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Abstract

Satisfiability Modulo Theories (SMT) solving is utilized for determining the
satisfiability of quantifier-free first order logic formulas over some theory. A
method of solving the theory of linear real arithmetic (LRA) is given by the
FMplex method. This method progressively eliminates variables by combining
constraints with assumed greatest lower bounds or smallest upper bounds. In
recent works the method has been extended to support incrementality. However,
surprisingly testing has shown that enabling incrementality does not yield a
benefit in performance.

Based on this we present ideas on how to optimize FMplex in general as well
as its incremental adaptation. For this we look at various aspects covering the
treatment of equalities, data structures and infeasible subsets. Furthermore, we
discuss how to change the order in which variables are eliminated in an incremen-
tal setting. Testing reveals that the incremental version actually outperforms
the non-incremental version and that the method profits from smaller infeasible
subsets.
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Chapter 1

Introduction

Determining the satisfiability of constraints in the form of equalities and inequalities
has become an important topic in a lot of different research areas. The problems of
the real word can often be abstracted to mathematical formulas, whose satisfiabil-
ity can then be confirmed or disproved. For example, this can be used in program
verification [SG09], circuit validation [LV11] or even the safety analysis of neural net-
works [KBD+17]. The study of Satisfiability Modulo Theories (SMT) solvers concerns
itself with algorithms suited to check for the satisfiability of problems expressed in
the existential fragment of first order logic over some theories.

To solve such formulas, most SMT solvers use a SAT solver and theory solver.
The SAT solver tries to find a set of constraints that satisfies the Boolean structure
of the formula. Meanwhile, the theory solver checks, whether this set of constraints
is satisfiable in the chosen theory. Should the theory solver determine that this set
is unsatisfiable, the SAT solver tries to find another set that satisfies the Boolean
structure.

The focus of this work are theory solvers, in particular over the theory of linear
real arithmetic, for checking the satisfiability of sets of constraints which are linear
combinations of real-valued variables compared to rational constants. One of the
first algorithms capable of deciding the satisfiability of such constraint sets, is the
Fourier-Motzkin variable elimination method, which was first developed in the 1820s
by Fourier and later rediscovered by Motzkin [Fou24, Mot36]. It aims to eliminate each
variable in succession by transforming the constraints into lower and upper bounds
respective to a variable and then combining the bounds to eliminate the variable.
However, due to the doubly exponential runtime of this approach its practical rele-
vance is restricted. Instead, a popular approach is provided in the simplex algorithm,
which has an exponential runtime but works quite well in practice [Dan90].

The ideas of both of these approaches have been combined into the FMplex method
with a singly exponential worst case runtime [Kob21]. This is achieved using a similar
approach as the Fourier-Motzkin variable elimination method but instead of combin-
ing every upper and lower bound, an assumed greatest lower bound or smallest upper
bound, a so called eliminator, is chosen to minimize the number of resulting con-
straints. To make the FMplex method more efficient, an incremental adaptation was
developed [Ste22], which tries to minimize the number of redundant computations
by using information gained from checking the satisfiability of previous constraint
sets. Furthermore, heuristics for choosing variables and eliminators were added. Sur-
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prisingly, experimental evaluation revealed that the incremental version of FMplex
performs worse (solves less instances in reasonable time) than the non-incremental
version. This thesis aims to investigate the reason behind this difference in perfor-
mance and to make further optimizations.

To begin with, in Chapter 2 we establish needed preliminaries. In particular, we
introduce satisfiability checking as well as a definition of linear real arithmetic. Fur-
thermore, we give a small rundown of the Fourier-Motzkin variable elimination, before
we explain the incremental FMplex method. Then, in Chapter 3 a novel adaptation
of the FMplex method is presented, which aims to improve the performance of the
incremental FMplex by putting more focus on the heuristics and introducing new
data structures. Additionally, a more efficient treatment of equations, an extension
to not-equal constraints and a change in the generation of infeasible subsets is pro-
posed. Afterwards, in Chapter 4 an implementation of this variant is discussed and
in Chapter 5 the thesis is concluded.



Chapter 2

Preliminaries

2.1 Satisfiability Checking

One of the most famous problems in computer science is the Boolean satisfiability
problem (SAT), where the satisfiability of a formula in propositional logic is examined.
In fact, in the 1970s the SAT problem was the first to be discovered to be NP-
complete [Coo71, Lev73]. However, propositional logic is not very versatile.

Therefore, it is often more practical to encode problems in quantifier-free first order
logic formulas over some theory. Such formulas can be solved using an SMT solver.
Many SMT solvers consist of a SAT solver and a theory solver for the relevant theory.
This approach is also called DPLL(T), where T stands for some theory [GHN+04].
The problem is first transformed into a Boolean abstraction, where all constraints over
some theory are substituted by Boolean variables. Then, the SAT solver constructs
either a partial or full assignment of truth values to the Boolean variables in such a
way that the Boolean abstraction is satisfied.

In this approach the SAT solving algorithm is the Davis-Putnam-Logemann--
Loveland (DPLL) algorithm [DP60, DLL62]. It works in three steps which are repeat-
edly done, until a satisfying assignment is found or unsatisfiability can be concluded:
decide, propagate and backtrack. In the decide step an unassigned variable is chosen
and assigned a truth value, with which the current partial assignment is extended.
Then, in the propagate step additional truth values are assigned to variables based on
the current partial assignment according to some deduction rules. Should the algo-
rithm run into a situation where the partial assignment cannot be extended in such
a way that the formula stays satisfiable, the backtrack step is executed. We call this
situation a conflict. This means that the algorithm backtracks and reverses a decision
made in prior steps as this assignment cannot satisfy the formula.

When the SAT solver has constructed a partial or full assignment, we still need to
check if the theory constraints, whose abstracting Boolean variables are true and the
negation of those whose abstraction variables are false, are actually satisfiable. To
do this, the SAT solver passes all those theory constraints to the theory solver. The
theory solver checks, whether the conjunction of these constraints is satisfiable. In
case that these constraints are unsatisfiable, the theory solver generates a preferably
minimal subset of constraints that is already unsatisfiable and passes it back to the
SAT solver. Then, the SAT solver extends the formula with a clause that is the
negation of the conjunction of the Boolean variables corresponding to constraints that
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were passed from the theory solver. Through this the SAT solver needs to backtrack
as the current assignment cannot satisfy that clause.

There are two important approaches to SMT solving, that is full lazy and less
lazy SMT solving [ÁK17]. In full lazy SMT solving the SAT solver generates a full
assignment, which already satisfies the Boolean abstraction, and only then the theory
solver is consulted. Meanwhile, in the less lazy approach the SAT solver consults the
theory solver after every decide and propagate step, if there is no conflict. Therefore,
possible conflicts between constraints may be revealed earlier and the SAT solver can
already backtrack.

In the less lazy scenario it is useful, if the theory solver can work incrementally.
This means that the theory solver can make use of the previous satisfiability check
for the check of the extended set passed by the SAT solver. Therein lies the fact that
motivated the development of an incremental adaptation of FMplex.

2.2 Quantifier-Free Linear Real Arithmetic
The FMplex method is a theory solver for linear real arithmetic (LRA).

Definition 2.2.1 (Linear Constraints). A linear constraint has the form

a1x1 + · · ·+ anxn ./ b

where x1, . . . , xn are real-valued variables, a1, . . . , an, b ∈ Q and ./∈ {<,>,≤ , ≥,=
, 6=}

Definition 2.2.2 (Trivial Constraints). We call a linear constraint trivial, if it has
the form:

0 ≤ b

with some b ∈ Q. If b is negative, then we call it trivially false. Otherwise we call it
trivially true.

Definition 2.2.3 (QFLRA formula). A quantifier-free linear real arithmetic (QF-
LRA) formula is a Boolean combination of linear constraints evaluated over the reals:

ϕ := c | ¬ϕ | ϕ ∧ ϕ

Note that since we have ¬ and ∧, other logical operators such as ∨,→ or ⊕ can be
used as syntactical sugar. For the explanation of Fourier-Motzkin variable elimination
as well as FMplex we will for now assume that equalities and not-equal constraints
are transformed into inequalities in the following way:

a1x1 + · · ·+ anxn = b⇔ (a1x1 + · · ·+ anxn ≤ b) ∧ (a1x1 + · · ·+ anxn ≥ b)

a1x1 + · · ·+ anxn 6= b⇔ (a1x1 + · · ·+ anxn < b) ∨ (a1x1 + · · ·+ anxn > b)

Since this approach leads to a blowup in the number of constraints, we will discuss an-
other treatment of equalities and not-equal constraints in Section 3.3 and Section 3.4.

Furthermore, in the following we will assume that all inequalities will be using an
operator ./∈ {<,≤}, as the inequalities with operators {>,≥} are equivalent to the
former when multiplying both sides of the inequality by −1. For now we will only
look at non-strict inequalities and will later discuss how FMplex can be extended to
strict inequalities.
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Example 2.2.1 (QFLRA formula). A syntactically correct QFLRA formula ϕ is
given through

ϕ := (x− y ≤ 4) ∧ (−x− 2y ≤ 6) ∧ (2x+ y ≤ −1) ∧ (−3x+ 4y ≤ 4)

Now the role of the SMT solver is to decide whether there is an assignment that
satisfies such a formula.

Definition 2.2.4 (Assignment). Let X := {x1, . . . , xn} be the set of variables in a
QFLRA formula ϕ. Then, we call a function V : X → R an assignment. A partial
assignment refers to functions V : X ′ → R with X ′ ⊂ X , so a mapping that does not
necessarily cover all variables.

Let ϕ be a formula and V be an assignment. We can evaluate ϕ under the assign-
ment V by replacing every variable in ϕ by the value assigned from V. In case V is
only a partial assignment, the evaluation results again in a formula, although with
fewer variables. When every variable in ϕ is substituted, we obtain a formula with
only trivial constraints, from which the truth value can easily be deduced.

If a formula evaluates to true under an assignment, we call that assignment a model
of the formula. We call a formula satisfiable, if there exists such a model. Otherwise
we call it unsatisfiable. Finding a model of a formula corresponds to finding a solution
to the system of linear inequalities presented by the constraints.

