
Master’s Thesis

A Transformation of Hybrid Petri Nets with
General Firings to Stochastic Hybrid Automata

by

Lena Verscht

1st Examiner:
Prof. Dr. Erika Ábrahám

2nd Examiner:
apl. Prof. Dr. Thomas Noll

The present work was submitted to:
LuFG Theory of Hybrid Systems

RWTH Aachen University

November 21, 2022

Contents

1. Introduction 5

2. Stochastic Hybrid Automata 9
2.1. Syntax of SHAs . 9
2.2. Semantics of SHAs . 16
2.3. Composition . 21
2.4. Assumptions and Restrictions . 25

3. Hybrid Petri Nets with General Firings 27
3.1. Syntax of HPnGs . 27
3.2. Semantics of HPnGs . 35

4. Transforming HPnGs to SHAs 65
4.1. Preliminary Definitions . 68
4.2. Transforming Discrete Fragments . 70
4.3. Transforming Continuous Fragments . 76
4.4. Compositional Transformation . 88
4.5. Correctness of the Transformation . 96

5. Conclusion 99
5.1. Future Work . 99

A. Notations 101

B. Omitted Proofs 107
B.1. Proof of Theorem 4.2 . 107
B.2. Proof of Theorem 4.1 . 109

Bibliography 139

Index 143
Definitions . 143
Theorems . 144
Examples . 144

3

1. Introduction

Our everyday life depends on many complex critical infrastructures, ranging from
water treatment facilities to power plants. At the same time, technological advances
cause more and more areas to depend on automated systems, as can be observed, for
example, in smart cars and smart homes. Securing and analyzing such systems is
essential to avoid failures and prevent serious repercussions, making it an important
area of research.

In computer science, systems are often assumed to be discrete. This is reasonable
insofar as program executions can be viewed as a series of discrete steps. However,
real-world systems are often dynamic and depend on both discrete and continuous
variables. A simple example of a hybrid system is the heating system in a smart home,
which reacts to the continuously changing temperature and the discrete settings of the
thermostat. Hybrid modeling mechanisms were developed to properly describe the
behavior of such systems.

Two widespread approaches for modeling hybrid systems are hybrid automata and
hybrid Petri nets. Hybrid automata extend discrete automata by adding specifications
for the continuous evolution of variables to each location, implicitly adding the concept
of time. Similarly, a Petri net can also be seen as the extension of a discrete automaton,
allowing a location, here referred to as a place, to hold several so-called tokens. Places
are connected by transitions that move tokens between them. A hybrid Petri net
broadens the modeling power of Petri nets essentially by adding continuous places
holding fluid instead of discrete tokens and corresponding continuous transitions.

In many cases, real-world systems are under the influence of an uncertain environment.
For example, components of the system might fail with a certain probability or depend
on external factors such as severe weather, whose occurrence can be characterized by a
probability distribution. This makes probabilistic hybrid systems a cornerstone for the
analysis of safety-critical infrastructures.

For both modeling approaches mentioned above, several stochastic variants exist. In a
recent work, Gerlach presented a compositional modeling language for stochastic hybrid
automata (SHAs), which will be used in this thesis. Gribaudo and Remke introduced
hybrid Petri nets with general firings (HPnGs), which essentially add stochasticity to
hybrid Petri nets by delaying the firing of transitions with respect to a probability
distribution [GR16]. HPnGs were proven to be useful for modeling real-world systems.

5

1. Introduction

For example, Ghasemieh et al. studied a waste water treatment facility in Enschede, the
Netherlands [GRH16].

There exist various techniques and frameworks for analyzing SHAs, for example, reach-
ability analysis, which handles the problem of computing the reachability probability
for a given set of states [Aba+07; Frä+11; Hah+13; HH14]. Similar results would be
desirable for HPnGs, which can be achieved in two ways: Either by examining methods
of interest and transfer them to the setting of HPnGs [PR17; HR19; Hül+21], or by
providing a method to transform HPnGs into SHAs [Pil+20]. The latter has the strong
advantage that all methods are directly applicable without the need to consider them
separately. In this thesis, we define such a transformation and prove its correctness. A
first approach to this was made by Pilch et al. in [Pil+20] by simulating time-bounded
behavior of HPnGs with a subclass of SHAs. The restriction to paths of a bounded
length is a consequence of employing a symbolic calculation tree as an intermediate step
of the transformation. We adopt a different approach without the need for symbolic
computations. As an advantage, the transformation proposed in this thesis is not
limited by a time bound and instead can accurately model the behavior of a HPnG for
infinite paths.

There are some fundamental differences between SHAs and HPnGs. For example, time
can stop when certain conditions are violated in SHAs. In HPnGs, time always passes
and the components must always adapt their behavior such that no required condition
is violated. We will address and resolve these challenges. The main contributions of
this thesis are summarized in the following:

• We propose a novel algorithm for solving conflicts concerning the under- and
overflow of places within the continuous part of the HPnG, referred to as the rate
adaption and prove its termination on a subclass of HPnGs.

• We give a rigorous definition of the operational semantics of HPnGs including
the rate adaption by giving a set of inference rules, building on the syntax and
semantics of HPnGs from previous publications [GR16; Pil+20].

• We define a formal transformation of HPnGs to semantically equivalent SHAs for
unbounded executions.

• We prove the correctness of the transformation by defining a bisimulation between
the states of both systems.

Structure. The objective of this thesis is to provide a method for transforming HPnGs
into SHAs. To this end, we provide a rigorous definition of both modeling structures,
starting with SHAs in Chapter 2. We present HPnGs in Chapter 3 and their syntax
in Section 3.1. To describe their semantics, we extend existing definitions towards a

6

more precise and formal description through a set of inference rules in Section 3.2. This
includes an algorithm for the rate adaption in Section 3.2.2.

In Chapter 4, we formally define a compositional transformation of HPnGs to SHAs,
including a detailed discussion on possible variants and approaches. The transformation
is split into a transformation of the discrete fragments in Section 4.2, a transformation
of continuous places in Section 4.3 and finally the composition of the separate parts in
Section 4.4. We prove the correctness of the transformation in Section 4.5.

Finally, we draw a conclusion in Chapter 5. In Appendix A, we give an overview of
used notations and provide some omitted proofs in Appendix B.

7

2. Stochastic Hybrid Automata

Discrete systems evolve by moving from one state to another, taking discrete steps.
Automata or transition systems can be used to model such systems, including for
example program executions, which is why they are widely used in computer science.
Hybrid automata extend these models by adding the concept of time. In addition to
jumping from one location to another, we can let time pass while staying in a location
and let variables evolve continuously as specified by differential equations. This makes
hybrid automata useful for modeling dynamic systems that exhibit both discrete and
continuous behavior, such as heating systems or the charging process of a battery.

Real-world models are often exposed to some kind of uncertainty. Stochastic hybrid
automata (SHAs) were introduced to capture this in a meaningful way. They extend
hybrid automata with random components, such as sampling when to take a jump
from a specified distribution.

There are several definitions of SHAs that differ, for example, in the precise deployment
of stochasticity [Pol+03; JP09; Ger22]. We choose to build the transformation on a
compositional model presented in a very recent Master’s thesis by Gerlach [Ger22].
For the transformation, compositionality has the advantage that it allows us to split
the Petri net into smaller parts, transform those separately, and compose the result.
Therefore, we obtain simpler definitions compared to non-compositional approaches.

We begin by defining the syntax of SHAs in Section 2.1 and their semantics in Section 2.2.
Since we aim to define a compositional transformation, we define the composition of
SHAs in Section 2.3. Some minor details differ from Gerlach’s approach, which will be
discussed in more detail in Section 2.4.

2.1. Syntax of SHAs

SHAs manipulate a set of variables Var, partitioned into disjoint sets of controlled
and non-controlled variables. The latter allow us to account for factors that the SHA
cannot influence but that potentially influence the SHA. The assignment of values to
the variables is described by a function referred to as valuation ν.

9

2. Stochastic Hybrid Automata

Definition 2.1. Valuations
A valuation over a set of variables Var is a function ν : Var→ R. We denote the set
of valuations over Var as VVar. If Var is clear from context, we omit the index.

In order to manipulate a valuation ν ∈ VVar, we define ν[x 7→ a] ∈ VVar as the valuation
where the value of variable x ∈ Var is replaced by a ∈ R, i.e., for all y ∈ Var:

ν[x 7→ a](y) =

{
a if y = x

ν(y) else.

For the sake of readability, we write ν[x 7→ y] for ν[x 7→ ν(y)] when we want to set the
value of x to the value of y ∈ Var. Also, we write ν[x += 1] for ν[x 7→ ν(x) + 1] and
dually ν[x −= 1] for ν[x 7→ ν(x)− 1].

As mentioned earlier, the variables of SHAs evolve continuously over time. Their precise
evolution is described by a set of activities. Later, this set will often be characterized by
differential equations.

Definition 2.2. Activities
An activity is a continuous function f : R≥0 → VVar. We denote the set of activities
with respect to Var as FVar. If Var is clear from context, we omit the index.

We distinguish between variables that are controlled by the SHA and those that are not.
For this, we formally define what it means for a set of valuations to be independent of
a variable set.

Definition 2.3. Closure of Sets
Let Con and NCon be two disjoint variable sets and let Var = Con∪· NCon. For all
ν, ν′ ∈ VVar, we define ν ≈Con ν′ iff ν and ν′ agree on the values for all variables
in Con, i.e., it holds that ν(v) = ν′(v) for all v ∈ Con. Analogously, we define
ν ≈NCon ν′ if ν(v) = ν′(v) for all v ∈ NCon. Then, we call a set S ⊆ VVar of
valuations NCon-closed iff S = {ν′ ∈ VVar | ∃ν ∈ S. ν ≈Con ν′}.

Thus, S is closed with respect to a set of non-controlled variables NCon if it only
specifies values for variables from Con and allows for all possible valuations of the
variables in NCon.

The probabilistic components in the SHA follow probability distributions. We denote the
set of all distributions over the non-negative reals as Distr, so

Distr =
{

p : R≥0 → [0, 1]
∣∣∣∣ ∫x∈R≥0

p(x) dx = 1
}

.

10

2.1. Syntax of SHAs

The support of a probability distribution p ∈ Distr is denoted by supp(p), i.e.,

supp(p) = {x ∈ R≥0 | p(x) > 0} .

A distribution p is continuous if supp(p) is uncountable.

Next, we define some distributions that will be used in this thesis. For a, b ∈ R≥0 with
a ≤ b, we denote by U[a,b] ∈ Distr the uniform distribution over the interval [a, b] ⊂ R.
More precisely, for all x ∈ R≥0

U[a,b](x) =

{
1

b−a if x ∈ [a, b]

0 else.

Another common distribution is the exponential distribution exp ∈ Distr given by

exp(x) = e−x

for all x ∈ R≥0. We will also need probability distributions that assign all probability
mass to one single value. For this purpose, we define the Dirac distribution δa ∈ Distr
for a ∈ R≥0 for all x ∈ R≥0 as

δa(x) =

{
1 if x = a

0 else.

For a random variable a ∈ Var and a probability distribution p ∈ Distr we write a ∼ p
to express that a is distributed according to p. Now, we can formally define the syntax
of SHA.

Definition 2.4. Syntax of Stochastic Hybrid Automata
A stochastic hybrid automaton (SHA) is a tuple

A = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

with the following components:

• Loc is a non-empty finite set of locations.

• Var = Con ∪· NCon is a finite set of variables, partitioned into disjoint sets of
controlled and non-controlled variables.

• Inv : Loc→ 2V assigns an invariant to each location l ∈ Loc such that Inv(l) is
NCon-closed.

• Init : Loc→ 2V assigns a set of initial valuations to each location l ∈ Loc such
that Init(l) is NCon-closed and Init(l) ⊆ Inv(l).

• Edge ⊆N×Loc× 2V
2 ×Loc is a finite set of jumps such that for all (id, l, µ, l′) ∈

11

2. Stochastic Hybrid Automata

Edge and all (ν, ν′) ∈ µ it holds that ν ≈NCon ν′ and ν′ ∈ Inv(l′). We call l the
source location and l′ the target location of a jump (id, l, µ, l′) ∈ Edge.

• Act : Loc→ 2F assigns a set of activities to each location.

• Lab is a set of labels specifying some random processes.

• Proc : Edge → Lab assigns a random process to each jump such that all
e1, e2 ∈ Edge with the same source location have Proc(e1) 6= Proc(e2).

• Dur : Lab× Loc× V → Distr assigns a probability distribution to each label,
location and valuation in Lab× Loc× V .

• Wgt : Edge→N>0 assigns a positive weight to each jump.

Locations. What is commonly called a state in the context of discrete automata is now
referred to as a location. Then, a state of an SHA additionally includes a valuation of
the variables.

Variables. SHAs manipulate a set of variables, which are split into controlled and
non-controlled variables. Controlled variables are those that the SHA can read and
write, while non-controlled are for reading only.

Invariants. In each location, we can place conditions on the variables. An SHA cannot
remain in a location if the invariant is violated, meaning that the current valuation of
the variables must be contained in the set of valuations specified by the invariant of the
current location at all times.

We require the invariant to be closed with respect to the set NCon of non-controlled
variables to ensure that the SHA does not implicitly restrict the environment’s behavior.
If the invariant would depend on a non-controlled variable, it might happen that the
environment attempts to reset this variable, but is prevented by the invariant which
must not be violated. Thus, we must require that the invariant is NCon-closed.

Initial Valuations. As for invariants, the initial valuations are given as sets of valuations
for each location l, specifying which valuations are allowed when starting in l. If Init(l)
is empty, an execution of the SHA cannot start in location l. For similar reasons as
above, we require the set of initial valuations to be NCon-closed. Additionally, each
initial valuation must satisfy the invariant.

12

2.1. Syntax of SHAs

Jumps. The jumps specify how to move between locations. A jump (id, l, µ, l′) starts
in the source location l and leads to the target location l′. The set µ of valuation pairs
places conditions on the valuations before and after taking the jump. We refer to the
conditions {ν ∈ V | ∃ν′ ∈ V . (ν, ν′) ∈ µ} on the starting valuation as guards and to
the conditions {ν′ ∈ V | ∃ν ∈ V . (ν, ν′) ∈ µ} on the target valuation as effect. Effects
must not change non-controlled variables. However, the guard may depend on the
non-controlled variables. A jump can only be taken if there exists (ν, ν′) ∈ µ with ν

being the current valuation and ν′ satisfying the invariant of the target location l′. The
jump identifier id is added for technical reasons for the definition of the composition of
SHAs. To improve readability, it is often omitted.

Activities. For every location l ∈ Loc, the set of activities describes how the variables
are evolving when the SHA is in location l. We specify Act(l) by a first-order system of
linear ordinary differential equations of the form ẋCon = AlxCon + BlxNCon + cl where

• xCon and xNCon are vectors of the controlled respectively non-controlled variables,
and ẋCon represents the first derivative of the evolution of the controlled variables,

• Al and Bl are real-valued matrices of suitable dimensions, and

• cl is a vector of real-valued constants.

Act(l) then consists of all activities satisfying these equations.

Labels. The set of labels is used to relate jumps that model the same random process.

Random Processes. Every jump is assigned a label corresponding to a random process.
A label can be assigned to several jumps as long as the jumps are not originating in the
same location. This is required to prevent random processes from being in a race with
themselves.

Duration. A jump is not necessarily taken as soon as possible. Instead, the function
Dur assigns a probability distribution to each label, depending on the current valuation
and location. Then, the jump is taken when its random process was enabled for the
number of time units sampled from the distribution assigned to the corresponding
label. For this reason, Dur(a, l, ν) is often referred to as the enabling duration of the jump
e with Proc(e) = a.

Weight. Each jump is assigned a positive weight, which will be used to solve conflicts
between jumps that can be taken at the same time.

13

2. Stochastic Hybrid Automata

In the remaining thesis, we let

• A = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

• A1 = (Loc1, Var1, Inv1, Init1, Edge1, Act1, Lab1, Proc1, Dur1, Wgt1), and

• A2 = (Loc2, Var2, Inv2, Init2, Edge2, Act2, Lab2, Proc2, Dur2, Wgt2).

The first six components of an SHA, namely Loc, Var, Inv, Init, Edge, and Act, form a
hybrid automaton. We refer to this as the underlying hybrid automaton. Thus, SHAs
extend hybrid automata by the four components Lab, Proc, Dur, and Wgt. Stochasticity
is introduced at two points: By the function Dur for deciding the enabling duration of
jumps and by the weights Wgt, which are used to resolve conflicts probabilistically.

Still, non-determinism might arise in the model. For example, the initial state is not
necessarily unique. While part of the non-determinism is solved using probabilities,
we forbid all other sources of non-determinism.

Definition 2.5. Deterministic Stochastic Hybrid Automata
Let A be an SHA. We say that A is deterministic (with respect to initial valuations,
resets, and activities) if the following conditions hold:

• There exists l ∈ Loc such that Init(l) 6= ∅, Init(l′) = ∅ for all l′ 6= l and
ν ≈Con ν′ for all ν, ν′ ∈ Init(l).

• For each (id, l, µ, l′) ∈ Edge and ν ∈ V there is at most one ν′ ∈ V such that
(ν, ν′) ∈ µ.

• For each l ∈ Loc, ν ∈ V , and evolution of the environment fN ∈ FNCon with
fN(0) = ν|NCon, there exists a unique f ∈ Act such that f ≈NCon fN and
f (0) = ν.

In the following, we always assume the SHAs to be deterministic. Intuitively, each SHA
then has a unique starting location l and a unique initial valuation of the controlled
variables. For every jump, the effect is unique and only depends on the current
valuation. The same holds for the activities, i.e., when we are in a location l, the
evolution of the variables is fixed by the current valuation and the evolution of the
non-controlled variables.

Example 2.1. Syntax of SHA
Consider the SHA A1 depicted in Figure 2.1. The two locations l0 and l1 are
controlling a variable x. For later examples, we assume there exists a non-controlled
variable y that does not affect A1. The initial location is l0 and requires x to be zero
in the initial valuation. While A1 is in l0, x is increased by two per time unit and is
not allowed to exceed eight. The jump to l1 can be taken as soon as x is at least six,

14

2.1. Syntax of SHAs

l0

ẋ = 2

x ≤ 8

A1 :

l1

ẋ = −1

x ≥ 0

x := 0
ea : a ∼ exp

x ≥ 6 1

eb : b ∼ δ4

x ≤ 6→ x:=0 2

Figure 2.1.: Depiction of the SHA A1 discussed in Example 2.1. The name of each jump is
denoted with the label and the assigned probability distribution. Guards and effects
are denoted next to the corresponding jumps as guard→ effect. Weights are denoted
in boxes.

and the jump is taken after being enabled for t time units, where the value for t is
sampled from the exponential distribution exp.

In l1, x is decreased by one and must remain non-negative. The jump to l0 is
assigned a Dirac distribution, meaning that the jump will be taken after being
enabled for four time units. The condition for being enabled is x ≤ 6, and x is reset
to zero when the jump is taken.

Formally, we have

A1 = (Loc1, Var1, Inv1, Init1, Edge1, Act1, Lab1, Proc1, Dur1, Wgt1) ,

with the following components:

• Loc1 = {l0, l1}.

• Var1 = {x, y} with Con1 = {x} and NCon1 = {y}.

• Inv1(l0) = {ν ∈ V | ν(x) ≤ 8} and Inv1(l1) = {ν ∈ V | ν(x) ≥ 0}.

• Init1(l0) = {ν ∈ V | ν(x) = 0} and Init1(l1) = ∅.

• Edge1 = {ea, eb} with

– ea = (l0, µa, l1), µa = {(ν, ν′) | ν(x) ≥ 6∧ ν(y) = ν′(y)} and

– eb = (l1, µb, l0), µb = {(ν, ν′) | ν(x) ≤ 6∧ ν′(x) = 0∧ ν(y) = ν′(y)}.

• Act1(l0) is the set of activities that are solutions of ẋ = 2 and Act1(l1) is the
solution set of ẋ = −1.

• Lab1 = {a, b}.

• Proc1(ea) = a and Proc1(eb) = b.

• Dur1(a, (l0, ν)) = exp and Dur1(b, (l1, ν)) = δ4 for all ν ∈ V .

• Wgt1(ea) = 1, Wgt1(eb) = 2.

15

2. Stochastic Hybrid Automata

Note that we omit the identities from the jumps and implicitly assign two unique
values. The weight that is assigned to the jumps in this example does not influence
the behavior, because the jumps are never in conflict.

2.2. Semantics of SHAs

The semantics of an SHA describes its behavior by specifying how one state can be
reached from another. For this, we first define what a state of an SHA consists of.

Definition 2.6. State of an SHA
Let A be an SHA. Define VLab = {ca | a ∈ Lab} and let VLab be the set of valuations
over VLab. Then, the set of states of A is

ΘA = Loc× V × VLab.

A state (l, ν, νLab) is initial if ν ∈ Init(l) and νLab is sampled from the corresponding
distributions, meaning for a ∈ Lab, we sample the value for ca from Dur(loc, ν, r).

In addition to the current location and the current valuation, a state (l, ν, νLab) therefore
additionally contains a valuation over the set of labels, or formally over clock variables
for each label. These variables will be initialized with the enabling durations sampled
from the probability distributions assigned to the labels, and then counted down to zero
as long as a corresponding jump is enabled. For simplicity, we write νLab(a) instead of
νLab(ca) for a ∈ Lab.

Next, we define what it means for a jump to be enabled. Intuitively, this is the case if
we are in the starting location of the jump and the conditions given by the guard of the
jump are fulfilled.

Definition 2.7. Enabled Jumps
Let A be an SHA. For a jump e = (id, l, µ, l′) ∈ Edge and a state ϑ = (l, ν, νLab) of
A, we define enabledϑ(e) to be true iff ν satisfies the guard of the jump, i.e. we have
(ν, ν′) ∈ µ for some ν′ ∈ V .

Note that technically, enabledϑ(e) only depends on the valuation ν and not on the full
state ϑ. For consistency, we nevertheless use ϑ in the definition.

When taking a jump e starting in a valuation ν, the reached valuation ν′ is unique, as
we assume the SHA to be deterministic. Since we will need to reference this valuation,
we define another predicate that identifies ν′.

16

2.2. Semantics of SHAs

Definition 2.8. Discrete Step
Let A be an SHA. For a jump e = (id, l, µ, l′) ∈ Edge and a state ϑ = (l, ν, νLab) of
A such that enabledϑ(e) holds, we define discϑ(e) ∈ V to be the unique valuation
reached after taking jump e from ϑ, i.e., discϑ(e) = ν′ for the unique (ν, ν′) ∈ µ.

A jump is only taken if it is enabled and additionally, the corresponding clocks are zero.
This is expressed in the next definition.

Definition 2.9. Fireable Jumps
Let A be an SHA. For a jump e = (id, l, µ, l′) ∈ Edge and a state ϑ = (l′′, ν, νLab) of
A, we define fireableϑ(e) to be true iff l = l′′, enabledϑ(e) and νLab(Proc(e)) = 0. We
then say that e is fireable in ϑ.

The predicates defined above describe conditions on the discrete behavior of an SHA.
For the continuous part of the SHA, we also define two predicates: One that expresses
how the activities control the evolution of variables, and one that deals with the correct
evolution of clock variables.

Definition 2.10. Time Step
Let A be an SHA. For a state ϑ = (l, ν, νLab) of A, f ∈ Act(l) and τ ∈ R>0, we
define time f

ϑ(τ) = ν′ iff

• f (0) = ν,

• f (τ) = ν′, and

• f (τ′) ∈ Inv(l) for all τ′ ∈ [0, τ].

Otherwise, time f
ϑ(τ) is undefined.

Thus, we have time f
ϑ(τ) = ν′ if, starting from state ϑ, we reach the valuation ν′ after τ

time units by application of activity f . Note that ν′ is uniquely determined by f and ϑ

for every evolution of the non-controlled variables, as we assume A to be deterministic.

When time passes, we do not only have to update the valuation of the variables but
also the valuation of the clocks. This is expressed in the next predicate.

Definition 2.11. Evolution of Clocks
Let A be an SHA. For a state ϑ = (l, ν, νLab) ∈ ΘA, ν′Lab ∈ VLab, τ ∈ R>0 and
f ∈ Act(l) such that f (0) = ν, we define clocks f

ϑ(τ) = ν′Lab iff for all r ∈ Lab, one of
the following is true:

• There exists some e = (id, l, µ, l′) ∈ Edge with r = Proc(e) such that

17

2. Stochastic Hybrid Automata

1. ∀τ′ ∈ (0, τ). enabledϑ′(e) for ν′ = time f
ϑ(τ
′) and ϑ′ = (l, ν′, νLab), and

2. ν′Lab(r) = νLab(r)− τ ≥ 0,

• or for all e = (id, l, µ, l′) ∈ Edge with r = Proc(e) it holds that

1. ¬∃τ′ ∈ (0, τ). enabledϑ′(e) for ν′ = time f
ϑ(τ
′) and ϑ′ = (l, ν′, νLab), and

2. ν′Lab(r) = νLab(r).

Otherwise, clocks f
ϑ(τ) is undefined.

Intuitively, if clocks f
ϑ(τ) = ν′Lab, we have that for all labels, either

• there exists a jump corresponding to the label that is continuously enabled in the
interval (0, τ), which has the effect that the valuation of the label is decreased by
τ, or

• at no point within these τ time units, any jump associated with the label is
enabled. Then, the valuation remains unchanged.

Let e = (id, l, µ, l′) ∈ Edge with r = Proc(e). Considering the first case in more detail,
the condition expresses that for all valuations ν′ reached by letting τ time units pass,
the edge e is still enabled in the state ϑ′ = (l, ν′, νLab). Dually in the second case, the
edge e must be disabled in all intermediate states.

Definition 2.12. Operational Semantics of SHAs
Let A be an SHA. The operational semantics of A is given by the following three
rules:

f ∈ Act(l) τ ∈ R>0 ν′ = time f
ϑ(τ) ν′Lab = clocks f

ϑ(τ)

(l, ν, νLab)
τ, f

==⇒ (l, ν′, ν′Lab)
time

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

ν ≈Con ν′

(l, ν, νLab)
env

===⇒ (l, ν′, νLab)
environment

One execution step, denoted by =⇒, is taken by using one of the above rules, i.e., we
define

=⇒ = (
⋃

τ∈R>0, f∈F

τ, f
==⇒) ∪ (

⋃
e∈Edge

e
=⇒)∪ env

==⇒

18

2.2. Semantics of SHAs

State θi Location Variables νi Labels νLab,i

ϑ0 l0 x 7→ 0 a 7→ 1, b 7→ 4

ϑ1 l0 x 7→ 6 a 7→ 1, b 7→ 4

ϑ2 l0 x 7→ 8 a 7→ 0, b 7→ 4

ϑ3 l1 x 7→ 8 a 7→ 2, b 7→ 4

ϑ4 l1 x 7→ 6 a 7→ 2, b 7→ 4

ϑ5 l1 x 7→ 2 a 7→ 2, b 7→ 0

ϑ6 l0 x 7→ 0 a 7→ 2, b 7→ 4

Table 2.1.: A path of A1 from Example 2.1. The semantic steps taken to get from ϑi to ϑi+1 are
discussed in Example 2.2.

A path of A is an infinite sequence ϑ0, ϑ1, ϑ2, . . . of states of A such that

ϑ0 =⇒ ϑ1 =⇒ ϑ2 =⇒ . . .

and ϑ0 is an initial state. Under abuse of notation we also write ϑ =⇒ ϑ′ if ϑ′ is
reachable from ϑ taking several execution steps.

Hence, there are three possible steps we can take: First, time steps describe what
happens when τ time units pass. The location remains unchanged, and the values of
the variables and the clocks evolve as described by the predicates above. Second, we can
take a discrete step following a jump e, given that e is fireable. In this case, the location
is modified, and the variables are reset as specified by the jump. Additionally, we
re-sample the enabling duration and set the corresponding clock variable accordingly.
Third, we can take environmental steps that manipulate the non-controlled variables.

Example 2.2. Semantics of SHAs
Consider again the SHA A1 discussed in Example 2.1. A finite prefix of a path of
A1 is given in Table 2.1, where we have that

ϑ0
τ = 3

===⇒ ϑ1
τ = 1

===⇒ ϑ2
ea=⇒ ϑ3

τ = 2
===⇒ ϑ4

τ = 4
===⇒ ϑ5

eb=⇒ ϑ6.

We do not explicitly denote the activation function, as it is unique for x in every
location. The initial state θ0 is given by the initial location l0 and the valuation of
x to zero. Additionally, we sample values for the valuation of the labels a and b.
In this example, assume that we sample one for a. For b, four is the only possible
value because we are sampling from the Dirac distribution δ4.

19

2. Stochastic Hybrid Automata

From ϑ0, we take a time step of length three, so ϑ0
τ = 3

===⇒ ϑ1. The activity function
is given by f0(τ) = ν0(x) + 2 · τ. Therefore, x is increased by 2 · 3 = 6. The
valuation of the labels does not change, as no corresponding jump is enabled. In ϑ1,
however, the condition for ea is fulfilled: We have x ≥ 6. Therefore, when another
time unit passes, we reach ϑ2 by ϑ1

τ = 1
===⇒ ϑ2, where x is again increased by two

and a is decreased by one.

Now, we have to take a jump, as the next time step would lead to x being greater
than eight, which violates the invariant of l0. Fortunately, the jump ea is fireable.
Thus, we take ea and have ϑ2

ea=⇒ ϑ3.

In ϑ3, the location changed to l1, and we sampled a new value for a, in this case

two. Then, we take a time step of length two, ϑ3
τ = 2

===⇒ ϑ4, and reach a state where
x is decreased by two and the labels remain the same as the guard of the only

available jumps is violated. In the next time step ϑ4
τ = 4

===⇒ ϑ5, b is decreased as the
guard of eb is fulfilled.

Finally, we take the jump eb and are in location l0 again, so ϑ5
eb=⇒ ϑ6. As specified

by the effect of the jump, x is reset to zero. Also, we again sample from δ4 and set
b to four.

Conflict Resolution. To get a full probabilistic model, one has to resolve conflicts, which
are arising, for example, when several jumps become enabled at the same time. There-
fore, we have to define a scheduler that decides which jump to take. While all ap-
proaches are conceivable, in this thesis we choose to resolve conflicts probabilistically
using the weight assigned to jumps. More precisely, let e be a fireable jump in state σ.
Then, the probability of taking e is given by

Wgt(e)

∑
e′∈Edge, fireableσ(e′)

Wgt(e′)
.

Here, it also becomes evident that we need to define the weights to be positive to avoid
division by zero.

Unrealistic Behavior. It might happen that an SHA behaves unexpectedly or unrealisti-
cally. For example, it can be possible to take infinitely many steps within finite time.
Also, time can stop when no jump is fireable and the invariant would be violated by
further time steps. This is illustrated in the following example.

20

2.3. Composition

Example 2.3. Unrealistic Behavior of SHAs
We continue Example 2.2. From ϑ6 = (l0, (x 7→ 0), (a 7→ 2, b 7→ 4)) we can only
take a time step. Let ϑ7 be the state reached after letting three time units pass, i.e.,

ϑ6
τ = 3

===⇒ ϑ7 = (l0, (x 7→ 6), (a 7→ 2, b 7→ 4)).

Now, ea is enabled, so we take a time step and the value of a is decreased accord-
ingly:

ϑ7
τ = 1

===⇒ ϑ8 = (l0, (x 7→ 8), (a 7→ 1, b 7→ 4)).

This leaves us in a state where we cannot take any more discrete or time steps:
Time steps are not possible as this would violate the invariant x ≤ 8 of l0. We can
also not take the jump ea, as the corresponding clock value is not zero yet. Unless
the value sampled for a is between zero and one, we will always end up in such a
state.

Example 2.3 shows how quickly unrealistic behavior can occur. We can distinguish
between three types of unwanted behavior. The first are Zeno paths, which are infinite
paths that only take finite time, but infinitely many discrete steps are taken within the
path. Clearly, this cannot happen in the real world.

Next, a state can have a timelock. Intuitively, this means that from this state, all paths of
infinite length only take finite time. A deadlock is a special case of a timelock where it
depends exclusively on the environment if a path can be taken from a state. This was
the case in Example 2.3.

