outline

Section 2 gives background information about the simplex algorithm in general and
the usage of the simplex algorithm in the context of LRA-solving which are needed for
a better understanding of this work. Section 3 gives a brief explanation of SMT-RAT,
in which the heuristics were implemented. Section 4 gives a detailed explanation of
the theory behind the implemented heuristics and why they were chosen. Section 5
describes the implementation of those heuristics inside the LRA-module of SMT-
RAT. An evaluation of the di�erent strategies, which were tested on the cluster
provided by the Theory of Hybrid Systems Research Group is shown in section 6 and
section 7 concludes the thesis, giving a quick summary, plus an outlook on how this
work could be extended upon in the future.
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Chapter 2

Background

2.1 SMT-Solving

The basic focus of SMT-Solving lies in �nding out if a formula is satis�able (with
respect to some �rst order theory T). The DPLL(T)-solver is the main architec-
ture used by modern SMT-solvers. It implements a SAT-solver, which is used to
search for a satisfying assignment of propositional formulas, in cooperation with one
or more theory-solvers(T-solvers). For this purpose, a given quanti�er-free formula
Θ is transformed into a propositional formula Θ′, by replacing it's atoms θi with
propositions pi. The SAT-solver then searches for a satis�able assignment of Θ′. If
a satisfying assignment is found, the implemented T-solvers check the corresponding
set of atoms for consistency. In case of an inconsistency, the solver needs to return
an explanation for the found con�ict by providing any infeasible subset of the atoms
given by the SAT-solver. In an incremental SMT-solver, instead of solving the com-
plete formula Θ′ at once, the SAT-solver searches for partial solutions for Θ′ and
check this partial solution with the theory solver, incrementally extending the partial
solution, if the theory solver returns SAT or backtracking if it returns UNSAT. This
work focuses on an LRA-solver, which uses the simplex method for the satis�ability
checking of QFLRA formulas.

2.2 Simplex method

The Simplex method was designed mainly to solve linear programming problems by
�nding an optimal solution to an objective function with respect to a set of linear real
arithmetic constraints.
A feasible solution is any vector x ∈ R, for which the constraints are satis�ed. A
feasible solution is optimal, if the vector x also maximizes the objective function.
The Simplex method works in two phases, in the �rst the algorithm searches for any
feasible solution. If a feasible solution is found, it is used to search for an optimal
feasible solution in the second phase.
In the context of satis�ability checking, it is enough to consider only the �rst phase.
For that purpose a given set of constraints of the form

∑n
j=1 aijxj ./ cj is transformed

into a set of constraints of the form
∑n
j=1 aijxj − sj = 0 with sj ./ bj , where ./ ∈ {=

, ≤ , ≥}. s1,...,sm are called slack variables. The resulting constraints are then used



12 Chapter 2. Background

to derive lower bounds li and upper bounds ui for each xi ∈ V , as well as a Simplex
tableau with rows of the form bi =

∑
nj∈N aijnj , bi ∈ B, where B is the set of basic

variables with a size of m and N the set of non-basic variables with a size of n, with
B,N ⊂ V . Initially N consists of all original variables and B consists of all slack
variables.

Each state of the simplex method includes an assignment (initially set to: α(xi) =
0 ∀i ∈ {1,.....,n+m}) for each variable and a tableau, for which the invariants Ax = 0
and ∀nj ∈ N α(nj) > lj ∧ α(nj) < uj always hold [DOW+55]. The method then
works as follows:

If a basic variable violates it's bounds, if possible, pivoting is performed, until
either no more basic variables violate their bounds or no pivoting step is possible in
which case a con�ict is found which means, that the problem is unsatis�able. If no
basic variable violates it's bounds, the problem is satis�able. Pivoting consists of the
following steps :

1. Choose a basic variable, that violates it's bounds, either α(bi) < li or α(bi) > ui

2. If possible, choose a non-basic variable nj with

� If α(bi) < li:

� either aij > 0 and α(nj) < uj

� or aij < 0 and α(nj) > lj

� If α(bi) > ui:

� either aij < 0 and α(nj) < uj

� or aij > 0 and α(nj) > lj

3. If a suitable variable nj for pivoting is found, perform the pivoting step, else
return unsatis�able:

(a) Solve equation bi = aijnj +
∑
k 6=j aiknk for nj to nj = bi

aij
−
∑
k 6=j

aik
aij
xk

(b) Swap nj and bi, such that bi becomes non-basic and nj becomes basic

(c) Update rows of the tableau accordingly, the ith row by changing [ai1...aij ...ain]
to [−ai1aij

... 1
aij
...−ainaij

] and every other row by replacing nj with it's equiva-
lent computed in 3a .