Definition 2.2.5 (System of Linear Inequalities). A system of linear inequalities
corresponding to a set of constraints C = {c1 . . . cm} with variables X = {x1, . . . xn}
can be represented using matrices with each constraint ci being ai1x1+· · ·+ainxn ≤ bi:

A =

a11 · · · a1n
...

...
...

am1 · · · amn


x1

...
xn

 ≤
 b1

...
bm

 = b

The system can then be referred to as (A,b).

We call such a system solvable, if the conjunction of the constraints is satisfiable.

Example 2.2.2 (System of Linear Inequalities). Looking again at Example 2.2.1 we
can now view the formula as the following system of linear inequalities:

1 −1
−1 −2
2 1
−3 4

(xy
)
≤


4
6
−1
4


This system of constraints is visualized in Figure 2.1. The polyhedron where the
solution spaces of all constraints overlap encompasses all models of the formula.

Definition 2.2.6 (Upper and Lower Bounds). Let c : (a1x1 + · · ·+ anxn ≤ b) be a
linear constraint with variables X = {x1, . . . , xn}. We say that c is an upper bound
with respect to variable xj, if the coefficient aj > 0. Analogously, we say that c is a
lower bound with respect to a variable xj, if the coefficient aj < 0. If the coefficient
aj = 0, we say that c is non-bound with respect to xj.

That means that for every variable in a formula we can partition the constraints
of the formula to a set of upper bounds U , a set of lower bounds L and a set of non-
boundsN . For convenience we will write upper bounds u ∈ U as u1x1+· · ·+unxn ≤ bu
and lower bounds l ∈ L as l1x1 + · · ·+ lnxn ≤ bl.
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Figure 2.1: System of linear constraints from Example 2.2.2. The inequalities are true
in the halfspace opposite of their normal vector. The solutions to the formula form
the shaded area.

2.3 Fourier-Motzkin Variable Elimination

The Fourier-Motzkin variable elimination method is one of the earliest methods for
solving systems of linear inequalities, created by Fourier and later rediscovered by
Motzkin [Fou24, Mot36]. It solves the system (A,b) by iteratively eliminating variables
and thereby reducing the system until it arrives at a linear inequality system (A′,b′),
which has no variables left. That means that only trivial constraints are left. The
truth value of those can easily be determined, as the constraints are only composed
of constant terms, and therefore the inequality can be checked for correctness.

The variables are removed one after another, based on an ordering of the variables,
e.g. x1 < · · · < xn. When removing the variable xk, the inequalities are partitioned
into upper bounds, lower bounds and non-bounds according to the Definition 2.2.6.
The lower bounds l : (l1x1 + · · ·+ lnxn ≤ bl) can be rewritten as

xk ≥
1

lk

bl −

 n∑
j=1,j 6=k

ljxj


︸ ︷︷ ︸

lb(l)

and similarly the upper bounds u : (u1x1 + · · ·+ unxn ≤ bu) can be rewritten as

xk ≤
1

uk

bu −

 n∑
j=1,j 6=k

ujxj


︸ ︷︷ ︸

ub(u)

.

Through this a new constraint

lb(l) ≤ ub(u)

can be created. This constraint corresponds to a linear combination of the constraints
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l and u with scalars 1
|lk| and

1
|uk| :

1

|lk|
·

 n∑
j=1

ljxj

+
1

|uk|
·

 n∑
j=1

ujxj

 ≤ 1

|lk|
bl +

1

|uk|
bu

⇔ 1

|lk|
·

 n∑
j=1,j 6=k

ljxj

+
1

|uk|
·

 n∑
j=1,j 6=k

ujxj

 ≤ 1

|lk|
bl +

1

|uk|
bu

⇔ 1

|lk|
·

−bl + n∑
j=1,j 6=k

ljxj

 ≤ 1

|uk|
·

bu −
n∑

j=1,j 6=k

ujxj


⇔ 1

lk
·

bl −
n∑

j=1,j 6=k

ljxj

 ≤ 1

uk
·

bu −
n∑

j=1,j 6=k

ujxj


In the following we will simply write such a combination as 1

|lk| l +
1
|uk|u.

Let L denote the set of all lower bounds and U the set of all upper bounds with
respect to xk. Then, let C = { 1

|lk| l +
1
|uk|u | l ∈ L ∧ u ∈ U} be the set of constraints,

which is created by combining every upper and lower bound. Together with the set
of non-bounds N with respect to xk we arrive at a new set of constraints M = N ∪C.
The constraints in M do not have the variable xk, since the combination of bounds
eliminated any occurrence of xk. Therefore, a new system of linear inequalities (A′, b′)
with at least one variable less can be created from this set. It can be shown that this
reduced system is solvable if and only if the original system is solvable [Dan72].

The Fourier-Motzkin method can furthermore be used to induce a useful theorem
about the solvability of linear inequality systems, which we will utilize in the FMplex
method.

Theorem 2.3.1 (Feasibility Theorem [Dan72]). The linear inequality system (A, b)
is solvable iff there are no non-negative weights y1 > 0, . . . , ym > 0 such that

m∑
i=1

yi · bi < 0 and
m∑
i=1

yi · aij = 0 for every j = 1, . . . , n (2.1)

Proof. Assume a solution x1, . . . , xn exists to the system (A,b) and there are non-
negative weights y1, . . . , ym that satisfy the conditions of the Feasibility Theorem.
Then, this implies

n∑
j=1

(

m∑
i=1

yiaij) · xj ≤
m∑
i=1

yibi

which together with the conditions from (2.1) implies 0 · x ≤
∑m

i=1 yibi < 0 - a
contradiction.

The other direction can be shown using the Fourier-Motzkin method. Assume
that the system (A,b) has no solution. Then, using the Fourier-Motzkin variable
elimination we can arrive at a trivially false inequality. Since this inequality is a linear
combination of the original inequalities with only non-negative scalars, we can directly
derive the weights y1, . . . , yn that satisfy the conditions (2.1) from the theorem.

Unfortunately, the Fourier-Motzkin method has the problem of a doubly expo-
nential worst case runtime as the combination of upper and lower bounds can lead
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to an extreme blowup in the number of constraints. To reduce the number of gen-
erated constraints a new method FMplex was developed [Kob21], which combines
Fourier-Motzkin with ideas from the simplex method.

2.4 FMplex
The following section will discuss the incremental adaptation of the FMplex method
as presented by Svenja Stein [Ste22].

Similarly to Fourier-Motzkin, the FMplex method eliminates each variable from
a set of constraints one after the other. To do so, lower bounds and upper bounds
are again combined. However, instead of combining all lower bounds with all upper
bounds, either a greatest lower bound (GLB) or a smallest upper bound (SUB) is
selected. In the case of the GLB that means when eliminating a variable xk we
assume that a lower bound l ∈ L is a greatest among all lower bounds. Therefore,
we only need to compare this GLB l to all upper bounds. But to ensure that the
GLB is actually a greatest lower bound, we need additional constraints comparing
the GLB to all other lower bounds. The original set of constraints is satisfiable, if
for any GLB the resulting set of constraints is satisfiable. Therefore, reminiscent of
depth-first search we try out different lower bounds as GLB until we can conclude
unsatisfiability or find a solution.

In this thesis we will focus on GLBs as the SUBs can be handled analogously. But
in the implementation both GLBs and SUBs are used.

2.4.1 Notation
For constraints we will use a similar notation as Stein [Ste22]. A constraint c will now
be written as

c = 〈a1, . . . , an, b | d1, . . . , dm〉.
This representation is composed from the first section a1, . . . , an, b and the second
section d1, . . . , dm. The first section stores the coefficients and the constant term of
the constraint. For simplicity we assume that constraints are now always compared
to 0, with the constant part b added to the linear combination.

n∑
i=1

aixi + b ≤ 0.

Linear constraints according to Definition 2.2.1 can be easily transformed to this
representation.

The second section is composed from the derivation coefficients, which represent
the constraint as a linear combination of the original constraints. Let c∗1, . . . , c

∗
m be

the original constraints passed from the SAT solver with c∗i :
(∑n

j=1 a
∗
ijxj + b∗i ≤ 0

)
.

Then, the derivation coefficient di is the scalar for the original constraints c∗i . For the
original constraint c∗i that means that all derivation coefficients are zero except for
di = 1.

When combining two constraints these derivation coefficients are scaled and added
just like the constraints. Therefore, for every constraint c it holds that c is equal to:

m∑
i=1

di

 n∑
j=1

a∗ijxj + b∗i

 ≤ 0.
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2.4.2 Combining Constraints

Similarly as in the Fourier-Motzkin method we eliminate variables one after another
according to some dynamic ordering on the variables. When eliminating xk we first
need to choose a GLB l ∈ L. With this l we can compute the upper-lower combinations
just as in the Fourier-Motzkin method, by combining l with all upper bounds. In a
next step we need to make sure that l is actually the GLB by computing the same-
bound combinations. These same-bound combinations state that l must be greater or
equal to all other lower bounds. However, combining two bounds of the same type
can not be done by simply scaling with a positive factor as the sign of xk is the same
in both bounds. Therefore, to combine l with another lower bound it first needs to
be made into an upper bound by multiplying the coefficients and the constant term
of l with −1.

Due to the assumptions made by the choice of GLBs, deriving a trivial false
constraint no longer necessarily implies the unsatisfiability of the formula. Until now
we could conclude this unsatisfiability through Theorem 2.3.1 but by multiplying with
−1 the new constraint is no longer a linear combination of the original constraints with
non-negative scalars. Therefore, we now need to distinguish between local conflicts
and global conflicts.

Definition 2.4.1 (Global Conflict and Local Conflict).
Let c = 〈a1, . . . , an, b | d1, . . . , dm〉 be a trivially false constraint. Then, we call c a
global conflict iff for all i ∈ {1, ...,m} it holds that di ≥ 0. We call c a local conflict
iff there exists an i ∈ {1, ...,m} such that di < 0.

A global conflict still implies unsatisfiability according to Theorem 2.3.1. However,
if we run into a local conflict we can no longer conclude that the original set of
constraints is unsatisfiable. Instead, the conflict could also have been created by
choosing the wrong GLB. Therefore, we need to backtrack and choose another GLB.