Avoiding such behavior is, in general, the task of the modeler. We will define the
transformation in such a way that it fulfills this task. Therefore, we do not give more
details here and instead refer to [Ger22, Section 2.2.1, 3.2.2] for both formalisms and
examples of these challenges.

2.3. Composition

One of our goals for the transformation is to define it in a composable way. Therefore,
we now define how two SHAs can be composed. We start by giving a criterion for
whether two SHAs can be composed.

Definition 2.13. Composability of SHA
Let A1 and A2 be two SHAs. We say that A1 and A2 are composable if

• Var1 = Var2,

• Con1 ∩ Con2 = ∅,

21

2. Stochastic Hybrid Automata

• for all (id1, l1, µ1, l′1) ∈ Edge1 and (id2, l2, µ2, l′2) ∈ Edge2 we have id1 6= id2,
and

• Lab1 ∩ Lab2 = ∅.

In contrast to Gerlach, we require the set of variables to coincide [Ger22]. If this is not
enforced, one can define an extension of SHAs and define the composition with respect
to these extensions as done by Gerlach. Since we will only consider the composition
of SHAs defined over the same set of variables, we omit this and instead require the
variable sets to coincide.

Additionally, each variable can only be controlled by one SHA, and the identities of the
jumps must be unique. The set of labels must also be disjoint. Then, we can define the
composition of two SHAs as follows:

Definition 2.14. Syntactic Parallel Composition of SHAs
Let A1,A2 be two composable SHAs. Their parallel composition is the SHA

A1 ‖ A2 = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt)

with

• Loc = Loc1 × Loc2.

• Var = Var1 = Var2 with Con = Con1 ∪ Con2 and NCon = Var\Con.

• Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2) for all (l1, l2) ∈ Loc.

• Init(l1, l2) = Init1(l1) ∩ Init2(l2) for all (l1, l2) ∈ Loc.

• (id, (l1, l2), µ, (l′1, l′2)) ∈ Edge iff

– l2 = l′2 and there exists (id, l1, µ, l′1) ∈ Edge1, or

– l1 = l′1 and there exists (id, l2, µ, l′2) ∈ Edge2.

• Act(l1, l2) = Act1(l1) ∩Act2(l2) for all (l1, l2) ∈ Loc.

• Lab = Lab1 ∪· Lab2

• Proc(id, (l1, l2), µ, (l′1, l′2)) =

{
Proc1(e1) if e1 = (id, l1, µ, l′1) ∈ Edge1 ∧ l2 = l′2
Proc2(e2) if e2 = (id, l2, µ, l′2) ∈ Edge2 ∧ l1 = l′1.

• Dur(r, ((l1, l2), ν)) =

{
Dur1(r, (l1, ν)) if r ∈ Lab1

Dur2(r, (l2, ν)) if r ∈ Lab2.

• Wgt(id, (l1, l2), µ, (l′1, l′2)) =

{
Wgt1(e1) if e1 = (id, l1, µ, l′1) ∈ Edge1 ∧ l2 = l′2
Wgt2(e2) if e2 = (id, l2, µ, l′2) ∈ Edge2 ∧ l1 = l′1.

22

2.3. Composition

l0

ẋ = 2

x ≤ 8

l1

ẋ = −1

x ≥ 0

x := 0
ea : a ∼ exp

x ≥ 6 1

eb : b ∼ δ4

x ≤ 6→ x:=0 2

(a) Depiction of the SHA A1 from Example 2.1.

l2

ẏ = 1

y ≥ 0

y := 0

ec : c ∼ δ2

x ≤ 4→ y:=0 1

(b) Depiction of the SHA A2.

l0, l2

ẋ = 2
ẏ = 1

x ≤ 8
y ≥ 0

l1, l2

ẋ = −1
ẏ = 1

x ≥ 0
y ≥ 0

c ∼ δ2
x := 0

y := 0

ea : a ∼ exp

x ≥ 6 1

eb : b ∼ δ4

x ≤ 6→ x:=0 2

e1
c : c

x ≤ 4→ y:=0 1

e2
c : c

x ≤ 4→ y:=0 1

(c) Depiction of the composed SHA A1 ‖ A2.

Figure 2.2.: Composition of SHAs A1 and A2.

The SHA A1 ‖ A2 intuitively executes both A1 and A2 in parallel. Invariants and
initial conditions are combined, which formally corresponds to an intersection of the
respective sets. A jump in the composition always originates from either A1 or A2 and
has the same guard and effect as it did in the original SHA. The location of the other
SHA remains unchanged. The activities are common activities from both sub-SHAs.
For the probabilistic components, the composed SHA always chooses the appropriate
part from the sub-SHA from which the jump or label originates.

Example 2.4. Composition of SHAs
Consider the composition of SHAs A1 and A2 depicted in Figure 2.2. We already
discussed A1 as depicted in Figure 2.2a in earlier examples in detail, so we do not
repeat this here and instead refer to Example 2.1.

A2 as depicted in Figure 2.2b is made of only one location l0 and controls a variable
y. While in location l0, y is increased by one per time unit. There is one jump ec

that can be taken when x is less than or equal to four. The assigned distribution is
a Dirac distribution, so we take this jump after it was enabled for two time units.
When ec is taken, y is reset to zero.

23

2. Stochastic Hybrid Automata

The formal definition of A2 is given by

A2 = (Loc2, Var2, Inv2, Init2, Edge2, Act2, Lab2, Proc2, Dur2, Wgt2),

where:

• Loc2 = {l2}

• Var2 = {x, y} with Con2 = {y} and NCon2 = {x}

• Inv2(l2) = {ν ∈ V | ν(y) ≥ 0}

• Init2(l2) = {ν ∈ V | ν(y) = 0}

• Edge2 = {ec} with ec = (l2, µc, l2)
and µc = {(ν, ν′) | ν(x) ≤ 4∧ ν′(y) = 0∧ ν′(x) = ν(x)}

• Act2(l2) is the set of activities that are solutions of ẏ = 1

• Lab2 = {c}

• Proc2(ec) = c

• Dur2(c, (l2, ν)) = δ2 for all ν ∈ V

• Wgt2(ec) = 1

First, note that A1 and A2 are indeed composable as defined in Definition 2.13. A
depiction of their composition is given in Figure 2.2. Formally,

A1 ‖ A2 = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt)

is the SHA with

• Loc = Loc1 × Loc2 = {(l0, l2), (l1, l2)}

• Var = {x, y} with Con = Con1 ∪ Con2 = {x, y} and NCon = ∅

• Inv(l0, l2) = Inv1(l0) ∩ Inv2(l1) = {ν ∈ V | ν(x) ≤ 8∧ ν(y) ≥ 0}

Inv(l1, l2) = Inv1(l1) ∩ Inv2(l1) = {ν ∈ V | ν(x) ≥ 0∧ ν(y) ≥ 0}

• Init(l0, l2) = Init1(l0) ∩ Init2(l2) = {ν ∈ V | ν(x) = ν(y) = 0}

Init(l1, l2) = ∅

• Edge = {ea, eb, e1
c , e2

c} with

– ea = ((l0, l2), µa, (l1, l2))
and µa = {(ν, ν′) | ν(x) ≥ 6∧ ν′(y) = ν(y)}

– eb = ((l1, l2), µb, (l0, l2))
and µb = {(ν, ν′) | ν(x) ≤ 6∧ ν′(x) = 0∧ ν′(y) = ν(y)}

24

2.4. Assumptions and Restrictions

– e1
c = ((l0, l2), µc, (l0, l2))

and µc = {(ν, ν′) | ν(x) ≤ 4∧ ν′(y) = 0∧ ν′(x) = ν(x)}

– e2
c = ((l1, l2), µc, (l1, l2))

• Act(l0, l2) = Act1(l1)∩Act2(l2), which is the set of activities that are solutions
of ẋ = 2 and ẏ = 1.

Act1(l2, l3) is the set of activities that are solutions of ẋ = −1 and ẏ = 1.

• Lab = Lab1 ∪ Lab2 = {a, b, c}

• Proc(ea) = a, Proc(eb) = b, and Proc(e1
c) = Proc(e2

c) = c

• Dur(a, (l, ν)) = e−t, Dur(b, (l, ν)) = δ4, and Dur(c, (l, ν)) = δ2 for all ν ∈ V ,
l ∈ Loc

• Wgt(ea) = 1, Wgt(eb) = 2, Wgt(e1
c) = Wgt(e2

c) = 1

This example also illustrates how weights are used to resolve conflicts. Assume
we are in a state (loc, ν, νLab) with location loc = (l1, l2), ν(x) = 4 and νLab(b) =

νLab(c) = 0. Then, both jumps eb and e2
c are fireable and thus in conflict. Since

Wgt(eb) = 2 and Wgt(e2
c) = 1, jump eb will be taken with probability 2

3 .

2.4. Assumptions and Restrictions

The definitions in this chapter largely agree with those given by Gerlach in [Ger22].
There are some minor differences that will be summarized in what follows.

First, we define the SHA without providing a formal definition of hybrid automata
beforehand. As a consequence, we cannot build on concepts also existing for hybrid
automata. For example, Definitions 2.8 and 2.10 essentially describe the semantics of
hybrid automata. Also, we renamed the predicate invEn from [Ger22, Definition 3.2.2]
to clocks (Definition 2.11), but they express the same concept. In conclusion, while the
formalism varies slightly, the semantics agree in terms of content and describe the same
set of paths.

For the composition, we add the requirement that the set of variables of composable
SHAs has to coincide (see Definition 2.13). As discussed in Section 2.3, the reason for
this is that we only compose SHAs defined over the same set of variables, so this is
always given in the transformation. This simply has the advantage that we can save
some notation. Other than that, the definition of the composition is equivalent.

For the calculation of path probabilities, Gerlach assumes that there are no invariants,
in order to avoid deadlocks. In the transformation presented in this thesis, we will

25

2. Stochastic Hybrid Automata

construct SHAs in a way that prevents deadlocks by always providing a jump that can
be taken in case an invariant is violated. In this way, we cannot end up in a deadlock
and can allow invariants.

26

3. Hybrid Petri Nets with General Firings

Petri nets were proposed presumably in the mid-twentieth century by Carl Adam Petri
for modeling chemical processes. Like hybrid automata, they can be viewed as an
extension of discrete automata. A Petri net is also made of locations, now called places,
connected via transitions. A place can hold a number of tokens, which are moved
between places when a transition fires. A state is then characterized by the number of
tokens contained in each place, essentially a set of discrete variables. This allows for a
more precise description of processes compared to standard automata. Moreover, Petri
nets have an intuitive graphical representation.

To model hybrid systems, Petri nets were extended to include both discrete and
continuous variables [AA97; DA01; DA10]. In a hybrid Petri net, places as well as
transitions are split into discrete and continuous parts.

Finally, stochastic components were included to account for uncertainties. Early ap-
proaches include generalized stochastic Petri nets [ACB84], fluid stochastic Petri nets
[TK93], or stochastic activity networks [SM00]. In this thesis, we focus on a specific
subclass of stochastic hybrid Petri nets introduced by Gribaudo and Remke [GR10;
GR16]. In a hybrid Petri net with general firings (HPnG), stochasticity is introduced in the
form of transitions that fire according to some probability distribution.

As in the previous chapter, we start by defining the syntax of HPnGs in Section 3.1
and their semantics in Section 3.2. In particular, we discuss the resolution of conflicts
in Section 3.2.1 and Section 3.2.2 for discrete and continuous transitions, respectively,
proposing a novel rate adaptation algorithm in the latter.

3.1. Syntax of HPnGs

HPnGs essentially consist of places and transitions connected by arcs. We distinguish
for all three between discrete and continuous components. Additionally, the syntax
includes specifications for the initial states, in the form of initial markings, and a set of
parameters for further refinement.

27

3. Hybrid Petri Nets with General Firings

Definition 3.1. Hybrid Petri Nets with General Firings
A hybrid Petri net with general firings (HPnG) is a tuple H = (P , T ,A, M0, Φ), where:

• P = Pdisc ∪· P cont is a finite set of places, partitioned into disjoint sets of
discrete and continuous places.

• T = T det ∪· T gen ∪· T cont is a finite set of transitions, partitioned into disjoint
sets of deterministic, general, and continuous transitions. We write T disc =

T \T cont for the set of discrete transitions.

• A = Adisc ∪· Acont ∪· Atest ∪· Ainh is a finite set of arcs, partitioned into disjoint
sets of discrete, continuous, test, and inhibitor arcs. Every arc connects one
place and one transition of specified types:

– Adisc ⊆
(
Pdisc × T disc) ∪ (T disc ×Pdisc),

– Acont ⊆
(
P cont × T cont) ∪ (T cont ×P cont),

– Atest ⊆ P × T , and

– Ainh ⊆ P × T .

• M0 = (m0, x0) is an initial marking with m0 : Pdisc →N0 and x0 : P cont → R≥0

• Φ =
(

ΦPub, ΦTft , ΦTgt, ΦTfr , ΦAw , ΦTp
)

is a tuple of parameter functions with

– ΦPub : P cont → (R>0 ∪∞), defining an upper bound on the marking of
every continuous place,

– ΦTft : T det → R>0, defining a firing time of every deterministic transition,

– ΦTgt : T gen → Distr, assigning a probability distribution to every general
transition,

– ΦTfr : T cont → R>0, defining a nominal firing rate for every continuous
transition,

– ΦAw : A\Acont → R>0, defining a weight for every non-continuous arc,
and

– ΦTp : T disc →N>0, defining a priority for every discrete transition.

A visualization of the basic components is given in Figure 3.1. We now give an intuitive
explanation for each component of the HPnG.

Places. There are two different types of places in a HPnG: Discrete places holding a
discrete number of tokens, and continuous places holding some continuous amount

28

3.1. Syntax of HPnGs

Discrete

Continuous

General

Continuous

Deterministic

Discrete Continuous Test Inhibitor

Places Transitions

Arcs

Figure 3.1.: Depiction of the primitives of a HPnG based on [GR16]. Continuous components
are generally distinguished from discrete components by the use of double lines.
Additionally, deterministic transitions are marked by a filled rectangle, while general
transitions are empty. Test arcs have an arrow in both directions and inhibitor arcs
have a small circle at the end connected to the transition.

of fluid. For example, we can use discrete places to model switches and continuous
places to model water tanks.

Discrete places can hold any non-negative discrete number of tokens. For continuous
places, a restriction on the amount of fluid a place p can hold is given by an implicit
lower bound of zero and a not necessarily finite upper bound ΦPub(p). The number
of tokens respectively the amount of fluid of a place is referred to as the discrete or
continuous marking.

The model could be extended by also defining an upper bound for discrete places. This
requires some straightforward adaptions in the semantics and consequently also in
the definition of the transformation. For the sake of brevity, we do not assume upper
bounds on the discrete places.

Transitions. A transition has concession when the connected places contain a specified
amount of tokens or fluid. More concretely, the weight of the arc between a transition
and a place, given by ΦAw , controls how many tokens or how much fluid is required,
as will be explained in detail at a later point in Section 3.2. When a transition has
concession for a specified time, we say that it is fireable and can thus fire, which means
that it moves tokens or fluid from its input place to its output place. The exact number
of tokens moved depends again on the weight of the arc that connects the transition to

29

3. Hybrid Petri Nets with General Firings

the place.

Discrete transitions are also split into general and deterministic transitions. Determinis-
tic transitions fire after having concession for the number of time units specified by the
parameter function ΦTft . General transitions fire after a number of time units following
a continuous probability distribution specified by ΦTgt. This concept of delaying the
firing for a certain time is very similar to the enabling duration of jumps in SHAs
(see Section 2.1). It is not required that the transition has concession continuously, i.e.,
if the transition does not have concession anymore, its clock is not reset. We could
additionally distinguish transitions that fire immediately [Gha17; GR16]. However, for
simplicity, we regard those as a special case of a deterministic transition t where ΦTft (t)
is zero.

Continuous transitions fire as soon as they have concession, comparable to discrete
transitions with a firing time of zero. However, they do not fire once, but continuously.
The firing rate ΦTfr specifies the nominal firing rate of each transition, i.e., how much
fluid is moved per time unit. Since continuous places might not be able to hold an
infinite amount of fluid, the firing rate potentially has to be adapted in order not to
exceed the place’s bounds. Dually, the rate has to be adapted if a transition wants to
move more fluid from a place than it currently holds. The rate adaption algorithm used
to determine new firing rates for the affected transitions is described in more detail in
Section 3.2.2. We therefore distinguish the nominal firing rate from the actual firing rate
that depends on the current state.

Arcs. Arcs connect transitions to places. We denote an arc as 〈t, p〉 or 〈p, t〉 for a
transition t ∈ T and a place p ∈ P . There are different types of arcs, namely discrete,
fluid, inhibitor or test arcs, that differ in the types of transitions and places they can
connect and in their effects on the system. Between one place and one transition, there
can be at most one arc.

Discrete arcs connect discrete places to discrete transitions. Their assigned weight ΦAw
corresponds to the number of tokens that the place has to hold for the transition to
have concession and that are moved when the transition fires. Continuous arcs connect
continuous places to continuous transitions. They could also be weighted to allow for a
more versatile calculation of the actual firing rate. For simplicity, we refrain from doing
so and only assign weights to non-continuous arcs.

Inhibitor and test arcs can connect all combinations of transitions and places. In
particular, they are used to connect the discrete and continuous fragments of a HPnG.
In contrast to the other arcs, they are semantically undirected. The weight of a test arc
specifies the number of tokens or the amount of fluid that a place has to hold for the
connected transition to have concession. On the other hand, inhibitor arcs block the
transition from firing when the tokens or fluid surpass the assigned weight of the arc.

30

3.1. Syntax of HPnGs

Notice that test and inhibitor arcs both do not affect the marking and only influence
the enabling status of the transition.

Parameter Functions. Parameters can be set to provide a more detailed description of
the system being modeled. In the previous descriptions we have already mentioned
the purpose of most of the parameters. This is now summarized and extended in the
following list.

• ΦPub specifies the upper bound on the amount of fluid a continuous place can hold.

• ΦTft specifies the firing time of every deterministic transition, i.e., the time it needs
to have concession before firing.

• ΦTgt assigns to each general transition a cumulative continuous probability distribu-
tion that determines when the transition fires.

• ΦTfr specifies the nominal firing rate of the continuous transitions.

• ΦAw assigns a weight to each non-continuous arc, which corresponds to the number
of tokens or amount of fluid required by the arc. If connected to a discrete place,
the weight of the arc must be a natural number. For better readability, we write
ΦAw 〈p, t〉 instead of ΦAw (〈p, t〉).

• ΦTp assigns a priority to each discrete transition. As the weights assigned to jumps
of SHAs, these will be used to resolve conflicts when two transitions want to fire
at the same time.

In the literature, the parameter functions vary depending on the application. For
example, Gribaudo et al. assign weights and priorities to discrete transitions; and shares
and priorities to continuous transitions for the purpose of conflict resolution [GR16].
We simplify this by assigning priorities only to discrete transitions, which is adequate
for the conflict resolution method proposed in Section 3.2. Another minor difference,
already mentioned above, is that we do assign weights to continuous arcs. This is done
in order to better regulate the actual firing rate of continuous transitions. However,
our definitions can be extended to include all of these parameters in a straightforward
manner.

In general, there is a wide scope for adapting the parameters to a particular application.
For example, one could assume an upper bound not only for continuous places but
also for discrete places. Since this thesis is the first to define a direct transformation
between SHAs and HPnGs, we decided to keep the parameters as simple as possible to
focus on the transformation and avoid unnecessarily long proofs. Although we make
some simplifying assumptions, the given framework remains very flexible and can be
easily adapted.

31

3. Hybrid Petri Nets with General Firings

As already indicated above, a HPnG can be separated into discrete and continuous
parts. In particular, we sometimes speak of the discrete fragment of a HPnG, which refers
to a set of discrete places that are connected via transitions.

Definition 3.2. Discrete Fragments
Let H = (P , T ,A, M0, Φ) be a HPnG. A set of discrete places D ⊆ Pdisc is called a
discrete fragment of H if

• all pairs of places in D are connected, i.e., for all places p, p′ ∈ D exist places
p1, p2, . . . , pn ∈ D and transitions t1, . . . , tn−1 ∈ T such that p = p1, p′ = pn

and

〈pi, ti〉, 〈ti, pi+1〉, 〈tn−1, pn〉 ∈ A for all i ∈ {1, . . . , n− 1}, and

• D is maximal, i.e., there does not exist a place p ∈ P\D, p′ ∈ D and a
transition t ∈ T such that 〈p, t〉, 〈t, p′〉 ∈ A.

We denote by T D the transitions that are included in the discrete fragment, i.e.,

T D =
{

t ∈ T disc
∣∣∣ ∃p ∈ D. (〈p, t〉 ∈ A ∨ 〈t, p〉 ∈ A)

}
,

and by AD the arcs that are included in the discrete fragment, i.e.,

AD =
{
〈p, t〉, 〈t, p〉 ∈ A

∣∣∣ t ∈ T D
}

.

Notice that all discrete components of a HPnG uniquely belong to one discrete fragment.

Example 3.1. Syntax of HPnGs
Consider the HPnG H depicted in Figure 3.2 modeling an irrigation system. We
assume that the units are given by liters and hours, for example, firing rates are
given in liters per hour. The general transition ton moves tokens to the discrete place
prainmaker, and another general transition toff removes the tokens again. When there
are more than two tokens in prainmaker, the continuous transition train has concession,
modeling the rain and filling a rain barrel with a nominal firing rate of ten liters
per hour. The barrel is modeled by the continuous place pbarr that holds at most
a hundred liters. Unfortunately, the barrel leaks, modeled by the transition tleak
removing one liter per hour from the barrel. The barrel also provides water for an
irrigation system tirr, which removes twenty liters of water per hour from the barrel
to some plants modeled by pplant. The irrigation system is controlled by the place
pcontrol. If there are tokens in pcontrol, the system is blocked, meaning in particular
that tirr does not fire. The control depends on a choice mechanism: The general

32

3.1. Syntax of HPnGs

50

pbarr

100train
10

prainmakerton
exp

toff
exp

tleak

1
tirr

20

0pplant 60

pcontrol

tremove4

tyes

0

pchoice

tno
0

trandomU[1,10]

2

2

D1

D2

Figure 3.2.: The HPnG H modeling an irrigation system as discussed in Example 3.1. The
components are depicted as described in Figure 3.1. We denote initial markings in
the places. Parameters are denoted next to the relevant components: Upper bound-
aries for continuous places, firing times for deterministic transitions, probability
distributions for general transitions, and firing rates for continuous transitions. The
weights of the arcs are one unless denoted otherwise. Since the priorities for all
transitions are set to one in this example, we omit them. The discrete fragments D1
and D2 are grouped by the dashed lines.

transition trandom moves tokens to a place pchoice, where two transitions tyes and tno

compete and consequently decide whether the tokens are moved to pcontrol or not.

Formally, H is given by (P , T ,A, M0, Φ), where:

• P = Pdisc ∪· P cont with

– Pdisc = {prainmaker, pcontrol, pchoice} and

– P cont =
{

pbarr, pplant
}

.

• T = T det ∪· T gen ∪· T cont with

– T det =
{

tremove, tyes, tno
}

,

– T gen =
{

ton, toff, trandom
}

, and

– T cont = {train, tleak, tirr}.

• A = Adisc ∪· Acont ∪· Atest ∪· Ainh with

– Adisc =
{
〈ton, prainmaker〉, 〈prainmaker, toff〉, 〈pcontrol, tremove〉, 〈tyes, pcontrol〉,
〈pchoice, tyes〉, 〈pchoice, tno〉, 〈trandom, pchoice〉

}
,

33

3. Hybrid Petri Nets with General Firings

– Acont =
{
〈train, pbarr〉, 〈pbarr, tleak〉, 〈pbarr, tirr〉, 〈tirr, pplant〉

}
,

– Atest = {〈prainmaker, train〉}, and

– Ainh = {〈pcontrol, tirr〉}.

• M0 = (m0, x0) with

– m0(prainmaker) = 1,

– m0(pcontrol) = 1,

– m0(pchoice) = 0, and

– x0(pbarr) = 50,

– x0(pplant) = 0.

• Φ = (ΦPub, ΦTft , ΦTgt, ΦTfr , ΦAw , ΦTp) with

– ΦPub(pbarr) = 100, ΦPub(pplant) = 60,

– ΦTft (tremove) = 4, ΦTft (tyes) = ΦTft (tno) = 0,

– ΦTgt(ton) = ΦTgt(toff) = exp with ΦTgt(trandom) = U[1,10],

– ΦTfr (train) = 10, ΦTfr (tleak) = 1, ΦTfr (tirr) = 20,

– ΦAw 〈prainmaker, train〉 = ΦAw 〈prainmaker, toff〉 = 2 and ΦAw (a) = 1 for all other
a ∈ A, and

– ΦTp (t) = 1 for all t ∈ T .

This HPnG has two discrete fragments D1 and D2. The former contains the
components controlling the rain, i.e., ton, toff, and prainmaker. The latter contains the
components controlling the irrigation, i.e., pcontrol, tremove, tyes, tno, pchoice, and trandom.

Assumptions. We make some assumptions about the structure of the HPnGs considered
in this thesis. First, we assume that the HPnGs are finite. Second, we prohibit cycles,
which is defined in what follows.

Definition 3.3. Cyclic HPnGs
Let H = (P , T ,A, M0, Φ) be a HPnG. We define the underlying directed graph as
Gdir
H = (V, E) with V = P ∪ T and E = A. Then, we call H cyclic if Gdir

H contains a
cycle, and acyclic if not.

Let Gundir
H be the undirected graph induced by Gdir

H . Then, we call H strongly acyclic
if Gundir

H does not contain a cycle.

34

3.2. Semantics of HPnGs

Figure 3.3.: Non-unary HPnG violating the structural requirements.

For example, structures such as cycles of deterministic transitions with a firing time of
zero cause Zeno behavior and should be excluded in any case. Moreover, we will later
see that the rate adaption algorithm is not guaranteed to terminate in cyclic HPnGs.

Third, we assume that every continuous transition only has one incoming and one out-
going arc to keep the model physically meaningful. HPnGs fulfilling this requirement
are called unary. In non-unary structures such as depicted in Figure 3.3, fluid would
be duplicated, which physically makes no sense. Also, we will later see that when
allowing such structures, our proposed rate adaption algorithm does not terminate.

This restriction is not purely technical. Consider a transition with two outgoing arcs
to two different places as depicted in Figure 3.3. There is no semantically equivalent
HPnG with only one outgoing arc for the transition. This is because we would have
to add at least one transition which is supposed to copy the behavior of the existing
transition, in particular, it should fire with the same rate. This cannot be enforced
because the syntax of HPnGs does not provide for such a mechanism.

3.2. Semantics of HPnGs

Since we now have an understanding of how HPnGs look like, we can discuss their
behavior. In general, the state of a HPnG evolves by moving tokens or fluid between
the places. This happens when a transition is firing, which is why we will take a closer
look at the firing behavior of the different kinds of transitions. Before doing so, we first
define the notion of a state of a HPnG.

Definition 3.4. State of a HPnG
A state σ of a HPnG H = (P , T ,A, M0, Φ) is a tuple (m, x, c, l), where

• m : Pdisc →N0 defines the number of tokens held by each discrete place,

• x : P cont → R≥0 defines the amount of fluid in each continuous place,

• c : T disc → R≥0 defines the firing time (or clock) for discrete transitions,

• l : T cont → (P cont → [0, 1]) defines the rate restrictions imposed on the contin-
uous transitions by each continuous place.

35

3. Hybrid Petri Nets with General Firings

The set of all states is denoted by ΣH. A state σ is initial if σ = (m0, x0, c, 1) with
(m0, x0) = M0 and for t ∈ T disc, c(t) is either set to ΦTft (t) if t is deterministic or
sampled from the distribution ΦTgt(t) if t is general. The list of rate restriction 1
denotes the function mapping all entries to one, i.e., l(t)(p) = 1 for all t ∈ T cont

and p ∈ P cont.

As indicated above, each state contains the number of tokens and amount of fluid
held in the places. Discrete transitions fire after a specified amount of time. As for
SHAs, this is modeled by counting down clock variables. The current clock value of the
firing time is also a part of the state. Finally, the state contains a mapping from each
continuous transition and each continuous place to a value between zero and one. This
is used for the rate adaption procedure and will be discussed in detail in Section 3.2.2.
Intuitively, every continuous place can impose restrictions on the adjoining transitions
that reduce their firing rate by the given percentage. These restrictions are stored in the
restriction list l.

The state is sometimes defined to contain more components, such as the actual firing
rates of continuous transitions or their enabling status [Pil+20]. However, as these prop-
erties are computable from the components above, we chose to remove redundancies
and define the state as compact as possible.

To formally reason about the behavior of the HPnG, we define the notion of incoming
(outgoing) transitions and input (output) places. For each place, the set of incoming
transitions contains the transitions connected to the place via an input arc. Dually,
the outgoing transitions are those connected via an output arc. For a transition, the
intuition for its input and output places is similar.

Definition 3.5. Input and Output Places and Transitions
Let H be a HPnG and type ∈ {disc, cont}. For a transition t ∈ T , we define the set
of input (output) places as

I type(t) =
{

p
∣∣ 〈p, t〉 ∈ Atype} Otype(t) =

{
p
∣∣ 〈t, p〉 ∈ Atype} .

Under slight abuse of notation, we define the set of incoming (outgoing) transitions
for a place p ∈ P as

I type(p) =
{

t
∣∣ 〈t, p〉 ∈ Atype} Otype(p) =

{
t
∣∣ 〈p, t〉 ∈ Atype} .

For type ∈ {test, inh} and a transition t ∈ T , we define the set of test (inhibitor)
places as

I type(t) =
{

p
∣∣ 〈p, t〉 ∈ Atype} .

Notice that the discrete input places of continuous transitions is trivially empty. Dually,

36

3.2. Semantics of HPnGs

the set of continuous input places of a discrete transition is always empty. Additionally,
test and inhibitor arcs are semantically undirected, so we do not need to distinguish
between input and output sets. Also, we only consider the input and output places for
transitions, and not the incoming and outgoing transitions, as these types of arcs only
influence the behavior of transitions and do not affect places. Due to the assumptions
made about the arcs of a transition, the set of input and output places is either a
singleton or the empty set for every transition.

As already mentioned above, a transition can only fire if it fulfills certain conditions.
For example, a discrete transition requires the connected places to hold a specified
number of tokens. But even if these requirements are fulfilled, test and inhibitor arcs
might prohibit the firing of a transition. We say that a transition has concession if all
those conditions are met.

Definition 3.6. Concession
Let H be a HPnG. A transition t ∈ T has concession in a state σ = (m, x, c, l),
denoted by concσ(t), iff

1. the discrete places connected to t via a discrete arc contain enough tokens,
i.e.,

∀p ∈ Idisc(t) : m(p) ≥ ΦAw 〈p, t〉,

2. the discrete places connected to t via an inhibitor arc do not contain more
tokens than allowed, i.e.,

∀p ∈ (I inh(t) ∩ Pdisc) : m(p) < ΦAw 〈p, t〉,

3. the continuous places connected to t via an inhibitor arc do not contain more
fluid than allowed, i.e.,

∀p ∈ (I inh(t) ∩ P cont) : x(p) < ΦAw 〈p, t〉,

4. the discrete places connected to t via a test arc do not violate the testing
condition, i.e.,

∀p ∈ (I test(t) ∩ Pdisc) : m(p) ≥ ΦAw 〈p, t〉, and

5. the continuous places connected to t via a test arc do not violate the testing
condition, i.e.,

∀p ∈ (I test(t) ∩ P cont) : x(p) ≥ ΦAw 〈p, t〉.

Note that conditions (1) and (4) are equal, but as we will discuss in more detail later,

37

3. Hybrid Petri Nets with General Firings

test arcs differ from discrete arcs in their effect on the system as they do not modify the
marking. A transition having concession is comparable to a jump being enabled in an
SHA. As before, having concession is not necessarily sufficient for a transition to be
fireable, depending on its type. While continuous transitions are fireable as soon as they
have concession, deterministic transitions additionally require that their corresponding
clock has run out.

Definition 3.7. Fireable Transitions
Let H be a HPnG and σ = (m, x, c, l) be a state of H. A transition t ∈ T is called
fireable, denoted by fireableσ(t), iff one of the following holds:

• t ∈ T disc ∧ concσ(t) ∧ c(t) = 0, or

• t ∈ T cont ∧ concσ(t).