(d) Update assignment of nj : α(nj) = α(nj) + li−α(bi)
aij

(e) Update all assignments of variables depending on nj

4. Go back to step 1.

To ensure termination a selection heuristic for the pivoting row/column needs to
be used, the most basic heuristic for that is Bland's rule which establishes a variable
order, from which always the �rst variable feasible for a pivoting step is chosen. A
heuristic for choosing the basic variable is called the entering rule and a heuristic for
choosing the non-basic variable for pivoting is called the leaving rule. A more detailed
explanation of di�erent heuristics will be discussed later.
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Figure 2.1: Basic check procedure [DDM06]

1 procedure Check ( )
2 loop
3 select the sma l l e s t ba s i c v a r i ab l e bi such that
4 α(bi) < li or α(bi) < ui
5 i f the re i s no such bi then return s a t i s f i a b l e
6 i f α(bi) < li then
7 select the sma l l e s t non=bas i c v a r i a b l e nj such that
8 (aij > 0 and α(nj) < uj )or (aij < 0 and α(nj) > lj )
9 i f the re i s no such nj then return u n s a t i s f i a b l e

10 pivotAndUpdate (bi,nj ,li )
11 i f α(bi) > ui then
12 select the sma l l e s t non=bas i c v a r i a b l e nj such that
13 (aij < 0 and α(nj) < uj ) or (aij > 0 and α(nj) > lj )
14 i f the re i s no such nj then return u n s a t i s f i a b l e
15 pivotAndUpdate (bi,nj ,ui )
16 end loop

2.3 Simplex in SMT-Solving

QFLRA(quanti�er-free linear real arithmetic) formulas are �rst order formulas con-
taining only atoms which are either propositional variables or of the form :

a1x1 + ...+ anxn ./ c,

where ./ ∈ {= , 6= , < , > , ≤ , ≥}

The atoms given to a LRA-solver create a set of such constraints. It is assumed, that,
for the purpose of performing the simplex method in an LRA-solver, the tableau
bi =

∑
nj∈N aijnj bi ∈ B, is derived from the constraint matrix A, B is the set of

basic variables and N the set of non-basic variables. The solver then checks a given
set of constraints for consistency using the simplex method. Figure 2.1 shows a basic
version of such a check procedure, here pivotAndUpdate performs a pivoting op-
eration on the tableau, where bi and nj are swapped and the assignment of nj gets
updated by v.

If check �nds that the current set of assignments is consistent, a checkpoint for the
current state of the tableau and assignments is created to which can be backtracked in
case of an inconsistent set of assignments later. In case the check procedure returns
unsatis�able, an explanation is generated by computing N+ = {xj ∈ N | aij > 0} and
N− = {xj ∈ N | aij < 0}. Then an explanation for a con�ict occurring at line 8 of
Figure 2.1 is Γ = {xj ≤ uj | xj ∈ N+}∪{xj ≥ lj | xj ∈ N−}∪{xi ≥ li}. If it occurs at
line 13, an explanation is Γ = {xj ≤ uj | xj ∈ N+}∪{xj ≥ lj | xj ∈ N−}∪{xi 6= ui}.

To assert a new atom γ, an assert procedure is implemented, which uses sub-
procedures, as shown in Figure 2.2. It updates the bounds li and ui and checks for
consistency. In case of inconsistency, UNSAT is returned. The basic algorithm works
as follows: as long, as the assert procedure returns SAT, new atoms are asserted. If it
returns UNSAT, the check procedure is invoked, until either all variables satisfy their
bounds, in which case more atoms can be asserted, or a con�ict is detected.
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2.4 SMT-RAT

The implementation and testing of Simplex heuristics was done in SMT-RAT, an Open
Source C++ Toolbox for Strategic and Parallel SMT Solving [CKJ+15]. The focus of
SMT-RAT lies in it's modularity and ability to compose di�erent solving techniques.
For that purpose, each solving technique is implemented using the Module class.