The computation of the FMplex method can also be viewed as tree, where each
node represents the elimination of a variable and has a child for every possible choice
of GLB. When backtracking we want to go back to the last level, where the local
conflict was involved in a same-bound combination, as this is the only cause for the
derivation coefficients to become negative. To keep track of that level each constraint
c has an associated conflict level cl(c). Initially, this value is set to 0. In an upper-
lower combination the new constraint gets the maximum conflict level of both parent
constraints, while in a same-bound combination the conflict level of the new constraint
is set to the level of the node in the tree.

In total, a local conflict causes the algorithm to backtrack to its conflict level and
to choose a new GLB. The GLB is set to ⊥ in case we are eliminating a variable with
only bounds in one direction. Then, we do not need to add any new constraints as
the variable is unbounded in one direction and can be assigned a value in such a way
that all inequalities are satisfied.

If all GLBs were already tried out, we instead backtrack one level higher. Should
we already be at the root level and have no other GLB to pick, we can conclude the
unsatisfiability of the formula, since every choice led to a conflict.

The procedure behind combining constraints is presented in Algorithm 1. In the
following we will also call the constraint that was chosen as the GLB the eliminator.
Constraints that are combined with this eliminator are referred to as eliminees.
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Algorithm 1 FMplexCombine as in [Ste22]
Input: The set of lower bounds L, the assumed GLB c (which was removed from L),
the set of upper bounds U , the variable to be eliminated xk, the current level lvl
Output: The set of constraints resulting from the elimination of xk with c as GLB
1: function FMplexCombine(L,c,U,xk,lvl)
2: if c = ⊥ then
3: return ∅
4: else . c : (c1x1 + · · ·+ cnxn + bc ≤ 0)
5: Constraint set R = ∅
6: for u : (u1x1 + · · ·+ unxn + bu ≤ 0) ∈ U do . Upper-lower
7: Constraint cnew = 1

|uk| · u+ 1
|ck| · c

8: cl(cnew)← max{cl(c), cl(u)}
9: R← R ∪ {cnew}

10: end for
11: for l : (l1x1 + · · ·+ lnxn + bl ≤ 0) ∈ L do . Same-bound
12: Constraint cnew = 1

|lk| · l −
1
|ck| · c

13: cl(cnew)← lvl
14: R← R ∪ {cnew}
15: end for
16: return R
17: end if
18: end function

2.4.3 Incrementality
Now that we looked at the combining of constraints in FMplex, we continue with
the main algorithm. As said before we are in an incremental setting, where the the-
ory solver receives a subset of the original constraints c∗1, . . . , c

∗
m over the variables

x1, . . . , xn from the SAT solver. When the SAT Solver passes the next set of con-
straints, the theory solver should be able to use the generated constraints from the
prior subset to reduce redundant computations. We again think of the computation
as a tree structure, where each level eliminates a variable and the children are the
different choices for a GLB. If we want to reuse generated constraints from previous
runs, we need to remember the branch that led us to the result. To keep track of the
constraints generated on all levels 1 ≤ i ≤ n+1, every level possesses state variables:

• Ci saves the constraints which have so far not been considered, when combining
the constraints.

• xki
refers to the variable, which is to be eliminated on this level with ki ∈

{1, . . . , n,⊥}. The variable x⊥ is also just written as ⊥ and is used when the
variable is not chosen yet or when we only have trivial constraints.

• ci refers to the chosen GLB. In case the GLB is not chosen yet or we only have
either upper or lower bounds this gets the value ⊥.

• Ltodo
i is the set of lower bounds with respect to xki that we have not yet tried

as the GLB.

• Ldone
i is the set of lower bounds with respect to xki

that we have already tried
as the GLB and each of them has led to a local conflict.
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• Ui, Li and Ni are again the set of constraints partitioned in upper bounds, lower
bounds and non-bounds for xki .

Additionally, the variable C keeps track of all original constraints submitted by the
SAT solver and the variable Cnew tracks, which received constraints are new compared
to the last call of FMplex. In case that FMplex returned UNSAT in the previous run
or that the SAT solver removed one or more constraints compared to the previous run,
we need to reset everything and consider all constraints in C as new again Cnew ← C.
Furthermore, the maximal level that was reached is remembered in the global variable
maxLvl.

The incremental FMplex method works by iterating over the tree associated with
the constraints C. We start at the level 1. When arriving on a level lvl, all new
constraints are stored in Clvl. The constraints in Clvl were either generated by the
previous level or in case of C1 passed from the set of newly received constraints Cnew.
The first thing to do on a new level is to check, if Clvl contains conflicts. Should that
be the case the function AnalyzeAndBacktrack(Clvl) is called to determine the
conflict level. If there is a global conflict the special value 0 is returned, as to indicate
that the conflict was introduced by the original constraints and the algorithm returns
UNSAT. Otherwise, the method backtracks to the determined level, resets everything
below that level and chooses a new GLB from Ltodo

lvl .
In case Clvl has no trivially false constraints, it is checked whether we reached a

completely new level, in which a new variable xklvl needs to be chosen. If the level
was already visited, the previous variable choice stays valid.

Now the not yet considered constraints from Clvl are partitioned in such a way
that the lower bounds with respect to xklvl are stored in Lcomb, the upper bounds
in Ucomb and the non-bounds stay in Clvl. These combination sets Lcomb and Ucomb

contain the constraints, which have not yet been combined with the GLB. Therefore,
they are the only sets passed to the FMplexCombine method. These constraints are
then furthermore added to the Llvl, Ulvl and Nlvl sets, which save all lower/upper/non-
bounds (also those already combined with the GLB in prior iterations). Moreover,
the new lower bounds in Lcomb also need to be added to Ltodo

lvl as they have not been
tried out as a GLB.

Should no GLB have been chosen yet, a next constraint needs to be chosen from
Ltodo

lvl . A newly chosen GLB requires the reset flag r to be set to true. This flag causes
all constraints from Llvl, Ulvl and Nlvl to be passed to respectively Lcomb, Ucomb and
Clvl. After all, now that a new GLB has been chosen no constraint has yet been
combined with it.

Finally, we call the FMplexCombine method with the combination sets, clvl and
xklvl . These newly created constraints are then passed onto the next level together
with the non-bounds contained in Clvl. Afterwards, Clvl needs to be emptied as all
constraints have been considered and the algorithm moves onto the next level. The al-
gorithm returns SAT, if a level is entered where all constraints in Clvl are trivially true.
This main part of the algorithm is presented in Algorithm 2. For more readability we
look at the partitioning of constraints in a second function DistributeConstraints.
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Algorithm 2 The FMplex algorithm for checking satisfiability as in [Ste22]
Input: The set of all constraints C, the newly added constraints Cnew

Output: The algorithm returns SAT, if the constraints in C are satisfiable and
UNSAT otherwise
1: function CheckSAT
2: lvl← 1
3: C1 ← C1 ∪ Cnew

4: while Clvl contains at least one not trivially true constraint do
5: if Clvl contains at least one trivially false constraint then
6: lvl← AnalyzeAndBacktrack(Clvl)
7: if lvl = 0 then
8: ResetBelow(0)
9: Cnew ← C

10: return UNSAT
11: else
12: clvl ← ChooseNextConstraint(lvl)
13: ResetBelow(lvl)
14: r ← true
15: end if
16: else if lvl > maxLvl then
17: xklvl ← ChooseNextVariable(Clvl)
18: maxLvl← maxLvl + 1
19: end if
20: DistributeConstraints . Sort constraints based on their bound type
21: Clvl+1 ← Clvl+1 ∪ Clvl∪ FMplexCombine(Lcomb, clvl, U

comb, xklvl)
22: Clvl ← ∅
23: lvl ++
24: end while
25: Cnew ← ∅
26: return SAT
27: end function

Algorithm 3 Choose a new eliminator
Input: The level on which a new constraint needs to be chosen lvl
Output: The constraint that was chosen as eliminator
1: function ChooseNextConstraint(lvl)
2: if clvl 6= ⊥ then
3: Ldone

lvl ← Ldone
lvl ∪ clvl

4: end if
5: Choose new constraint c from Ltodo

lvl according to some heuristic.
6: Ltodo

lvl ← Ltodo
lvl \ c

7: return c
8: end function
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Algorithm 4 Logic behind the distribution of the constraints to the different sets
Input: We assume that all state variables on the level are accessible
Output: The constraints are distributed to their respective sets
1: function DistributeConstraints
2: Lcomb ← {c ∈ Clvl | c is a lower bound with respect to xklvl}
3: Ucomb ← {c ∈ Clvl | c is an upper bound with respect to xklvl}
4: Clvl ← Clvl \ (Lcomb ∪ Ucomb)
5: Nlvl ← Nlvl ∪ Clvl
6: Ltodo

lvl ← Ltodo
lvl ∪ Lcomb

7: Ulvl ← Ulvl ∪ Ucomb

8: if clvl = ⊥ ∧ Ltodo
lvl 6= ∅ then . No eliminator was chosen yet

9: clvl ← ChooseNextConstraint(lvl)
10: Lcomb ← Lcomb \ {clvl}
11: r ← true
12: end if
13: if r = true then . A new eliminator was chosen
14: Lcomb ← Ltodo

lvl ∪ Ldone
lvl

15: Ucomb ← Ulvl
16: Clvl ← Nlvl
17: r ← false
18: end if
19: end function

Example 2.4.1 (Incremental FMplex Method). Assume we have the same con-
straints as in Example 2.2.2 over the variables x and y converted to the notation
introduced in Subsection 2.4.1:

x y b d1 d2 d3 d4


1 −1 −4 1 0 0 0 cl = 0
−1 −2 −6 0 1 0 0 cl = 0
2 1 1 0 0 1 0 cl = 0
−3 4 −4 0 0 0 1 cl = 0

At the start, all these constraints are considered new and are therefore put into the
set Cnew, which is passed to C1 on the first level of the algorithm. Assuming we now
want to eliminate x, we first sort the constraints according to bound type into the sets
Lcomb and Ucomb, with non-bounds staying in C1.

Lcomb =

x y b d1 d2 d3 d4( )
−1 −2 −6 0 1 0 0 cl = 0
−3 4 −4 0 0 0 1 cl = 0

Ucomb =

x y b d1 d2 d3 d4( )
1 −1 −4 1 0 0 0 cl = 0
2 1 1 0 0 1 0 cl = 0

As all constraints are either upper or lower bounds with respect to x, the set C1

becomes empty. The next step is to choose a GLB from Lcomb and in this case we
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just choose the first row.

c1 =
x y b d1 d2 d3 d4

( )−1 −2 −6 0 1 0 0 cl = 0

Then, we execute the FMplexCombine method to get the new constraints for the next
level C2. However, we scale the constraints with the least common multiple of the
coefficients of x to get nicer numbers.