As the name suggests, a transition can fire when it is fireable. Concretely, the firing
of a transition means that discrete transitions move tokens and continuous transitions
move fluid. If several discrete transitions become fireable at the same time, the arising
conflict is solved probabilistically. This will be discussed in more detail in Section 3.2.1.
In the literature, a fireable transition is sometimes referred to as enabled [GR16; Gha17].
Since this term is already used to describe a property in the SHA semantics that is
more similar to having concession in the HPnG semantics, we choose to use the term
fireable instead. This term has also already been defined for SHAs in Definition 2.9,
however, the property described is very similar, so we consider it appropriate to use
the same name.

In the optimal case, continuous transitions fire with their nominal firing rate. However,
as indicated before, this is not always possible if a place is at its boundary. We therefore
compute the actual firing rate of a continuous transition by taking into account the
current state, more specifically the current list of restrictions.

Definition 3.8. Actual Firing Rate of Continuous Transitions
Let H be a HPnG and σ = (m, x, c, l) ∈ ΣH a state of H. We define the actual firing
rate of a continuous transition t ∈ T cont as rateσ : T cont → R≥0 with

rateσ(t) =

{
0 if ¬fireableσ(t)

ΦTfr (t) ·min
{

l(t)(p)
∣∣ p ∈ P cont} if fireableσ(t).

When a transition is not fireable, it does not fire, meaning that the actual firing rate
is zero. If it is fireable, we select the strictest (i.e. smallest) restriction imposed by a
continuous place from the restriction list and multiply it with the nominal firing rate.
For all continuous transitions t and places p, l(t)(p) gives the percentage of the firing

38

3.2. Semantics of HPnGs

rate of t that p currently allows. Therefore, the actual firing rate is always smaller than
or equal to the nominal firing rate.

We already discussed that the firing of a transition modifies the markings of discrete
or continuous places, depending on the type of transition. The following definition
formalizes how the firing of a transition affects the current state.

Definition 3.9. Transformed Markings By Firing
Let H be a HPnG, t ∈ T a transition and σ = (m, x, c, l) ∈ ΣH a state of H such
that t is fireable in σ, i.e., fireableσ(t) holds.

If t ∈ T disc is a discrete transition, we define the marking resulting from the firing
of t as firet(m) : Pdisc →N0, where for all p ∈ Pdisc

firet(m)(p) =


m(p)−ΦAw 〈p, t〉 if p ∈ Idisc(t)

m(p) + ΦAw 〈t, p〉 if p ∈ Odisc(t)

m(p) else.

For a continuous transition t ∈ T cont and a time τ ∈ R>0, we define the marking
resulting from the firing of t for τ time units as fireτ

t (x) : P cont → R≥0, where for
all p ∈ P cont

fireτ
t (x)(p) =


x(p)− τ · rateσ(t) if p ∈ Icont(t)

x(p) + τ · rateσ(t) if p ∈ Ocont(t)

x(p) else.

The effect of the firing of multiple continuous transitions T ⊆ T cont for τ time units
is denoted by fireτ

T(x), which is formally defined as

fireτ
T(x)(p) = x(p) + τ · ∑

t∈Icont(p)∩T
rateσ(t)− τ · ∑

t∈Ocont(p)∩T
rateσ(t).

Intuitively, when a discrete transition fires, it moves as many tokens as required by the
connecting arcs from the input to the output place. Note that this is well-defined as the
transition is only fireable when the input places contain enough tokens.

When a continuous transition fires for τ time units, it moves rateσ(t) · τ units of fluid
from its input to its output place. For now, we are not ensuring that there is enough fluid
in the input place and enough capacity in the output place. Therefore, continuous places
could under- or overflow. We will present a method to prevent this in Section 3.2.2.

To define the firing behavior of deterministic transitions, we need to make sure that

39

3. Hybrid Petri Nets with General Firings

their assigned clocks are handled correctly. For this, we define two predicates describing
how clocks can be modified.

Definition 3.10. Evolution of Clocks
Let H be a HPnG. For a set of transitions T ⊆ T disc, a clock c : T disc → R≥0 and a
time τ ∈ R>0, we define the evolution of c as evolveτ

T(c) : T disc → R≥0 where for
all t ∈ T disc

evolveτ
T(c)(t) =

{
c(t)− τ if t ∈ T

c(t) else.

Representing the passing of τ time units, evolveτ
T(c) decreases the clocks of all transitions

in T by τ. When a transition fires, the clocks of this transition are reset depending on
the type of transition.

Definition 3.11. Resetting of Clocks
Let H be a HPnG. For t ∈ T disc and c : T disc → R≥0 we define the clock reset by t
as resett(c) : T disc → R≥0 where for all t′ ∈ T disc

resett(c)(t′) =


c(t′) if t′ 6= t

ΦTft (t) if t ∈ T det

sample from ΦTgt(t) if t ∈ T gen.

Intuitively, resett(c) updates the clock of a transition t to the firing time ΦTft (t) if t is
deterministic, and samples a time from the distribution ΦTgt(t) if t is general.

Example 3.2. States of HPnGs
Consider again the HPnG H from Example 3.1 depicted in Figure 3.2. An initial
state of H is given by σ0 = (m, x, c, l), where

• m(prainmaker) = 1, m(pcontrol) = 1, m(pchoice) = 0,

• x(pbarr) = 50, x(pplant) = 0,

• c(tremove) = 4, c(tyes) = c(tno) = 0, c(ton) = 1, c(toff) = 2, c(trandom) = 5, and

• l(t)(p) = 1 for all t ∈ T cont, p ∈ P cont.

The state is depicted in Figure 3.4.

The markings m and x are fixed by the initial marking M0. The clocks for the
deterministic transitions are set to the firing time specified by ΦTft and the clocks
for the general transitions are sampled from the distribution ΦTgt. Since no place
imposes any restrictions, l is set to 1 for all transitions and places.

40

3.2. Semantics of HPnGs

50

pbarr

100train
0

prainmakerton
1

toff

2

tleak

1
tirr

0

0pplant 60

pcontrol

tremove4

tyes

0

pchoice

tno
0

trandom5

2

2

Figure 3.4.: The state of the HPnG H as discussed in Example 3.2. Instead of firing times and
probability distributions, we denote the values of the corresponding clocks next to
the discrete transitions. Also, we denote the actual firing rates of transitions instead
of the nominal firing rates next to continuous transitions. We still denote the upper
bound of the continuous places and the weight of arcs in case they are non-zero.

In σ0, only one transition is fireable, namely tleak. We have that rateσ0(tleak) =

ΦTfr (tleak) = 1 as there are no restrictions.

The other continuous transitions are not fireable. For example, consider train. Since
there is a test arc of weight two connecting train to prainmaker requiring prainmaker to
contain at least two tokens, but m(prainmaker) = 1, condition four of Definition 3.6 is
violated. Similarly, the token in pcontrol blocks the firing of tirr.

Also, none of the discrete transitions are fireable. Either, their clocks are not zero
yet, or, in the case of c(tyes) and c(tno), the connected place pchoice does not contain
any tokens.

We consider another state σ1 depicted in Figure 3.5 with

• m(prainmaker) = 2, m(pcontrol) = 0, m(pchoice) = 1

• x(pbarr) = 10, x(pplant) = 10

• c(tremove) = 3, c(tyes) = c(tno) = 0, c(ton) = 3, c(toff) = 0, c(trandom) = 6,

• l(t)(p) = 1 for all t ∈ T cont, p ∈ P cont.

This is not an initial state, for example, because the marking is not the initial
marking. However, we can see that several transitions are fireable: There are
two tokens in m(prainmaker), so train is fireable. Since there are still no restrictions,
the actual firing rate of train is equal to the nominal firing rate and we have

41

3. Hybrid Petri Nets with General Firings

10

pbarr

100train
10

prainmakerton
3

toff

0

tleak

1
tirr

20

10pplant 60

pcontrol

tremove3

tyes

0

pchoice

tno
0

trandom6

2

2

Figure 3.5.: The second state of the HPnG H discussed in Example 3.2.

rateσ1(train) = ΦTfr (train) = 10. Transition tirr is also fireable and fires with its
nominal firing rate because m(pcontrol) = 0, and the same applies to tleak.

The discrete transitions c(tyes) and c(tno) are also fireable, because pchoice contains a
token. Only one of them can fire though, since firing either transition will remove
the token from the place. In the next section, we discuss how to handle such
conflicts.

We will use the predicates defined in the preceding part to define inference rules in
Section 3.2.3. Before we can do so, we discuss the handling of conflicts for deterministic
transitions in Section 3.2.1 and for continuous transitions in Section 3.2.2.

3.2.1. Conflict Resolution for Deterministic Transitions

In general, we can solve conflicts arising between discrete transitions either by non-
deterministically choosing a transition that is allowed to fire or by assigning firing
probabilities to all competing transitions. We will use the latter approach and assign
probabilities to transitions proportional to their priority. More precisely, for a transition
t ∈ T disc fireable in a state σ, we take t with the following probability:

ΦTp (t)

∑
t′∈T disc, fireableσ(t′)

ΦTp (t
′)

.

Deterministic transitions can be in direct conflict, for example, if they are competing
for a token as illustrated in Example 3.2. However, the order of firing can also change

42

3.2. Semantics of HPnGs

the resulting state in other scenarios, for example if a transition moves tokens to a
place which then inhibits the firing of another transition. Consequently, we consider all
fireable discrete transitions, as opposed to only those emanating from the same place.

General transitions can theoretically also be in conflict with other transitions. However,
since the probability distributions that determine the firing times are continuous, the
probability of this happening is zero. Therefore, we do not consider these cases here.

Example 3.3. Conflicting Deterministic Transitions
Consider again the state σ1 = (m, x, c, l) presented in Example 3.2 and depicted in
Figure 3.5 with

• m(prainmaker) = 2, m(pcontrol) = 0, m(pchoice) = 1,

• x(pbarr) = 10, x(pplant) = 10,

• c(tremove) = 3, c(tyes) = c(tno) = 0, c(ton) = 3, c(toff) = 0, c(trandom) = 6, and

• l(t)(p) = 1 for all t ∈ T cont, p ∈ P cont.

As was already mentioned in Example 3.2, both tyes and tno are fireable. We have
that ΦTp (tyes) = ΦTp (tno) = 1, so this conflict is solved by choosing either transition
with probability 1

2 .

3.2.2. Conflict Resolution for Continuous Transitions

As mentioned above, fluid transitions can cause conflicts when trying to move fluid out
of an empty place or into a full place. We refer to the difference between inflow and
outflow of a continuous place as the drift.

Definition 3.12. Drift of a Continuous Place
Let H be a HPnG and σ ∈ ΣH a state of H. We define the drift of the continuous
places P cont in σ as driftσ : P cont → R, where

driftσ(p) = ∑
ti∈Icont(p)

rateσ(ti)− ∑
tj∈Ocont(p)

rateσ(tj)

for p ∈ P cont.

Notice that using this definition, we can give a simplified version of the continuous
marking resulting from the firing of continuous transitions in Definition 3.9. Let T be

43

3. Hybrid Petri Nets with General Firings

the set of fireable transitions in σ. Then, for p ∈ P cont,

fireτ
T(x)(p) = x(p) + τ · ∑

t∈Icont(p)∩T
rateσ(t)− τ · ∑

t∈Ocont(p)∩T
rateσ(t)

= x(p) + τ · driftσ(p).

A place can neither hold a negative amount of fluid nor more than its specified capacity.
Therefore, we need to adapt the current firing rates of fireable transitions in a state
σ = (m, x, c, l) if a place p ∈ P cont is at its boundary and the drift leads the place to
under- or overflow, i.e., x(p) = 0 and driftσ(p) < 0 or x(p) = ΦPub(p) and driftσ(p) > 0.
We say that the drift of an empty (full) place goes in the wrong direction if it is negative
(positive), otherwise is goes in the right direction. Places that are either at upper or at
lower boundary are referred to as critical places.

We propose a novel algorithm for rate adaption based on two principles: First, we aim
to reduce the firing rates of transitions proportional to the current firing rate. Second,
we add a policy of mutual exclusion. While places are always allowed to further
reduce the rate, we restrict the revoking of reductions. A place is allowed to revoke its
own restrictions, but has to respect the reductions made by other places. A detailed
comparison to existing algorithms is given in Section 3.2.2.

We distinguish four cases, namely rate reduction and rate reset for places at lower
boundary and the dual cases for places at upper boundary. Consider a place p ∈ P cont

at lower boundary in a state σ. If the drift goes in the wrong direction (i.e. is negative),
we reduce all outgoing transitions proportionally. If the drift goes in the right direction
(i.e. is positive), we revoke all restrictions of the outgoing transitions made by p. This
might change the current rates, but does not have to, as other places might demand the
same or even stronger restrictions. For places at upper boundary, the steps are dual. In
what follows, we provide a formal description of the full algorithm.

The Rate Adaption Algorithm

Let H be a HPnG, σ = (m, x, c, l) ∈ ΣH a state of H, and p ∈ P cont a continuous place.
For the first case, namely the rate reduction, assume that p is a critical place and has
drift in the wrong direction. We then adapt the outgoing, respectively the incoming,
transitions of p in such a way that the drift of p becomes zero.

Definition 3.13. Rate Reduction
Let H be a HPnG, σ = (m, x, c, l) ∈ ΣH a state of H, and p ∈ P cont a continuous
place. Further, let

inσ(p) = ∑
t∈Icont(p)

rateσ(t)

44

3.2. Semantics of HPnGs

be the incoming flow to place p and

outσ(p) = ∑
t∈Ocont(p)

rateσ(t)

the outgoing flow to place p.

If x(p) = 0 and driftσ(p) < 0, we let T =
{

t ∈ Ocont(p)
∣∣ fireableσ(t)

}
be the

outgoing fireable transitions of p and define

reduceempty
p (l) : T cont → (P cont → [0, 1])

as

reduceempty
p (l)(t)(p′) =

 inσ(p)
outσ(p) ·

current strongest restriction︷ ︸︸ ︷
min

{
l(t)(p′′)

∣∣ p′′ ∈ P cont} if t ∈ T ∧ p = p′

l(t)(p′) else

for all p′ ∈ P cont, t ∈ T cont.

Dually, if x(p) = ΦPub(p) and driftσ(p) > 0, we let T =
{

t ∈ Icont(p)
∣∣ fireableσ(t)

}
be the incoming fireable transitions of p and define

reducefull
p (l) : T cont → (P cont → [0, 1])

as

reducefull
p (l)(t)(p′) =

 outσ(p)
inσ(p) ·

current strongest restriction︷ ︸︸ ︷
min

{
l(t)(p′′)

∣∣ p′′ ∈ P cont} if t ∈ T ∧ p = p′

l(t)(p′) else

for all p′ ∈ P cont and t ∈ T cont.

Thus, if p is empty, we distribute the incoming flow in(p) to the outgoing fireable
transitions proportional to their actual firing rate. As the actual firing rate is computed
from the list of restrictions, this is equal to setting the new restriction for a transition
t to the current strongest restriction scaled by in(p)

out(p) . Since we know that the drift

is negative, we have that in(p) < out(p). Consequently, the fraction in(p)
out(p) is strictly

smaller than one and the updated restriction must be stronger than the previously
strongest restriction.

Furthermore, it can be easily verified that, after the reduction, the outgoing flow
matches the incoming flow: The outgoing flow for p in the new state σ′ = (m, x, c, l′)

45

3. Hybrid Petri Nets with General Firings

with l′ = reduceempty
p (l) can be computed as

∑
t∈Ocont(p)

rateσ′(t)

= ∑
t∈T

rateσ′(t)

= ∑
t∈T

(
min

{
l′(t)(p′)

∣∣ p′ ∈ P cont} ·ΦTfr (t))
= ∑

t∈T

(
in(p)

out(p)
·min

{
l(t)(p′)

∣∣ p′ ∈ P cont} ·ΦTfr (t))
=

in(p)
out(p)

·∑
t∈T

(
min

{
l(t)(p′)

∣∣ p′ ∈ P cont} ·ΦTfr (t))
=

in(p)
out(p)

·∑
t∈T

rateσ(t)

=
in(p)

out(p)
· out(p)

= in(p),

as desired. The dual statement holds for reducefull
p (l) for places at upper boundary.

If the upper bound equals zero, i.e., ΦPub(p) = 0 for a place p, we can reduce either the
outgoing or the incoming transitions to obtain a drift of zero. In such cases, we always
reduce incoming transitions.

This concludes the first case of the algorithm, the rate reduction. Now, we consider
the second case, so assume place p is critical, but with a non-zero drift in the right
direction. We then remove the restrictions imposed by p on the outgoing transitions.
This step is solely taken if p previously imposed restrictions on transitions that have
not been revoked yet, so if there exists a transition t ∈ T cont such that l(t)(p) < 1. This
is expressed in the following predicate.

Definition 3.14. Placing Restrictions
LetH be a HPnG, σ ∈ ΣH a state ofH, and p ∈ P cont a continuous place. We denote
by restrσ(p) whether p imposes restrictions on some transition in σ, i.e., restrσ(p) is
true iff there exists a transition t ∈ Icont(p) ∪Ocont(p) such that l(t)(p) < 1.

Now, we define the rate reset by simply setting all entries in the restriction list belonging
to p to one. Then, p no longer influences the firing rates of any of its outgoing or
incoming transitions.

46

3.2. Semantics of HPnGs

Definition 3.15. Rate Reset
Let H be a HPnG, σ ∈ ΣH a state of H, and p ∈ P cont a continuous place. We
define the updated restriction list resetp(l) : T cont → (P cont → [0, 1]) as

resetp(l)(t)(p′) =

{
1 if p = p′

l(t)(p′) else

for each p′ ∈ P cont and t ∈ T cont.

The rate reduction and rate reset steps form the basis of the rate adaption algorithm.
Since adapting the rates at one place might make it necessary to adapt rates at another
place, we need to apply the steps until no further steps are possible and all conflicts are
solved. The full rate adaption algorithm is given in Algorithm 1.

In every iteration of the while-loop, we check if any place p requires a rate reduction
or a rate reset and calculate the new restriction list l′ if necessary. Note that the third
and fourth case have the same effect; we split the cases here for better readability. The
continue flag makes sure that the while-loop is continued as long as there exists a
critical place with drift in the wrong direction or a critical place with drift in the right
direction that imposes restrictions. This corresponds to one of the if-conditions being
true. When all conflicts are solved, the algorithm returns the new state σ′ with the
updated list of restrictions.

The algorithm terminates when the drift is in the right direction for every critical place.
Note that we do not require all critical places to have a drift of zero after the algorithm
terminates. Such a solution does not always exist (see Example 3.7 for an example).
Nevertheless, the resulting state is still stable, in the sense that rates are not changed
back and forth. This is due to the fact that the algorithm only attempts to reset the
rates at a place if this place still sets restrictions.

When a place p restricts a transition t that is then further reduced by another place, we
fully reset the rates before potentially reducing again. This could also be handled in a
separate step that adjusts the rates when it is necessary to relax the restrictions a little,
but not completely. As an advantage, one would save a step and prevent that a place
resets rates too optimistically, making the algorithm more efficient. However, since the
effects of one adjustment are the same as first resetting and then reducing again, we
choose not to explicitly distinguish the former. We compare this algorithm to existing
algorithms in Section 3.2.2 after presenting an example and discussing its termination.

47

3. Hybrid Petri Nets with General Firings

Input: HPnG H, state σ = (x, m, c, l) ∈ ΣH

Output: State σ′ ∈ ΣH

continue = true;
σ′ = σ;
while continue do

for p ∈ P cont critical do
if x(p) = 0 and driftσ′(p) < 0 then

l′ = reduceempty
p (l′);

continue = true;
else if x(p) = ΦPub(p) and driftσ′(p) > 0 then

l′ = reducefull
p (l′);

continue = true;
else if x(p) = 0 and driftσ′(p) < 0 and restrσ′(p) then

l′ = resetp(l′);
continue = true;

else if x(p) = ΦPub(p) and driftσ′(p) > 0 and restrσ′(p) then
l′ = resetp(l′);
continue = true;

else
continue = f alse;

end
σ′ = (x, m, c, l′);

end
end
return σ′

Algorithm 1: The rate adaption algorithm.

Example 3.4. Rate Adaption
We consider the state σ of the HPnG H presented in Example 3.1. The state is
depicted in Figure 3.6 and is formally given by σ = (m, x, c, l) with

• m(prainmaker) = 2, m(pcontrol) = 0, m(pchoice) = 0,

• x(pbarr) = 80, x(pplant) = 60,

• c(tremove) = 3, c(tyes) = c(tno) = 0, c(ton) = 3, c(toff) = 4, c(trandom) = 6, and

• l(t)(p) = 1 for all t ∈ T cont and p ∈ P cont.

The place pplant is at its upper boundary ΦPub(pplant) = 60. However, the transition
tirr still fires at its full rate ΦTfr (tirr) = 20, causing the plants to be overwatered. The
rate adaption algorithm solves this by computing an updated list of restrictions

48

3.2. Semantics of HPnGs

80

pbarr

100train
10

prainmakerton
3

toff

4

tleak

1
tirr

20

60pplant 60

pcontrol

tremove3

tyes

0

pchoice

tno
0

trandom6

2

2

Figure 3.6.: The state of the HPnG H discussed in Example 3.4.

reducefull
pplant(l), which is zero at the entry for tirr and pplant. Consequently, the actual

firing rate of tirr in the new state is zero.

Note that the barrel is almost full as well. Since the irrigation no longer takes water
from the place, but it still rains, the barrel fills up. We might reach a state σ′ as
depicted in Figure 3.7 and formally given by

• m(prainmaker) = 2, m(pcontrol) = 0, m(pchoice) = 0,

• x(pbarr) = 100, x(pplant) = 60,

• c(tremove) = 3, c(tyes) = c(tno) = 0, c(ton) = 3, c(toff) = 4, c(trandom) = 6, and

• l(tirr)(pplant) = 0, l(t)(p) = 1 for all other t ∈ T cont, p ∈ P cont.

Then, we update the list of restrictions at the entry for train and pbarr by

reducefull
pbarr(l)(train)(pbarr) =

out(pbarr)

in(pbarr)
·

current strongest restriction︷ ︸︸ ︷
min

{
l(train)(p′′)

∣∣ p′′ ∈ P cont}
=

1
10
· 1 = 0.1

and hence have that the actual firing rate of train in the new state is 0.1 · 10 = 1.

Should the rain stop at some later point in time, the drift of pbarr is in the right
direction again. Then, resetpbarr

(l) resets the respective restriction list entry to one,
effectively removing the restriction imposed by pbarr.

49

3. Hybrid Petri Nets with General Firings

100

pbarr

100train
10

prainmakerton
3

toff

4

tleak

1
tirr

0

60pplant 60

pcontrol

tremove3

tyes

0

pchoice

tno
0

trandom6

2

2

0

Figure 3.7.: The second state of the HPnG H discussed in Example 3.4. The restriction placed
on tirr by pplant is denoted by a dashed arrow.

p1

p2

p3t1

4

t24 t3 4

t4

4

Figure 3.8.: A cyclic HPnG with non-terminating rate adaption as discussed in Example 3.5. We
denote by when a place is empty and write the firing rates of the continuous
transition beside it.

Termination of the Rate Adaption Algorithm

As described above, several places may be in need of rate adaption at the same time.
Then, Algorithm 1 adapts the rates for every affected place. However, this might cause
the drift of another critical place to go in the wrong direction. Then, we have to adapt
the rates at these places as well. It is not obvious that this always terminates. To
illustrate this, we start by giving some examples of HPnGs with weaker assumptions
and show that the rate adaption algorithm does not terminate. Recall that as described
in Section 3.1, we require HPnGs to be acyclic and assume that every transition only
has one incoming and one outgoing arc.

50

3.2. Semantics of HPnGs

t1

4

p1 p2

t2 5

t3 4

Figure 3.9.: HPnG violating the assumptions with non-terminating rate adaption as discussed
in Example 3.6. Again, we denote an empty place by and a full place by .

Example 3.5. Non-Terminating Rate Adaption in Cyclic HPnGs
Consider the cyclic HPnG shown in Figure 3.8. All places are empty and all
transitions have a current rate of four. Place p2 has a negative drift of four, because
the incoming flow is four and the outgoing flow is eight, and therefore has to adapt
the rates.

In the first step, p2 sets the rates of t3 and t4 to two. Both p3 and p1 react by setting
the rates of t1 and t2 to two as well.

Then, p2 has to adapt again and halves the rates of its outgoing transitions. It can
already be seen that this will not terminate, as p2 will continue to halve the rates
infinitely often.

It is not possible to prevent infinite adaptions as in Example 3.5 when allowing cycles,
hence our restriction to acyclic HPnGs. However, non-termination can also occur in the
absence of cycles. The next example shows a HPnG that, contrary to our assumption,
contains transitions with multiple incoming and outgoing arcs.

Example 3.6. Non-Terminating Rate Adaption for Transitions with Multiple Arcs
The HPnG depicted in Figure 3.9 violates our assumptions, as transition t1 has two
outgoing arcs and t2 has two incoming arcs. Both places p1 and p2 are critical and
have drift in the wrong direction. Therefore, p1 sets the rate of t2 to four, matching
its incoming flow. Next, p2 reduces the rate of both incoming transitions t1 and t3

to two. Then, the drift at p1 is negative again, so the rate of t2 is reduced to two as
well. For the same reasons as in Example 3.5, this will not terminate.

Examples 3.5 and 3.6 showed that, if we disregard our assumptions, Algorithm 1 does
not necessarily terminate. Now, we return to assuming that our restrictions hold. To
get a better understanding of the termination behavior, we discuss another example.

51

3. Hybrid Petri Nets with General Firings

p1

p3

p2t1

6

t26 t3 3

4

6
t4

10

Figure 3.10.: Acyclic but non-strongly acyclic HPnG discussed in Example 3.7.

Example 3.7. Termination of (non-strongly) acyclic HPnGs
Consider the HPnG in Figure 3.10, which is acyclic but not strongly acyclic. For
this HPnG, all assumptions specified in Section 3.1 are fulfilled. We present a
possible execution of the rate adaption algorithm in the following table. Note that
we disregard the firing rates of the two unnamed source and sink transitions, as
they are not modified. We denote the step taken in the action column by ↓p if a
place p reduces the rates of its outgoing or incoming transitions and ↑p if p resets
the rates. Choosing the actions in a different order can change the result of the
algorithm, but not the termination.

In the first step, p1 reduces both outgoing
transitions by 50%. Then, p3 reduces its
incoming transitions t2 and t3 in step two.
Note that this is done proportionally to
the current firing rates, not the nominal
rates, which is why both transitions are
assigned the same new rate even though
their nominal rates differ. Transition t2

is now reduced stronger than required
by p1, so all restrictions made by p1 are
revoked in step three. As a consequence,
the rate of t1 is reset to its nominal rate.
Place p1 now has a negative drift again,
because the nominal rate is too high.

Step Action t1 t2 t3 t4

0 - 6 6 3 10

1 ↓p1 3 3 3 10

2 ↓p3 3 2 2 10

3 ↑p1 6 2 2 10

4 ↓p2 6 2 1 5

5 ↓p1 4.5 1.5 1 5

6 ↓p2 4.5 1.5 0.75 3.75

7 ↑p3 4.5 1.5 0.75 3.75

Next, p2 reduces its outgoing transitions in step four. Then, p1 again throttles the
rate of t1 in step five and p2 has to adapt the rates in the next step. Now, the drift
of p3 is negative, which is the right direction as p3 is full, and the place tries to
reset the rates of the incoming transitions in step seven. However, since p1 caused
the current strongest restriction on t1 and p2 caused the current restriction on t3, p3

52

3.2. Semantics of HPnGs

cannot revoke the reductions. Therefore, all places have a drift in the right direction
and the algorithm terminates.

As can be seen, the algorithm does not terminate in a straightforward manner, but
considers places several times. We did not yet find an upper bound on these visits.
Nevertheless, we were not able to construct an example that respects the restrictions
and still does not terminate. This suggests that the rate adaption does terminate, as
formulated in Conjecture 3.1.

Conjecture 3.1. Termination of Rate Adaption
Let H be a acyclic unary HPnG and σ ∈ ΣH a state of H. Then, Algorithm 1
applied to H and σ terminates.

This has not yet been proven for the full class of HPnGs. As a silver lining, we prove
termination for specific states of a HPnG and for the subclass of strongly acyclic HPnGs.

Theorem 3.1. Partial Termination of Rate Adaption
Let H be a HPnG and σ ∈ ΣH a state of H. Then, Algorithm 1 applied to H and σ

terminates

1. if in σ, either all critical places are empty or all critical places are full, or

2. if H is strongly acyclic.

Proof. Let H be a HPnG and σ ∈ ΣH a state of H.

Part One. Assume that in σ no place is at its upper boundary and thus all critical places
are empty. We assume that H is ordered such that source transitions are on the top
and subsequent transitions are below. Then, we say that a transition t1 is above another
transition t2, denoted by t1 > t2, if it is closer to the source. Formally, this is given if
t1 6= t2 and there exists a path in the underlying directed graph from a source transition
to t1 and from t1 to t2.

First, note that since we only consider empty places in σ and transitions are assumed to
only have at most one incoming and one outgoing place, each transition in this scenario
is controlled by at most one place. Additionally, each place can adjust the rates only
once without occasion, where an occasion is given if the incoming transitions change
their rates. Each subsequent adjustment is a reaction to adjustments from above.

For places that are only connected to source transitions, i.e., transitions without in-
coming places, this means that they will only adapt their rates once. All other places
readapt their rates (if necessary) when the incoming transitions change their rates. This
only happens when the input place of these transitions adapts its rates. We refer to

53

3. Hybrid Petri Nets with General Firings

p1

p2

C

A

B

D

t

Figure 3.11.: Illustration of a HPnG where a transition is reduced by two places, one empty
(p1) and one full (p2), causing non-straightforward termination as discussed in the
second part of the proof for Theorem 3.1. Parts of the HPnG we do not consider in
more detail here are depicted in the four triangles A,B,C, and D.

those places as predecessor places. Therefore, the maximal number of adaptations per
place is given by one plus the maximal number of adaptations per predecessor place.

There can be no loops in this propagation, as we exclude cyclic structures such as
Figure 3.8 per assumption and each place only causes the places below them to
readapt. Since we only consider finite HPnGs, there can neither be an infinite number
of predecessors nor an infinite chain of connected places. Therefore, the algorithm
terminates after a finite number of steps.

This proof can be carried out in the same way if only places at the upper boundary
occur. The only difference is that full places are adapting the rates of their incoming
transitions, so adaptions are propagated upwards instead of downwards.

Part Two. We now discuss the termination of the algorithm in a state that contains both
empty and full places. For this, we assume H to be strongly acyclic.

First, note that the only interesting case is when there is a transition connecting an
empty place to a full place, because only then, both are potentially imposing restrictions
on the same transition. This is visualized in Figure 3.11. If there are non-critical places
in between an empty and a full place, then this does not affect the termination at all,
because the drift of the non-critical place can absorb everything and does not propagate
any adaptions. If a full place is above an empty place, they also do not affect each

54

3.2. Semantics of HPnGs

other because they propagate their adaptions in opposite directions and the transition
connecting them will never change the rate.

Therefore, this part differs from the first part of the proof if the HPnG contains a
transition t controlled by two places as depicted in Figure 3.11. Since p1 is empty, it
has to reduce the rate of t, and dually p2 is full and also reduces the rate of t. Let us
for the moment assume that A, B, C, and D each only contain connected places at the
same kind of boundary, so t is the only transition controlled by two places. We then
know from the first part of the proof that the algorithm terminates for those subnets in
finite time, if p1 and p2 only give them finitely many reasons to adapt. Also, since the
HPnG is assumed to be strongly acyclic, we know that there is no connection between
the subnets. Consequently, they cannot influence each other.

We now show that places p1 and p2 are only finitely often adapting and resetting the
rates of their connecting transition t. We do so by arguing about the number of times
p1 and p2 adapt their rates. As we already mentioned above, places are only readapting
their rates if their neighboring places are adapting. Therefore, if we can show that the
neighboring places are only finitely often adapting their rates, we can conclude that the
place itself also adapts finitely often.