The composition of di�erent modules can be done via a strategy. Strategies rep-
resent a tree structure of modules and are derived from the Manager class. In a
strategy, the root module will be called on any given input �le. Modules can call
their child nodes on a passed formula using runBackends. For example in the con-
text of this work, a SAT-Solver module with a LRA-Solver module as it's child node
is used to solve formulas in quanti�er-free real linear arithmetic. It is possible to
allow for parallel execution of backends, in which case the �rst backend to terminate
is used, as well as restricted execution of backends using conditions under which they
are to be used. A more detailed explanation of SMT-RAT and it's software design,
including advanced solving techniques implemented as individual components in the
frontend, is provided in the manual on http://smtrat.github.io/.

Figure 2.2: Basic assert procedure [DDM06]

1 procedure AssertUpper (bi ≤ ci )
2 i f ci ≥ ui then return s a t i s f i a b l e
3 i f ci < li then return u n s a t i s f i a b l e
4 ui := ci
5 i f bi i s a non=bas i c v a r i a b l e and α(bi) > ci then update (bi,ci )

1 procedure AssertLower (bi ≥ ci )
2 i f ci ≤ li then return s a t i s f i a b l e
3 i f ci > ui then return u n s a t i s f i a b l e
4 ui := ci
5 i f bi i s a non=bas i c v a r i a b l e and α(bi) < ci then update (bi,ci )
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Heuristics

This Section will explain the basics of the implemented strategies for deciding on a
pair of variables for pivoting, and why they were chosen. A detailed explanation of
how they are implemented will follow in Section 4. All strategies switch to Bland's
rule for variable selection after a �xed number of pivoting steps.

3.1 Bland's rule

Bland's rule uses indices {1, . . . ,i} with x1, . . . ,xi ∈ V and chooses the basic variable
bk violating one of it's bounds such that k < l for all other basic variables bl violating
one of their bounds, with l 6= k , l,k ∈ {1, . . . ,i} and analogous a suitable non-
basic variable nj , such that j < l for all other non-basic variables nl suitable for
pivoting with l 6= j , l,j ∈ {1, . . . ,i}. This is done to make sure that the search for
satis�ability terminates [AC78]. In the following, indices {1, . . . ,i} with x1, . . . ,xi ∈ V
are assumed.

3.2 Activity-Based

The activity-based strategy tracks for each variable xk their pivoting activity activitybasick
for the amount of times it has left the basis and activitynonbasick for the amount of
times it has entered the basis. For a pivoting operation, a basic variable bk violating
one of it's bounds is chosen with activitybasick ≤ activitybasicl for all bl violating
one of their bounds with l 6= j , l,k ∈ {1, . . . ,i} and analogous a suitable non-basic
variable nj , such that activitynonbasicj ≤ activitynonbasicl for all nl suitable for
pivoting with l 6= j , l,j ∈ {1, . . . ,i}. Ties are broken by the variable with smaller
index.
The idea behind this strategy is, to choose variables which would be overlooked in
other strategies e.g. Bland's, as to not miss a variable which could potentially reduce
the number of pivoting steps, if selected for a pivoting operation.

3.3 Di�erence-Based

The di�erence-based strategy considers for each basic variable bk, violating one of
it's bounds, a θk = | l(xk) − alpha(xk) |, if the lower bound is violated or θk = |
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u(xk)− alpha(xk) |, if the upper bound is violated. The variable bk is chosen, so that
for all basic variables bl violating their bounds, θk ≤ θl with l 6= k , l,k ∈ {1, . . . ,i}.
From all suitable non-basic variables, a variable nj is chosen based on the di�erence
θj =| u(nj) − α(nj) | , if the resulting pivoting operation would increase α(nj) or
θj =| l(nj) − α(nj) |, if the resulting pivoting operation would decrease α(nj), such
that θj ≥ θl with l 6= j , l,j ∈ {1, . . . ,i}. Ties are broken by the variable with the
smaller index.

When the assignment of a non-basic variable gets changed to violate on of it's
bounds during a pivoting step, the assignment has to be corrected later, often through
an extra pivoting step. The reasoning behind selecting the basic variable with the
smallest di�erence from assignment to violated bound is, so that the assignment of
the corresponding chosen non-basic variable needs to change the minimum amount for
the pivoting operation which would optimally result in the changed assignment of the
non-basic variable not causing it to violate it's bounds so that there does not have to
be another pivoting operation later to correct the assignment, or if it causes a bound
to be violated, the correction only needs to change the assignment a minimal amount.
Choosing a non-basic variable with the biggest di�erence to it's corresponding bound
follows the same objective.