C2 =

y b d1 d2 d3 d4( )−3 −10 1 1 0 0 cl = 0
−3 −11 0 2 1 0 cl = 0
10 14 0 −3 0 1 cl = 1

Now on level 2 we need to eliminate y and again sort the constraints.

Lcomb =

y b d1 d2 d3 d4( )
−3 −10 1 1 0 0 cl = 0
−3 −11 0 2 1 0 cl = 0

Ucomb =
y b d1 d2 d3 d4

( )10 14 0 −3 0 1 cl = 1

We again choose the first row as the GLB and apply the FMplexCombine method with
the same scaling method as before.

c2 =
y b d1 d2 d3 d4

( )−3 −10 1 1 0 0 cl = 0

Therefore, on level 3 we arrive at the following set of constraints.

C3 =

b d1 d2 d3 d4( )
−58 10 1 0 3 cl = 1
−1 −1 1 1 0 cl = 2

The constraints in C3 are trivially true and therefore the algorithm returns SAT.
In an incremental scenario the SAT solver would then continue solving the Boolean
abstraction and consult the theory solver again after extending the assignment. There-
fore, now assume the SAT solver passes the additional constraint c∗5 in the following
iteration.

Cnew =
x y b d1 d2 d3 d4 d5
( )2 0 −4 0 0 0 0 1 cl = 0

The d5 entry for the derivation coefficients is assumed to be 0 in all already existing
constraints. As before, Cnew is passed to C1, where the constraints are split into upper,
lower and non-bounds. Currently, the only constraint in C1 is c∗5 as we emptied C1

in the last iteration. Therefore, Ucomb contains only c∗5 and Lcomb and C1 remain
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empty. Now we only need to combine the previously chosen GLB c1 on level 1 with
c∗5 because all other combinations have been done in the previous run of FMplex and
are already saved in the sets U2, L2 and N2.

C2 =
y b d1 d2 d3 d4 d5

( )−4 −16 0 2 0 0 1 cl = 0

With this we continue as in level 1 and set Lcomb to C2 and let Ucomb and C2 be
empty. Then, we again only need to combine the new constraint with the previously
chosen GLB c2 on level 2.

C3 =
b d1 d2 d3 d4 d5

( )−8 −4 2 0 0 3 cl = 2

C3 only contains trivially true constraints and therefore the algorithm again returns
SAT.

2.4.4 Heuristics for Variable and Constraint Choice
In Example 2.4.1 the choice of which variable to eliminate and which GLB to use on
every level was arbitrary. These choices can be done according to some heuristics to
make the method more efficient. On every level Ci we need to choose the variable
which is eliminated as well as the constraint, with which the elimination is done. In
contrast to the example, the constraint does not need to be a GLB but could also be
a SUB. Therefore, we need to not only choose a variable but also the direction, which
decides whether we choose a GLB or a SUB on this level.

When selecting the variable on level Ci a reasonable objective is to minimize the
number of branches the elimination creates, which is equivalent to minimizing the
number of same-bound combinations. To do this, we determine for every variable x
the number of upper bounds #u(x) and the number of lower bounds #l(x) on this
level Ci. We can then order the variables according to the following criteria.

Let min(x) = min{#u(x),#l(x)} and max(x) = max{#u(x),#l(x)} for every
variable x. Then, for two different variables x and x′ it holds that x < x′, if min(x) <
min(x′). Should min(x) = min(x′), we consider two different cases. In the first case
min(x) = min(x′) = 0, meaning we have only bounds in one direction, then x < x′, if
max(x) > max(x′). In the second case min(x) = min(x′) with min(x) 6= 0, meaning
we have bounds in both directions, then x < x′, ifmax(x) < max(x′). This distinction
is made due to fact that, if a variable has no bounds in one direction, we want the
other direction to have as much bounds as possible, because that means that we can
drop more constraints. If for two variables x and x′, it holds that min(x) = min(x′)
and max(x) = max(x′) we consider them equal and just order them arbitrarily.

We then choose the smallest variable according to this order as the one that is
eliminated on this level. Assume that we have chosen the variable x∗ to be eliminated.
Now we still need to choose the direction. If min(x∗) = 0, we only have bounds in
one direction and do not need to choose a direction, as we simply set the eliminator
to ⊥. Should min(x∗) 6= 0, we use GLBs, if min(x∗) = #l(x∗) and otherwise use
SUBs. On a level Ci a new GLB or SUB - depending on the direction - is chosen
when we first enter that level or when we backtrack to this level due to a local conflict.
When selecting the eliminator we prioritize constraints, which have the most zeros
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among the derivation coefficients. That means constraints whose linear combination
uses as few of the original constraints as possible, as to keep the derivation coefficients
compact.

2.4.5 Extension to Strict Inequalities

So far we have solely considered non-strict inequalities. Now we discuss how to handle
strict inequalities.

First, we look at the treatment of the operator when combining constraints. This
treatment is different for same-bound and upper-lower combinations. Let c1 and c2
be two constraints, which need to be combined. In case c1 and c2 correspond to
an upper-lower combination the resulting constraint cnew has a strict operator, if
and only if at least one of the constraints is a strict inequality and otherwise has a
weak operator. In the other case c1 and c2 correspond to a same-bound combination.
Assume c1 is the constraint that was chosen as the eliminator on this level and that
c1 is a GLB (for a SUB it works analogously). Then, the only case where cnew has
a strict operator, is when c1 is non-strict and c2 is strict. After all, if the bounds
induced by c1 and c2 are equal, then c1 would not actually be the GLB as c2 is strict
and c1 not.

Secondly, we need to adjust the handling of conflicts. Through combining con-
straints it is possible to arrive at constraints, which possess a strict operator even
though the derivation coefficients only reference non-strict constraints. That means
in case of a global conflict it needs to be checked, if the conflict would still occur even
with a non-strict operator, as the linear combination of the original constraints would
only result in a non-strict operator. Should the conflict not hold with a non-strict
operator the Feasibility Theorem can no longer be applied and the conflict needs to
be treated as a local conflict.

2.4.6 Properties

The FMplex method is a theory solver that determines the satisfiability of a conjunc-
tion of constraints in finite time. This can be shown by proving the correctness and
the completeness of the algorithm.

Theorem 2.4.1 (FMplex Correctness [Ste22]). The FMplex method is correct i.e. if
the method returns SAT/UNSAT, then the underlying constraint set is satisfiable/un-
satisfiable.

Sketch of Proof. Assume the method returns SAT. That means the method has found
a branch where on the last level only trivially true constraints remain. This implies
that all choices regarding the GLB or SUB were suitable and that these do not conflict
with bounds of the other type. Therefore, no lower and upper bound is conflicting.
With this a satisfying assignment can be built by backtracking through the branch.
On each level all variables except the one that is eliminated on that level can be
substituted by their assignment as we are iterating backwards. The variable that is
eliminated on that level can then be assigned a value in the interval given between
the GLB and SUB (now consisting only out of real numbers). This interval exists
as no lower and upper bound conflicts. This assignment then satisfies the original
constraint set.
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Now assume that the method returns UNSAT. This can only happen when either
a global conflict has been found or on level 1 every eliminator choice led to a local
conflict. In case a global conflict has been found the Feasibility Theorem applies
and we can conclude that the original constraint set is unsatisfiable. In the other
case we return UNSAT because every choice for an eliminator led to a local conflict.
W.l.o.g assume that the direction on the first level is lower bounds. That means
every lower bound was tried out as a GLB, yet all of these led to a local conflict.
This is a contradiction as we try out every subtree and therefore we can conclude
unsatisfiability for the original constraint set.

We show the finite termination of the algorithm by showing that in the worst case
only a singly exponential number of constraints is generated. Therefore, the worst
case runtime is also singly exponential. This also shows the superiority of the worst
case runtime in comparison to the doubly exponential Fourier-Motzkin method.

Theorem 2.4.2 (FMplex complexity [Kob21]). The FMplex method generates at
most a singly exponential number of constraints in terms of the number of original
constraints.

Proof. Let m be the number of original constraints and n be the number of variables
occurring in these constraints. At the beginning we can choose from at most m
eliminators, which in turn leads to the next level with at most m − 1 constraints.
This is done until in the worst case all n variables are eliminated. Therefore, the
number of generated constraints on the last level is limited to

m · (m− 1) · (m− 2) · · · · · (m− n)

in the worst case. Additionally, to the constraints in the leave nodes, we have the
constraints in the inner nodes. We have a maximum of n + 1 levels and on each
level the total amount of possible generated constraints is smaller than the number
of generated constraint on the last level. Therefore, in the worst case the number of
all generated constraints is limited by

(n+ 1) · (m · (m− 1) · (m− 2) · · · · · (m− n)) < (n+ 1) ·mn

This means only a singly exponential number of constraints is generated in one run
of the FMplex method.

2.4.7 Motivation for Optimization

Stein [Ste22] developed and tested an implementation of incremental FMplex on top of
the SMT-RAT project [CKJ+15]. The tests were run on the RWTH High Performance
Cluster with a time limit of 5 minutes and a memory limit of 5 GB while using the
quantifier-free linear real arithmetic benchmark set from SMT-LIB [BFT16]. Stein
tested different variations of the presented algorithm. Among them were the Standard
version, which uses incrementality as well as heuristics, the No-Heu version, which
uses incrementality but no heuristics and the No-Incr version, which uses heuristics
but no incrementality (branch is reset after every call of FMplex). An excerpt from
the results is shown in Table 2.1

The results show that the heuristics for variable and constraint choice are very
important for the performance of the algorithm as the No-Heu version only manages
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Configuration Memory Out Time Out SAT UNSAT Total Unsolved Total Solved
Standard 358 682 426 287 1040 713
No-Heu 195 1417 56 85 1612 141
No-Incr 216 794 431 312 1010 743

Table 2.1: Performance of different variants from [Ste22]

to solve 141 instances from the total 1753 instances. What is surprising though is
that the number of solved instances is lower for the Standard version that uses both
incrementality and heuristics than for the No-Incr version that just uses heuristics.
In fact, the No-Incr version solves 30 instances more than the Standard version. The
reason that the No-Incr version seems to be more efficient may lie in the fact that with
enabled incrementality we are bound by the variable and constraint choices made in
the last run until we run into a conflict. This could be detrimental to the efficiency as
with additional constraints a prior variable choice may induce a much higher number
of same-bound combinations compared to before. Therefore, the old variable choice
could create a much larger computation tree than a new variable choice would. This
could also be the reason why the No-Incr version has a much smaller number of
Memory Outs.