Again, we know that the calculation terminates for subnets C and D, so they give only
finitely many reasons to adapt. Without loss of generality, we assume that p1 adapts
the rate of t and its other outgoing transitions in A before p2. Using the first part, we
know that the initiated calculation of rate adaption in A terminates.

At some later point in the algorithm, p2 adapts the rates. By definition, p2 restricts
t stronger than p1 did. Then, p1 resets and eventually readapts the rates in A; both
causing finitely many adaptions in A. Further adaptions coming from C or D can also
only cause finitely many adaptions and resets. Therefore, the algorithm terminates for
HPnGs structured as in Figure 3.11.

By induction on the number of meeting points of empty and full places, we can
conclude that the algorithm also terminates if there is an arbitrary number of such
structures. Using the same arguments as above, we know that there are always only
finitely many adaptions initiated by the neighboring places. We can conclude that the
algorithm terminates for strongly acyclic HPnGs.

It remains as future work to extend this proof to (non-strongly) acyclic HPnGs. Exam-
ple 3.7 illustrated the challenges in characterizing the termination of HPnGs that are
not strongly acyclic. The proof given above fails at the point where we assume that
parts A, B, C, and D are not connected.

Ideas for proving the termination include, for example, providing an upper bound of
the number of visits to a place. Also, if we could define a well-founded order over the

55

3. Hybrid Petri Nets with General Firings

states of a HPnG and show that applying the rate adaption decreases the order, we can
conclude that there are no infinite descending chains and thus the algorithm terminates.
Ideas for such an order were, for example, to express the degree of the violation in
form of the size of the drift in the wrong direction. One could then incorporate the
way that the drifts in the wrong direction propagate through the HPnG: For places at
lower boundary, the problem shifts further away from the source transitions with each
iteration of rate adaption. We were not yet able to define a suitable ordering.

Another promising idea is to maintain tree-like structures that represent which place
has caused the necessity of (re-)adaption for which places. The roots of the trees are
the critical places with drift in the wrong direction in the initial state. Then, if a place
p causes another place p′ to adapt the rates, p′ is added as a child of p under the
condition that p′ is not already a leaf in any of the trees. Thus, a forest is gradually
formed during the execution of the algorithm. If one can prove that the depth of each
tree is finite, termination of the algorithm is implied.

Comparison to Other Rate Adaption Algorithms

Our rate adaption algorithm given in Algorithm 1 can be characterized by two main
properties: First, we adapt transitions proportionally to their actual firing rate, formally
described in Definition 3.13. Second, we only let places increase firing rates as long
as no other place sets stronger restrictions. This is implemented in the semantics by
maintaining a list of restrictions for every continuous transition and defining the actual
firing rate with respect to the strongest restriction (see Definition 3.8). We now briefly
present other possible rate adaption algorithms.

In contrast to adapting the rates proportionally to the actual firing rate, we could adapt
proportionally to the nominal firing rate. This is a bit more intricate, as we then actively
have to make sure that we respect the restrictions set by other places. While both
approaches are valid, we decided for an adaption proportional to the actual rate, as it
is both simpler and closer to the physical processes we want to model.

A method originally proposed by David and Alla uses priorities to solve conflicts
of continuous places [DA10]. Each transition is assigned a priority, which has to be
unique with respect to its input and output place, i.e., the priorities of two transitions
originating from or leading to the same place have to differ. Then, a transition is only
assigned a positive flow rate if all transitions with higher priority can fire at their
nominal rate. For details, we refer to [DA10, Section 5.3.2] and [Gha17, Section 3.5.1].

It is quite tedious to make sure that priorities are unique in the way described above.
Therefore, an extension of the previous method additionally assigns a share to each
transition which is used to distribute the fluid in case two transitions have the same
priority. Again, we refer to [DA10, Section 5.3.3] and [Gha17, Section 3.5.2] for details.

56

3.2. Semantics of HPnGs

All methods for a modified rate update can be straightforwardly included in our
framework. Shares and priorities can be added as parameter functions. Then, the
function describing the rate reduction from Definition 3.13 can be replaced by a function
implementing the respective reduction method instead.

Our algorithm terminates for all examples presented by Ghasemieh, in particular for
those where the other algorithms do not terminate [Gha17, Figures 3.13 and 3.14]. In
many cases, this is attributable to the blocking of rate resets, i.e., the fact that in our
model, a place can only reverse its own restrictions. There is no comparable construct
in the other algorithms.

The termination of algorithms distributing fluid using priorities or shares is only
guaranteed under the assumption of two hypotheses originally formulated by David
and Alla [DA10]. The first hypothesis expresses that every transition is only allowed to
be involved in one conflict. This already excludes all conflicts that are structured as
outlined in Figure 3.11. Therefore, this restriction is at least as strong as our restriction
to strongly acyclic HPnGs. The second hypothesis states that there is no feedback
allowed, i.e., the result of solving one conflict may not influence another conflict. Thus,
these restrictions are quite strict. In particular, assuming both hypotheses, our rate
adaption algorithm terminates. This does not hold in the other direction: Our algorithm
terminates for some examples while the others do not.

In conclusion, the rate adaption algorithm proposed in this thesis implements a concep-
tually simple method for reducing rates. At the same time, we can extend the algorithm
easily to include more involved strategies.´ Additionally, we mitigate termination
requirements by preventing places from lifting restrictions they did not cause.

3.2.3. Operational Semantics

The findings of the previous parts of this section are now summarized in seven inference
rules that describe how a state of a HPnG evolves. We again let H be a HPnG and
σ = (m, x, c, l) ∈ ΣH a state of H. We distinguish between state changes initiated by
the firing of deterministic transitions, by rate adaption and by the passing of time.

Firing of Deterministic Transitions. A deterministic transition t ∈ T disc can fire as soon as
it becomes fireable. The effect on σ is that the discrete marking of the connected places
changes and the clock of the transition is reset. This is summarized in the following
rule for σ = (m, x, c, l):

t ∈ T disc fireableσ(t)

(m, x, c, l) fire t
===⇒ (firet(m), x, resett(c), l)

fire

57

3. Hybrid Petri Nets with General Firings

If several such rules are applicable at the same time, i.e., deterministic transitions are in
conflict, we solve this as described in Section 3.2.1.

Rate Adaption. The rate adaption algorithm defined in Algorithm 1 can be translated
for σ = (m, x, c, l):

p ∈ P cont x(p) = 0 driftσ(p) < 0

(m, x, c, l)
reduce empty p

=========⇒ (m, x, c, reduceempty
p (l))

reduce empty

p ∈ P cont x(p) = ΦPub(p) driftσ(p) > 0

(m, x, c, l)
reduce full p

=======⇒ (m, x, c, reducefull
p (l))

reduce full

p ∈ P cont x(p) = 0 driftσ(p) > 0 restrσ(p)

(m, x, c, l)
reset empty p

========⇒ (m, x, c, resetp(l))
reset empty

p ∈ P cont x(p) = ΦPub(p) driftσ(p) < 0 restrσ(p)

(m, x, c, l)
reset full p

======⇒ (m, x, c, resetp(l))
reset full

The premises of these rules are in direct agreement with the conditions of the four
if-branches of Algorithm 1, as are the effects of the rules compared to the body of the
if-branches. Therefore, the application of one rule corresponds to one execution of the
loop body. As soon as a continuous transition is not fireable anymore, we reset the
corresponding entries in the restriction lists:

t ∈ T cont ¬fireableσ(t) p ∈ P cont l(t)(p) < 1

(m, x, c, l)
reset t, p

=====⇒ (m, x, c, l[t, p 7→ 1])
reset single

Conflicts among these rules are again resolved probabilistically. Extending the method
described in Section 3.2.1, we assume the rate adaption rules to have a weight of
one, while the rules for firing of deterministic transitions are assigned the weight
of the respective transition. Any possible scheduler can be motivated depending on
the concrete system requirements. For example, we could always prefer the firing of
transitions over rate adaption steps. We choose to resolve conflicts probabilistically.

Passing of Time. Lastly, the state ofH can change as time passes. This has the effect that
fireable continuous transitions fire and clocks of discrete transitions with concession
evolve. However, we only allow time to pass as long as

1. no discrete transition is fireable (which implies that clocks do not run out),

58

3.2. Semantics of HPnGs

2. the enabling status of continuous transitions does not change,

3. no continuous place over- or underflows, and

4. rate adaption is not necessary.

More concretely, time can only pass as long as no other semantic rule can be applied.
We formalize this in the notion of a safe time span. For this, we first define the concrete
sets of transitions affected by the passing of τ time units.

Definition 3.16. Fireable Continuous Transitions in Time Span
Let H be a HPnG, σ ∈ ΣH a state of H, and τ ∈ R>0. We write fireablecont

σ,τ ⊆ T cont

for the set of fireable continuous transitions in the time span of duration τ starting
from σ. Formally, we define fireablecont

σ,τ ⊆ T cont to be the largest set T such that for

all t ∈ T and σ′ = (m, fireτ′

T (x), c, l) with τ′ ∈ (0, τ), we have fireableσ′(t).

The set fireablecont
σ,τ consists of the transitions that are fireable in the complete time span

under consideration, and therefore those that are firing. Note that this is equal to
the set of continuous transitions with concession in the time span, as a continuous
transition is fireable if and only if it has concession. We can compute the set fireablecont

σ,τ
by starting with all continuous transitions and then removing those for which there
exists a τ′ where the transition is not fireable in the intermediate state σ′. We disregard
the evolution of clocks in this definition, even though they would also change in the
time span. This can be neglected in the above definition since the clock values do
not influence whether a continuous transition is enabled or not. enabling status of
continuous transitions does not depend on the clock values. Nevertheless, we need to
include this later in order to describe the overall evolution of states in a time span, so
we now define the set of discrete transition with concession in the time interval.

Definition 3.17. Discrete Transitions with Concession in Time Span
Let H be a HPnG, σ ∈ ΣH a state of H, and τ ∈ R>0. We write concdisc

σ,τ for
the set of discrete transitions with concession in the time span of duration τ

starting in σ. starting from σ. Formally, we have t ∈ concdisc
σ,τ ⊆ T cont iff for all

σ′ = (m, fireτ′

fireablecont
σ,τ

(x), c, l) with τ′ ∈ (0, τ), we have concσ′(t).

The intermediate states σ′ are defined in the same way as in Definition 3.16. Again,
we can disregard the evolution of the clocks as the concession of discrete transition is
also independent of the clocks. The following definition summarizes the conditions we
require to hold in order to let τ time units pass from a state. As was described at the
beginning of this paragraph, this includes making sure that no other semantic rule is
applicable. Additionally, we add a condition to ensure the well-definedness of the sets
fireablecont

σ,τ and concdisc
σ,τ .

59

3. Hybrid Petri Nets with General Firings

Definition 3.18. Safe Time Span
Let H be a HPnG and σ ∈ ΣH a state of H.

Then, we say that τ ∈ R>0 is a safe time span from σ inH if for all τ′ ∈ (0, τ) and cor-
responding intermediate states σ′ = (m, x′, c′, l) = (m, fireτ′

fireablecont
σ,τ

(x), evolveτ′

concdisc
σ,τ
(c), l)

all of the following conditions hold:

1. ¬fireableσ′(t) for all t ∈ T disc,

2. x′(p) = 0 =⇒ driftσ′(p) = 0∨ (driftσ′(p) > 0∧ ¬restrσ′(p)) for all p ∈ P cont,

3. x′(p) = ΦPub(p) =⇒ driftσ′(p) = 0 ∨ (driftσ′(p) < 0 ∧ ¬restrσ′(p)) for all
p ∈ P cont,

4. ¬fireableσ′(t) =⇒ l(t)(p) = 1 for all t ∈ T cont, p ∈ P cont, and

5. for all τ′′ ∈ (0, τ) and corresponding intermediate states σ′′ = (m, x′′, c′′, l) =
(m, fireτ′′

fireablecont
σ,τ

(x), evolveτ′′

concdisc
σ,τ
(c), l) we have

a) fireableσ′′(t) = fireableσ′(t) for all t ∈ T cont and

b) concσ′′(t) = concσ′(t) for all t ∈ T disc.

We define safeσ(τ) to hold if τ is a safe time span from σ.

The first four conditions ensure that none of the other semantic rules become applicable
within τ time units from σ. They are equivalent to the negation of the premises of
every semantic rule presented above. More precisely, the first condition states that no
discrete transition becomes fireable. The second one expresses that if a place p is empty,
it must either have a drift of zero, or a drift in the right direction and set no restrictions.
This makes sure that no rate adaption step is necessary, because we have to update
the rates as soon as the drift of p goes in the wrong direction. We have to reset the
rates if the drift of p goes in the right direction, but p still places restrictions. Condition
three is the dual requirement for places at the upper boundary. The fourth condition
guarantees that the list of restrictions is maintained correctly, i.e., that the application
of the restriction rule is not required.

Finally, the fifth condition guarantees that the sets fireablecont
σ,τ and concdisc

σ,τ are stable
in the sense that they do not change within (0, τ). This is done by making sure that
neither the enabling status of continuous transitions nor the concession status of discrete
transitions changes, but remains the same for all intermediate states σ′ and σ′′.

The time interval (0, τ) we are considering is open instead of closed. This is because, for
example, if a discrete transition has concession until time 0 and again from time τ on,
it still makes sense to consider τ to be safe. We also want to allow discrete transitions
to become fireable at the end of the interval. Therefore, we only require the properties

60

3.2. Semantics of HPnGs

to hold for intermediate states within (0, τ).

We can infer some properties of the intermediate states in a safe time span. In particular,
Theorem 3.2 states that the levels of all continuous places are guaranteed to remain
within their boundaries.

Theorem 3.2. Properties of a Safe Time Span
Let H be a HPnG, σ ∈ ΣH a state of H, and τ ∈ R>0 a safe time span. For
τ′ ∈ (0, τ) and the corresponding intermediate state σ′ = (m, x′, c′, l) where x′ =
fireτ′

fireablecont
σ′ ,τ′

(x) and c′ = evolveτ′

concdisc
σ′ ,τ′

(c), it holds that 0 ≤ x′(p) ≤ ΦPub(p) for all

p ∈ P cont.

Proof. Since τ is a safe time span, we know that x′(p) = 0 =⇒ driftσ′(p) ≥ 0 and
dually that x′(p) = ΦPub(p) =⇒ driftσ′(p) ≤ 0. We also know that fireτ′

fireablecont
σ′ ,τ′

(x)

updates the fluid levels of continuous places according to the current drift. Since the
drift is always in the right direction, we know that if x′(p) = 0, the level of place p can
only rise and dually if x′(p) = ΦPub(p), the level can only fall.

Now, we can give the rule for a time step.

τ ∈ R>0 safeσ(τ)

(m, x, c, l) τ
=⇒ (m, fireτ

fireablecont
σ,τ

(x), evolveτ
concdisc

σ,τ
(c), l)

time

If τ is a safe time span from σ, the continuous markings evolve as specified by by
Definition 3.9 and the clocks corresponding to discrete transitions are decreased as
specified by Definition 3.10. As the premise of this rule explicitly ensures the other
rules to be non-applicable, there is no need for resolving conflicts including this rule.

Paths of HPnGs. The seven inference rules presented above give a complete character-
ization of the behavior of HPnGs. As for SHAs, we now define execution steps and
paths of HPnGs.

Definition 3.19. Operational Semantics of HPnGs
Let H be a HPnG. The semantics of H is given by the rules for firing deterministic
transitions, rate adaption, and the passing of time. We can take an execution step,

61

3. Hybrid Petri Nets with General Firings

denoted by =⇒, by applying one of these rules, i.e., we define

=⇒ =
⋃

t∈T disc

fire t
===⇒

∪
⋃

p∈P cont

reduce full p
=======⇒ ∪ reduce empty p

=========⇒ ∪ reset full p
======⇒ ∪ reset full p

======⇒

∪
⋃

t∈T cont,p∈P cont

reset t, p
=====⇒

∪
⋃

τ∈R>0

τ
=⇒

A path of H is an infinite sequence σ0, σ1, σ2, . . . of states of H such that

σ0 =⇒ σ1 =⇒ σ2 =⇒ . . .

and σ0 is an initial state. Under abuse of notation, we also write σ =⇒ σ′ if σ′ is
reachable from σ taking several execution steps.

Example 3.8. Operational Semantics of HPnGs
We again consider the HPnGH from Example 3.1 depicted in Figure 3.2. Figure 3.12
shows the first four states of a path of H, starting in the initial state discussed in
Example 3.2 and depicted in Figure 3.4. The prefix of the path is formally given by

σ0
τ = 1

===⇒ σ1
fire ton====⇒ σ2

τ = 2
===⇒ σ3.

with the states σi as specified in Table 3.1. In the first step, one time unit passes. The
level of the barrel is decreased by one as the transition modeling the leak is fireable
and fires with a rate of one liter per hour. Also, the clocks of the transitions with
concession are decreased by one. Note that toff does not have concession because
the weight of the connecting arc is two, so it requires two tokens in prainmaker to
have concession. Therefore, in σ1, the clock of ton is zero. The transition fires and
moves another token to prainmaker. Additionally, the clock value for ton is resampled,
set to four and we end up in σ2.

Then, we let two time units pass. Since the transition train is now fireable as there
are two tokens in prainmaker, twenty liters are added to the barrel, while the leak
removes two, so the level of pbarr in σ3 is 67. Notice that now, the clock of toff is zero,
so the transition fires, and we could not have taken a longer time step.

62

3.2. Semantics of HPnGs

49

pbarr

100train
0

prainmakerton
0

toff

2

tleak

1
tirr

0

0pplant 60

pcontrol

tremove3

tyes

0

pchoice

tno
0

trandom4

2

2

(a) State θ1 reached from θ0 by letting one time unit pass.

49

pbarr

100train
0

prainmakerton
3

toff

2

tleak

1
tirr

0

0pplant 60

pcontrol

tremove3

tyes

0

pchoice

tno
0

trandom4

2

2

(b) State θ2 reached from θ1 by the firing of transition ton.

67

pbarr

100train
0

prainmakerton
1

toff

0

tleak

1
tirr

0

0pplant 60

pcontrol

tremove1

tyes

0

pchoice

tno
0

trandom2

2

2

(c) State θ3 reached from θ2 by letting two time units pass.

Figure 3.12.: Path of the HPnG H as discussed in Example 3.8.

63

3. Hybrid Petri Nets with General Firings

State Discrete Markings m Fluid Markings x Clocks c Restrictions l

σ0 prainmaker 7→ 1

pcontrol 7→ 1

pchoice 7→ 0

pbarr 7→ 50

pplant 7→ 0

tremove 7→ 4

tyes 7→ 0

tno 7→ 0

ton 7→ 1

toff 7→ 2

trandom 7→ 5

1

σ1 prainmaker 7→ 1

pcontrol 7→ 1

pchoice 7→ 0

pbarr 7→ 49

pplant 7→ 0

tremove 7→ 3

tyes 7→ 0

tno 7→ 0

ton 7→ 0

toff 7→ 2

trandom 7→ 4

1

σ2 prainmaker 7→ 2

pcontrol 7→ 1

pchoice 7→ 0

pbarr 7→ 49

pplant 7→ 0

tremove 7→ 3

tyes 7→ 0

tno 7→ 0

ton 7→ 3

toff 7→ 2

trandom 7→ 4

1

σ3 prainmaker 7→ 2

pcontrol 7→ 1

pchoice 7→ 0

pbarr 7→ 67

pplant 7→ 0

tremove 7→ 1

tyes 7→ 0

tno 7→ 0

ton 7→ 1

toff 7→ 0

trandom 7→ 2

1

Table 3.1.: The prefix of a path of H introduced in Example 3.1. Updated values are highlighted.
The execution steps leading from σi to σi+1 are discussed in Example 3.8.

64

4. Transforming HPnGs to SHAs

In the previous chapter, we saw that Petri nets are very illustrative: Their components
can be presented in a simple and clear manner and the structure of the modeled system
is easily recognizable. However, the analyzing techniques for hybrid automata are more
evolved. For example, the analysis of reachability probabilities for a specific set of states
is an active area of research that has produced several advanced tools [Alt15; CÁS12;
Fre+11]. To profit from these results, one could either adapt the proposed techniques to
HPnGs [PR17; HR19; Hül+21], or define a transformation from HPnGs to SHAs [Pil+20].
The latter has the strong advantage that all available methods are applicable without
further ado, whereas the former requires an individual treatment of each method. In
this chapter, we define a transformation of HPnGs to SHAs, thus profiting from both
the visual simplicity of HPnGs and the advanced analyzing techniques of SHAs.

Related Work. A precursor of transforming HPnGs to SHAs is given by transforming
their non-stochastic variants. An early algorithmic transformation of hybrid Petri nets
to hybrid automata was given by Allam and Alla, though lacking a proof of correctness
[AA98; DA01]. Based on this, a structural transformation was defined and proven
to be correct by Ghomri and Alla [GA18]. Further, there exists a transformation of
generalized stochastic Petri nets to Markov automata [Eis+13], which are essentially
non-deterministic continuous-time Markov chains.

A transformation of HPnGs to a subclass of SHAs was presented and implemented
by Pilch et al. [Pil+20]. Their approach uses a symbolic representation of paths of the
HPnG up to a given time bound and therefore produces an SHA that models bounded
executions of the HPnG. We aim to avoid symbolic computations and instead give a
direct transformation of HPnGs to SHAs that can simulate infinite paths.

Possible Approaches and Considerations. A fundamental difference between SHAs and
HPnGs is in their underlying assumptions made about time. If an invariant is violated
and no jump is possible, time can stop in an SHA. This is not possible in HPnGs: There
are no invariants, and time can always pass. Arising conflicts that would violate given
specifications, such as the upper bound of a continuous place, are then solved, for
example, by rate adaption. In the transformed SHA, we therefore need to ensure that
if an invariant is violated, it is possible to move to another location to guarantee that

65

4. Transforming HPnGs to SHAs

the behavior of the HPnG is accurately modeled. Additionally, we also want to avoid
unrealistic behavior as discussed in Section 2.2. This correlates with the point made
before, as we have to ensure that timelocks and Zeno behavior are excluded.

When trying to define a transformation of HPnGs, the first question that arises is
how one can model the places of a HPnG. Since there are infinitely many possible
configurations for the number of tokens and the amount of fluid in the places, modeling
these assignments with locations would require infinitely many locations. Pilch et al.
model the number of discrete tokens using a finite number of locations and consequently
only consider bounded executions of the HPnG [Pil+20]. We want to model the entire
behavior of a HPnG, suggesting that discrete and continuous places should be modeled
using variables specifying the number of tokens and the amount of fluid.

With the markings stored in variables, this raises the question of how we can model the
firing of transitions. For discrete transitions, the answer is quite straightforward. We can
define a jump that manipulates the marking in the same way as the transition, guarded
by conditions that make sure that the jump is enabled if and only if the transition
has concession. Then, the corresponding clock is assigned a suitable probability
distribution, making the jump fireable exactly when the transition is fireable. The firing
of continuous transitions, however, cannot be modeled using discrete jumps because
they continuously move fluid between places. Thus, we need the corresponding
variables to evolve continuously. To realize this, we make use of the continuous
component of SHAs and define the derivatives of a location in such a way that it
matches the evolution of each place’s level in the HPnG.

Conversely, one must also consider what the locations of the SHA should represent. In
general, locations can be used to encode different evolutions of variables by assigning
different activities per location. Therefore, it would be conceivable to let a location
reflect whether a continuous transition is enabled or not, since this has an effect on
the evolution of the variables modeling its neighboring places. However, we can also
simply describe the evolution of the fluid held by a place via its drift, which can be
calculated from the firing rates of neighboring transitions.

Another possibility would be to use locations to translate the rate adaption algorithm. In
this scenario, each continuous place p is modeled using three locations: One location is
representing that the place is within its boundaries and we are not in the process of rate
adaption, meaning that the place currently does not restrict any transitions. Another
location represents p being empty and restricting transitions. The third location dually
represents p being full and restricting transitions. Even though this approach lets us
derive the current status of a place in the rate adaption algorithm, there are no decisive
advantages over modeling everything in one location. On the contrary, this approach
requires several additional jumps that can otherwise be avoided. We ultimately came
to the conclusion that there is no need for multiple locations to properly model the

66

behavior of the HPnG.

One could argue that a disadvantage of modeling everything in one location is the loss
of the graphical structure of the HPnG, making the automaton harder to understand,
as will be evident in the presented examples. Nevertheless, we decided to go with
this approach since the purpose of this transformation is the (automatic) analysis, and
human readability is not the main focus.

As was already mentioned several times, we want to define the transformation in a
compositional way. For this, we have to decide how to divide the HPnG into smaller
parts in a reasonable way. Each part will then be transformed separately and the
resulting sub-SHAs will be composed. One approach is to translate each place and
transition separately. This would give us a large number of sub-SHAs, which makes
the composition more complex than necessary. Instead, it makes sense to bundle some
parts. The other extreme would be to translate everything at once without requiring any
composition at all. In this case, the resulting definition would be hard to automatize,
very extensive, affecting readability and making it difficult to understand. Consequently,
it also makes sense to split some parts.

Therefore, we now discuss which parts we should consider separately. At a fairly early
stage, we came to the conclusion that each discrete fragment can be bundled up and
translated at once. This is mainly because we can model their behavior by adding one
jump per transition, which is a manageable number. For the continuous part, we have
to include the rate adaption algorithm. This requires several jumps per continuous
place, as we will see later, and is therefore more advanced than the discrete part. As
a consequence, we decided not to transform the continuous part at once, but split it
further. Now, we could either consider each place or each transition separately. Recall
that we want to model the level of each place in a variable. For the second option, this
variable would have to be controlled by several SHAs corresponding to continuous
transitions. However, this can be avoided when defining one SHA per place and we
concluded that it is best to translate each continuous place separately.

Our Approach. In the transformation defined in this thesis, each discrete fragment is
translated into one location. The firing of transitions is modeled by taking a jump that
modifies the markings accordingly. The intrinsic handling of clocks in SHAs will be
used to model the clocks in HPnGs. Additionally, each continuous place is transformed
into one separate location. All jumps are selfloops and model the rate adaption and
maintain the list of restrictions. For urgent jumps, we will use Dirac distributions δa for
a ∈ R≥0, making sure that the jump is taken as soon as it becomes enabled. Finally, we
compose all sub-SHAs to obtain an SHA that is semantically equivalent to the HPnG.
Since all sub-SHAs are only made of one location, so is the composed SHA, and there
is no blow-up.

67

4. Transforming HPnGs to SHAs

Note that we do not need label synchronization in this setting. Instead, the sub-SHAs
communicate through shared variables that encode the restrictions set on the transitions
by the places, which influence the actual firing rate of the transitions and thereby the
drift of each place.

Throughout the chapter, we will translate several of the defined predicates in Chap-
ter 3 to the transformation framework. We start with defining the set of variables in
Section 4.1. In Section 4.2, we define the transformation of discrete fragments and
continue with the transformation of continuous places in Section 4.3. We combine these
two into a compositional transformation of HPnGs to SHAs in Section 4.4. A proof of
correctness via bisimulation is provided in Section 4.5.

4.1. Preliminary Definitions

For the remainder of this chapter, let H = (P , T ,A, M0, Φ) be a HPnG. From H, we
want to obtain an SHA AH simulating the behavior of H. As elaborated above, we
will split H into smaller parts and transform them separately. Each sub-SHA will be
defined over the same set of variables defined in what follows.

Definition 4.1. Variable and Valuation Set for HPnGs
Given a HPnG H = (P , T ,A, M0, Φ), we define VarH = M ∪ X ∪ L with

• M =
{

mp
∣∣ p ∈ Pdisc},

• X =
{

xp
∣∣ p ∈ P cont}, and

• L =
{

lt,p
∣∣ p ∈ P cont, t ∈ T cont}.

We denote by VH the set of valuations over VarH.

For each place p of a HPnG H, we define a variable mp or xp, depending on the
type of the place, that represents the current marking from a state (m, x, c, l) of H .
Furthermore, we save the list of restrictions using variables, i.e., the entry l(t)(p) for a
transition t and a place p corresponds to the variable lt,p. Note that the clocks, while
being a part of the state of H (see Definition 3.4), do not have to be explicitly modeled
here. Instead, we make use of the clocks assigned to the labels of an SHA.

We now translate some predicates that were introduced in Section 3.2. The idea is
to express the same properties using a valuation of the variable set VH. We start by
defining when a transition has concession with respect to such a valuation.

68

4.1. Preliminary Definitions

Definition 4.2. Concession
Let H be a HPnG and ν ∈ VH a valuation of the corresponding variables. A
transition t ∈ T has concession in ν iff

1. the discrete places connected to t via a discrete arc contain enough tokens,
i.e.,

∀p ∈ Idisc(t) : ν(mp) ≥ ΦAw 〈p, t〉,

2. the discrete places connected via an inhibitor arc do not contain more tokens
than allowed, i.e.,

∀p ∈ (I inh(t) ∩ Pdisc) : ν(mp) < ΦAw 〈p, t〉,

3. the continuous places connected via an inhibitor arc do not contain more
fluid than allowed, i.e.,

∀p ∈ (I inh(t) ∩ P cont) : ν(xp) < ΦAw 〈p, t〉,

4. the discrete places connected via an test arc do not violate the testing condi-
tion, i.e.,

∀p ∈ (I test(t) ∩ Pdisc) : ν(mp) ≥ ΦAw 〈p, t〉, and

5. the continuous places connected via an test arc do not violate the testing
condition, i.e.,

∀p ∈ (I test(t) ∩ P cont) : ν(xp) ≥ ΦAw 〈p, t〉.

We define concν(t) to hold iff t has concession in ν.

This exactly corresponds to Definition 3.6, except that we compare ν(mp) and ν(xp)

instead of m(p) and x(p) to the parameters. We will use the predicate concν(t) as
guard for the jump modeling the firing of a discrete transition t. The effect of the jump,
i.e., the movement of tokens, should be analogous to what was defined for HPnGs in
Definition 3.9. In contrast to this, the firing of continuous transitions is handled by
activities assigned to locations. Thus, we define the following predicate defining the
effect of firing only for discrete transitions.

Definition 4.3. Transformed Valuation By Firing of Discrete Transitions
Let H be a HPnG, t ∈ T disc, and ν ∈ VH a valuation such that t has concession
in ν, i.e., concν(t) holds. We define the transformed valuation by firing of t as

69

4. Transforming HPnGs to SHAs

fireν(t) ∈ VH, where

fireν(t)(y) =


ν(mp)−ΦAw 〈p, t〉 if y = mp for p ∈ Idisc(t)

ν(mp) + ΦAw 〈t, p〉 if y = mp for p ∈ Odisc(t)

ν(y) else

for all y ∈ VarH.

Again, this exactly corresponds to Definition 3.9 with the difference that the markings
are taken from a valuation ν over VarH instead of a state σ of the HPnG.

4.2. Transforming Discrete Fragments

As defined in Definition 3.2, a discrete fragment D is made of

• a set of discrete places D ⊆ Pdisc,

• the set of discrete transitions T D connected to these places, and

• the set of arcs AD that are either discrete and within the fragment, or inhibitor and
test arcs both within the fragment and connecting transitions from the fragment
to continuous places.

We use a single location loc to model one discrete fragment. All places in D are modeled
by variables M that store the current number of tokens for each place, as defined in
Definition 4.1. The firing of a transition t is then modeled as a jump jumpt from loc to
loc whose guard ensures that the transition has concession, and the effect describes
how exactly the tokens are moved.

In the HPnG H, the firing time of a discrete transition t ∈ T disc is either fixed by the
parameter ΦTft (t) if t is deterministic or sampled from the probability distribution ΦTgt(t)
if t is general. The firing time of a deterministic transition can also be expressed as
a probability distribution, more precisely as the Dirac distribution δΦTft (t)

. Since jumpt

models the firing of t, we assign the distributions to jumpt via labels. Consequently, the
firing time of t is then equal to the enabling duration of jumpt. In the following formal
definition, we omit the jump identifiers and implicitly assign each jump a unique value.

The semantics of the arcs is already reflected in the above considerations and does not
have to be translated separately. More precisely, discrete arcs specify how many tokens
are moved by the transitions and therefore are contained in the effect of each jumpt.
The inhibitor and test arcs add conditions to the concession status of transitions, which
are part of the guard of the jumps.