3.4 Priority-Based

The priority-based strategy assigns a non-basic and a basic priority to each variable.
For a pivoting step, the strategy prioritizes basic variables bk violating their bounds,
which have a non-basic priority. For suitable non-basic variables nj , the strategy
prioritizes ones with basic priority. The priorities for each variable are updated,
each time the check procedure returns UNSAT to the SAT-solver. Basic variables
gain basic priority and non-basic variables gain non-basic priority. When deciding
between basic variables with non-basic priority and non-basic variables with basic
priority, di�erent sub-heuristics were tested:

� Bland's rule: the variable with the lowest index is chosen.

� Activity-based sub-heuristic: the variable is chosen as described in Section 3.2.

� Di�erence-based sub-heuristic: the variable is chosen as described in Section
3.3.

� Mixed sub-heuristic: the variable is mainly chosen as described in ection 3.2, in
case of variables having the same activity and priority, the variable is chosen as
described in Section 3.3.

The strategy tries to return the tableau to a state, where in a previous test, a con�ict
was detected, done under the assumption, that this will increase the chance of quickly
encountering a con�ict again. This would reduce the amount of pivoting steps needed,
before returning a result to the SAT-solver and, as most times many con�icts are
detected before a feasible set of constraints is found, subsequently reduce the overall
runtime.
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3.5 Sum of Infeasibilities

The Sum of Infeasibilities[KBD13] heuristic works di�erently from the other heuristics
presented, in that instead of trying to locally improve the pivoting operation, a global
criterion in the form of a function which needs to be minimized, is used. This function
is the Sum of Infeasibilities, which is de�ned as V io(V ) =

∑
x∈V V io(x) with:

V io(x) =


l(x)− α(x) α(x) < l(x)

α(x)− u(x) α(x) > u(x)

0 otherwise

Minimizing this function will prove satis�ability, if the minimum is 0, and unsatis-
�ability otherwise. This function can be written as V ioF (V ) =

∑
x∈V V ioF (x), V ioF

being the result of replacing α(x) by x in V io(x). As it is only piecewise linear, it
cannot be represented in the tableau. Therefore a linear approximation of V ioF is
used, which, to ensure correctness, still depends on the current assignment:

f =
∑
nj∈N

(
∑
xi∈V

di · entryi,j) · nj)

with:

d =


−1 α(x) < l(x)

1 α(x) > u(x)

0 otherwise

The coe�cients for each non-basic nj variable need to get updated each time the
assignment of a variable xi gets updated and di changes to some d′i, by adding (d′i −
di) · entryi,j to it. V io(V ) or any of it's approximations do not have to be explicitly
computed for the algorithm, it is enough to only consider the coe�cients of each
variable.

3.5.1 Algorithm

Flex(f) denotes the set of non-basic variables nj , which enable the function to de-
crease, by changing their assignment. ∆V io(δ,j) denotes the amount V io(V ) would
change, if the assignment of nj is changed by δ. How ∆V io(δ,j) is computed will be
described later. The strategy then works by �rst checking, if there are any con�icts.
If there are none, a non-basic variable nj ∈ Flex(f) together with a corresponding
basic variable bk , which does not necessarily have to violate it's bounds, are chosen,
if ∆V io(δ,j) < ∆V io(δ,l) ∀ δ, ∀ l ∈ {1, . . . ,i}. Here δ represents a change of the
assignment of nj , which would result in the corresponding basic variable bk to be set
either to it's upper or it's lower bound. If Flex(f) = ∅ and there are no con�icts, the
strategy returns satis�able.

3.5.2 Computing ∆V io(δ,j)

The function V ioF is linear between breakpoints δ,which can be used to compute
∆V io(δi,j) [KBD13]:
It is assumed, that all breakpoints δi are sorted into a decreasing list of the negative
values and an increasing list of the positive values, with a δ0 = 0 included in both.
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With ∆V io(0,j) = 0, β0 = 0 and Ki being the set of basic variables bk for which dk
changes to some d′k at a given breakpoint δi, ∆V io(δi,j) can be computed as follows:

∆V io(δi,j) = ∆V io(δi−1,j) + βi−1 · (δi − δi−1)

with βi = βi−1 +
∑
k∈Ki

(d′k − d) · entryk,j

This is done separately for the set of negative breakpoints and the set of positive
breakpoints. For each xj ∈ Flex(f), there exists a pair (δ,k) such that ∆V io(δ,j) ≤
0[KBD13].