Chapter 3

Optimized Incremental FMplex

In this chapter we present an optimization of the incremental FMplex method, which
aims to reduce the runtime as well as the memory usage. To do so, we first introduce
new data structures for the constraints since the combining and storing of constraints
is an important factor in the efficiency of the method. Furthermore, an approach to
make more use of the heuristics in subsequent runs of algorithm is considered, as to
enable the solver to undo variable decisions when confronted with new constraints.
A further attempt to increase the performance by continuing the computation after
encountering local conflicts is also given. Additionally, we make the infeasible subsets
smaller and change the treatment of equalities and not-equal constraints to utilize
their special characteristics.

3.1 Data Structures

The theory solver works on a set of constraints. As such it is very important that the
constraints are stored in a suitable data structure. Currently, constraints are stored
using the BasicConstraint data structure from the CArL library [CKJ+]. This
structure is templated with a MultivariatePolynomial and is applicable to a
variety of scenarios. Therefore, it can be used for constraints in linear real algebra,
but also for example in nonlinear real algebra. However, there is no need to use such
a powerful structure and it may be more efficient to use structures more tailored
towards FMplex.

To fully capture a constraint c = 〈a1, . . . , an, b | d1, . . . , dm〉 it is enough to store
the following:

• Relation: The operator of the constraint needs to be stored, so whether it is
strict or non-strict inequality.

• Coefficients: For every variable xk the constraint has a rational coefficient ak,
which needs to be associated with the respective variable.

• Constant Term: The constant term b is a special case that is not associated
with any variable.

• Derivation Coefficients: The derivation coefficients d1, . . . , dm need to be re-
membered, so that we can identify the type of conflicts.
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• Conflict level: The conflict level cl needs to be associated with the constraint,
such that the backtrack level can be determined.

To make the combination of constraints easier to implement, we use a template class
SimpleConstraint<PolyType>, which keeps track of the derivation coefficients,
the conflict level as well as the relation. This class is templated with a structure defin-
ing the linear term, that is the coefficients as well as the constant term. Constraints
can then be combined by scaling and adding the linear terms, while the resulting
relation, conflict level and derivation coefficients can be considered separately.

For the implementation of the linear term we use three different approaches.

• MultivariatePolynomial: For reference we use the MultivariatePolyno-
mial type that is used to template the BasicConstraint data type. This im-
plementation just uses the polynomial as defined in CArL and wraps it in a
structure with the same signature as the other approaches.

• Map: Here we distinguish between the constant term and the coefficients. The
constant term is just saved by itself as a Rational as defined in CArL. Mean-
while, the coefficients are stored utilizing the map data structure from the C++
standard library [Jos12]. Let X = {x1, . . . xn} be the set of variables occurring
in a constraint with the coefficients a1, . . . , an. Then, the map is a function
f : X → Q, which maps each variable to its coefficient: x1 7→ a1, . . . , xn 7→ an.
This map only saves entries for variables with nonzero coefficients, as to be more
memory efficient.

The addition of linear terms p1 and p2 can then be done by copying the map of
p1 and iterating over all map entries of p2. If the map of p1 already has a value
for a variable entry of the map of p2, the values of the coefficients are added
together. In case this addition causes the coefficient to become 0 the entry for
the variable is removed. If the map of p1 has no value for a variable entry of
the map of p2, a new entry is created with the coefficient value of p2. Finally,
the constant terms are added as well.

• Vector: Just as in the map approach the constant term is saved separately as
a Rational. However, in this approach the coefficients are saved in the vector
data structure from the C++ standard library. More specifically, we use a vector
of 2-tuples, where the first component is a variable and the second component
is the coefficient. Let X = {x1, . . . xn} be the set of variables occurring in a
constraint with the coefficients a1, . . . , an. Then, the vector would look like this
〈(x1, a1), . . . , (xn, an)〉. Again, as in the map approach only nonzero coefficients
are actually stored as to keep the vector compact. Furthermore, the vector
is sorted according to an ordering on the variables to make the searching and
adding more efficient.

The addition of two linear terms p1 and p2 utilizes the same idea as merge sort.
We start iterating over both vectors at the same time. Then, we check if the
current entry of p1 references a smaller variable than p2. Should that be the
case, we append the current entry of p1 to the result and increment the iterator
of p1. If the current entry of p2 references a smaller variable than p1, we do the
same just for p2. Otherwise, if both current entries reference the same variable,
we append an entry with said variable and the addition of the coefficients to
the result and increment the iterators of both p1 and p2. However, should that
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addition result in a coefficient that equals 0, the entry is not appended and just
the iterators are incremented. We do this until one iterator reaches the end
of the vector and subsequently finish iterating over the other vector and just
append every entry to the result.

3.2 Leveraging Heuristics

3.2.1 Reversing Decisions

To make the FMplex method as efficient as possible, it is important that only few
branches need to be examined until a branch with a satisfying assignment or a global
conflict is found. The ordering in which branches are visited heavily depends on the
variable and eliminator choice. This is reflected in the massive effect of the heuristics
on the number of solved instances as seen in the Table 2.1.

However, in an incremental setting the variable choices are carried over in sub-
sequent runs of the algorithm. When the method finds a satisfying assignment on a
set of constraints, it returns SAT to the SAT solver and remembers the branch that
led to this assignment, including the variable and eliminator choices as well as the
resulting constraints. The SAT solver may then extend the set of constraints and ask
the FMplex method, if this set is still satisfiable. Since the theory solver remembers
the previously computed branch, it is enough to combine the new constraints with
the already chosen eliminators. While this approach makes sure that branches previ-
ously found to be conflicting are not visited again, it also introduces the problem that
the method needs to adhere to previous variable choices. This is problematic since
the new constraints may change the situation in such a way that the elimination of
another variable may lead to a result in less time.

For example, let xk be the variable that the heuristic picked to be eliminated on
level 1 in the prior run of the method. Let us assume that the choice was made due to
the fact that xk had the smallest number of lower bounds in the remaining variables.
Accordingly, a GLB ck was chosen as the eliminator. Now in the worst case the SAT
solver added a lot of lower bounds with respect to xk to the set of constraints, which
leads to the fact that xk has now the highest number of lower bounds among the
remaining variables. However, the method is bound to the choice of xk, which in
turn could lead to an increase in local conflicts until a non-conflicting GLB is found.
Therefore, adhering to the choice of xk may lead to a decrease in performance instead
of an improvement. The fact that the non-incremental version solves more instances
than the incremental one as shown in Table 2.1, may also be caused by this problem.

Since we want to make use of incrementality, while still leveraging heuristics in
the variable choice, we propose an adaptation of the algorithm. This adaptation aims
to make the best of both worlds, by using the incrementality like the usual FMplex
method, while additionally checking, if a variable choice is still reasonable under new
circumstances. Should the method decide that due to the influx of new constraints
the variable choice is not optimal according to the heuristic, the choice is reverted
and everything below the current level is reset. Afterwards, a new variable is selected
and the algorithm continues as normal. This check is done on every level, which was
visited before and now received new constraints.

Applying the heuristic for variable choice is expensive, as we need to iterate over
every constraint. That being the case, we first want to check a cheaper criteria to
determine, if a variable should be considered for resetting.
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For that we use the function ShouldResetVariable(xklvl ,L
todo
lvl , Ldone

lvl , Clvl).
Given a variable choice xklvl , the not yet tested lower bounds Ltodo

lvl , the already
tested lower bounds Ldone

lvl and the newly added constraints Clvl, it returns true, if
a variable should be considered for resetting and false otherwise. Here we consider
only GLBs for the direction, but the implementation also works for SUBs. In the
current heuristic, the variable which is to be eliminated, is chosen as the one, which
has the least number of lower bounds - in case there is no variable that has only
bounds in one direction. Considering this fact, the function counts the number of
constraints in Clvl that are lower bounds with respect to xklvl . This number is added
to the number of constraints that have yet to be tested as GLB #Ltodo

lvl . Should this
addition result in a number that is higher than the total amount of lower bounds
#Ltodo

lvl + #Ldone
lvl that were present in the previous run of the method, we return

true. This is because, the initial decision to choose xklvl was based on the fact
that only #Ltodo

lvl + #Ldone
lvl branches needed to be tried out at most. However, the

new constraints changed the situation, such that the number of potential branches is
higher than before.

Therefore, the heuristic for variable choice is applied again to check, which variable
would be chosen with all constraints in consideration. If this newly chosen variable is
different from xklvl , we reset everything below the current level and continue on with
the new variable. Otherwise, the heuristics would still choose xklvl as the variable and
we can continue without resetting. Other approaches like checking how many levels
a variable change would undo and then deciding whether to reverse the decision, are
also possible, but are not further considered here.

Algorithm 5 Decide if a variable should be reset
Input: The currently selected variable xklvl , the set of constraints that were no yet
tried out as GLBs Ltodo

lvl , the set of constraints that were already tried out as GLBs
Ldone

lvl , the set of newly added constraints Clvl
Output: The algorithm returns true, if a variable should be considered for resetting
and false otherwise
1: function ShouldResetVariable(xklvl , L

todo
lvl , Ldone

lvl , Clvl)
2: #newBounds← #{c ∈ Clvl | c is a lower bound with respect to xklvl}
3: #doneBounds← #Ldone

lvl
4: #todoBounds← #Ltodo

lvl
5: if #newBounds+#todoBounds ≥ #doneBounds+#todoBounds then
6: return true
7: else
8: return false
9: end if

10: end function

3.2.2 Continue after Conflict

To faster identify unsatisfiability we present another approach, which tries to reach
a global conflict by continuing after local conflicts. That means after finding a local
conflict, we do not directly backtrack but instead continue eliminating variables in
the hope that the local conflict correlates with a global conflict. In particular, we look
at two different ideas, which can be used at the same time.
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• Peek further: The first approach is based on the idea that a local conflict
might indicate that a global conflict appears in the next few levels. Therefore,
after finding a local conflict, we peek a fixed number of levels further to check
whether a global conflict is present. In particular, we introduce the program
variable pardon, which defines the number of levels that are checked after a
local conflict is found. For now we set pardon to 1, although different thresholds
can be tested.