70

4.2. Transforming Discrete Fragments

Definition 4.4. Transforming Discrete Fragments
Let H = (P , T ,A, M0, Φ) be a HPnG and D be a discrete fragment of H with
transitions T D and arcs AD. Then, we define a corresponding SHA AHD as

AHD = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

with the following components:

• Loc = {loc}.

• Var = VarH with Con =
{

mp ∈ M
∣∣ p ∈ D

}
and NCon = Var\Con.

• Inv(loc) = VH.

• Init(loc) =
{

ν ∈ VH
∣∣ ∀mp ∈ Con. ν(mp) = m0(p)

}
.

• Edge =
{

jumpt

∣∣ t ∈ T D
}

where jumpt = (loc, µ, loc) with

µ =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ concν(t) ∧ ν′ = fireν(t)
}

.

• Act(loc) is the set of activities that are solutions of ṁp = 0 for all mp ∈ Con.

• Lab =
{

at
∣∣ t ∈ T D

}
.

• Proc(jumpt) = at for all t ∈ T D.

• For all ν ∈ VH,

– Dur(at, (loc, ν)) = ΦTgt(t) for t ∈ T gen and

– Dur(at, (loc, ν)) = δΦTft (t)
for t ∈ T det.

• Wgt(jumpt) = ΦTp (t).

As already indicated above, the SHA AHD is made of one location loc. The SHA for a
discrete fragment D controls exactly the variables corresponding to the markings of
places in D. All other variables from VarH are non-controlled. The only condition that
has to hold for the marking of a discrete place is that it is a natural number, which is
implicitly ensured by the definition of the initial valuation and the jumps. Thus, we
do not impose any invariant on the controlled variables. In the syntax of HPnGs, the
marking m0 gives the initial tokens contained in each place. Accordingly, the set of
initial valuations contains the valuations where mp is equal to the initial marking m0(p)
of place p. For each discrete transition t ∈ T D, the jump jumpt models the firing of t.
The jump is enabled if t has concession. In accordance with the notion of transitions
being fireable from the semantics of HPnGs (Definition 3.7), jumpt is fireable if t has
concession and the corresponding clock is zero. We will at a later point give a formal

71

4. Transforming HPnGs to SHAs

50

pbarr

100train
10

prainmakerton
exp

toff
exp

tleak

1
tirr

20

0pplant 60

pcontrol

tremove4

tyes

0

pchoice

tno
0

trandomU[1,10]

2

2

D1

D2

Figure 4.1.: The HPnG H modeling an irrigation system as introduced in Example 3.1 and
further discussed in the course of Chapter 3.

proof of this equivalence. After taking jumpt, the new valuation is given by fireν(t)
as defined in Definition 4.3. Since the markings of the discrete places only evolve by
the firing of deterministic transitions, the activities for the controlled variables do not
modify the controlled variables. Consequently, their derivative is set to zero.

For the stochastic part of the SHA, we assign a unique label to each jump (and thus
indirectly to each transition). Then, the duration of a label is set to either ΦTgt(t) if the
corresponding transition is general or δΦTft (t)

if the corresponding transition is deter-

ministic. The weights of the jumps are set to the priority ΦTp (t) of the corresponding
transition. As a consequence, a conflict between jumps in AHD is resolved as the conflict
between the corresponding transitions in the HPnG (Section 3.2.1). More precisely, the
probability of taking jumpt in a state σ ∈ ΣH of H is given by

Wgt(jumpt)

∑
jumpt′∈Edge,fireableϑ(jumpt′)

Wgt(jumpt′)
=

ΦTp (t)

∑
t′∈T disc,fireableσ(t′)

ΦTp (t
′)

where ϑ ∈ ΘA
H

is a state of the result of the transformation corresponding to σ.
The exact translation of states will be given in Section 4.5. This equality holds as
Wgt(jumpt) = ΦTp (t) by definition and the notion of being fireable coincides for H and
the result of the transformation, which will be proven later.

Throughout this chapter, we are going to gradually transform the HPnG H modeling
an irrigation system discussed in Chapter 3, depicted again in Figure 4.1. We start with
transforming both discrete fragments.

72

4.2. Transforming Discrete Fragments

loc

��� jumpton
aton ∼ exp 1
true→ mprainmaker += 1

��� jumptoff
atoff ∼ exp 1
mprainmaker ≥ 2→ mprainmaker −= 2

Invariant
true

Activities
ṁprainmaker = 0

mprainmaker := 1

Figure 4.2.: Depiction of the SHA AHD1
discussed in Example 4.1. We only have jumps from

loc to loc. For better readability, we therefore denote the probability distribution,
the weight, as well as the guard and the effect of each jump within the location,
symbolized by ���.

Example 4.1. Transforming Discrete Fragments
Figure 4.1 depicts the HPnG H known from Chapter 3. H has two discrete
fragments D1 and D2. We start by transforming D1, which only contains the place
prainmaker and the transitions ton and toff. As defined in Definition 4.1, the set of
variables is given by VarH = M ∪ X ∪ L with

• M =
{

mprainmaker , mpcontrol , mpchoice

}
,

• X =
{

xpbarr

}
, and

• L =
{

ltrain,pbarr , ltleak,pbarr , ltirr,pbarr , ltrain,pplant , ltleak,pplant , ltirr,pplant

}
.

Adhering to Definition 4.4, the SHA corresponding to D1 is given by

AHD1
= (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

where

• Loc = {loc}.

• Var = VarH with Con =
{

mprainmaker

}
and NCon = VarH\Con.

• Inv(loc) = VH.

• Init(loc) =
{

ν ∈ VH
∣∣ ν(mprainmaker) = m0(prainmaker) = 1

}
.

73

4. Transforming HPnGs to SHAs

loc

��� jumptrandom
atrandom ∼ U[1,10] 1
true→ mpchoice += 1

��� jumptyes
atyes ∼ δ0 1
mpchoice ≥ 1→ mpchoice −= 1, mpcontrol += 1

��� jumptno
atno ∼ δ0 1
mpchoice ≥ 1→ mpchoice −= 1

��� jumptremove
atremove ∼ δ3 1
mpcontrol ≥ 0→ mpchoice += 1

Invariant
true

Activities
ṁpcontrol = 0
ṁpchoice = 0

mpcontrol := 1

mpchoice := 0

Figure 4.3.: Depiction of the SHA AHD2
discussed in Example 4.1.

• Edge =
{

jumpton
, jumptoff

}
where jumpton

= (loc, µ1, loc) with

µ1 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ concν(ton) ∧ ν′ = fireν(ton)
}

=
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν′ = ν[mprainmaker += 1]
}

and jumptoff
= (loc, µ2, loc) with

µ2 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ concν(toff) ∧ ν′ = fireν(toff)
}

=
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν(mprainmaker) ≥ 2∧ ν′ = ν[mprainmaker −= 2]
}

.

• Act(loc) is the set of activities that are solutions of

ṁprainmaker = 0.

• Lab =
{

aton , atoff

}
.

• Proc(jumpton
) = aton and Proc(jumptoff

) = atoff .

74

4.2. Transforming Discrete Fragments

• Dur(aton , (loc, ν)) = ΦTgt(aton) = exp and Dur(atoff , (loc, ν)) = ΦTgt(atoff) = exp
for ν ∈ VH.

• Wgt(jumpton
) = ΦTp (ton) = 1 and Wgt(jumptoff

) = ΦTp (toff) = 1.

A visual representation of AHD1
is given in Figure 4.2. As can be seen, the only loca-

tion loc controls the variable mprainmaker modeling the marking of the place prainmaker.
The initial valuation makes sure that we can only start in a state where the marking
is one, as defined in the initial marking m0(prainmaker) = 1.

For both transitions ton and toff from the discrete fragment D1 there is one jump
representing the firing of the transition. We take a closer look at toff. In the HPnG,
the transition only has an incoming place, namely prainmaker. The connected arc
〈prainmaker, toff〉 has a weight of one. Therefore, toff has concession if there is at least
one token in prainmaker. This is realized in the guard ν(mprainmaker) ≥ 1. When the
transition fires, it removes one token from prainmaker. This exactly is expressed in
the effect of jumptoff

by requiring that ν′ = ν[mprainmaker −= 1]. The activities do not
modify mprainmaker .

The probabilistic components basically assign the exponential distribution exp to
both jumps jumpton

and jumptoff
. As a consequence, the enabling duration of both

transitions is exponentially distributed, corresponding to the firing times in H. The
weight of the jumps also matches the weight of the transitions.

The second discrete fragment D2 contains the places pcontrol, pchoice and the transi-
tions trandom, tyes, tno, and tremove. The SHA corresponding to D2 is given by

AHD2
= (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

where

• Loc = {loc}.

• Var = VarH with Con = {mpcontrol , mpchoice} and NCon = Var\Con.

• Inv(loc) = VH.

• Init(loc) =
{

ν ∈ VH
∣∣ ν(mpcontrol) = 1∧ ν(mpchoice) = 0

}
.

• Edge = {jumptrandom
, jumptyes

, jumptno
, jumptremove

} where jumptrandom
= (loc, µ1, loc)

with

µ1 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν′ = ν[mpchoice += 1]
}

,

jumptyes
= (loc, µ2, loc) with

µ2 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν(mpchoice) ≥ 1∧ ν′ = ν[mpchoice −= 1, mpcontrol += 1]
}

,

75

4. Transforming HPnGs to SHAs

jumptno
= (loc, µ3, loc) with

µ3 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν(mpchoice) ≥ 1∧ ν′ = ν[mpchoice −= 1]
}

, and

jumptremove
= (loc, µ4, loc) with

µ4 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν(mpcontrol) ≥ 1∧ ν′ = ν[mpchoice += 1]
}

.

• Act(loc) is the set of activities that are solutions of

ṁpcontrol = 0 and ṁpchoice = 0.

• Lab = {atrandom , atyes , atno , atremove}.

• Proc is given by

– Proc(jumptrandom
) = atrandom ,

– Proc(jumptyes
) = atyes ,

– Proc(jumptno
) = atno , and

– Proc(jumptremove
) = atremove .

• Dur is given by

– Dur(atrandom , (loc, ν)) = U[1,10],

– Dur(atyes , (loc, ν)) = δΦTft (tyes)
= δ0,

– Dur(atno , (loc, ν)) = δΦTft (tno)
= δ0, and

– Dur(atremove , (loc, ν)) = δΦTft (tremove)
= δ3

for ν ∈ VH.

• Wgt(jumptrandom
) = Wgt(jumptyes

) = Wgt(jumptno
) = Wgt(jumptremove

) = 1.

A visual representation of AHD2
is given in Figure 4.3.

4.3. Transforming Continuous Fragments

We proceed with transforming the continuous part of the HPnG. For this, we first
translate further relevant predicates from the semantics of HPnGs to the framework
of the transformation. We start with the actual firing rate of continuous transitions

76

4.3. Transforming Continuous Fragments

analogous to Definition 3.8.

Definition 4.5. Actual Firing Rate of Continuous Transitions
Let H be a HPnG and ν ∈ VH a valuation of the variables. We define the actual
firing rate of a continuous transition t ∈ T cont as rateν : T cont → R≥0 with

rateν(t) =

{
0 if ¬concν(t)

ΦTfr (t) ·min
{

ν(lt,p)
∣∣ p ∈ P cont} if concν(t)

In comparison to Definition 3.8, we use ν(lt,p) instead of l(t)(p) as before and addition-
ally distinguish between t having concession or not in contrast to t being fireable or not.
This does not make a difference since these notions coincide for continuous transitions
by definition.

For describing the evolution of the markings in continuous places, we define the drift
analogously to Definition 3.12. Again, both definitions coincide with the only difference
that the property is defined for a valuation over the variables VH rather than for a state
of H.

Definition 4.6. Drift of a Continuous Place
Let H be a HPnG and ν ∈ VH a valuation of the variables. The drift of the
continuous places P cont is defined as driftν : P cont → R, where

driftν(p) = ∑
ti∈Icont(p)

rateν(ti)− ∑
tj∈Ocont(P)

rateν(tj).

For translating the rate adaption, we define functions applying the changes to the list
of restrictions determined by the rate adaption algorithm analogous to Definitions 3.13
and 3.15. Also, we define a predicate expressing whether a place currently restricts a
transition as was done in Definition 3.14.

Definition 4.7. Rate Reduction
Let H be a HPnG, ν ∈ VH a valuation of the variables VarH, and p ∈ P cont a
continuous place. Further, let

in(p) = ∑
t∈Icont(p)

rateν(t)

to be the incoming flow to place p and

out(p) = ∑
t∈Ocont(p)

rateν(t)

the outgoing flow to place p.

77

4. Transforming HPnGs to SHAs

If ν(xp) = 0 and driftν(p) < 0, we let T =
{

t ∈ Ocont(p)
∣∣ concν(t)

}
be the outgoing

fireable transitions of p and define

reduceempty
p (ν) ∈ VH

to be

reduceempty
p (ν)(y) =

 in(p)
out(p) ·

current strongest restriction︷ ︸︸ ︷
min

{
ν(lt,p′)

∣∣ p′ ∈ P cont} if y = lt,p for t ∈ T

ν(y) else

for all y ∈ VarH.

Dually, if ν(xp) = ΦPub(p) and driftν(p) > 0, we let T =
{

t ∈ Icont(p)
∣∣ concν(t)

}
be

the incoming fireable transitions of p and define

reducefull
p (ν) ∈ VH

to be

reducefull
p (ν)(y) =

 out(p)
in(p) ·

current strongest restriction︷ ︸︸ ︷
min

{
ν(lt,p′)

∣∣ p′ ∈ P cont} if y = lt,p for t ∈ T

ν(y) else

for all y ∈ VarH.

Definition 4.8. Placing Restrictions
Let H be a HPnG, ν ∈ VH a valuation of the variables, and p ∈ P cont a continuous
place. We denote by restrν(p) whether p places restrictions on some transition in
ν, i.e., restrν(p) is true iff there exists a transition t ∈ Icont(p) ∪Ocont(p) such that
ν(lt,p) < 1.

Definition 4.9. Rate Reset
Let H be a HPnG, ν ∈ VH a valuation of the variables, and p ∈ P cont a continuous
place such that restrν(p) holds, i.e., p currently restricts at least one incoming or
outgoing transition.

If ν(xp) = 0 and driftν(p) > 0 or ν(xp) = ΦPub(p) and driftν(p) < 0, we define the
valuation with updated restriction list resetp(l) ∈ VH as

resetp(ν)(y) =

{
1 if y = lt,p for t ∈ T cont

ν(y) else

78

4.3. Transforming Continuous Fragments

for all y ∈ VarH.

As before, these definitions differ from the originals by referring to a valuation ν ∈ VH
instead of a state σ ∈ ΣH and require continuous transitions to have concession
instead of being fireable. Moreover, the reduce(p) and the reset(p) functions from
Definitions 3.13 and 3.15 updated only the list of restrictions, while the functions from
Definitions 4.7 and 4.9 update a full valuation, where all variables other than those
representing the list of restrictions are unchanged. Using the translated predicates, we
can define the SHA corresponding to a continuous place.

Definition 4.10. Transforming Continuous Places
Let H = (P , T ,A, M0, Φ) be a HPnG and p ∈ P cont a continuous place. Then, we
define a corresponding SHA AHp as

AHp = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

where

• Loc = {loc}.

• Var = VarH with Con =
{

xp
}
∪
{

lt,p ∈ L
∣∣ t ∈ T cont} and NCon = VarH\Con.

• Inv(loc) = VH.

• Init(loc) =
{

ν ∈ VH
∣∣ ν(xp) = x0(p) ∧ ∀t ∈ T cont. ν(lt,p) = 1

}
.

• Edge =
{

reducee, reduce f , resete, reset f , resetSingle
}

where

– reducee = (loc, µ1, loc) with

µ1 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xp) = 0∧ driftν(p) < 0

∧ ν′ = reduceempty
p (ν)

}
,

– reduce f = (loc, µ2, loc) with

µ2 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xp) = ΦPub(p) 6= 0∧ driftν(p) > 0

∧ ν′ = reducefull
p (ν)

}
,

– resete = (loc, µ3, loc) with

µ3 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xp) = 0∧ restrν(p) ∧ driftν(p) > 0

∧ ν′ = resetp(ν)

}
,

79

4. Transforming HPnGs to SHAs

– reset f = (loc, µ4, loc) with

µ4 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xp) = ΦPub(p) ∧ restrν(p) ∧ driftν(p) < 0

∧ ν′ = resetp(ν)

}
,

– resetSingle = (loc, µ5, loc) with

µ5 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ∃t ∈ T cont. ¬concν(t) ∧ ν(lt,p) < 1

∧ ν′ = ν[lt,p 7→ 1]

}
.

• Act(loc) is the set of activities that are solutions of

ẋp = driftν(p) and l̇t,p = 0 for all t ∈ T cont.

• Lab = {a1, a2, a3, a4, a5}.

• Proc is given by

– Proc(reducee) = a1,

– Proc(reduce f) = a2,

– Proc(resete) = a3,

– Proc(reset f) = a4, and

– Proc(resetSingle) = a5.

• For all ν ∈ VH, a ∈ Lab, we have Dur(a, (loc, ν)) = δ0.

• Wgt(e) = 1 for all e ∈ Edge.

As the SHA corresponding to a discrete fragment, the SHA AHp corresponding to a
continuous place p is made of a single location loc. The controlled variables are xp,
representing the marking of p and lt,p representing the restriction posed on t by p for
all continuous transitions t. Again, we do not place any conditions on the variables, i.e.,
the invariant contains all possible valuations. What we require from the variables is
that xp remains within its range, which is guaranteed by the rate adaption jumps, and
that the restriction list entries lt,p are between zero and one, which is also ensured by
definition. In the initial valuation, we require the marking for each continuous place to
be set to the initial value specified in M0 and the entries in the restriction list to be one,
as p does initially not restrict any transitions.

There are five jumps from loc to loc. The first four correspond to the four cases of the
rate adaption as defined in Algorithm 1. For example, the jump reducee is enabled

80

4.3. Transforming Continuous Fragments

when p is empty and has a negative drift, i.e., ν(xp) = 0 and driftν(p) < 0. This is
equivalent to the conditions of the first branch of Algorithm 1. When reducee is taken,
the valuation is updated according to Definition 4.7. This corresponds to the effects of
the body of the first if-branch in Algorithm 1. The jump reduce f describes the second
if-branch, i.e., the reduction of rates in case p is at an upper boundary. For resetting the
rates, jumps resete and reset f are defined. The fifth jump resetSingle makes sure that the
restriction list is correct: If there is a continuous transition t without concession that
is restricted by p, the corresponding variable lt,p is reset to one. In the activities, the
derivative of the variable xp is set to the drift of p, as the drift exactly describes how
much fluid flows in and out of a place. The list restriction variables are not modified
when time passes.

Since all defined jumps are urgent, meaning they have to be taken as soon as they are
enabled, they are all assigned the Dirac distribution δ0 via a unique label. If two jumps
become enabled at the same time, we probabilistically decide which jump to take. Since
we do not prefer any jump over another, we assign the same weight to each jump.

Example 4.2. Transforming Continuous Places
We are going to continue with transforming the HPnG H discussed in Chapter 3.
The discrete fragments were transformed in Example 4.1. There are two continuous
places pplant and pbarr. We start with constructing the SHA corresponding to pplant
as defined in Definition 4.10. We obtain

AHpplant
= (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

where

• Loc = {loc}.

• Var = VarH with Con =
{

xpplant

}
∪
{

lt,pplant ∈ L
∣∣∣ t ∈ T cont

}
=
{

xpplant , ltirr,pplant , ltrain,pplant , ltleak,pplant

}
and NCon = VarH\Con.

• Inv(loc) = VH.

• Init(loc) =
{

ν ∈ VH
∣∣∣ ν(xpplant) = x0(pplant) ∧ ∀t ∈ T cont. ν(lt,pplant) = 1

}
=
{

ν ∈ VH
∣∣∣ ν(xpplant) = 0∧ ν(lt,pplant) = 1

}
for t ∈ {tirr, train, tleak}.

• Edge =
{

reducee, reduce f , resete, reset f , resetSingle
}

where

81

4. Transforming HPnGs to SHAs

– reducee = (loc, µ1, loc) with

µ1 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpplant) = 0∧ driftν(pplant) < 0

∧ ν′ = reduceempty
pplant (ν)

}
= ∅,

– reduce f = (loc, µ2, loc) with

µ2 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpplant) = ΦPub(pplant) ∧ driftν(pplant) > 0

∧ ν′ = reducefull
pplant(ν)

}

=

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpplant) = 60∧ rateν(tirr) > 0

∧ ν′ = reducefull
pplant(ν)

}

– resete = (loc, µ3, loc) with

µ3 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpplant) = 0∧ restrν(pplant)

∧ driftν(pplant) > 0∧ ν′ = resetpplant
(ν)

}

=

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpplant) = 0∧ restrν(pplant)

∧ rateν(tirr) > 0∧ ν′ = resetpplant
(ν)

}
,

– reset f = (loc, µ4, loc) with

µ4 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpplant) = ΦPub(pplant) ∧ restrν(pplant)

∧ driftν(pplant) < 0∧ ν′ = resetpplant
(ν)

}
= ∅

– resetSingle = (loc, µ5, loc) with

µ5 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ∃t ∈ T cont. ¬concν(t) ∧ ν(lt,pplant) < 1

∧ ν′ = ν[lt,pplant 7→ 1]

}

=

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ¬concν(tirr) ∧ ν(ltirr,pplant) < 1

∧ ν′ = ν[ltirr,pplant 7→ 1]

}

• Act(loc) is the set of activities that are solutions of

ẋpplant = driftν(pplant) = rateν(tirr) and l̇t,pplant = 0

for t ∈ {tirr, train, tleak}.

82

4.3. Transforming Continuous Fragments

• Lab = {a1, a2, a3, a4, a5}.

• Proc is given by

– Proc(reducee) = a1,

– Proc(reduce f) = a2,

– Proc(resete) = a3,

– Proc(reset f) = a4, and

– Proc(resetSingle) = a5.

• Dur(a, (loc, ν)) = δ0 for all ν ∈ VH, a ∈ Lab.

• Wgt(e) = 1 for all e ∈ Edge.

A depiction of AHpplant
is given in Figure 4.4. We can see that the location loc controls

the variable xpplant for the level of pplant and one variable per continuous transition
for the restriction list entries, i.e., ltirr,pplant , ltrain,pplant , and ltleak,pplant . The restriction list
entries must be between zero and one. In the initial state, xpplant must be zero and
the place must not restrict any transition.

The jumps reducee and reset f both require that pplant has a negative drift. However,
since pplant does not have any outgoing transitions, the drift of this place cannot
be negative. For this reason, we can essentially disregard both reducee and reset f
and the set of valuation pairs is empty. The jump reduce f restricts the incoming
transition tirr if pplant is full, i.e., holds 60 liters, and has a positive drift. The drift is
equal to the firing rate of tirr, as this is the only transition connected to pplant. The
jump resete removes the restrictions set by pplant if the place is empty with a positive
drift and currently restricts at least one transition. Note that in a valid path of this
HPnG, this jump will never be taken as we only set restrictions when pplant is full.
The set of activities specify that the level of pplant changes according to the drift,
which is equal to the actual firing rate of tirr.

Every jump is urgent, so we assign Dirac distribution to every label. Additionally,
as motivated above, each jump is assigned a weight of one, because we do not
prefer one jump over another.

For the second continuous place pbarr, we obtain

AHpbarr
= (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt),

where

• Loc = {loc}

• Var = VarH with Con =
{

xpbarr , ltrain,pbarr , ltleak,pbarr , ltirr,pbarr

}
and NCon = Var\Con.

83

4. Transforming HPnGs to SHAs

• Inv(loc) = VH.

• Init(loc) =
{

ν ∈ VH
∣∣ ν(xpbarr) = 50∧ ν(lt,pbarr) = 1

}
for t ∈ {tirr, train, tleak}.

• Edge =
{

reducee, reduce f , resete, reset f , resetSingle
}

where

– reducee = (loc, µ1, loc) with

µ1 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpbarr) = 0∧ driftν(pbarr) < 0

∧ ν′ = reduceempty
pbarr (ν)

}
,

– reduce f = (loc, µ2, loc) with

µ2 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpbarr) = 100∧ driftν(pbarr) > 0

∧ ν′ = reducefull
pbarr(ν)

}
,

– resete = (loc, µ3, loc) with

µ3 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpbarr) = 0∧ restrν(pbarr)

∧ driftν(pbarr) > 0∧ ν′ = resetpbarr
(ν)

}
,

– reset f = (loc, µ4, loc) with

µ4 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ν(xpbarr) = 100∧ restrν(pbarr)

∧ driftν(pbarr) < 0∧ ν′ = resetpbarr
(ν)

}
,

– resetSingle = (loc, µ5, loc) with

µ5 =

{(
ν, ν′

)
∈ VH × VH

∣∣∣∣∣ ∃t ∈ T cont. ¬concν(t) ∧ ν(lt,pbarr) < 1

∧ ν′ = ν[lt,pbarr 7→ 1]

}
,

• Act(loc) is the set of activities that are solutions of

ẋpbarr = driftν(pbarr) and l̇t,pbarr = 0

for t ∈ {tirr, train, tleak}.

• Lab = {a1, a2, a3, a4, a5}

• Proc is given by

– Proc(reducee) = a1,

84

4.3. Transforming Continuous Fragments

– Proc(reduce f) = a2,

– Proc(resete) = a3,

– Proc(reset f) = a4, and

– Proc(resetSingle) = a5.

• Dur(a, (loc, ν)) = δ0 for all ν ∈ VH, a ∈ Lab.

• Wgt(e) = 1 for all e ∈ Edge.

A depiction of AHpbarr
is given in Figure 4.5. Note that, in contrast to pplant, the place

pbarr has both incoming and outgoing transitions. Thus the set of valuation pairs is
non-empty for every jump.

85

4. Transforming HPnGs to SHAs

loc

��� jumpreducee
areducee ∼ δ0 1
false

��� jumpreduce f
areduce f

∼ δ0 1
xpplant = 60∧ rateν(tirr) > 0

→ reducefull
pplant(ν)

��� jumpresete
aresete ∼ δ0 1
xpplant = 0∧ restrν(pplant) ∧ rateν(tirr) > 0

→ resetpplant
(ν)

��� jumpreset f
areset f ∼ δ0 1
false

��� jumpresetSingle aresetSingle ∼ δ0 1
¬concν(tirr) ∧ ν(ltirr,pplant) < 1

→ ltirr,pplant := 1

Invariant
true

Activities
ẋpplant = rateν(tirr)

l̇tirr,pplant = 0
l̇train,pplant = 0
l̇tleak,pplant = 0

xpplant := 0

ltirr,pplant := 1
ltrain,pplant := 1
ltleak,pplant := 1

Figure 4.4.: Depiction of the SHA AHpplant
discussed in Example 4.2.

86

4.3. Transforming Continuous Fragments

loc

��� jumpreducee
areducee ∼ δ0 1
xpbarr = 0∧ driftν(pbarr) < 0

→ reduceempty
pbarr (ν)

��� jumpreduce f
areduce f

∼ δ0 1
xpbarr = 100∧ driftν(pbarr) > 0

→ reducefull
pbarr(ν)

��� jumpresete
aresete ∼ δ0 1
xpbarr = 0∧ restrν(pbarr) ∧ driftν(pbarr) > 0

→ resetpbarr
(ν)

��� jumpreset f
areset f ∼ δ0 1
xpbarr = 100∧ restrν(pbarr) ∧ driftν(pbarr) < 0

→ resetpbarr
(ν)

��� jumpresetSingle aresetSingle ∼ δ0 1
∃t ∈ T cont. ¬concν(t) ∧ ν(lt,pbarr) < 1

→ lt,pbarr := 1

Invariant
true

Activities
ẋpbarr = driftν(pbarr)
l̇tirr,pbarr = 0
l̇train,pbarr = 0
l̇tleak,pbarr = 0

xpbarr := 50

ltirr,pbarr := 1
ltrain,pbarr := 1
ltleak,pbarr := 1

Figure 4.5.: Depiction of the SHA AHpbarr
discussed in Example 4.2.

87

4. Transforming HPnGs to SHAs

4.4. Compositional Transformation

In the main theorem of this thesis, we combine the findings and definitions from
the previous sections of this chapter. As discussed before, we obtain the complete
transformation of a HPnG by composing the transformations of all discrete fragments
and continuous places.

Definition 4.11. Transforming HPnGs to SHAs
Let H = (P , T ,A, M0, Φ) be a HPnG with discrete fragments D1, . . . ,Dn and
continuous places p1, p2, . . . , pm ∈ P cont. Then, we define the transformation of H
to an SHA AH as

AH = AHD1
‖ AHD2

‖ · · · ‖ AHDn
‖ AHp1

‖ AHp2
‖ · · · ‖ AHpm

.

Note that the composition as such is well defined as each variable is controlled by
exactly one of the composed SHAs. AH combines the behavior of all sub-SHAs. We
refer to AHD as the sub-SHA corresponding to a discrete fragment D and dually to AHp
as the sub-SHA corresponding to a continuous place p. Let H be a HPnG and AH the
transformed SHA with

AH = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt).

We now discuss how the components look in more detail.

• Since every sub-SHA is only made of one location, so is the composed SHA AH.
The location is again referred to as loc.

• The set of variables is VarH as defined in Definition 4.1.

• The set of invariants Inv(loc) contains all valuations ν ∈ VH.

• The initial condition Init(loc) contains a valuation ν ∈ VH iff

– ν(mp) = m0(p) for all p ∈ Pdisc,

– ν(xp) = x0(p) for all p ∈ P cont, and

– ν(lt,p) = 1 for all p ∈ P cont, t ∈ T cont.

• The set of jumps consists of one jump for every discrete transition and five jumps
for each continuous place:

Edge =
{

jumpt

∣∣∣ t ∈ T disc
}

⋃
p∈P cont

{
reducee@p, reduce f @p, resete@p, reset f @p, resetSingle@p

}

88

4.4. Compositional Transformation

We denote by @p from which sub-SHA a jump is originating. If this is clear, we
might omit the tag @p for better readability.

• The set of activities is given by the functions satisfying

– ṁp = 0 for all p ∈ Pdisc,

– ẋp = driftν(p) for all p ∈ P cont, and

– l̇t,p = 0 for all t ∈ T cont, p ∈ P cont.

• The set of labels is given by

Lab =
{

at

∣∣∣ t ∈ T disc
}
∪
{

ai@p
∣∣∣ i ∈ {1, . . . , 5}, p ∈ P cont

}
,

where we again write a@p for a label originating from the SHA corresponding to
p and omit the tag if it is unnecessary.

• Proc is the straightforward extension of the functions from the sub-SHAs.

• The durations are also assigned straightforward:

Dur(a, (loc, ν)) =


ΦTgt(t) if a = at for t ∈ T gen

δΦTft (t)
if a = at for t ∈ T det

δ0 else

for all ν ∈ VH and a ∈ Lab.

• The weights of the jumps are given by

Wgt(e) =

{
ΦTp (t) if e = jumpt

1 else

for e ∈ Edge.

Note that by assigning the weights in this way, we obtain the same extended method for
resolving conflicts as was described in Section 3.2.3. Should the HPnG rely on another
scheduler to solve its conflicts, this can be transformed to a scheduler solving conflicts
in the transformed HPnG in a straightforward manner.

Example 4.3. Transformation
We finish the transformation started in the previous examples Example 4.1 and
Example 4.2 and let

AH = AHD1
‖ AHD2

‖ AHpplant
‖ AHpbarr

.

More precisely, we have

AH = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt)

89

4. Transforming HPnGs to SHAs

where

• Loc = {loc}.

• The set of variables is VarH = M ∪ X ∪ L with

– M =
{

mprainmaker , mpcontrol , mpchoice

}
,

– X =
{

xpbarr , xpplant

}
, and

– L =
{

ltrain,pbarr , ltleak,pbarr , ltirr,pbarr , ltrain,pplant , ltleak,pplant , ltirr,pplant

}
as defined in Definition 4.1.

• Inv(loc) = VH.

• A valuation ν is initial, i.e., ν ∈ Init(loc), if it fulfills the following conditions:

– ν(mpcontrol) = ν(mprainmaker) = 1 and ν(mpchoice) = 0,

– ν(xpbarr) = 50, ν(xpplant) = 0, and

– ν(lt,pbarr) = ν(lt,pplant) = 1

for t ∈ {tirr, train, tleak}.