Chapter 4

Implementation

For the purpose of testing di�erent simplex heuristics, the LRA-module of the SMT-
RAT project was edited and renamed to SimplexheuristicsLRAmodule. In the
following this will be referenced as the LRA-module. This section will �rst give
a brief explanation of the basic functions of the LRA-module, then a more detailed
explanation of the Implementation of the di�erent simplex-heuristics and lastly will
mention di�culties encountered while implementing and testing the heuristics, as well
as problems still existing.

4.1 LRA-Module

To process the constraints given to it by the SAT-module, the LRA-module im-
plements the following basic interfaces:

bool LRAModule::informCore(const Formula& _constraint)

Informs the module about a new constraint before it will be added, by adding it to
the set mLinearConstraints, if it is linear and initializing corresponding bounds.
If the constraint is consistent, true is returned, else false

bool LRAModule::deinformCore(const Formula& _constraint)

Removes the given constraint from mLinearConstraints and corresponding bounds
from the tableau.

bool LRAModule::addCore(const ModuleInput::const_iterator)}

Adds the the formula at the given position to the next satis�ability check, by activating
all corresponding bounds.

void LRAModule::removeCore(const ModuleInput::const_iterator)}

Removes the the formula at the given position from the next satis�ability check, by
deactivating all corresponding bounds.

Answer LRAModule::checkCore(bool)
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Performs a satis�ability check on the current set of constraints, by calling the func-
tion nextPivotingElement or if the Sum of Infeasibilities heuristic is used func-
tion nextPivotingElementSof implemented in the tableau class, both returning
a pair std::pair<EntryID,bool>. The EntryID returned represents the entry
of the tableau, which is chosen for the pivoting step, if the boolean value returned is
true. If it is LAST_ENTRY_ID, the current assignment is satisfying and checkCore
returns SAT. If the boolean value returned is false, the current assignment is un-
satis�able and checkCore creates an infeasible subset with the EntryID returned
by nextPivotingElement representing the begin of a con�icting row, and returns
UNSAT.

4.2 Code Structure

Switching the heuristic used can be done via the TableauSettings class. As the
Sum of Infeasibilities heuristic has a signi�cantly di�erent approach to selecting vari-
ables for the pivoting step, �rst considering the leaving rule and then the entering
rule, it was implemented in it's own function for pivoting-element selection. The other
heuristics could all be implemented in the same function, by switching the criterion
for variable comparison. In the following, these functions will be explained separately.
Priority, activity and the coe�cient for the Sum of Infeasibilities function have all
been implemented in the variable class, so they can be easily accessed.

4.2.1 Basic Implementation

Figure 4.1: Basic procedure for �nding the next element for pivoting

1 nextPivotingElement ( ) :
2 for (bj |(bj i s ba s i c and v i o l a t e s one o f i t s bounds ) ) :
3 i f (bj worse than bestBas icVar accord ing to chosen h e u r i s t i c ) :
4 continue loop
5 else :
6 entry = getTableauEntryForPivot ( )
7 i f ( entry == LAST_ENTRY_ID) :
8 return ( beg inOfFirstConf l i ctRow , fa l se )
9 else :

10 update bestBas icVar and bestEntry
11 i f ( bestEntry == LAST_ENTRY_ID) :
12 return (LAST_ENTRY_ID, true )
13 else :
14 return ( bestEntry , true )