• Continue until the end: The second approach is formed on the idea that there
is a higher chance for a global conflict, if all variables are eliminated. Based on
this, we decide to continue the computation until all variables are eliminated,
if there are only few variables remaining. That means that we ignore local
conflicts, when only a certain number of variables remain. Then, only trivial
constraints are left with hopefully a global conflict among them. The number
of variables upon we decide to continue until the end is saved in the program
variable endThreshold and is currently set to 3. Again, different thresholds
can be tested.

The adapted algorithm can be seen in Algorithm 6, where the part for reversing
decisions is marked in blue and the part for continuing after local conflicts is marked
in red.

Algorithm 6 Optimized FMplex
Input: The set of all constraints C, the newly added constraints Cnew

Output: The algorithm returns SAT, if the constraints in C are satisfiable and UNSAT otherwise
1: function CheckSAT
2: pardon← 1
3: endThreshold← 3
4: lvl← 1
5: C1 ← C1 ∪ Cnew

6: while Clvl contains at least one not trivially true constraint do
7: if Clvl contains at least one trivially false constraint then
8: lvl← AnalyzeAndBacktrack(Clvl)
9: if lvl = 0 then
10: ResetBelow(0)
11: Cnew ← C
12: return UNSAT
13: else if Number of variables in Clvl is greater than endThreshold or
14: equal to 0 then
15: ConflictHandling
16: end if
17: else if lvl > maxLvl then
18: xklvl ← ChooseNextVariable(Clvl)
19: maxLvl← maxLvl+ 1
20: else if Clvl 6= ∅∧ ShouldResetVariable(xklvl , L

todo
lvl , Ldone

lvl , Clvl) then
21: ReverseDecision
22: end if
23: DistributeConstraints . Sort constraints based on their bound type
24: Clvl+1 ← Clvl+1 ∪ Clvl∪ FMplexCombine(Lcomb, clvl, U

comb, xklvl )
25: Clvl ← ∅
26: lvl++
27: end while
28: Cnew ← ∅
29: return SAT
30: end function
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Algorithm 7 Conflict handling
Input: We assume that all state variables on the level are accessible
Output: When pardon is greater 0, reduce pardon, otherwise backtrack
1: function ConflictHandling
2: if pardon > 0 then
3: pardon← pardon− 1
4: else
5: pardon← 1
6: ChooseNextConstraint(lvl)
7: ResetBelow(lvl)
8: r ← true
9: end if

10: end function

Algorithm 8 Reverse the variable decision
Input: We assume that all state variables on the level are accessible
Output: Applies the heuristic for variable choice again and accordingly resets the
level
1: function ReverseDecision
2: newV ariable← ChooseNextVariable(Clvl ∪ Ulvl ∪Nlvl ∪ Llvl)
3: if xklvl 6= newV ariable then
4: ResetBelow(lvl)
5: xklvl ← newV ariable
6: Clvl ← Clvl ∪ Llvl ∪ Ulvl ∪Nlvl
7: Llvl ← ∅
8: Ulvl ← ∅
9: Nlvl ← ∅

10: end if
11: end function

3.3 Handling Equalities
Equalities are special constraints, because they can be seen as a GLB as well as SUB
at the same time. However, in the current implementation of FMplex equalities are
simply split up into two non-strict inequalities. For an equation e with variables
x1, . . . , xn it is done in the following way:

n∑
i=1

aixi + b = 0⇔
n∑

i=1

aixi + b ≤ 0 ∧
n∑

i=1

−aixi − b ≤ 0

This approach is problematic since it increases the number of constraints, which in
turn increases the number of choices for the eliminator. Therefore, the number of com-
binations as well as the number of possible branches is increased and the performance
of the method worsens.

For that reason, we discuss a different handling of equalities that does not cause a
splitting of constraints. If we want to use equalities without splitting them, we need a
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way of combining them with other constraints. To do so, we need to look at the case,
where the equality is the eliminator and the case, where the equality is eliminated
using an inequality.

3.3.1 Equality as Eliminator
First, we look at the case, where an equality was chosen as the eliminator (GLB/SUB).
Assume that we are on level k and the variable x1 was chosen to be eliminated. The
choice of x1 is just for notational convenience, it is the same for any other variable.
Furthermore, the equality e was chosen as an eliminator. Then, the variable x1 can be
eliminated using Gauß’s variable elimination. Meaning in every other constraint on
level k the variable x1 is substituted according to the equality e. Let c be a constraint
on level k with c1 6= 0 and ./∈ {<,≤,=} of the following form:

n∑
i=1

cixi + d ./ 0.

To eliminate x1 in c using the equality e :
∑n

i=1 aixi + b = 0, we multiply e by − c1
a1

and add it to c. This results in the constraint

cnew : − c1
a1
· (

n∑
i=1

aixi + b) +

n∑
i=1

cixi + d ./ 0

⇔
n∑

i=2

(ci −
c1
a1

ai)xi + d− c1
a1

b ./ 0

without the variable x1.
Using an equality as the eliminator has the benefit that we make no assumption

about any GLB or SUB. Consequently, this elimination can not be the cause of
any conflict. Therefore, the conflict level of the resulting constraint is always the
maximum conflict level of the parent constraints. Hence, we never backtrack to this
level to choose a new eliminator, which means a node in the computation tree with an
equality as the eliminator can only ever have one child. The combining of constraints
with an equality as the eliminator is shown in Algorithm 9.

Algorithm 9 Using an equation as the eliminator
Input: The set of constraints C, the equality used as eliminator e : (e1x1+ . . . enxn+
be = 0) /∈ C, the variable to be eliminated xk with 1 ≤ k ≤ n, ek 6= 0
Output: The set of constraints resulting from the elimination of xk with e as elimi-
nator
1: function applyEQ(C, e, xk)
2: Constraint set R = ∅
3: for c ∈ C do
4: Constraint cnew = c− ck

ek
· e

5: cnew.relation← c.relation . The relation symbol of c is retained
6: cl(cnew)← max{cl(c), cl(e)}
7: R← R ∪ {cnew}
8: end for
9: end function
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3.3.2 Equality as Eliminee

In the second case the eliminator is an inequality and we want to eliminate a variable
in e using this inequality. Assume that we are on level k and the variable x1 was chosen
to be eliminated, again only for notational convenience. Furthermore, the inequality
c was chosen as an eliminator. For now we assume that c is a non-strict inequality.
The handling of strict inequalities is explained later. For simplicity, assume that c
is a lower bound with respect to x1, so c is the assumed GLB. If c were an assumed
SUB, it could be treated analogously. Now we want to eliminate x1 in e using an
assumed GLB c.

To do so, we first look at what would happen, if we were to split the equality.
Then, we would have the following constraints:

c :

n∑
i=1

cixi + d ≤ 0

e1 :

n∑
i=1

aixi + b ≤ 0

e2 :

n∑
i=1

−aixi − b ≤ 0

If we combine c with e1 and e2, we get - depending on the sign of a1 - two resulting
constraints c1 (Combination of c and e1) and c2 (Combination of c and e2). The
combination itself follows the principle used in the FMplexCombine method.

• a1 > 0 : That means e1 is an upper bound and e2 is a lower bound. Hence, the
combination of e1 and c is an upper-lower combination c1, while the combination
of e2 and c is a same-bound combination c2.

c1 :
1

|a1|

(
n∑

i=1

aixi + b

)
+

1

|c1|

(
n∑

i=1

cixi + d

)
≤ 0

c2 :
1

| − a1|

(
n∑

i=1

−aixi − b

)
− 1

|c1|

(
n∑

i=1

cixi + d

)
≤ 0

⇔ −

(
1

|a1|

(
n∑

i=1

aixi + b

)
+

1

|c1|

(
n∑

i=1

cixi + d

))
≤ 0

The resulting constraints c1 and c2 must both hold on level k+1, which is why
we can treat them as being in a conjunction and combine them together to an
equality.

c1 ∧ c2 ⇔
1

|a1|

(
n∑

i=1

aixi + b

)
+

1

|c1|

(
n∑

i=1

cixi + d

)
= 0

Thus. we end up with an equality as the resulting constraint cnew.

• a1 < 0 : That means e1 is a lower bound and e2 is an upper bound. Therefore,
this time the combination of e1 with c is a same-bound combination c1, while
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that of e2 and c is an upper-lower combination c2.

c1 :
1

|a1|

(
n∑

i=1

aixi + b

)
− 1

|c1|

(
n∑

i=1

cixi + d

)
≤ 0

c2 :
1

| − a1|

(
n∑

i=1

−aixi − b

)
+

1

|c1|

(
n∑

i=1

cixi + d

)
≤ 0

⇔ −

(
1

|a1|

(
n∑

i=1

aixi + b

)
− 1

|c1|

(
n∑

i=1

cixi + d

))
≤ 0

This causes a switch in signs, although c1 and c2 can still be combined together
to an equality.

c1 ∧ c2 ⇔
1

|a1|

(
n∑

i=1

aixi + b

)
− 1

|c1|

(
n∑

i=1

cixi + d

)
= 0

Thus, we again end up with an equality as the resulting constraints cnew.

Overall, we always get an equality as the resulting constraint but in case that a1 has
the same sign as c1 we need to additionally multiply c by −1, so that x1 disappears.
However, this creates the problem that the resulting equality is always based on one
same-bound combination. Due to this, any conflict that is found using cnew may
be based on the fact that c was wrongly assumed as the GLB. As such the conflict
level of cnew is always the current level lvl. Furthermore, it is unclear what the
derivation coefficients of such a constraint should be, as the equality is based on
two combinations, one where c multiplied by 1

|c1| and one where c is multiplied by
− 1
|c1| . This is problematic because the type of conflict is determined by the derivation

coefficients.