• The set of jumps consists of one jump for every discrete transition, originating
from the discrete fragments, and five jumps for each continuous place:

Edge

=
{

jumpton
, jumptoff

}
∪
{

jumptrandom
, jumptyes

, jumptno
, jumptremove

}
∪
{

reducee@pbarr, reduce f @pbarr, resete@pbarr, reset f @pbarr, resetSingle@pbarr
}

∪
{

reducee@pplant, reduce f @pplant, resete@pplant, reset f @pplant, resetSingle@pplant
}

The guards and effects of the jumps are exactly as in the sub-SHAs.

• The set of activity functions is given by the functions satisfying

– ṁprainmaker = ṁpcontrol = ṁpchoice = 0,

– ẋpbarr = driftν(pbarr) and ẋpplant = driftν(pplant), and

– l̇t,pbarr = l̇t,pplant = 0

for t ∈ {tirr, train, tleak}.

90

4.4. Compositional Transformation

• The set of labels is given by

Lab =
{

aton , atoff

}
∪
{

atrandom , atyes , atno , atremove

}
∪ {a1@pbarr, a2@pbarr, a3@pbarr, a4@pbarr, a5@pbarr}
∪
{

a1@pplant, a2@pplant, a3@pplant, a4@pplant, a5@pplant
}

• Proc is the straightforward extension of the functions from the sub-SHAs.

• Dur also combines the previous definitions, and we obtain:

Dur(a, (loc, ν)) =


exp if a = aton or a = atoff

U[1,10] if a = atrandom

δ3 if a = atremove

δ0 else

for ν ∈ VH and a ∈ Lab.

• The weights of the jumps are given by Wgt(e) = 1 for all e ∈ Edge.

A visualization of the SHA AH is given in Figure 4.6.

Comparing the original HPnG H to its transformation AH as in Example 4.3, we can
see that the structure of the system is lost, and it is difficult to recognize what the SHA
is simulating. Therefore, when modeling systems, it can be helpful to model a system
as a HPnG and then (in the best case automatically) transform the HPnG to an SHA.

Classifying the Transformed HPnG. Pilch et al. showed in [Pil+20] that bounded executions
of HPnGs can be modeled by SHAs of a certain subclass, namely by singular automata
extended with random clocks. Essentially, these are based on a restricted class of hybrid
automata, referred to as rectangular automata, with an additional mechanism for clocks.
A rectangular automaton is a hybrid automaton where the set of initial valuations,
invariants, activities, as well as guards and effects of jumps are described by rectangular
sets, meaning that each set can be written as a Cartesian product of intervals with
rational or infinite endpoints. In particular, this has the consequence that the conditions
placed on every variable may not depend on the valuation of other variables. If
additionally the set of activities for a location is given as a singleton for each variable,
i.e., the derivatives are constant, we speak of a singular automaton. For modeling discrete
transitions, Pilch et al. extend singular automata with random clocks to control when a
jump is fireable. This is very similar to the stochastic component of the SHAs defined
in this thesis.

91

4. Transforming HPnGs to SHAs

In the transformation given in Definition 4.11, the sets of initial valuations and invariants
are rectangular. However, the guards of the jump cannot be described by rectangular
sets. For example, consider the jump resete originating from the SHA of a continuous
place p. The guard of resete requires that restrν(p) holds, i.e., that there exists a transition
that is currently restricted by p. This cannot be expressed using rectangular sets, as the
allowed values for a restriction list variable depends on the current valuation of the
other restriction list variables. Therefore, the result of our transformation syntactically
does not fit into the category of singular automata extended with random clocks.

States of the Transformation. Now, we take a look at the state set of AH given by

ΘA
H
= {loc} × V × VLab.

A state is made of the location loc, a valuation over the variables from Definition 4.1 and
a valuation over all labels. For the latter, note that by definition of the transformation,
only the values for labels at for t ∈ T disc are potentially non-zero. All others are zero,
at least in every reachable valuation, as their corresponding jumps are urgent.

Example 4.4. States and Paths in Transformed HPnG
Consider the transformed HPnG AH from Example 4.3. In Example 3.8, we
discussed the prefix of a path in the HPnGH. Now, we will see that a corresponding
prefix exists in AH. We have that

ϑ0
τ = 1

===⇒ ϑ1
fire ton====⇒ ϑ2

τ = 2
===⇒ ϑ3,

where the formal definition of each state ϑi is given in Table 4.1. We again do not
explicitly give the activation function as it is unique for the location loc.

We start in ϑ0. This is an initial state, because the markings of the discrete and
continuous places match the values specified in Example 4.3. Further, the sampled
values for the clock are in the support of the corresponding distributions. A more
detailed argumentation was provided in Example 3.1. One can easily see that the
arguments transfer.

To get to ϑ1, we let one time unit pass. Note that this is possible because no
jump is fireable. Even though some clocks have run out, for example the one
corresponding to tyes, the respective jumps are not enabled and consequently not
fireable. Due to the time step, xpbarr is decreased by one, because the current drift
is minus one. This is because the rate of tleak is one, while all other continuous
transitions have a current rate of one. The level of pplant does not change as the
drift is zero. Additionally, the clocks of ton, trandom, and tremove decreased. This is
because the corresponding jumps are enabled.

In ϑ1, the jump ton is enabled and its clock has run out. Thus, we have to take the

92

4.4. Compositional Transformation

jump, which modifies the markings by increasing xprainmaker by one, i.e., adding a
token to prainmaker in ϑ2.

Then, we let two time units pass and reach ϑ3. The drift of pbarr now is nine, because
in contrast to ϑ0, the actual rate of the continuous transition train is ten. The clock
values are decreased by two, this time including the label for toff.

This path prefix coincides with the one discussed in Example 3.8, and we can
already forebode how the states of the two systems relate. We will give a formal
definition of this connection in the next section.

Possible Extensions. The transformation as defined above does not specifically require
a HPnG to be acyclic. Neither do we require a transition to have only one incoming
and one outgoing arc. Therefore, the transformation is directly applicable to cyclic
HPnGs as well as to HPnGs containing transitions with multiple incoming or outgoing
arcs. We imposed this restriction mainly because of the rate adaption, as we can not
guarantee termination for such HPnGs.

93

4. Transforming HPnGs to SHAs

loc

��� jumpton
aton ∼ exp 1
true→ mprainmaker += 1

��� jumptoff
atoff ∼ exp 1
mprainmaker ≥ 1→ mprainmaker −= 1

��� jumptrandom
atrandom ∼ U[1,10] 1
true→ mpchoice += 1

��� jumptyes
atyes ∼ δ0 1
mpchoice ≥ 1→ mpchoice −= 1, mpcontrol += 1

��� jumptno
atno ∼ δ0 1
mpchoice ≥ 1→ mpchoice −= 1

��� jumptremove
atremove ∼ δ3 1
mpcontrol ≥ 0→ mpchoice += 1

��� jumpreducee@pplant
areducee@pplant

∼ δ0 1
false

��� jumpreduce f @pplant
areduce f @pplant

∼ δ0 1

xpplant = 60∧ rateν(tirr) > 0→ reducefull
pplant (ν)

��� jumpresete@pplant
aresete@pplant ∼ δ0 1
xpplant = 0∧ restrν(pplant) ∧ rateν(tirr) > 0

→ resetpplant
(ν)

��� jumpreset f @pplant
areset f @pplant ∼ δ0 1
false

��� jumpresetSingle@pplant
aresetSingle@pplant

∼ δ0 1
¬concν(tirr) ∧ ν(ltirr,pplant) < 1→ ltirr,pplant := 1

. . .

Invariant
true

Activities
ṁprainmaker = 0
ṁpcontrol = 0
ṁpchoice = 0
ẋpplant = rateν(tirr)
ẋpbarr = driftν(pbarr)
l̇tirr,pplant = l̇train,pplant = l̇tleak,pplant = 0
l̇tirr,pbarr = l̇train,pbarr = l̇tleak,pbarr = 0

mprainmaker := 1
mpcontrol := 1
mpchoice := 0
xpplant := 0
xpbarr := 50

ltirr,pplant := 1
ltrain,pplant := 1
ltleak,pplant := 1
ltirr,pbarr := 1
ltrain,pbarr := 1
ltleak,pbarr := 1

Figure 4.6.: A depiction of the SHA AH modeling the full irrigation system as depicted in
Figure 4.1. The components are discussed in Example 4.2 in more detail. Due
to space constraints, we omit five jumps, including for example jumpreducee@pbarr
originating from pbarr.

94

4.4. Compositional Transformation

State Location Variables ν Labels νLab
ϑ0 loc mprainmaker 7→ 1

mpcontrol 7→ 1
mpchoice 7→ 0

xpbarr 7→ 50
xpplant 7→ 0

lt,p 7→ 1

aton 7→ 1
atoff 7→ 2

atrandom 7→ 5
atyes 7→ 0
atno 7→ 0

atremove 7→ 3
a 7→ 0 for all other labels

ϑ1 loc mprainmaker 7→ 1
mpcontrol 7→ 1
mpchoice 7→ 0

xpbarr 7→ 49
xpplant 7→ 0

lt,p 7→ 1

aton 7→ 0
atoff 7→ 2

atrandom 7→ 4
atyes 7→ 0
atno 7→ 0

atremove 7→ 3
a 7→ 0 for all other labels

ϑ2 loc mprainmaker 7→ 2
mpcontrol 7→ 1
mpchoice 7→ 0

xpbarr 7→ 49
xpplant 7→ 0

lt,p 7→ 1

aton 7→ 3
atoff 7→ 2

atrandom 7→ 4
atyes 7→ 0
atno 7→ 0

atremove 7→ 3
a 7→ 0 for all other labels

ϑ2 loc mprainmaker 7→ 2
mpcontrol 7→ 1
mpchoice 7→ 0

xpbarr 7→ 67
xpplant 7→ 0

lt,p 7→ 1

aton 7→ 1
atoff 7→ 0

atrandom 7→ 2
atyes 7→ 0
atno 7→ 0

atremove 7→ 1
a 7→ 0 for all other labels

Table 4.1.: A tabular representation of a path prefix of AH from Example 4.3. Since the list of
restriction does not change, we write lt,p representing every entry in the restriction
list. Modified values are highlighted. The semantic steps taken to get from ϑi to ϑi+1
are discussed in Example 4.4.

95

4. Transforming HPnGs to SHAs

4.5. Correctness of the Transformation

At the beginning of this chapter, we mentioned that the notion of time differs in HPnGs
and SHAs. We will briefly justify how this is handled in our transformation. Note that
the discrepancies only emerge when the invariants in a location are violated and no
jump leaving the location is possible. Then, time stops in an SHA. In contrast, time
always continues to pass in HPnGs. In the transformation, we only use the invariant
true, which can never be violated. Thus, time can always continue to pass in the
transformed HPnG, matching its original behavior. We will now prove that the original
HPnG and its transformed SHA are semantically equivalent.

Theorem 4.1. Correctness of the Transformation
The transformation of HPnGs to SHAs as defined in Definition 4.11 is correct, in
the sense that a HPnG H is semantically equivalent to its transformation AH. We
can give a function f̃ : ΣH → ΘA

H
such that

σ =⇒ σ′ iff f̃ (σ) =⇒ f̃ (σ′)

for all σ, σ′ ∈ ΣH.

Proof. Let H be a HPnG and AH the SHA resulting from the transformation. We
define a function f̃ : ΣH → ΘA

H
mapping states of H to states of AH as f̃ (m, x, c, l) =

(loc, ν, νLab), with ν and νLab defined as follows:

• Recall that the set of variables is defined as VarH = M ∪ X ∪ L. We define

ν(y) =


m(p) if y = mp ∈ M for p ∈ Pdisc

x(p) if y = xp ∈ X for p ∈ P cont

l(t)(p) if y = lt,p ∈ L for t ∈ T cont, p ∈ P cont

for all y ∈ VarH.

• We use νLab to model the clocks of H and define

νLab(a) =

{
c(t) if a = at for t ∈ T disc

0 else

for all a ∈ Lab.

This matches the purpose of the defined variables, and the intuition of the connection
formulated in Example 4.4: The finite prefix of a path

ϑ0 =⇒ ϑ1 =⇒ ϑ2 =⇒ ϑ3

96

4.5. Correctness of the Transformation

discussed in the example corresponds to

σ0 =⇒ σ1 =⇒ σ2 =⇒ σ3

from Example 3.8, and we can easily verify that f̃ (σi) = ϑi for i ∈ {0, . . . , 3}.

The inverse function f̃−1 maps states of AH to states of H and is given by

f̃−1(loc, ν, νLab) = (m, x, c, l), where

• m(p) = ν(mp) for p ∈ Pdisc,

• x(p) = ν(xp) for p ∈ P cont,

• c(t) = νLab(at) for t ∈ T disc, and

• l(t)(p) = ν(lt,p) for t ∈ T cont, p ∈ P cont.

We can prove that f̃−1 is the inverse of f̃ by verifying that f̃ (f̃−1((loc, ν, νLab))) =

(loc, ν, νLab) and f̃−1(f̃ (m, x, c, l)) = (m, x, c, l). The relation induced by f̃ , more pre-
cisely {(σ, f̃ (σ)) | σ ∈ ΣH}, is a bisimulation. Under abuse of notation, we sometimes
also call f̃ a bisimulation.

We start the proof of correctness by showing some properties of the defined predicates.
Basically, we validate that the predicates defined in this chapter correspond to those
defined for HPnGs, and thereby confirm that we defined them in a meaningful way.

Theorem 4.2. Correctness of the Predicates
Let H = (P , T ,A, M0, Φ) be a HPnG, σ ∈ ΣH and f̃ (σ) = (l, ν, νLab) ∈ ΘA

H
. Then,

it holds that

(1) concσ(t) ⇐⇒ concν(t) for t ∈ T

(2) concσ(t) ⇐⇒ enabled f̃ (σ)(jumpt) for t ∈ T disc

(3) fireableσ(t) ⇐⇒ fireable f̃ (σ)(jumpt) for t ∈ T disc

(4) restrσ(p) ⇐⇒ restrν(p) for p ∈ P cont

(5) rateσ(t) = rateν(t) for t ∈ T cont

(6) driftσ = driftν

These claims follow straightforward from the definition of the predicates and f̃ . A
detailed proof is given in Appendix B.1.

Using Theorem 4.2, we can prove the correctness of the transformation by induction.
For this, we first show that the set of initial states coincides with respect to the
bisimulation f̃ , and then prove that σ =⇒ σ′ iff f̃ (σ) =⇒ f̃ (σ′). Details can be found in
Appendix B.2.

97

4. Transforming HPnGs to SHAs

Reachability Probabilities. Since we consider probabilistic systems, we need to ensure
that states of the HPnG and corresponding states in the transformation are reached
with the same probability. Thus, it is not only of interest that each path of the HPnG
has a corresponding path in the transformation, but also that these paths have the
same probabilities. We argue that this is indeed the case for the transformation defined
above. Stochasticity is introduced in two ways: First, when sampling the firing times
for general transitions, and second when solving conflicts between several applicable
semantic steps. The firing times of a general transition corresponds to the enabling
duration of the jump that models the firing of the respective transition. By definition,
these are sampled from the same distribution. When several steps are possible, priorities
are used to resolve conflicts in the HPnG as described in Section 3.2.3. In an SHA,
such conflicts are solved by a probabilistic choice based on the weights as described in
Section 2.2. The weights of jumps in the transformation are equal to the priorities in
the HPnG by definition. Consequently, the probabilities are also in agreement here. In
conclusion, the uncertainties along equivalent paths of the HPnG and its transformation
are based on the same distributions and therefore the respective states are reached with
the same probabilities.

A Comment on Rate Adaption Termination. In Section 3.2.2, we only proved termination of
the rate adaption algorithm for certain subclasses of HPnGs. Now that we have shown
the equivalence of the HPnG H and its transformation AH, we know in particular that
the rate adaption behaves equally in H and AH. In particular, if the rate adaption does
not terminate in a state σ of H, we know that an equal non-terminating path exists that
starts in f̃ (σ), where f̃ is the bisimulation function defined in the proof of Theorem 4.1.
If we can prove the termination of the rate adaption for a larger class of HPnGs as
formulated in Conjecture 3.1, this result transfers to their transformations.

98

5. Conclusion

In this thesis, we provided a formal transformation from HPnGs to SHAs, including
a proof of correctness. We started in Chapter 2 by defining a modeling language for
SHAs introduced in recent work by Gerlach [Ger22]. Building on the definition of
HPnGs by Gribaudo and Remke [GR16], we defined the semantics of HPnGs using a set
of inference rules and presented a novel algorithm for adapting the rates of continuous
transitions in Chapter 3. We proved the termination of the algorithm for a subclass
of HPnGs. In Chapter 4, we defined a formal transformation of HPnGs to SHAs and
proved the correctness using a bisimulation.

5.1. Future Work

In Section 3.2.2, we presented an algorithm for rate adaption and proved its termination
for a subclass of HPnGs, namely for strongly acyclic HPnGs. Moreover, we proved
that the algorithm terminates in all acyclic HPnGs starting in a state where all critical
places are empty (or dually, all critical places are full). However, as formulated in
Conjecture 3.1, we strongly believe that the algorithm terminates for all acyclic HPnGs.
This is to be proven in future work. Some ideas and attempts for the proof are already
outlined in Section 3.2.2.

On a larger scale, it would be worthwhile to study real-world examples such as the
waste water treatment facility discussed and analyzed by Ghasemieh et al. [GRH16].
To test this efficiently, an automation of the presented transformation is of interest.
This could be implemented using the tool HYPEG1 [PER17], which provides a library for
simulating HPnGs, or HPnmG2 [HNR20], which is a tool for model checking HPnGs.

In the process of the implementation, possible optimizations of the transformation
could also be investigated. For example, we saw in Example 4.2 that some jumps can
be omitted if a continuous place has no outgoing arcs. Similarily, several jumps become
obsolete when a place has no finite upper bound. Combining such findings could
reduce the size of the resulting SHA and thus make computations more efficient.

1https://zivgitlab.uni-muenster.de/ag-sks/tools/hypeg
2https://zivgitlab.uni-muenster.de/ag-sks/tools/hpnmg

99

https://zivgitlab.uni-muenster.de/ag-sks/tools/hypeg
https://zivgitlab.uni-muenster.de/ag-sks/tools/hpnmg

A. Notations

In the following, we list notations used in this thesis sorted by first occurrence per
chapter. The lists are not intended to be exhaustive, but rather to give an overview of
frequently used notations.

Stochastic Hybrid Automata

• Var: Set of variables

• V : Set of valuations (over a variable set)

• ν ∈ V : a valuation

• f : activity function specifying the evolution of variables in a location (do not
confuse with f̃ in the context of the transformation)

• Con: Set of controlled variables

• NCon: Set of non-controlled variables. We always require that Con∩NCon = ∅.

• Distr: Set of probability distributions

• δa: Dirac distribution assigning all probability mass to a

• A = (Loc, Var, Inv, Init, Edge, Act, Lab, Proc, Dur, Wgt): SHA

• Loc: Set of locations

• loc ∈ Loc: Location

• Inv: Assigns invariants to locations

• Init: Assigns initial valuations to locations

• Edge: Set of jumps

• e ∈ Edge: Jump

• Act: Assigns activities to locations

• Lab: Set of labels

101

A. Notations

• a ∈ Lab: Label

• Proc: Assigns labels to jumps

• Dur: Assigns probability distributions to jumps and valuations

• Wgt: Assigns a weight to each jump

• ΘA: Set of states of A

• ϑ = (loc, ν, νLab) ∈ ΘA: State of A

• νLab: Valuation of the clock variables for every label

• enabledϑ(e): Holds iff jump e is enabled in ϑ

• discϑ(e): Unique valuation reached from ϑ after taking jump e

• fireableϑ(e): Holds iff jump e is fireable in ϑ

• timeτ
ϑ(f): Unique valuation reached from ϑ after letting τ time units pass and let

the variables evolve according to f

• clocks f
ϑ(τ): Unique valuation of labels reached from ϑ after letting τ time units

pass and let the variables evolve according to f

• ϑ =⇒ ϑ′: Holds iff ϑ′ is reachable from ϑ by taking one or several semantic steps

• A1 ‖ A2: Parallel composition of A1 and A2

Hybrid Petri Nets with General Firings

• H = (P , T ,A, M0, Φ): HPnG

• P : Set of places

• Pdisc: Set of discrete places

• P cont: Set of continuous places

• p ∈ P : Place

• T : Set of transitions

• T det: Set of deterministic transitions

• T gen: Set of general transitions

• T cont: Set of continuous transitions

• T disc: Set of discrete, i.e., deterministic or general transitions

102

• t ∈ T : Transition

• A: Set of arcs

• Adisc: Set of discrete arcs

• Acont: Set of continuous arcs

• Atest: Set of test arcs

• Ainh: Set of inhibitor arcs

• 〈p, t〉, 〈t, p〉 ∈ A: Arc

• M0 = (m0, x0): Initial marking of discrete and continuous places

• Φ: Tuple of parameter functions

• ΦPub: Upper bound for continuous places

• ΦTft : Firing time for deterministic transitions

• ΦTgt: Probability distribution for general transitions

• ΦTfr : Nominal firing rate for continuous transitions

• ΦAw : Weight of non-continuous arcs

• ΦTp : Priority of discrete transitions

• D: Discrete fragment of a HPnG

• T D: Transitions included in discrete fragment D

• AD: Arcs included in discrete fragment D

• ΣH: Set of states of H

• σ = (m, x, c, l) ∈ ΣH: State of H

• m: Marking of discrete places

• x: Marking of continuous places

• c: Clocks for discrete transitions

• l: Restriction list for continuous transitions and places

• I type: Input bag, i.e., input places of a transition or incoming transitions of a place
connected via an arc of type type

• Otype: Output bag, i.e., output places of a transition or outgoing transitions of a
place connected via an arc of type type

103

A. Notations

• concσ(t): Holds iff transition t has concession in σ

• fireableσ(t): Holds iff transition t is fireable in σ

• rateσ(t): Actual firing rate of continuous transition t in state σ

• firet(m): Discrete marking after firing of discrete transition t

• fireτ
t (m): Continuous marking after firing of continuous transition t for τ time

units

• evolveτ
T(c): Clocks updated for discrete transitions T after τ time units

• resett(c): Clocks resampled for transition t

• driftσ(p): Drift of continuous place p in state σ

• reduceempty
p (l): Restriction list after rate reduction of continuous place p

• restrσ(p): Holds iff continuous place p restricts any transition in state σ

• resetp(l): Restriction list after rate reset of continuous place p

• fireablecont
σ,τ : Set of fireable continuous transitions in time span of duration τ starting

in σ

• concdisc
σ,τ : Set of discrete transitions with concession in time span of duration τ

starting in σ

• safeσ(τ): Holds iff τ is a safe time span from σ

• σ =⇒ σ′: Holds iff σ′ is reachable from σ by taking one or several semantic steps

Transforming HPnGs to SHAs

• VarH: Set of variables for a HPnG H

• VH: Set of valuations over VarH

• concν(t): Holds iff transition t has concession in ν

• fireν(t): Valuation after firing of discrete transition t

• AHD : SHA simulating the discrete fragment D of H

• rateν(t): Actual firing rate of continuous transition t in valuation ν

• driftν(p): Drift of continuous place p in valuation ν

• reduceempty
p (ν): Valuation (including restriction list) after rate reduction of continu-

ous place p

104

• restrν(p): Holds iff continuous place p restricts any transition in valuation ν

• resetp(ν): Valuation (including restriction list) after rate reset of continuous place
p

• AHp : SHA simulating the continuous place p of H

• AH: SHA simulating the HPnG H

• @p: Components originating from sub-SHA AHp of place p

• f̃ : Bisimulation between states of H and AH

• f̃−1: Inverse bisimulation between states of H and AH

105

B. Omitted Proofs

B.1. Proof of Theorem 4.2

Let σ ∈ ΣH and f̃ (σ) = (l, ν, νLab) ∈ ΘA
H

.

Part 1. Let t ∈ T . Assume that concσ(t) holds. By Definition 3.6, we know that the
following conditions hold:

1. ∀p ∈ Idisc(t) : m(p) ≥ ΦAw 〈p, t〉

2. ∀p ∈ (I inh(t) ∩ Pdisc) : m(p) < ΦAw 〈p, t〉

3. ∀p ∈ (I inh(t) ∩ P cont) : x(p) < ΦAw 〈p, t〉

4. ∀p ∈ (I test(t) ∩ Pdisc) : m(p) ≥ ΦAw 〈p, t〉

5. ∀p ∈ (I test(t) ∩ P cont) : x(p) ≥ ΦAw 〈p, t〉

By definition of f̃ , these conditions are equal to:

1. ∀p ∈ Idisc(t) : ν(mp) ≥ ΦAw 〈p, t〉

2. ∀p ∈ (I inh(t) ∩ Pdisc) : ν(mp) < ΦAw 〈p, t〉

3. ∀p ∈ (I inh(t) ∩ P cont) : ν(xp) < ΦAw 〈p, t〉

4. ∀p ∈ (I test(t) ∩ Pdisc) : ν(mp) ≥ ΦAw 〈p, t〉

5. ∀p ∈ (I test(t) ∩ P cont) : ν(xp) ≥ ΦAw 〈p, t〉

Therefore by Definition 4.2, concν(t) holds and claim (1) is proven.

Part 2. For t ∈ T disc, we have:

concσ(t)

⇐⇒ concν(t) by (1)

⇐⇒ (ν, fireν(t)) ∈ µ where jumpt = (loc, µ, loc) by Definition 4.4

⇐⇒ enabled f̃ (σ)(jumpt) by Definition 2.7

107

B. Omitted Proofs

Part 3. Let t ∈ T disc. Then, we have:

fireableσ(t)

⇐⇒ concσ(t) ∧ c(t) = 0 by Definition 3.7

⇐⇒ enabled f̃ (σ)(jumpt) ∧ c(t) = 0 by (2)

⇐⇒ enabled f̃ (σ)(jumpt) ∧ νLab(at) = 0 by def. of f̃

⇐⇒ fireable f̃ (σ)(jumpt) by Definition 2.9

Part 4. Let p ∈ P cont. Then, we have:

restrσ(p)

⇐⇒ ∃t ∈ Icont(p) ∪Ocont(p). l(t)(p) < 1 by Definition 3.14

⇐⇒ ∃t ∈ Icont(p) ∪Ocont(p). lt,p < 1 by def. of f̃

⇐⇒ restrν(p) by Definition 4.8

Part 5. Let t ∈ T cont. Then, we have:

rateσ(t)

=

{
0 if ¬enabledσ(t)

ΦTfr (t) ·min
{

l(t)(p)
∣∣ p ∈ P cont} if enabledσ(t)

by Definition 3.8

=

{
0 if ¬concσ(t)

ΦTfr (t) ·min
{

l(t)(p)
∣∣ p ∈ P cont} if concσ(t)

by Definition 3.7

=

{
0 if ¬concν(t)

ΦTfr (t) ·min
{

l(t)(p)
∣∣ p ∈ P cont} if concν(t)

by (1)

=

{
0 if ¬concν(t)

ΦTfr (t) ·min
{

ν(lt,p)
∣∣ p ∈ P cont} if concν(t)

by def. of f̃

= rateν(t) by Definition 4.5

Part 6. Let p ∈ P cont. Then, we have:

driftσ(p)

= ∑
ti∈Icont(p)

rateσ(ti)− ∑
tj∈Ocont(p)

rateσ(tj) by Definition 3.12

= ∑
ti∈Icont(p)

rateν(ti)− ∑
tj∈Ocont(P)

rateν(tj) by (5)

= driftν(p) by Definition 4.6

This concludes the proof of Theorem 4.2.

108

B.2. Proof of Theorem 4.1

B.2. Proof of Theorem 4.1

We prove by induction that Theorem 4.1 holds using the bisimulation defined in
Section 4.5. For the base case, we prove in Appendix B.2.1 that the set of initial states of
AH is exactly the set of f̃ applied to all initial states of H. In the induction step, we
then show that in Appendix B.2.2 and the other direction in Appendix B.2.3.

B.2.1. Induction Base.

Part I. Let σ ∈ ΣH be an initial state of H. We are going to show that f̃ (σ) ∈ ΘA
H

is an initial state of AH. By Definition 3.4, we know that σ = (m0, x0, c, 1) where c(t)
is the firing time for deterministic transitions and sampled from the corresponding
distribution for general transitions and 1 is the function mapping all entries of the
restriction list to 1.

Then, f (σ) = (loc, ν, νLab), where

• ν is the valuation where the markings correspond to the initial markings and the
restriction entries equal 1, so

ν(y) =


m0(p) if y = mp for p ∈ Pdisc

x0(p) if y = xp for p ∈ P cont

1 if y = lt,p for t ∈ T cont, p ∈ P cont

for all y ∈ VarH.

• The values of the labels are corresponding to the sampled values for every discrete
transition and 0 for all others, so

νLab(a) =


ΦTft (t) if a = at for t ∈ T det

sample from ΦTgt(t) if a = at for t ∈ T gen

0 else

for all a ∈ Lab.

We argue that this is indeed an initial state of AH as defined in Definition 2.6. For
this, we have to show that ν ∈ Init(loc) and argue that νLab is a valid sample from the
corresponding probability distributions. It is obvious that ν ∈ Init(loc), as it corresponds
exactly to Definition 4.11.

109

B. Omitted Proofs

For νLab, we get that for all a ∈ Lab

νLab(a) =


ΦTft (t) if a = at for t ∈ T det

sample from ΦTgt(t) if a = at for t ∈ T gen

0 else

=


sample from δΦTft (t)

if a = at for t ∈ T det

sample from ΦTgt(t) if a = at for t ∈ T gen

sample from δ0 else

by def. of δ

= sample from Dur(a, (loc, ν)) for all ν ∈ VH

In conclusion, f̃ (σ) is an initial state of AH.

Part II. Now, let ϑ ∈ ΘA
H

be an initial state of AH. We are going to show that
f̃−1(ϑ) ∈ ΣH is an initial state of H. By Definition 2.6, we know that ϑ = (loc, ν, νLab)

where ν ∈ Init(loc) and νLab is sampled from the corresponding distribution.

Therefore, we know that ν(mp) = m0(p) for all p ∈ Pdisc, ν(xp) = x0(p) for all
p ∈ P cont and ν(lt,p) = 1 for all p ∈ P cont, t ∈ T cont. By definition of f̃−1, we get that
f̃−1(ϑ) = (m0, x0, c, 1), where c is given by

c(t) = νLab(at) by def. of f̃−1

= sample from Dur(at, (loc, ν)) by Definition 2.6

=

sample from δΦTft (t)
if t ∈ T det

sample from ΦTgt(t) if t ∈ T gen
by Definition 4.11

=

{
ΦTft (t) if t ∈ T det

sample from ΦTgt(t) if t ∈ T gen
by def. of δ

for all t ∈ T disc. Therefore, f̃−1(ϑ) is an initial state of H by Definition 3.4.

B.2.2. Induction Step Part I

We now show that for all σ, σ′ ∈ ΣH with σ =⇒ σ′, we have that f̃ (σ) =⇒ f̃ (σ′). For this,
we distinguish which semantic step is taken (see Definition 3.19).

Every subsection will be structured as follows: First, we discuss what we know about σ

and σ′ assuming that we reach σ′ from σ applying a specific rule. Then, we examine
what we can infer for f̃ (σ) and f̃ (σ′) based on the previous findings. Next, we present

110

B.2. Proof of Theorem 4.1

the rule from the semantics of SHAs which will be used to simulate the step, and show
that the corresponding premises are fulfilled. This lets us conclude that f̃ (σ) =⇒ f̃ (σ′).

In this complete part of the proof, we let σ = (m, x, c, l), σ′ = (m′, x′, c′, l′), f̃ (σ) =

(loc, ν, νLab), and f̃ (σ′) = (loc, ν′, ν′Lab).

Firing of Deterministic Transitions

Assume that σ
fire t

===⇒ σ′, so the consequent state σ′ is obtained by the firing of a
deterministic transition t ∈ T disc. The semantic rule is given by

t ∈ T disc fireableσ(t)

(m, x, c, l) fire t
===⇒ (firet(m), x, resett(c), l)

fire

We thus know that σ′ = (firet(m), x, resett(c), l) and that t is fireable in σ, i.e., fireableσ(t)
is true.