Figure 4.1 shows the basic implementation for all heuristics except for Sum of
Infeasibilities. The function iterates through all basic variables, which violate one
of their bounds. It then checks, if the variable is worse for pivoting than a pre-
viously selected 'best' variable, according to the chosen heuristic. If so, the func-
tion skips to the next loop. This is done to not waste time on computing the best
non-basic variable for a basic variable, which will not be chosen anyway. If the
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variable is better, a suitable tableau-entry for pivoting is computed by the function
getTableauEntryForPivot.
getTableauEntryForPivot works, as shown in Figure 4.2. It iterates through en-
tries of the row of the given basic variable bj . If the non-basic variable corresponding
to an entry is viable for pivoting, the function compares it, according to the cho-
sen heuristic, to a previously computed 'best' non-basic Variable. If it is better, the
bestEntry and bestNonBasicVar get updated.
nextPivotingElement checks, if the best entry found for a basic variable violat-
ing a bound is LAST_ENTRY_ID, in which case a pair (LAST_ENTRY_ID,false)
is returned, indicating a con�ict to checkCore.
If no con�ict is detected, a pair (bestEntry,true) is returned, indicating a sat-
is�able assignment, if bestEntry == LAST_ENTRY_ID, otherwise indicating the
next element for pivoting to checkCore.

Figure 4.2: Basic procedure for �nding the best tableau-entry for pivoting a given
basic variable

1 getTableauentryForPivot ( Var iab le bj ) :
2 for (entryl |(entryl i s in row o f bj and cor re spond ing
3 non=bas i c v a r i a b l e i s v i ab l e for p ivo t ing ) ) :
4 i f ( nonBasicVar corre spond ing to entryl
5 i s b e t t e r than bestNonBasicVar accord ing to chosen h e u r i s t i c ) :
6 update bestEntry and bestNonBasicVar
7 return bestEntry

4.2.2 Sum of Infeasibilities Implementation

Figure 4.3: Basic procedure for �nding the next element for pivoting when using the
Sum of Infeasibilities heuristic

1 nextPivotingElementSoF ( ) :
2 checkForCon f l i c t s ( )
3 i f ( the re i s a c o n f l i c t ) :
4 return ( beg inOfFirstConf l i ctRow , fa l se )
5 for nj | (nj ∈ Flex(f))
6 entry = getEntrySof (nj )
7 i f (sgn(∆V io(δ,j)) · | coeffj | i s sma l l e r than minValue )
8 update bestEntry and minValue
9 i f ( bestEntry == LAST_ENTRY_ID) :

10 return (LAST_ENTRY_ID, true )
11 else :
12 return ( bestEntry , true )

Figure 4.3 shows the basic implemented procedure, for choosing the next pivoting
element, when the Sum of Infeasibilities heuristic is chosen.
It iterates over the non-basic Variables in Flex(f), if there is no con�ict in the current
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state of the tableau. If a con�ict is detected, a pair (LAST_ENTRY_ID,false) is
returned, indicating a con�ict to checkCore.
A tableau-entry corresponding to each nj ∈ Flex(f) is computed separately by
getEntrySoF(Figure 4.4), by creating a set S consisting of pairs (θ+,entryl) and
θ−,entryl for each non-zero tableau-entry in the column of the given non-basic vari-
able nj and θ+ and θ− setting the corresponding basic variable to it's upper or lower
bound. getImpactSof() computes ∆V io, as described in section 3.5.2 for each of
these pairs and returns a tuple containing the smallest ∆V io as well as the corre-
sponding θ and entry.
nextPivotingElementSoF chooses the entry minimizing sgn(∆V io(δ,j)) · | coeffj |
for pivoting and returns (bestEntry,true), indicating the next pivoting element
to checkCore, or (LAST_ENTRY_ID,true), in the case of Flex(f) being empty,
indicating a satisfying state of the tableau.

Figure 4.4: Basic procedure for �nding the best tableau-entry for pivoting, when using
the Sum of Infeasibilities heuristic

1 getEntrySoF ( Var iab le nj ) :
2 S = ∅
3 for (entryl |(entryl i s in column o f nj and entryl != 0)
4 S ← {θ+ ,entryl}
5 S ← {θ− ,entryl}
6 bestTuple = getImpactSoF (S ,nj )
7 return bestTuple

4.3 Di�culties

The main di�culty implementing the Sum of Infeasibilities heuristic lied in the im-
plementation of the optimization function as part of the tableau. As mentioned in
section 4.2 the function has been implemented as part of the variable class, assigning
each variable a coe�cient. The initialization for these had to be done during each
checkCore run, which would increasing runtime. The overall performance of the
Sum of Infeasibilities strategy however could not be tested, as the �nal Implementa-
tion could not solve the vast majority of the benchmarks correctly. The reason for
these errors could not be determined.