To make sure we do not wrongly conclude a global conflict, we add a flag called
involvedInEQ to every constraint, which is initially set to false. If a constraint
is created by eliminating an equality with an inequality, the flag is set to true. In
every other combination the flag of the resulting constraint is true if and only if
at least one of the parent constraints has the flag set to true. When analyzing a
conflict, this flag tells us that we need to interpret the conflict as a local conflict due
to a prior involvement in an equality elimination. Since the flag is set, the derivation
coefficients of cnew do not matter anymore and we can just arbitrarily choose one of
the possibilities.

So far we only discussed how to eliminate an equality with a non-strict inequality.
In fact, the elimination of an equality with a strict inequality as an assumed GLB
instantly leads to conflicting constraints. Again assume c is the assumed GLB, al-
though this time as a strict inequality, and we want to eliminate x1 in the equality
e. Just like before we assume e is split into the two non-strict inequalities e1 and e2.
Then, for a1 > 0 (the other case behaves analogously) we get the following resulting
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constraints:

c1 :
1

|a1|

(
n∑

i=1

aixi + b

)
+

1

|c1|

(
n∑

i=1

cixi + d

)
< 0

c2 :
1

| − a1|

(
n∑

i=1

−aixi − b

)
− 1

|c1|

(
n∑

i=1

cixi + d

)
≤ 0

⇔ −

(
1

|a1|

(
n∑

i=1

aixi + b

)
+

1

|c1|

(
n∑

i=1

cixi + d

))
≤ 0

⇔ 1

|a1|

(
n∑

i=1

aixi + b

)
+

1

|c1|

(
n∑

i=1

cixi + d

)
≥ 0

The strictness of c1 is due to the fact that in a upper-lower combination the strict
relation is dominant. As becomes visible, this is already a contradiction, which is
why c cannot be the GLB. Therefore, we need to choose a different constraint as the
eliminator. In short, a strict inequality cannot be the eliminator on a level in case
the level also includes equalities.

3.3.3 Change in Heuristic and Conflicts

The different treatment of equalities also impacts the choices of the heuristics as well
as the analysis of the conflicts.

Beginning with the heuristic for variable choice, we change it in the following way.
The first choice prefers variables that only have bounds in one direction. However,
if there are no such variables, we prefer variables that are involved in at least one
equality. Should there also be no variable that is involved in equalities, we follow
the heuristics as described before. In terms of eliminator choice, we now choose an
equality, if possible, as this causes the least number of children branches. If there is
no equality, we instead proceed as described before.

When analyzing the conflict, we need to be able to differentiate between local
and global conflicts. The different treatment of equalities brings two changes to this
distinction. Firstly, the previously introduced involvedInEQ flag takes priority,
in such a way that all conflicts, where the flag is set need to be treated like local
conflicts. Secondly, if the flag is set to false and we check the type of conflict
using the derivation coefficients, coefficients corresponding to equalities can be treated
differently. While a global conflict still requires that all coefficients belonging to
inequalities are positive, the signs of the coefficients of equalities do not matter. This
is due to fact that, when the flag is not set, we only ever used equalities to apply
Gauß’s variable elimination, which by itself cannot introduce conflicts that are based
on the eliminator choice.

3.4 Handling Not-Equal Constraints

So far we assumed that any not-equal constraint is split into two strict inequalities,
which are connected with a disjunction. Since FMplex assumes that all input formulas
are implicitly in a conjunction, this had to a happen in preprocessing. This behavior
is now slightly changed in such a way, that FMplex accepts not-equal constraints
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but first it does not take them into account when determining satisfiability. Should
the FMplex method conclude that all constraints beside the not-equal constraints are
satisfiable, it tries to construct a model as described before. Afterwards, it is tested
whether this model also satisfies all not-equal constraints. If that is the case, SAT
can be returned. Otherwise, FMplex returns the value UNKNOWN and tells the
SAT solver to split any not-equal constraint, which is not satisfied by the model. To
delegate such splits to the SAT solver is a well known approach that is often used
to avoid case splitting directly in the theory solver [BNOT06]. The SAT solver then
splits the not-equal constraints and constructs a new problem for FMplex to solve.

3.5 Infeasible Subsets
In case the theory solver finds a set of constraints to be unsatisfiable, it needs to pass
an infeasible subset to the SAT solver. This infeasible subset is a set of constraints,
whose conjunction is unsatisfiable. With the help of this set the SAT solver can rule
out assignments without checking with the theory solver again. To exclude as many
assignments as possible, the infeasible subset should be as small as possible.

The current implementation of FMplex just returns all constraints as the infeasible
subset. However, we can make this set smaller by using global conflicts. When
we reach global conflicts, we conclude unsatisfiability. Meanwhile, the derivation
coefficients include all constraints that were used to derive that conflict. Let c =
〈a1, . . . , an, b | d1, . . . , dm〉 be a global conflict and C∗ = {c∗1, . . . , c∗m} be the set of
original constraints. Then, I = {c∗i ∈ C∗ | 1 ≤ i ≤ m∧ di 6= 0} is an infeasible subset.
This set must be unsatisfiable as we can use the constraints to derive a global conflict.

In the case we conclude unsatisfiability due to the fact that all possible eliminator
choices in the first level led to local conflicts, we again use all constraints as the
infeasible subset. Another possibility would be to unite the infeasible subsets of all
local conflicts. However, in practice this scenario is very rare and as such we do not
use the memory to save this set.
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Chapter 4

Benchmarks

In this chapter we will report on testing the aforementioned adaptations on a bench-
mark set and discuss their effects on the performance of the FMplex method. The
implementation of these adaptations was done on top of the existing FMplex imple-
mentation of Stein [Ste22] in the Satisfiability Modulo Theories Real Algebraic Toolbox
(SMT-RAT) [CKJ+15].

4.1 Setup
The benchmark set used for testing the implementation is the quantifier-free linear
real arithmetic benchmark set from SMT-LIB [BFT16], containing 1753 instances as
of February 2023. For solving the underlying Boolean structure of the instances the
standard SAT solver implemented in SMT-RAT is used, while FMplex is used as the
theory solver. To compare the effect of each of the adaptations, we test different con-
figurations of the FMplex method with different optimizations enabled. All tests were
run on the RWTH Aachen High Performance Computing Cluster. More specifically,
the tests were run on a 2.1GHz Intel Xeon Platinum 8160 CPU with a time limit of
5 minutes and a memory limit of 5GB.

Each instance produces an outcome from the following options:

• SAT: Correctly identified instance as satisfiable

• UNSAT: Correctly identified instance as unsatisfiable

• Wrong: Produced wrong result

• Time Out: Computation took longer than 5 minutes

• Memory Out: Computation exceeded 5GB of memory

In our case none of the configurations produced a wrong result and as such this
outcome is not considered any further.

4.2 Constraint Type
First of all, we want to evaluate, if the new constraint data types presented in Sec-
tion 3.1 bring any improvement. To do so, we consider three configurations:
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Unsolved Solved
Configuration Memory Out Time Out SAT UNSAT Total Unsolved Total Solved
CArL 248 715 447 343 963 790
Map 281 686 443 343 967 786
Vector 278 687 445 343 965 788

Table 4.1: Outcomes for the different constraint types

(a) Comparison Vector and CArL (b) Comparison Map and CArL

Figure 4.1: Comparison of peak memory usage in kilobyte on all instances

• CArL: Uses the MultivariatePolynomial from the CArL library [CKJ+]

• Map: Uses the Map data structure

• Vector : Uses the Vector data structure

Table 4.1 contains the outcomes of all instances on each configuration.
The number of solved instances is very similar for each constraint type, with the

CArL type solving only a few more instances than the other types. However, the
main difference can be found in the memory consumption. In fact, there is a high
increase in memory outs in both the Vector and Map configuration. This indicates
that the memory efficiency of both the Map and Vector constraint type is worse than
this of the CArL constraint type. Indeed, when looking at the peak memory usage in
kilobyte in Figure 4.1, it becomes obvious that the CArL constraint type is superior
in terms of memory efficiency.

Looking at the comparison of the CArL and Map configurations 4.1b, we can see
that the Map configuration also has a slightly worse peak memory usage than the
Vector configuration.

The reason that both Vector and Map type seem so much worse could lie in the
fact that many copies of the variables are created. It might be more efficient to only
create one copy of every variable and then use pointers to reference to them. However,
this might negatively impact the runtime as the variables in a constraint may then
be stored on different pages, which would lead to more page faults.

Nonetheless, the runtime of both the Map as well as the Vector approach is similar
to the runtime of the CArL approach as shown in Figure 4.2.

Therefore, in the future an optimization of memory usage for the Vector and Map
constraints type can be considered. Even so, the CArL constraint type is the most
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(a) Comparison Vector and CArL (b) Comparison Map and CArL

Figure 4.2: Comparison of the runtime in seconds on all instances

efficient one. As such all following configurations will use this constraint type.

4.3 Experimental Results

Now that we decided on a constraint type, we will look at the effects of the other
changes. That is the reversing of decision described in Section 3.2.1, the continuing
after a local conflict described in Section 3.2.2, the different treatment of equalities
described in Section 3.3 and the infeasible subsets described in Section 3.5. Each
of these changes can be enabled or disabled. Moreover, the incrementality can also
be disabled, meaning that the branch is reset after every run. However, with no
incrementality the reversing of decisions is of no effect. Additionally, the different
treatment of not-equal constraints described in Section 3.4 is also implemented, but
likely does not affect the performance of the solver too much. This is why that
treatment is always enabled and not discussed in more detail.

The Table 4.2 shows the different configurations based on which optimization is
enabled.