We start by examining what we can infer about f̃ (σ) and f̃ (σ′).

• Obviously, we are in the same location loc in f̃ (σ) and f̃ (σ′).

• The only difference between the new valuation ν′ and ν is that the discrete
markings of the places connected to t potentially changed. Unsurprisingly, we
have that ν′ = fireν(t), as we defined this with exactly the purpose of modeling

111

B. Omitted Proofs

the firing of t. More formally, we have:

ν′(y) =


firet(m)(p) if y = mp for p ∈ Pdisc

x(p) if y = xp for p ∈ P cont

l(t)(p) if y = lt,p for p ∈ P cont, t ∈ T cont

by def. of f̃

=

{
firet(m)(p) if y = mp for p ∈ Pdisc

ν(y) else

=


m(p)−ΦAw 〈p, t〉 if y = mp for p ∈ Idisc(t)

m(p) + ΦAw 〈t, p〉 if y = mp for p ∈ Odisc(t)

m(p) if y = mp for all other p ∈ Pdisc

ν(y) else

by Definition 3.9

=


ν(mp)−ΦAw 〈p, t〉 if y = mp for p ∈ Idisc(t)

ν(mp) + ΦAw 〈t, p〉 if y = mp for p ∈ Odisc(t)

ν(mp) if y = mp for all other p ∈ Pdisc

ν(y) else

by def. of f̃

=


ν(mp)−ΦAw 〈p, t〉 if y = mp for p ∈ Idisc(t)

ν(mp) + ΦAw 〈t, p〉 if y = mp for p ∈ Odisc(t)

ν(y) else

= fireν(t)(y) by Definition 4.3

• The new valuation of the labels ν′Lab changed according to the reset of clocks.
This means that the clock value for t is freshly sampled from the corresponding
distribution. Let u be this new value. As defined in Definition 3.11, u = ΦTft (t)
if t is a deterministic transition and u is sampled from ΦTgt(t) if t is a general
transition. Note that by definition of f̃ , we have that u ∈ supp(Dur(at, (loc, ν))) as
the probability distribution Dur(at, (loc, ν)) either is δΦTft (t)

or ΦTgt(t) depending

on the type of t.

112

B.2. Proof of Theorem 4.1

Formally, we have that

ν′Lab(a) =

{
resett(c)(t′) if a = at′ for t′ ∈ T disc

0 else
by def. of f̃

=


c(t′) if a = at′ for t′ ∈ T disc and t′ 6= t

ΦTft (t) if a = at and t ∈ T det

sample from ΦTgt(t) if a = at and t ∈ T gen

0 else
by Definition 3.11

=


c(t′) if a = at′ for t′ ∈ T disc with t′ 6= t

u if a = at

0 else

by choice of u

= νLab[at 7→ u](a)

for all a ∈ Lab. So, we know that ν′Lab = νLab[at 7→ u].

We aim to show that f̃ (σ) =⇒ f̃ (σ′), and from the considerations above we know that

f̃ (σ′) = (loc, ν′, ν′Lab) = (loc, fireν(t), νLab[at 7→ u]).

In the transformation, the firing of a deterministic transition t is simulated by taking the
respective jump jumpt = (loc, µ, loc) in the SHA of the corresponding discrete fragment.
Therefore, we are going to show that

(loc, ν, νLab)
jumpt===⇒ (loc, fireν(t), νLab[at 7→ u]).

The rule as defined in Definition 2.12 is

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show for jumpt that t is fireable in f̃ (σ), that the
new valuation corresponds to the result of a discrete step, and that the new clock value
is sampled correctly.

1. fireable f̃ (σ)(jumpt) follows directly from fireableσ(t) and (3).

2. disc f̃ (σ)(jumpt) is in Definition 2.8 defined as the unique valuation ν′ reached after
taking jumpt = (loc, µ, loc). By Definition 4.4, we have that

µ =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ concν(t) ∧ ν′ = fireν(t)
}

,

113

B. Omitted Proofs

from which we can conclude that

disc f̃ (σ)(jumpt) = fireν(t) = ν′.

3. By Definition 4.4, we have that Proc(jumpt) = at. By choice of u, we also know
that u ∈ supp(Dur(at, (loc, ν′))). Therefore, the final premise also holds.

In conclusion, all premises hold and we have that

σ
fire t

===⇒ σ′ implies f̃ (σ)
jumpt===⇒ f̃ (σ′).

Rate Adaption: Reduce

Assume that σ
reduce empty p

=========⇒ σ′ for a continuous place p ∈ P cont. The consequent state
σ′ is obtained by reducing the rates of the incoming transitions. The semantic rule is
given by

p ∈ P cont x(p) = 0 driftσ(p) < 0

(m, x, c, l)
reduce empty p

=========⇒ (m, x, c, reduceempty
p (l))

reduce empty

We thus know that p is empty in σ and has a negative drift. Additionally, we know that
in σ′, the list of restrictions l is modified to implement the new restrictions.

We start by examining what we can infer about f̃ (σ) and f̃ (σ′).

• The location of f̃ (σ) and f̃ (σ′) is loc.

• The new valuation ν′ equals ν except that the list of restrictions is updated. More

114

B.2. Proof of Theorem 4.1

formally, we have:

ν′(y)

=


m(p′) if y = mp′ for p′ ∈ Pdisc

x(p′) if y = xp′ for p′ ∈ P cont

reduceempty
p (l)(p′)(t) if y = lt,p for p ∈ P cont, t ∈ T cont

by def. of f̃

=

{
reduceempty

p (l)(t)(p′) if y = lt,p′ for p′ ∈ P cont, t ∈ T cont

ν(y) else

=


in(p)

out(p) ·min
{

l(t)(p′′)
∣∣ p′′ ∈ P cont} if y = lt,p for t ∈ Ocont(p). fireableσ(t)

l(t)(p′) if y = lt,p′ for t ∈ Ocont(p), p′ ∈ P cont

ν(y) else
by Definition 3.13

=

{ in(p)
out(p) ·min

{
ν(lt,p′′)

∣∣ p′′ ∈ P cont} if y = lt,p for t ∈ Ocont(p). fireableσ(t)

ν(y) else
by def. of f̃

=

{ in(p)
out(p) ·min

{
ν(lt,p′′)

∣∣ p′′ ∈ P cont} if y = lt,p for t ∈ Ocont(p). concσ(t)

ν(y) else
by Definition 3.7

=

{ in(p)
out(p) ·min

{
ν(lt,p′′)

∣∣ p′′ ∈ P cont} if y = lt,p for t ∈ Ocont(p). concν(t)

ν(y) else
by (1)

= reduceempty
p (ν)(y) by Definition 4.7

We can conclude that ν′ = reduceempty
p (ν).

• Since the clock values do not change, by definition of f̃ we have that ν′Lab = νLab.

We aim to show that f̃ (σ) =⇒ f̃ (σ′), and from the considerations above we know that

f̃ (σ′) = (loc, ν′, ν′Lab) = (loc, reduceempty
p (ν), νLab).

In the transformation, the rate adaption is simulated by several jumps. For the reduction,
this is the jump reducee@p from the sub-SHA corresponding to p.

(loc, ν, νLab)
reduce@pe=====⇒ (loc, reduceempty

p (ν), νLab).

115

B. Omitted Proofs

The rule as defined in Definition 2.12 is

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show that the jump is fireable in f̃ (σ), that the
new valuation corresponds to the result of a discrete step, and that the new clock value
is sampled correctly.

1. fireable f̃ (σ)(reducee@p) is in Definition 2.9 defined to hold if enabled f̃ (σ)(reducee@p)
and νLab(Proc(reducee@p)) = 0. The jump reducee@p is defined as (loc, µ1, loc) with

µ1 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν(xp) = 0∧ driftν(p) < 0∧ ν′ = reduceempty
p (ν)

}
in Definition 4.10. By Definition 2.7, we know that reducee@p is enabled if (ν, ν′′) ∈
µ1 for some ν′′ ∈ V . Therefore, we need to show that ν(xp) = 0 and that
driftν(p) < 0. We know that x(p) = 0, which implies the former by definition of f̃ .
We also know that driftσ(p) < 0, and with (6) this implies driftν(p) < 0. Therefore,
ν fulfills the guard of the jump reducee@p and with that, enabled f̃ (σ)(reducee@p)
holds.

In Definition 4.10 we defined Proc(reducee@p) = a1@p. The assigned distribution
is δ0, by which we know that a1@p is never assigned a value other than zero. Con-
sequently, νLab(Proc(reducee@p)) = 0 is true. In summary, fireable f̃ (σ)(reducee@p)
holds.

2. Since (ν, ν′) = (ν, reduceempty
p (ν)) ∈ µ1 by above considerations, we know that

ν′ = disc f̃ (σ)(reducee@p).

3. As argued above, the label a1@p is never assigned a value other than zero. In
particular, u ∈ supp(Dur(a1@p, (loc, ν′))) = supp(δ0) = {0} implies that u = 0
and with that we obtain νLab[a1@p 7→ 0] = νLab.

In conclusion, all premises hold and we have that

σ
reduce empty p

=========⇒ σ′ implies f̃ (σ)
reduce@pe=====⇒ f̃ (σ′).

The dual statement can be shown for p at the upper boundary, i.e., we have that

σ
reduce full p

=======⇒ σ′ implies f̃ (σ)
reduce@p f

=====⇒ f̃ (σ′).

Rate Adaption: Reset

Assume that σ
reset empty p

========⇒ σ′ for a continuous place p ∈ P cont. The consequent state
σ′ is obtained by resetting the restrictions on the incoming transitions. The semantic

116

B.2. Proof of Theorem 4.1

rule is given by

p ∈ P cont x(p) = 0 driftσ(p) > 0 restrσ(p)

(m, x, c, l)
reset empty p

========⇒ (m, x, c, resetp(l))
reset empty

We thus know that in σ, p is empty, places restrictions and has a positive drift. Addi-
tionally, we know that in σ′, the list of restrictions l is modified to implement the new
restrictions.

We start by examining what we can infer about f̃ (σ) and f̃ (σ′).

• The location of f̃ (σ) and f̃ (σ′) is loc.

• The new valuation ν′ equals ν except for the list of restrictions. More formally,
we have:

ν′(y) =


m′(p′) if y = mp′ for p′ ∈ Pdisc

x′(p′) if y = xp′ for p′ ∈ P cont

resetp(l)(p′)(t) if y = lt,p′ for p′ ∈ P cont, t ∈ T cont

by def. of f̃

=

{
resetp(l)(t)(p′) if y = lt,p′ for p′ ∈ P cont, t ∈ T cont

ν(y) else

=


1 if y = lt,p for t ∈ T cont

l(t)(p′) if y = lt,p′ for p′ ∈ P cont\{p}, t ∈ T cont

ν(y) else

by Definition 3.15

=

{
1 if y = lt,p for t ∈ T cont

ν(y) else

= resetp(ν)(y) by Definition 4.9

Therefore, we know that ν′ = resetp(ν).

• Since the clock values do not change, by definition of f̃ we have that ν′Lab = νLab.

We aim to show that f̃ (σ) =⇒ f̃ (σ′), and from the considerations above we know that

f̃ (σ′) = (loc, ν′, ν′Lab) = (loc, resetp(ν), νLab).

In the transformation, this step of the rate adaption is again simulated by a jump, in
this case resete@p. Therefore, we are going to show that

(loc, ν, νLab)
reset@pe====⇒ (loc, resetp(ν), νLab).

117

B. Omitted Proofs

The rule as defined in Definition 2.12 is again

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show that the jump is fireable in f̃ (σ), that the
new valuation corresponds to the result of a discrete step, and that the new clock value
is sampled correctly.

1. fireable f̃ (σ)(resete@p) is in Definition 2.9 defined to hold if enabled f̃ (σ)(resete@p)
and νLab(Proc(resete@p)) = 0. The jump resete@p is defined as (loc, µ3, loc) with

µ3 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ν(xp) = 0∧ restrν(p) ∧ driftν(p) > 0∧ ν′ = resetp(ν)
}

in Definition 4.10. We know by assumption that x(p) = 0, driftσ(p) > 0
and restrσ(p) holds. By definition of f̃ along with (6) and (4), we can imme-
diately follow that ν satisfies the guard of the jump resete@p and with that,
enabled f̃ (σ)(resete@p) holds.

Additionally, in Definition 4.10 we defined Proc(resete@p) = a3@p. The as-
signed distribution is δ0, by which we know that a3@p is never assigned a value
other than zero. Consequently, νLab(Proc(resete@p)) = 0 is true. In summary,
fireable f̃ (σ)(resete@p) holds.

2. Since (ν, ν′) = (ν, resetp(ν)) ∈ µ3 by above considerations, we know that ν′ =

disc f̃ (σ)(resete@p).

3. As argued above, the label a3@p is never assigned a value other than zero. In
particular, u ∈ supp(Dur(a3@p, (loc, ν′))) = supp(δ0) implies that u = 0 and with
that we obtain νLab[a3@p 7→ 0] = νLab.

In conclusion, all premises hold and we have that

σ
reset empty p

========⇒ σ′ implies f̃ (σ)
reset@pe====⇒ f̃ (σ′).

In the dual case for p at upper boundary, we have that

σ
reset full p

======⇒ σ′ implies f̃ (σ)
reset@p f

====⇒ f̃ (σ′).

Rate Adaption: Reset Single

Assume that σ
reset t, p

=====⇒ σ′ for t ∈ T cont and p ∈ P cont. The consequent state σ′ is
obtained by resetting the restriction list entry of t and p to one. The semantic rule is

118

B.2. Proof of Theorem 4.1

given by
t ∈ T cont ¬fireableσ(t) p ∈ P cont l(t)(p) < 1

(m, x, c, l)
reset t, p

=====⇒ (m, x, c, l[t, p 7→ 1])
reset single

We thus know that in σ, t is not fireable and p places restrictions on t, and that the
restriction list in σ′ is updated to one for t and p.

We start by examining what we can infer about f̃ (σ) and f̃ (σ′).

• The location of f̃ (σ) and f̃ (σ′) is loc.

• The new valuation ν′ equals ν except that the restriction list at index t, p is set to
one. More formally, we have:

ν′(y) =


m′(p′) if y = mp′ for p′ ∈ Pdisc

x′(p′) if y = xp′ for p′ ∈ P cont

l[t, p 7→ 1](p′)(t′) if y = lt′,p′ for p′ ∈ P cont, t′ ∈ T cont

by def. of f̃

=

{
1 if y = lt,p

ν(y) else

= ν[lt,p 7→ 1]

• Since the clock values do not change, by definition of f̃ we have that ν′Lab = νLab.

We aim to show that f̃ (σ) =⇒ f̃ (σ′), and from the considerations above we know that

f̃ (σ′) = (loc, ν′, ν′Lab) = (loc, ν[lt,p 7→ 1], νLab).

In the transformation, the maintenance of restriction lists is simulated by the jump
resetSingle@p in the SHA corresponding to p. Therefore, we are going to show that

(loc, ν, νLab)
resetSingle@p

=======⇒ (loc, ν[lt,p 7→ 1], νLab).

The rule as defined in Definition 2.12 is

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show that the jump is fireable in f̃ (σ), that the
new valuation corresponds to the result of a discrete step, and that the new clock value
is sampled correctly.

119

B. Omitted Proofs

1. As defined in Definition 2.9, fireable f̃ (σ)(resetSingle@p) holds if resetSingle@p is
enabled, i.e., enabled f̃ (σ)(resetSingle@p) holds, and the clock has run out, i.e.,
νLab(Proc(resetSingle@p)) = 0. The jump resetSingle@p is defined as (loc, µ5, loc)
with

µ5 =
{(

ν, ν′
)
∈ VH × VH

∣∣∣ ∃t ∈ T cont. ¬concν(t) ∧ ν(lt,p) < 1∧ ν′ = ν[lt,p 7→ 1]
}

in Definition 4.10. We know by assumption that ¬fireableσ(t) and l(t)(p) < 1.
Since t is a continuous transition, ¬fireableσ(t) implies that ¬concσ(t) by Defini-
tion 3.7. Then, with (1) and the definition of f̃ , we can conclude that ν satisfies the
guard of the jump resetSingle@p and with that, enabled f̃ (σ)(resetSingle@p) holds.

Additionally, in Definition 4.10 we defined Proc(resetSingle@p) = a5@p. The
assigned distribution is δ0, by which we know that a5@p is never assigned a value
other than zero. Consequently, νLab(Proc(resetSingle@p)) = 0 is true. In summary,
fireable f̃ (σ)(resetSingle@p) holds.

2. Since (ν, ν′) = (ν, ν[lt,p 7→ 1]) ∈ µ5 by above considerations, we know that
ν′ = disc f̃ (σ)(resetSingle@p).

3. As argued above, the label a5@p is never assigned a value other than zero. In
particular, u ∈ supp(Dur(a5@p, (loc, ν′))) = supp(δ0) implies that u = 0 and with
that we obtain νLab[a5@p 7→ 0] = νLab.

In conclusion, all premises hold and we have that

σ
reset t, p

=====⇒ σ′ implies f̃ (σ)
resetSingle@p

=======⇒ f̃ (σ′).

Passing of Time

Assume that σ
τ

=⇒ σ′, so we are considering the passing of τ ∈ R>0 time units. The
corresponding semantic rule is given by

τ ∈ R>0 safeσ(τ)

(m, x, c, l) τ
=⇒ (m, fireτ

fireablecont
σ,τ

(x), evolveτ
concdisc

σ,τ
(c), l)

time

We thus know that τ is a safe time span from σ on as defined in Definition 3.18 and that

σ′ = (m, fireτ
T1
(x), evolveτ

T2
(c), l)

with T1 = fireablecont
σ,τ and T2 = concdisc

σ,τ being the relevant sets of continuous respectively
discrete transitions.

We start by examining what we can infer about f̃ (σ) and f̃ (σ′).

120

B.2. Proof of Theorem 4.1

• The location of f̃ (σ) and f̃ (σ′) is loc.

• In the new valuation ν′, only the continuous markings are changed. We defined
fireτ

T1
(x) in Definition 3.9 as

fireτ
T1
(x)(p) = x(p) + τ · ∑

t∈Icont(p)∩T1

rateσ(t)− τ · ∑
t∈Ocont(p)∩T1

rateσ(t)

for each continuous place p. Next, recall that T1 only contains fireable continuous
transitions by Definition 3.16. Therefore, we know that the above equality can be
simplified to

fireτ
T1
(x)(p) = x(p) + τ · driftσ(p)

for each continuous place p by Definition 3.12.

This exactly corresponds to the activity function given for every p in the corre-
sponding SHA, and with that in the transformation. We defined the set of activity
functions as those that are solutions of

ẋp = driftν(p).

In particular, we have that there exists a unique f̂ ∈ Act(loc) with

f̂ (0)(y) = ν(y)

and

f̂ (τ)(y) =

{
ν(xp) + τ · driftν(p) if xp for p ∈ P cont

ν(y) else.

These observations in combination with the fact that driftσ(p) = driftν(p) by
(6) and x(p) = ν(xp) by construction lets us conclude that ν = f̂ (0) and that
ν′ = f̂ (τ).

• The clock values in the new state are given by evolveτ
T2
(c), which intuitively

decreases the clock for every transition in T2 by τ time units. The same is reflected
in ν′Lab. Formally, we have that

ν′Lab(a) =

{
evolveτ

T2
(c)(t) if a = at for t ∈ T disc

0 else
by def. of f̃

=


c(t)− τ if a = at for t ∈ T disc ∩ T2

c(t) if if a = at for t ∈ T disc\T2

0 else

by Definition 3.10

=

{
c(t)− τ if a = at for t ∈ T disc ∩ T2

νLab(t) else
by def. of f̃

121

B. Omitted Proofs

for all a ∈ Lab. Thus, we know that ν′Lab updates exactly the labels corresponding
to a jump from T2. We denote this by ν′Lab = νLab[T2 −= τ].

We aim to show that f̃ (σ) =⇒ f̃ (σ′), and from the considerations above we know that

f̃ (σ′) = (loc, ν′, ν′Lab) = (loc, f̂ (τ), νLab[T2 −= τ]).

As expected, we simulate the passing of time in the HPnGby letting time pass in the
transformation. Therefore, we are going to show that

(loc, ν, νLab)
τ, f̂

==⇒ (loc, f̂ (τ), νLab[T2 −= τ]).

The corresponding rule defined in Definition 2.12 is

f ∈ Act(l) τ ∈ R>0 ν′ = time f
ϑ(τ) ν′Lab = clocks f

ϑ(τ)

(l, ν, νLab)
τ, f

==⇒ (l, ν′, ν′Lab)
time

With the above observations in mind, we now prove that this rule is indeed applicable.
Concretely, this means that we have to show that ν′ is reached from ν after τ time steps
and that the clocks are updated correctly.

1. ν′ = time f̂
f̃ (σ)

(τ) is defined in Definition 2.10 to be true if

• f̂ (0) = ν,

• f̂ (τ) = ν′, and

• f̂ (τ′) ∈ Inv(loc) for all τ′ ∈ [0, τ].

The correctness of the first two points were already proven above, abd the third
point holds trivially since Inv allows all valuations. In conclusion, we have that

ν′ = time f̂
f̃ (σ)

(τ).

2. clocks f̂
σ(τ) = ν′Lab is true if all jumps corresponding to a label are either enabled

in the complete time interval or not at all, and that the clocks are decreased
accordingly. For formal details, see Definition 2.11.

To show that this holds, we split the set of labels into those that belong to a
transition in t ∈ T2 and those that do not. We start with the former and let
A = {at | t ∈ T2} ⊆ Lab be those labels.

Then, for every at ∈ A, there exists a jump jumpt ∈ Edge with Proc(jumpt) = at.
We have to show that

• for all τ′ ∈ (0, τ) there exists ν′′ ∈ V such that ν′′ = time f̂
f̃ (σ)

(τ′) and

enabledϑ′(jumpt) for ϑ′ = (l, ν′′, νLab), and

122

B.2. Proof of Theorem 4.1

• ν′Lab(at) = νLab(at)− τ ≥ 0.

The second part was already shown above. The first part basically means that
jumpt is enabled after τ′ time units for τ′ ∈ (0, τ). To prove this, first note that

ν′′ = time f̂
f̃ (σ)

(τ′) = f̂ (τ′) is implied by the first part of this proof, since τ′ ∈ [0, τ].

Therefore, the existence of ν′′ is guaranteed.

Next, we argue that enabledϑ′(jumpt) holds, which is the case if concν′′(jumpt) holds
by definition of jumpt. From the fact that τ is a safe time span, we know that
enabledσ(t) = enabledσ′′(t) for all intermediate states σ′′. Together with (2), this
implies that t has concession in the valuation corresponding to σ′. In particular,
concν′′(jumpt) holds. Therefore, the claim holds for all labels a ∈ A.

Next, we consider the labels a 6∈ A, i.e., those that are not associated with a
transition in T2. We need to argue that all jumps corresponding to those labels do
not become enabled in any intermediate state. More formally, we have to show
that for every jump e corresponding to a label a 6∈ A, it holds that

• for all τ′ ∈ (0, τ), there is no valuation ν′′ ∈ V with ν′′ = time f
ϑ(τ
′) and

enabledϑ′(e) for ϑ′ = (l, ν′′, νLab), and

• ν′Lab(a) = νLab(a).

Again, the second property was already shown above. As in the previous part,

we know that ν′′ = time f̂
f̃ (σ)

(τ′) = f̂ (τ′). It remains to prove that enabledϑ′(e) does
not hold in any intermediate state. To do so, we distinguish between the concrete
types of labels:

• The first labels we consider are of the form at for jumps jumpt with t ∈
T disc\T2, which are enabled if t has concession. We know that there is an
intermediate state in which t does not have concession, otherwise it would
be included in T2 by Definition 3.17. By Definition 3.18, we know that the
concession status does not change within the interval, i.e., t does not have
concession in any intermediate state. This implies with (2) that jumpt is not
enabled in any intermediate valuation, so enabledϑ′(jumpt) does not hold.

• For every continuous place p ∈ P cont, we have a label a1@p corresponding
to the jump reducee@p originating from the sub-SHA corresponding to p.
These jumps are by Definition 4.10 enabled for a valuation ν′′ if ν′′(xp) = 0
and driftν′′(p) < 0. Since τ is a safe time span, we know that x′′(p) = 0
implies that driftσ′′(p) ≥ 0 for all intermediate states σ′′. Again with (6) and
the definition of f̃ , this implies that ν′′(xp) = 0∧ driftν′′(p) < 0 never holds.
Therefore, enabledϑ′(reducee@p) does not hold.

• For every continuous place p ∈ P cont, we have a label a2@p corresponding to

123

B. Omitted Proofs

the jump reduce f @p originating from the sub-SHA corresponding to p. With
dual argumentation as above, we have that enabledϑ′(reduce f @p) does not
hold.

• For every continuous place p ∈ P cont, we have a label a3@p corresponding to
the jump resete@p originating from the sub-SHA corresponding to p. Such a
jump is by Definition 4.10 enabled for a valuation ν′′ if ν′′(xp) = 0, restrν′′(p),
and driftν′′(p) > 0. Since τ is a safe time span, we know that x′′(p) = 0
implies that for all intermediate states σ′′, we either have driftσ′′(p) = 0 or
driftσ′′(p) > 0 and ¬restrσ′′(p). By (4) and (6), it follows that the required
properties for resete@p cannot hold at the same time, thus enabledϑ′(resete@p)
does not hold.

• For every continuous place p ∈ P cont, we have a label a4@p corresponding to
the jump reset f @p originating from the sub-SHA corresponding to p. With
dual argumentation as above, we have that enabledϑ′(reduce f @p) does not
hold.

• For every continuous place p ∈ P cont, we have a label a5@p corresponding
to the jump resetSingle@p originating from the sub-SHA corresponding to
p. These jumps are by Definition 4.10 enabled for a valuation ν′′ if there
exists a continuous transition t ∈ T cont that does not have concession but
is restricted, i.e, ¬concν′′(t) and ν′′(lt,p) < 1. Since τ is a safe time span, we
know that ¬fireableσ′′(t) implies l(t)(p) = 1 for all intermediate states σ′′. For
continuous transitions, the notions of being fireable and having concession
coincide, therefore we also know that ¬concσ′′(t). By (1) and the definition
of f̃ , it follows that ¬concν′′(t) implies ν′′(lt,p) = 1, i.e., there does not exist
a transition that would be required for resetSingle@p to fire. In conclusion,
enabledϑ′(resetSingle@p) does not hold.

We can conclude that clocks f̂
σ(τ) = ν′Lab.

In conclusion, all premises hold and we have that

σ
τ

=⇒ σ′ implies f̃ (σ)
τ, f̂

==⇒ f̃ (σ′).

Conclusion. We now have considered every possible semantic rule for HPnGs. There-
fore, we have proven that

σ =⇒ σ′ implies f̃ (σ) =⇒ f̃ (σ′).

The other direction is shown in the following section.

124

B.2. Proof of Theorem 4.1

B.2.3. Induction Step Part II

We now show that for ϑ, ϑ′ ∈ ΘA
H

with ϑ =⇒ ϑ′, we have f̃−1(ϑ) =⇒ f̃−1(ϑ′).

Again, we structure the subsections as follows: First, we discuss what we know about
ϑ and ϑ′ assuming that we reach ϑ′ from ϑ applying a specific rule. The semantics of
SHAs are described in three rules: one for taking jumps, where we will additionally
distinguish between which jump is taken, one for the passing of time, and one for
changes made by the environment. Since we do not have any non-controlled variables,
we do not have to consider the environment rule. Then, we examine what we can infer
for f̃−1(ϑ) and f̃−1(ϑ′) based on the previous findings. Next, we present the rule from
the semantics of HPnGs which will be used to simulate the step, and show that the
corresponding premises are fulfilled. This lets us conclude that f̃−1(ϑ) =⇒ f̃−1(ϑ′).

We denote ϑ = (l, ν, νLab), ϑ′ = (l′, ν′, ν′Lab), f̃−1(ϑ) = σ = (m, x, c, l), and f̃−1(ϑ′) =

σ′ = (m′, x′, c′, l′).

Firing of Deterministic Transitions

Assume that ϑ
jumpt===⇒ ϑ′ for some discrete transition t ∈ T disc, so the consequent state

ϑ′ is obtained by taking a jump corresponding to a discrete transition. The semantic
rule is given in Definition 2.12 by

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

We thus know that fireableϑ(jumpt), ν′ = discϑ(jumpt), and ν′Lab = νLab[Proc(e) 7→ u] for
an u ∈ supp(Dur(at, (loc, ν′))).

We start by examining what we can infer about f̃−1(ϑ) and f̃−1(ϑ′).

• For every discrete place p ∈ Pdisc, it holds that

m′(p) = ν′(mp) by def. of f̃−1

= fireν(t)(mp) since ν′ = discϑ(jumpt)

=


ν(mp)−ΦAw 〈p, t〉 if p ∈ Idisc(t)

ν(mp) + ΦAw 〈t, p〉 if p ∈ Odisc(t)

ν(mp) else

by Definition 4.3

=


m(p)−ΦAw 〈p, t〉 if p ∈ Idisc(t)

m(p) + ΦAw 〈t, p〉 if p ∈ Odisc(t)

m(p) else

by def. of f̃−1

= firet(m)(p) by Definition 3.9

125

B. Omitted Proofs

So, we have that m′ = firet(m).

• For every continuous place p ∈ P cont, it holds that

x′(p) = ν′(xp) by def. of f̃−1

= fireν(t)(xp) since ν′ = discϑ(jumpt)

= ν(xp) by Definition 4.3

= x(p) by def. of f̃−1

So, we have that x′ = x.

• For every discrete transition t′ ∈ T disc, we have that

c′(t′) = ν′Lab(at′) by def. of f̃−1

= νLab[at 7→ u](at′)

=

{
νLab(at′) if t′ 6= t

u ∈ supp(Dur(at, (l′, v′))) if t′ = t

=


νLab(at′) if t′ 6= t

u ∈ supp(δΦTft (t)
) if t′ = t and t ∈ T det

u ∈ supp(ΦTgt(t)) if t′ = t and t ∈ T gen

by Definition 4.4

=


νLab(at′) if t′ 6= t

ΦTft (t) if t′ = t and t ∈ T det

sample from ΦTgt(t) if t′ = t and t ∈ T gen

=


c(t′) if t′ 6= t

ΦTft (t) if t ∈ T det

sample from ΦTgt(t) if t ∈ T gen

by def. of f̃−1

= resett(c)(t′) by Definition 3.11

So, we have that c′ = resett(c).

• For every continuous transition t′ ∈ T cont and place p ∈ P cont, it holds that

l′(t′)(p) = ν′(lt′,p) by def. of f̃−1

= fireν(t)(lt′,p) since ν′ = discϑ(jumpt)

= ν(lt′,p) by Definition 4.3

= l(t′)(p) by def. of f̃−1

So, we have that l′ = l.

126

B.2. Proof of Theorem 4.1

We aim to show that f̃−1(ϑ) =⇒ f̃−1(ϑ′), and from the considerations above we know
that

f̃−1(ϑ′) = (m′, x′, c′, l′) = (m, firet(m), resett(c), l).

In the transformation, taking jumpt simulates the firing of transition t. Therefore, we
are going to show that

(m, x, c, l) fire t
===⇒ (m, firet(m), resett(c), l).

The rule as defined in Section 3.2.3 is

t ∈ T disc fireableσ(t)

(m, x, c, l) fire t
===⇒ (firet(m), x, resett(c), l)

fire

With the above observations in mind, we now prove that this rule is indeed applica-
ble. This concretely means that we have to show that fireable f̃−1(ϑ)(t). We know by
assumption that fireableϑ(jumpt). By (3), this directly implies that fireable f̃−1(ϑ)(t).

In conclusion, all premises hold and we have that

ϑ
jumpt===⇒ ϑ′ implies f̃−1(ϑ)

fire t
===⇒ f̃−1(ϑ′).

Rate Adaption: Reduce

Assume that ϑ
reducee@p

======⇒ ϑ′, so the consequent state ϑ′ is obtained by taking the jump
reducee@p for a continuous place p. The semantic rule is given in Definition 2.12 by

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

We thus know that fireableϑ(reducee@p), ν′ = discϑ(reducee@p), and ν′Lab = νLab[a1@p 7→
u] for u ∈ supp(Dur(a1@p, (loc, ν′))). Note that since supp(Dur(a1@p, (loc, ν′))) = {0},
we know that u = 0 and ν′Lab = νLab.