Chapter 5

Evaluation

The implemented strategies were tested on the QFLRA benchmarks of the SMT-LIB
library [BST10], using the benchmax tool provided with SMT-RAT. All tests were
run on the cluster provided by the Theory of Hybrid Systems Research Group, using
4 x 2.1 GHz AMD Opteron with 12 Cores each and 192 GB of RAM.

5.1 Runtimes

In the following, all tests are represented through a scatterplot, comparing the run-
times of the tested strategy to the performance of the original LRA-module with
standard Settings and a second graph, showing for a given runtime (in min) the num-
ber of benchmarks which were solved in it, as well as the amount of benchmarks on
which the solver did not time out. The graph of the reference can be seen in Figure
5.1. From 1648 tests, 973 were completed before a timeout. For testing purposes, all
tests which took more than ten minutes were considered a timeout.

5.1.1 Di�erence-based results

Figure 5.2 shows the results of the tests done with the di�erence-based simplex heuris-
tic. The second graph shows, that 928 of the benchmarks were completed before a
timeout. The scatterplot shows, that the majority of tests, which did not cause a time-
out were completed faster using the standard LRA-module. Especially some tests,
which were completed within a few seconds using the LRA-module, fared way worse
with the di�erence-based strategy, causing a timeout. Notably the di�erence-based
approach timed out on more benchmarks of the sal [HMP16] family.

5.1.2 Activity-based results

Figure 5.3 shows the results of the tests done with the activity-based simplex heuris-
tic. The second graph shows , that 922 of the benchmarks were completed before
a timeout. The scatterplot shows, that the majority of tests, which did not cause
a timeout, similar to the di�erence-based test results, were completed faster using
the standard LRA-module. While solving 3 benchmarks of the miplib family
[GHG+19] and 6 of the sc family [BP06], which the original solver timed out on, the
activity-based strategy performed, among others, notably worse on the metitarsky
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Figure 5.1: Results of the tests for the original LRA-solver

family of benchmarks, which are generated by the Meti-Tarski tool [AP10], timing
out on 16 of them, which could be solved by the original LRA-solver

5.1.3 Priority-based results

Figure 5.4 shows the results of the tests done with the priority-based simplex heuristic
using Bland's rule as a sub-heuristic, Figure 5.5 shows the results when using the
di�erence-based sub-heuristic, Figure 5.6 when using the activity-based sub-heuristic
and Figure 5.7 shows the results when using the mixed approach for the sub-heuristic.
The second graphs show, that respectively 920, 918, 920 and 919 of the tests were
completed before a timeout. For all used sub-heuristics, with exception of a few
outliers, the scatterplots consistently show worse runtimes than the LRA-module
tests produced. Notably all versions of the priority-based approach timed out on more
benchmarks of the sc and sal families.
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Figure 5.2: Results of the tests for the di�erence-based heuristic

Figure 5.3: Results of the tests for the activity-based heuristic
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Figure 5.4: Results of the tests for the priority-based heuristic, using Bland's rule as
a sub-heuritsic

Figure 5.5: Results of the tests for the priority-based heuristic, using the di�erence-
based approach as a sub-heuritsic
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Figure 5.6: Results of the tests for the priority-based heuristic, using the activity-
based approach as a sub-heuritsic

Figure 5.7: Results of the tests for the priority-based heuristic, using the mixed
approach as a sub-heuritsic
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Chapter 6

Conclusion

6.1 Summary

This work researched and implemented variable selection heuristics for pivoting in
the context of the simplex algorithm in SMT-solving. The main concepts for those
heuristics were based on the di�erence from assignment to the bounds of the variables,
their pivoting activity, a previously assigned priority for either being a basic or a non-
basic variable and an approach based on the Sum of Infeasibilities of all variables
violating their bounds [KBD13]. The heuristics were implemented in SMT-RAT,
a SMT-solver developed at the Theory of Hybrid Systems Research Group, however
the Implementation of the heuristic based on the Sum of Infeasibilities could not be
tested, as it still contained errors. The other heuristics were tested on the QFLRA
benchmarks of the SMT-LIB library and compared to the original LRA-module of
SMT-RAT as a reference. While producing correct results, the overall performances
of the tested strategies were worse than the performance of the original module, re-
garding number of timeouts and most individual runtimes.

It should be noted, that while it could not be implemented correctly in this work,
the Sum of Infeasibilities strategy showed promising results in the tests done by
[KBD13] and therefore should be considered for future work.
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