We start by examining what we can infer about f̃−1(ϑ) and f̃−1(ϑ′).

• For every discrete place p′ ∈ Pdisc, we have

m′(p′) = ν′(mp′) by def. of f̃−1

= discϑ(reducee@p)(mp′)

= reduceempty
p (ν)(mp′) by def. of reducee

= ν(mp′) by Definition 4.7

= m(p′) by def. of f̃−1

Therefore, we have that m′ = m.

127

B. Omitted Proofs

• For every continuous place p′ ∈ P cont, we have

x′(p′) = ν′(xp′) by def. of f̃−1

= discϑ(reducee@p)(xp′)

= reduceempty
p (ν)(xp′) by def. of reducee

= ν(xp′) by Definition 4.7

= x(p′) by def. of f̃−1

So, also x′ = x.

• For every discrete transition t ∈ T disc, we have

c′(t) = ν′Lab(at) by def. of f̃−1

= νLab(at) by assumption

= c(t) by def. of f̃−1

Therefore, we have that c′ = c.

• Finally, for t ∈ T cont and p′ ∈ P cont we have

l′(t)(p′) = ν′(lt,p′) by def. of f̃−1

= discϑ(reducee@p)(lt,p′)

= reduceempty
p (ν)(lt,p′) by def. of reducee

=

{ in(p)
out(p) ·min

{
ν(lt,p′′)

∣∣ p′′ ∈ P cont} if p = p′

ν(lt,p′) else
by Definition 4.7

=

{ in(p)
out(p) ·min

{
l(t)(p′′)

∣∣ p′′ ∈ P cont} if t ∈ T, p = p′

l(t)(p′) else.
by def. of f̃−1

= reduceempty
p (l)(t)(p′) by Definition 3.13

So, we have that
l′ = reduceempty

p (l)

We aim to show that f̃−1(ϑ) =⇒ f̃−1(ϑ′), and from the considerations above we know
that

f̃−1(ϑ′) = (m′, x′, c′, l′) = (m, x, c, reduceempty
p (l)).

In the transformation, taking the jump reducee@p simulates the reduction step of the
rate adaption. Therefore, we are going to show that

(m, x, c, l)
reduce empty p

=========⇒ (m, x, c, reduceempty
p (l)).

128

B.2. Proof of Theorem 4.1

The rule as defined in Section 3.2.3 is

p ∈ P cont x(p) = 0 driftσ(p) < 0

(m, x, c, l)
reduce empty p

=========⇒ (m, x, c, reduceempty
p (l))

reduce empty

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show that x(p) = 0 and that driftσ(p) < 0. We
know that fireableϑ(reducee@p), so the guard of reducee@p is satisfied in ϑ. By definition
of the jump in Definition 4.10, we thus know that ν(xp) = 0 and driftν(p) < 0. This
directly implies that x(p) = 0 by definition of f̃−1 and that driftσ(p) < 0 by (6).

In conclusion, all premises hold and we have that

ϑ
reducee@p

======⇒ ϑ′ implies f̃−1(ϑ)
reduce empty p

=========⇒ f̃−1(ϑ′).

In case p is at its upper boundary case, the argumentation is dual and we can show that

ϑ
reduce f @p

======⇒ ϑ′ implies f̃−1(ϑ)
reduce full p

=======⇒ f̃−1(ϑ′).

Rate Adaption: Reset

Assume that ϑ
resete@p

=====⇒ ϑ′, so the consequent state ϑ′ is obtained by taking the jump
resete@p for a continuous place p. The semantic rule is given in Definition 2.12 by

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

We thus know that fireableϑ(resete@p), ν′ = discϑ(resete@p), and ν′Lab = νLab[a3@p 7→ u]
for u ∈ supp(Dur(a3@p, (loc, ν′))). Note that since supp(Dur(a3@p, (loc, ν′))) = {0}, we
know that u = 0 and ν′Lab = νLab.

We start by examining what we can infer about f̃−1(ϑ) and f̃−1(ϑ′).

• For every discrete place p′ ∈ Pdisc, we have

m′(p′) = ν′(mp′) by def. of f̃−1

= discϑ(resete@p)(mp′)

= resetp(ν)(mp′) by def. of resete

= ν(mp′) by Definition 4.9

= m(p′) by def. of f̃−1

So, m′ = m.

129

B. Omitted Proofs

• For every continuous place p′ ∈ P cont, we have

x′(p′) = ν′(xp′) by def. of f̃−1

= discϑ(resete@p)(xp′)

= resetp(ν)(xp′) by def. of resete

= resetp(ν)(xp′)

= ν(xp′) by Definition 4.9

= x(p′) by def. of f̃−1

So, also x′ = x.

• For every discrete transition t ∈ T disc, we have

c′(t) = ν′Lab(at) by def. of f̃−1

= νLab(at) by assumption

= c(t) by def. of f̃−1

So, c′ = c.

• Finally, for t ∈ T cont and p′ ∈ P cont we have

l′(t)(p′) = ν′(lt,p′) by def. of f̃−1

= discϑ(resete@p)(lt,p′)

= resetp(ν)(lt,p′) by def. of resete

=

{
1 if p = p′

ν(lt,p′) else
by Definition 4.9

=

{
1 if p = p′

l(t)(p′) else
by def. of f̃−1

= resetp(l)(t)(p′) by Definition 3.15

So, we have that l′ = resetp(l).

We aim to show that f̃−1(ϑ) =⇒ f̃−1(ϑ′), and from the considerations above we know
that

f̃−1(ϑ′) = (m′, x′, c′, l′) = (m, x, c, resetp(l)).

In the transformation, taking the jump resete simulates the reset step of the rate adaption
algorithm. Therefore, we are going to show that

(m, x, c, l)
reset empty p

========⇒ (m, x, c, resetp(l)).

130

B.2. Proof of Theorem 4.1

The rule as defined in Section 3.2.3 is

p ∈ P cont x(p) = 0 driftσ(p) > 0 restrσ(p)

(m, x, c, l)
reset empty p

========⇒ (m, x, c, resetp(l))
reset empty

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show that x(p) = 0, driftσ(p) > 0, and restrσ(p).
We know that fireableϑ(resete@p), so the guard of resete@p is satisfied in ϑ. By definition
of the jump in Definition 4.10, we thus know that ν(xp) = 0, driftν(p) > 0, and restrν(p).
With the definition of f̃−1, (6), and (4), these conditions directly imply that all premises
of the rule hold. In conclusion, we have that

ϑ
rule

===⇒ ϑ′ implies f̃−1(ϑ)
reset empty p

========⇒ f̃−1(ϑ′).

In case p is at its upper boundary case, the argumentation is dual and we can show that

ϑ
reset f @p

=====⇒ ϑ′ implies f̃−1(ϑ)
reset full p

======⇒ f̃−1(ϑ′).

Rate Adaption: Reset Single

Assume that ϑ
resetSingle@p

=======⇒ ϑ′, so the consequent state ϑ′ is obtained by taking the jump
resetSingle@p for a continuous place p. The semantic rule is given in Definition 2.12 by

e = (id, l, µ, l′) ∈ Edge fireableϑ(e) ν′ = discϑ(e) u ∈ supp(Dur(Proc(e), (l′, ν′)))

(l, ν, νLab)
e

=⇒ (l′, ν′, νLab[Proc(e) 7→ u])
discrete

We thus know that fireableϑ(resetSingle@p) holds, the new valuation ν′ is given by
discϑ(resetSingle@p), and that the labels are updated by ν′Lab = νLab[a5@p 7→ u], i.e., they
only change at the entry a5@p. Note that since supp(Dur(a5@p, (loc, ν′))) = {0}, we
know that u = 0 and ν′Lab = νLab.

We start by examining what we can infer about f̃−1(ϑ) and f̃−1(ϑ′).

• For every discrete place p′ ∈ Pdisc, we have

m′(p′) = ν′(mp′) by def. of f̃−1

= discϑ(resetSingle@p)(mp′)

= ν[lt,p 7→ 1](mp′) by def. of resetSingle

= ν(mp′)

= m(p′) by def. of f̃−1

Therefore, we have that m′ = m.

131

B. Omitted Proofs

• For every continuous place p′ ∈ P cont, we have

x′(p′) = ν′(xp′) by def. of f̃−1

= discϑ(resetSingle@p)(xp′)

= ν[lt,p 7→ 1](xp′) by def. of resetSingle

= ν(xp′)

= x(p′) by def. of f̃−1

So, also x′ = x.

• For every discrete transition t′ ∈ T disc, we have

c′(t′) = ν′Lab(at′) by def. of f̃−1

= νLab(at′) by assumption

= c(t′) by def. of f̃−1

So, c′ = c.

• Finally, for t′ ∈ T cont and p′ ∈ P cont we have

l′(t′)(p′) = ν′(lt′,p′) by def. of f̃−1

= discϑ(resetSingle@p)(lt′,p′)

= ν[lt,p 7→ 1](lt′,p′) by def. of resetSingle

=

{
1 if t′ = t, p′ = p

ν(lt′,p′) else

=

{
1 if t′ = t, p′ = p

l(t′)(p′) else
by def. of f̃−1

= l[t, p 7→ 1](t′)(p′)

So, we have that
l′ = l[t, p 7→ 1]

We aim to show that f̃−1(ϑ) =⇒ f̃−1(ϑ′), and from the considerations above we know
that

f̃−1(ϑ′) = (m′, x′, c′, l′) = (m, x, c, l[t, p 7→ 1]).

In the transformation, the jump resetSingle simulates the maintenance of the restriction
list. Therefore, we are going to show that

(m, x, c, l)
reset t, p

=====⇒ (m, x, c, l[t, p 7→ 1]).

132

B.2. Proof of Theorem 4.1

The rule as defined in Section 3.2.3 is

t ∈ T cont ¬fireableσ(t) p ∈ P cont l(t)(p) < 1

(m, x, c, l)
reset t, p

=====⇒ (m, x, c, l[t, p 7→ 1])
reset single

With the above observations in mind, we now prove that this rule is indeed applicable.
This concretely means that we have to show that there exists a transition t ∈ T cont such
that ¬fireableσ(t) and l(t)(p) < 1. We know that fireableϑ(resetSingle@p), so the guard
of resetSingle@p is satisfied in ϑ. By definition of the jump in Definition 4.10, we thus
know that there exists a transition t ∈ T cont with ¬concν(t) and ν(lt,p) < 1. We can
follow that ¬fireableσ(t) by (1) and the fact that being fireable equals having concession
for continuous transitions, and that l(t)(p) < 1 by definition of f̃−1.

In conclusion, all premises hold and we have that

ϑ
resetSingle@p

=======⇒ ϑ′ implies f̃−1(ϑ)
reset t, p

=====⇒ f̃−1(ϑ′).

Passing of Time

Assume that ϑ
τ, f

==⇒ ϑ′, so the consequent state ϑ′ is obtained by letting τ time units
pass following an activity f ∈ Act(loc). The semantic rule is given in Definition 2.12 by

f ∈ Act(l) τ ∈ R>0 ν′ = time f
ϑ(τ) ν′Lab = clocks f

ϑ(τ)

(l, ν, νLab)
τ, f

==⇒ (l, ν′, ν′Lab)
time

We thus know that ν′ = time f
ϑ(τ) and ν′Lab = clocks f

ϑ(τ). Since f ∈ Act(loc), we know
that f must satisfy

• ẋp = driftν(p) for all p ∈ P cont and

• ẏ = 0 for all other y ∈ VarH.

From the fact that ν′ = time f
ϑ(τ), we know that f (0) = ν and f (τ) = ν′. Therefore, ν′

only changes the variables xp for continuous places by their drift. Formally, this means
that

ν′(xp) = ν(xp) + τ · driftν(p) and ν′(y) = ν(y) for y 6= xp.

The fact that ν′Lab = clocks f
ϑ(τ) intuitively means that all jumps corresponding to a label

are either enabled in the complete time interval or not at all, and that the clocks are
decreased accordingly. The formal description is given in Definition 2.11 and states that
for all r ∈ Lab, one of the following is true:

• There exists some e = (id, l, µ, l′) ∈ Edge with r = Proc(e) such that

133

B. Omitted Proofs

1. ∀τ′ ∈ (0, τ). ∃ν′′ ∈ V . ν′′ = time f
ϑ(τ
′) ∧ enabledϑ′′(e) for ϑ′′ = (l, ν′′, νLab), and

2. ν′′Lab(r) = νLab(r)− τ ≥ 0,

• or for all e = (id, l, µ, l′) ∈ Edge with r = Proc(e) it holds that

1. ∀τ′ ∈ (0, τ). ¬∃ν′′ ∈ V . ν′′ = time f
ϑ(τ
′) ∧ enabledϑ′′(e) for ϑ′′ = (l, ν′′, νLab),

and

2. ν′′Lab(r) = νLab(r).

As we did in Appendix B.2.2, we will show that labels at for deterministic transitions
with concession fall into the first category, and all other labels into the second. For this
purpose, we define two sets

T1 =
{

at ∈ Lab
∣∣∣ t ∈ T disc has concession in (0, τ)

}
and T2 = Lab\T1.

Note that T1 corresponds to the set concdisc
f̃−1(ϑ),τ

from Definition 3.17. We argue that T1

contains the labels in the first category and T2 those in the second. For this, first note
that all labels a that are not of the form at for a discrete transition t are always 0. In
particular, this implies that νLab(a)− τ < 0 for all τ > 0. Therefore, all such labels must
fall into the second category.

For labels at, we distinguish between transitions that have concession and those that do
not. Recall that enabledϑ′(jumpt) is with (2) equal to conc f̃−1(ϑ′)(t). Therefore, all jumps
in T1 that have concession in all intermediate states are in the first category, and all
others are in the second.

To conclude, we have that ν′Lab(at) = νLab(at)− τ for all t ∈ T1 and ν′Lab(a) = νLab(a) for
all other labels.

We continue with examining what we can infer about f̃−1(ϑ) and f̃−1(ϑ′).

• We know that by the above reasoning, f does not modify the marking, so we have
ν′(mp) = ν(mp) for all p ∈ Pdisc. By definition of f̃−1, this implies that m′ = m.

• By the above considerations, we know that ν′(xp) = ν(xp) + τ · driftν(p). By
definition of f̃−1 and (6), this implies that x′(p) = x(p) + τ · drift f̃−1(ϑ)(p).

Now, we need to take into account that there is a slight difference in the re-
quirements for the passing of time. In HPnGs, we require that all continuous
transitions to be either continuously fireable or not in the full time span. This is
not required in the transformed HPnG, because the changes in the level of places
are described with activity functions. Therefore, we cannot be sure that the set of
fireable continuous transitions is stable, i.e., does not change, within τ. For this
purpose, we split the time interval into several smaller intervals τ = τ1 + · · ·+ τn,
where the enabling status of (at least) one continuous changes at time τi and

134

B.2. Proof of Theorem 4.1

within an interval the statuses do not change. Let ϑ1 = ϑ and ϑi
τi=⇒ ϑi+1 be the

intermediate states, so ϑn+1 = ϑ′.

Recall that fireablecont
f̃−1(ϑ),τ are the continuous transitions enabled in the time span

τ (see Definition 3.16). Using the splitting as above, we get that fireablecont
f̃−1(ϑi),τi

is a

stable set for all i ∈ {1, . . . , n}. Denote f̃−1(ϑi) = (mi, xi, ci, li). Then, we have for
i ∈ {2, . . . , n + 1} that

xi(p) = xi−1(p) + τi · drift f̃−1(ϑi)
(p) = fireτi

fireablecont
f̃−1(ϑi),τi

(x)(p).

The final level of place p can be computed as

xn+1(p) = x′(p) = x(p) +
n

∑
i=1

τi · drift f̃−1(ϑi)
(p).

For every intermediate state, we thus have xi = fireτi
fireablecont

f̃−1(ϑi),τi

(x).

• As argued above, we have ν′Lab(at) = νLab(at) − τ for all t ∈ T1 and ν′Lab(a) =

νLab(a) otherwise. Since T1 = concdisc
f̃−1(ϑ),τ

and by definition of f̃−1, we have that

c′ = evolveτ
concdisc

f̃−1(ϑ),τ
(c). In contrast to the set of fireable continuous transitions, the

set of discrete transitions with concession is stable in the full time span. Therefore,
we do not have to split the time span here.

• We know that f does not modify the list of the restrictions, so we have ν′(lt,p) =

ν(lt,p) for all t ∈ T cont, p ∈ P cont. By definition of f̃−1, this implies that l′ = l.

We aim to show that f̃−1(ϑ) =⇒ f̃−1(ϑ′). As was indicated above, we will do so by
taking several time steps using the splitting of τ and show that

f̃−1(ϑ) = f̃−1(ϑ1)
τ1=⇒ f̃−1(ϑ2)

τ2=⇒ . . . τn==⇒ f̃−1(ϑn+1) = f̃−1(ϑ′).

From the considerations above, we know that

f̃−1(ϑi) = (m, fireτi
fireablecont

f̃−1(ϑi),τi

(x), evolveτi
concdisc

f̃−1(ϑ),τi

(c), l)

for i ∈ {2, . . . , n + 1}. The rule for a time step as defined in Section 3.2.3 is given by

τ ∈ R>0 safeσ(τ)

(m, x, c, l) τ
=⇒ (m, fireτ

fireablecont
σ,τ

(x), evolveτ
concdisc

σ,τ
(c), l)

time

With the above observations in mind, we now prove that this rule is indeed applicable
for each time interval. This concretely means that we have to show that safe f̃−1(ϑi)

(τi)

holds for every i ∈ {2, . . . , n + 1}.

135

B. Omitted Proofs

In Definition 3.18, this was defined to hold if for all τ′ ∈ (0, τi) and corresponding
intermediate states σ′ = (m, fireτ′

fireablecont
f̃−1(ϑi),τi

(x), evolveτ′

concdisc
f̃−1(ϑi),τi

(c), l) the following five

conditions hold. First, note that we can conclude from the reasoning above that the
intermediate states in AH and H coincide, i.e., we have that f̃−1(ϑ′′) = σ′ for all
intermediate states ϑ′′ with ν′′ = time f

ϑ(τ
′) and ν′′Lab = clocks f

ϑ(τ
′). Also, we will only

need the splitting of the time span for proving the first part of the firth condition. All
other conditions hold regardless of that splitting for the full time span.

1. ¬fireableσ′(t) for all t ∈ T disc

Since we know that ν′Lab = clocks f
ϑ(τ) holds, all jumps either are enabled in the full

time span and their clocks reach zero earliest at time τ, or they are not enabled in
the full time span. This in particular holds for all jumps jumpt. From (2), we know
that t having concession corresponds to jumpt being enabled in states related by f̃ .
Since fireableσ′(t) only holds if t has concession and their clock is zero, we know
that this is not fulfilled in the time span.

2. x′(p) = 0 =⇒ driftσ′(p) = 0∨ (driftσ′(p) > 0∧ ¬restrσ′(p)) for all p ∈ P cont

We already know that all jumps that are not of the form jumpt for a transition
t are in T2, i.e., are not enabled in any intermediate state ϑ′. This in particular
means that the jump reducee@p 6∈ T2 for all places p ∈ P cont is not enabled. By
definition of this jump in Definition 4.10, we know that this is the case if either
ν′(xp) > 0 or driftν′(p) ≥ 0. With (6) and the definition of f̃−1, this implies that
x′(p) > 0 or driftσ′(p) ≥ 0.

Additionally, we know that the jump resete@p 6∈ T2 for all places p ∈ P cont is not
enabled. By definition of this jump in Definition 4.10, we know that this is the
case if ν(xp) 6= 0, ¬restrν(p), or driftν(p) ≤ 0. With (6), (4), and the definition of
f̃−1, this implies that x′(p) > 0, ¬restrσ′(p), or driftσ′(p) ≤ 0.

In combination with the earlier properties, we get that x′(p) = 0 implies that
driftσ′(p) = 0, or driftσ′(p) > 0 and ¬restrσ′(p)).

3. x′(p) = ΦPub(p) =⇒ driftσ′(p) = 0∨ (driftσ′(p) < 0∧¬restrσ′(p)) for all p ∈ P cont

The arguments for this case are dual to those above: We can make use of the fact
that reduce f @p 6∈ T2 and reset f @p 6∈ T2 are not enabled.

4. ¬fireableσ′(t) =⇒ l(t)(p) = 1 for all t ∈ T cont, p ∈ P cont

Similar to the cases above, we now use that the jump resetSingle@p ∈ T2 does not
become enabled. By Definition 4.10, this means that for all transitions t ∈ T cont,
we have either concν′(t) or ν′(lt,p) = 1. With (1) and the definition of f̃−1, this is
equal to concσ′(t) or l(t)(p) = 1 for all transitions t ∈ T cont and places p ∈ P cont.
Since the notions of having concession and being fireable coincide for continuous

136

B.2. Proof of Theorem 4.1

transitions, this is logically equivalent to ¬fireableσ′(t) =⇒ l(t)(p) = 1 and the
claim is proven.

5. for all τ′′ ∈ (0, τ) and corresponding intermediate states σ′′ = (m, x′′, c′′, l) =

(m, fireτ′′

fireablecont
f̃−1(ϑi),τi

(x), evolveτ′′

concdisc
f̃−1(ϑi),τi

(c), l) we have

a) fireableσ′′(t) = fireableσ′(t) for all t ∈ T cont

Now, we need the fact that we split the time interval such that the continuous
transitions remain fireable in each interval. In particular, the splitting was
chosen in such a way that for state in the interval (τi, τi+1), the fireability
of a continuous transition does not change. This exactly corresponds to the
above condition.

b) concσ′′(t) = concσ′(t) for all t ∈ T disc

As was elaborated earlier, the enabling status of jumpt does not change in
the time interval, as we have ν′Lab = clocks f

ϑ(τ). Since jumpt is enabled exactly
if t has concession, the above condition is implied.

In conclusion, all premises hold and we have that

ϑ
τ, f

==⇒ ϑ′ implies f̃−1(ϑ) = f̃−1(ϑ1)
τ1=⇒ f̃−1(ϑ2)

τ2=⇒ . . . τn==⇒ f̃−1(ϑn+1) = f̃−1(ϑ′)

for a suitable splitting of τ.

Conclusion. We have now shown that for σ, σ′ ∈ ΣH we have

σ =⇒ σ′ iff f̃ (σ) =⇒ f̃ (σ′),

which finally concludes the proof of the correctness of the transformation as formulated
in Theorem 4.1.

137

Bibliography

[AA97] M. Allam and H. Alla. “Modelling production systems by hybrid automata
and hybrid Petri nets”. In: IFAC Proceedings Volumes 30.6 (1997), pp. 343–348.

[AA98] M. Allam and H. Alla. “From hybrid Petri nets to hybrid automata”. In:
Journal européen des systèmes automatisés 32.9-10 (1998), pp. 1165–1185.

[Aba+07] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry. “Computational
approaches to reachability analysis of stochastic hybrid systems”. In: Inter-
national Workshop on Hybrid Systems: Computation and Control. Springer. 2007,
pp. 4–17.

[ACB84] M. Ajmone Marsan, G. Conte, and G. Balbo. “A class of generalized stochas-
tic Petri nets for the performance evaluation of multiprocessor systems”. In:
ACM Transactions on Computer Systems (TOCS) 2.2 (1984), pp. 93–122.

[Alt15] M. Althoff. “An introduction to CORA 2015”. In: Proceedings of the workshop
on applied verification for continuous and hybrid systems. 2015, pp. 120–151.

[CÁS12] X. Chen, E. Ábrahám, and S. Sankaranarayanan. “Taylor model flowpipe
construction for non-linear hybrid systems”. In: 2012 IEEE 33rd Real-Time
Systems Symposium. IEEE. 2012, pp. 183–192.

[DA01] R. David and H. Alla. “On hybrid Petri nets”. In: Discrete Event Dynamic
Systems 11.1 (2001), pp. 9–40.

[DA10] R. David and H. Alla. Discrete, continuous, and hybrid Petri nets. Vol. 1.
Springer, 2010.

[Eis+13] C. Eisentraut, H. Hermanns, J.-P. Katoen, and L. Zhang. “A semantics for
every GSPN”. In: International Conference on Applications and Theory of Petri
Nets and Concurrency. Springer. 2013, pp. 90–109.

[Frä+11] M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick, and L. Zhang. “Measur-
ability and safety verification for stochastic hybrid systems”. In: Proceedings
of the 14th international conference on Hybrid systems: computation and control.
2011, pp. 43–52.

[Fre+11] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. “SpaceEx: Scalable verification of hybrid
systems”. In: International Conference on Computer Aided Verification. Springer.
2011, pp. 379–395.

[GA18] L. Ghomri and H. Alla. “Continuous Petri nets and hybrid automata: Two
bisimilar models for the simulation of positive systems”. In: International
Journal of Simulation and Process Modelling 13.1 (2018), pp. 24–34.

139

Bibliography

[Ger22] C. Gerlach. “Compositional modeling of stochastic hybrid systems”. Mas-
ter’s thesis. RWTH Aachen University, 2022.

[Gha17] H. Ghasemieh. “Analysis of hybrid Petri nets with random discrete events”.
Dissertation. University of Twente, 2017.

[GR10] M. Gribaudo and A. Remke. “Hybrid Petri nets with general one-shot tran-
sitions for dependability evaluation of fluid critical infrastructures”. In: 2010
IEEE 12th International Symposium on High Assurance Systems Engineering.
IEEE. 2010, pp. 84–93.

[GR16] M. Gribaudo and A. Remke. “Hybrid Petri nets with general one-shot
transitions”. In: Performance Evaluation 105 (2016), pp. 22–50.

[GRH16] H. Ghasemieh, A. Remke, and B. R. Haverkort. “Survivability analysis of a
sewage treatment facility using hybrid Petri nets”. In: Performance evaluation
97 (2016), pp. 36–56.

[Hah+13] E. M. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen. “A composi-
tional modelling and analysis framework for stochastic hybrid systems”. In:
Formal Methods in System Design 43.2 (2013), pp. 191–232.

[HH14] A. Hartmanns and H. Hermanns. “The Modest Toolset: An integrated
environment for quantitative modelling and verification”. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2014, pp. 593–598.

[HNR20] J. Hüls, H. Niehaus, and A. Remke. “HPNMG: A C++ tool for model
checking hybrid Petri nets with general transitions”. In: NASA Formal
Methods Symposium. Springer. 2020, pp. 369–378.

[HR19] J. Hüls and A. Remke. “Model checking HPnGs in multiple dimensions:
Representing state sets as convex polytopes”. In: International Conference on
Formal Techniques for Distributed Objects, Components, and Systems. Springer.
2019, pp. 148–166.

[Hül+21] J. Hüls, C. Pilch, P. Schinke, H. Niehaus, J. Delicaris, and A. Remke. “State-
space construction of hybrid Petri nets with multiple stochastic firings”.
In: ACM Transactions on Modeling and Computer Simulation (TOMACS) 31.3
(2021), pp. 1–37.

[JP09] A. A. Julius and G. J. Pappas. “Approximations of stochastic hybrid sys-
tems”. In: IEEE Transactions on Automatic Control 54.6 (2009), pp. 1193–1203.

[PER17] C. Pilch, F. Edenfeld, and A. Remke. “Hypeg: Statistical model checking for
hybrid Petri nets: Tool paper”. In: Proceedings of the 11th EAI International
Conference on Performance Evaluation Methodologies and Tools. 2017, pp. 186–
191.

[Pil+20] C. Pilch, M. Krause, A. Remke, and E. Ábrahám. “A transformation of
hybrid Petri nets with stochastic firings into a subclass of stochastic hybrid
automata”. In: NASA Formal Methods Symposium. Springer. 2020, pp. 381–
400.

140

Bibliography

[Pol+03] G. Pola, M.-L. Bujorianu, J. Lygeros, and M. D. Di Benedetto. “Stochastic
hybrid models: An overview”. In: IFAC Proceedings Volumes 36.6 (2003),
pp. 45–50.

[PR17] C. Pilch and A. Remke. “Statistical model checking for hybrid Petri nets with
multiple general transitions”. In: 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE. 2017, pp. 475–
486.

[SM00] W. H. Sanders and J. F. Meyer. “Stochastic activity networks: Formal defini-
tions and concepts”. In: School organized by the European Educational Forum.
Springer. 2000, pp. 315–343.

[TK93] K. S. Trivedi and V. G. Kulkarni. “FSPNs: Fluid stochastic Petri nets”. In:
International Conference on Application and Theory of Petri Nets. Springer. 1993,
pp. 24–31.

141

Index

Definitions
2.1. Valuations . 10
2.2. Activities . 10
2.3. Closure of Sets . 10
2.4. Syntax of Stochastic Hybrid Automata . 11
2.5. Deterministic Stochastic Hybrid Automata 14
2.6. State of an SHA . 16
2.7. Enabled Jumps . 16
2.8. Discrete Step . 17
2.9. Fireable Jumps . 17
2.10. Time Step . 17
2.11. Evolution of Clocks . 17
2.12. Operational Semantics of SHAs . 18
2.13. Composability of SHA . 21
2.14. Syntactic Parallel Composition of SHAs 22
3.1. Hybrid Petri Nets with General Firings 28
3.2. Discrete Fragments . 32
3.3. Cyclic HPnGs . 34
3.4. State of a HPnG . 35
3.5. Input and Output Places and Transitions 36
3.6. Concession . 37
3.7. Fireable Transitions . 38
3.8. Actual Firing Rate of Continuous Transitions 38
3.9. Transformed Markings By Firing . 39
3.10. Evolution of Clocks . 40
3.11. Resetting of Clocks . 40
3.12. Drift of a Continuous Place . 43
3.13. Rate Reduction . 44
3.14. Placing Restrictions . 46
3.15. Rate Reset . 47
3.16. Fireable Continuous Transitions in Time Span 59
3.17. Discrete Transitions with Concession in Time Span 59
3.18. Safe Time Span . 60

143

Index

3.19. Operational Semantics of HPnGs . 61
4.1. Variable and Valuation Set for HPnGs . 68
4.2. Concession . 69
4.3. Transformed Valuation By Firing of Discrete Transitions 69
4.4. Transforming Discrete Fragments . 71
4.5. Actual Firing Rate of Continuous Transitions 77
4.6. Drift of a Continuous Place . 77
4.7. Rate Reduction . 77
4.8. Placing Restrictions . 78
4.9. Rate Reset . 78
4.10. Transforming Continuous Places . 79
4.11. Transforming HPnGs to SHAs . 88

Theorems
3.1. Partial Termination of Rate Adaption . 53
3.2. Properties of a Safe Time Span . 61
4.1. Correctness of the Transformation . 96
4.2. Correctness of the Predicates . 97

Examples
2.1. Syntax of SHA . 14
2.2. Semantics of SHAs . 19
2.3. Unrealistic Behavior of SHAs . 21
2.4. Composition of SHAs . 23
3.1. Syntax of HPnGs . 32
3.2. States of HPnGs . 40
3.3. Conflicting Deterministic Transitions . 43
3.4. Rate Adaption . 48
3.5. Non-Terminating Rate Adaption in Cyclic HPnGs 51
3.6. Non-Terminating Rate Adaption for Transitions with Multiple Arcs . . 51
3.7. Termination of (non-strongly) acyclic HPnGs 52
3.8. Operational Semantics of HPnGs . 62
4.1. Transforming Discrete Fragments . 73
4.2. Transforming Continuous Places . 81
4.3. Transformation . 89
4.4. States and Paths in Transformed HPnG 92

144

	Introduction
	Stochastic Hybrid Automata
	Syntax of SHAs
	Semantics of SHAs
	Composition
	Assumptions and Restrictions

	Hybrid Petri Nets with General Firings
	Syntax of HPnGs
	Semantics of HPnGs

	Transforming HPnGs to SHAs
	Preliminary Definitions
	Transforming Discrete Fragments
	Transforming Continuous Fragments
	Compositional Transformation
	Correctness of the Transformation

	Conclusion
	Future Work

	Notations
	Omitted Proofs
	Proof of theo:predicatescorr
	Proof of theo:correctnessTrans

	Bibliography
	Index
	Definitions
	Theorems
	Examples