Configuration Incrementality Reversing Decisions Continue after Conflict Equality Handling Infeasible Subset

Full × × × × ×

Full NoIncr × × ×

Only Incr ×

No infSub × × × ×

No infSub/EQ × × ×

No conAfterCon × × × ×

No revDec × × × ×

Table 4.2: Settings for the configurations. The × symbol stands for enabled, while a
blank field stands for disabled

For all of these configurations the outcomes are given in Table 4.3, while in Fig-
ure 4.3 a performance profile over the number of solved instances is shown.
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Unsolved Solved
Configuration Memory Out Time Out SAT UNSAT Total Unsolved Total Solved
Full 248 715 447 343 963 790
Full NoIncr 181 801 438 333 982 771
Only Incr 264 751 437 301 1015 738
No infSub 248 771 437 297 1019 734
No infSub/EQ 260 758 431 304 1018 735
No conAfterCon 248 713 446 346 961 792
No revDec 262 701 446 344 963 790

Table 4.3: Outcomes for the different configurations

Figure 4.3: Performance profile for all configurations. Note that the x-scale starts at
600 as to make differences easier discernable. Around 600 instances are very easy to
solve.
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The comparison of the Full and the Only Incr configuration shows that with
all optimizations enabled, FMplex manages to solve 52 more instances than without
them. However, the only factor that seems to be responsible for the change in the
number of solved instances is the presence of small infeasible subsets. This is especially
noticeable in the number of solved UNSAT instances. All configuration that use small
infeasible subsets and incrementality solve roughly 40 more UNSAT instances than
those where no small infeasible subsets are used.

The only other factor that causes a significant change in the number of solved
instances seems to be incrementality with the non-incremental configuration solving
19 less instances than the incremental one with the same settings. Meanwhile, the
other optimizations introduced in this thesis do not seem to have much of an effect.
Continuing after a local conflict even decreases the number of solved instances. The
same is true for the different treatment of equalities and the reversing of decisions, as
they barley change the number of solved instances.

4.3.1 Incremental vs. Non-incremental

In contrast to Stein’s results from Table 2.1, our testing reveals that the incremental
version performs better than the non-incremental version. However, this observation
is not a result of the here introduced optimizations. In fact, the reason that Stein
observed a decrease in performance for incrementality lies with a bug in the imple-
mentation. This bug caused a duplication of constraints in the incremental setting.
Therefore, the incremental version had to deal with more constraints than the non-
incremental version. Due to this, Stein [Ste22] observed a higher runtime and a higher
number of generated constraints for incrementality.

This changes, when the bug is removed, as can be seen in Figure 4.4.

(a) Runtime in seconds (b) Number of generated constraints

Figure 4.4: Comparison of Full and Full NoIncr configurations in terms of generated
constraints and runtime in seconds on solved instances. Note that both plots use a
logarithmic scale.

In reality the usage of incrementality decreases the runtime as well as the num-
ber of generated constraints. Intuitively, this makes more sense because previously
generated constraints are saved after SAT is concluded. Hence, in subsequent runs of
the algorithm they do not need to be generated again. The only disadvantage of the
Full configuration, is that it produces more memory outs since the branch is saved.
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However, the Full NoIncr version does not solve any instances that cause a memory
out in the Full configuration.

4.3.2 Infeasible Subsets
The addition of smaller infeasible subsets makes the greatest improvement in terms
of the number of solved instances. The reason for this increase in efficiency can also
be seen in Figure 4.5b, which shows the number of times the FMplex solver needed
to be called until satisfiability or unsatisfiability could be concluded.

(a) Runtime in seconds (b) Number of theory calls

Figure 4.5: Comparison of Full and No infSub configurations in terms of runtime in
seconds and the number of theory calls on solved instances. Note that both plots use
a logarithmic scale.

Especially for instances, which are unsatisfiable the number of times the theory
solver needed to be called is much lower, if infeasible subsets are enabled. This is
due to the fact that with smaller infeasible subsets the SAT solver can exclude more
assignments on the Boolean abstraction. Therefore, only fewer assignments need to
be tested with the theory solver. The runtime on unsatisfiable instances, which can
be seen in Figure 4.5a, is thereby also much lower.

Interestingly, there are quite a few cases, where satisfiable instances need less
theory calls, when no smaller infeasible subsets are used. The reason for that could
lie in the fact that due to the larger infeasible subsets the order in which the SAT
solver checks the assignments is different. Through that, the SAT solver may reach
a full satisfying assignment on the Boolean abstraction faster. However, while the
No infSub configuration is able to find two satisfiable instances that time out in the
Full configuration, the Full configuration is able to find 12 satisfiable instances that
time out without infeasible subsets. Therefore, smaller infeasible subsets seem to be
superior even for satisfiable instances.

4.3.3 Handling Equalities
The comparison of the No infSub configuration to the No infSub/EQ configuration
provides the surprising conclusion that the different handling of equalities does not
make much of a difference. In fact, the number of solved instances only changes by
one, which is not significant since the runtime can always vary slightly depending on
conditions during the execution. The only thing that changes is that the No infSub
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(a) Runtime in seconds (b) Number of local conflicts

Figure 4.6: Comparison of No infSub and No infSub/EQ configurations in terms of
runtime in seconds and the number of local conflicts over solved instances. Note that
both plots use a logarithmic scale.

configuration manages to identify 6 satisfiable instances more, while No infSub/EQ
configuration manages to identify 7 unsatisfiable instances more. This is actually
quite surprising, as the general trend shows that the No infSub/EQ configuration
performs worse on unsatisfiable instances, as can be seen in Figure 4.6a.

There it can be observed, that the different treatment for equalities decreases the
runtime for unsatisfiable instances. Meanwhile, satisfiable instances behave almost
the same whether equalities are split or not. A possible reason for that is the fact
that using equalities as eliminators removes the possibility of a conflict occurring on
that level. Therefore, on that level only one eliminator needs to be tried out and less
local conflicts are produced. This way the computation tree is smaller compared to
the scenario where we split the equalities. For unsatisfiable instances this means that
we might find a branch with a global conflict much faster than otherwise. This is
supported by Figure 4.6b, which shows that the number of local conflicts occurring
is much lower, if we do not split the equalities.

For satisfiable instances the number of local conflicts hardly changes. This may
be the case, since for a satisfiable set of constraints the number of branches that need
to be checked may be generally rather small. A reduction in the number of possible
branches would then not lead to much of a speedup.

In general, we had hoped that a different treatment of equalities would lead to
much more of an improvement. The main problem that stands against this is likely
the fact that we can not conclude a global conflict, if an equality was eliminated with
an inequality. Due to this, we only reach a global conflict, if we first eliminate the
equalities and afterwards the inequalities. This likely prohibits the incrementality
from working effectively because achieving any global conflict requires undoing the
eliminator choice on the highest level, where an equality was eliminated with an
inequality.

4.3.4 Continuing After a Local Conflict
The goal behind continuing after a local conflict was to find unsatisfiable instances
faster by finding global conflicts sooner. However, this goal was not reached, instead
this option causes the solver to solve even less unsatisfiable instances. In Figure 4.7
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Figure 4.7: Comparison of Full and No conAfterCon configurations in terms of run-
time in seconds over all instances.

the runtime for the Full and No conAfterCon configuration is shown.
In almost all cases not continuing after a local conflict produces a better per-

formance. There are only 6 instances, where the Full configuration is meaningfully
faster. These are likely the only instances, where continuing after a conflict actually
led to a global conflict. However, almost all instances are faster without this option.
Therefore, we can conclude that following a branch that already has a local conflict
almost never leads to a global conflict. Moreover, further testing has revealed that
even, if we continue for more levels, the number of solved instances only goes down.
Overall, it seems that continuing after a local conflict is not a worthwhile pursuit and
there are only very few specific cases, where it is useful.

4.3.5 Reversing Decisions

Originally we assumed that the non-incremental version of FMplex outperforms the
incremental version. Under that viewpoint the idea was to put more focus on the
heuristic for variable choice and reverse variable decisions. However, the original
assumption was caused by an implementation error. Thus, incrementality is much
more helpful than previously thought and the heuristics role is not as important as
it seemed. This leads to the fact that the reversing of decision has not much of an
impact on the number of solved instances. In fact, the number of solved instances
does not change at all. However, without reversing decisions the solver suffers from
14 more memory outs, although even in the Full version these instances time out.

Nonetheless, there are a few instances where the reversing of decisions has a sig-
nificant impact on the memory consumption. This can be seen in Figure 4.8b.

There are 51 instances that use over 2GB more memory, if we do not reverse
decisions. These instances all belong to the benchmark set sc, which is a subset of
the SMT-LIB benchmark set. However, even with the reversing of decisions none of
these instances were solved but instead timed out. Additionally, as can be seen in
Figure 4.8a, this optimization does not cause a better runtime in general. On the
contrary, the reversing of decisions seems to increase the runtime in more instances
than it decreases them.
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(a) Runtime in seconds
(b) Peak memory usage in kB

Figure 4.8: Comparison of Full and No revDec configurations in terms of runtime in
seconds and peak memory usage in kilobyte over all instances.

It is likely that the large impact in the number of solved instances for the heuristics
observed in Table 2.1 stems from the fact that all variables with only bounds in one
direction are eliminated at the start. After all, this way a lot of constraints can
be simply dropped. The variable choices after that may not strongly increase the
efficiency by much. This could explain why the reversing of decisions has not much
of a benefit, as we only reverse decisions, if new constraints are added in subsequent
runs. Therefore, there is no variable that is unbounded in one direction, where this
was not already the case in the previous run. Hence, by changing the variable, we only
change the number of possible eliminators that need to be tried out. Combining that
with the fact that we additionally lose everything below the level, where the variable
has changed, it may no be worthwhile to do so. Consequently, there is no general
benefit in reversing the decisions but specific instances profit from it, likely due to the
fact that by chance a global conflict may be found faster than before. Furthermore,
here only one fixed criteria for reversing was considered. Using different heuristics,
when deciding to reverse a decision could lead to an improvement.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we presented various optimizations for the incremental FMplex method.
This method chooses greatest lower bounds or smallest upper bounds to iteratively
eliminate variables until either a satisfying assignment or a conflict that is not based
on the eliminator choice is found. The computation can be thought of as a tree, where
each node corresponds to the elimination of a variable with a child for every eliminator
choice. In an incremental setting a branch that led to a satisfying assignment can be
remembered and used in the computation for the next set of constraints. However,
surprisingly past testing showed that leveraging the incrementality did not result in
an increase in the number of solved instances.

Based on this fact we proposed a few ideas for optimization. We first introduced
new data structures for the constraints to lower memory usage. Afterwards, an ap-
proach for reversing variable choices made in previous runs was presented, as to be
able to change the variable order in an incremental setting. Furthermore, we con-
sidered continuing the computation on branches with conflicts to find indications for
unsatisfiability faster. Moreover, an idea on how to combine equalities with inequali-
ties and a different treatment of not-equal constraints was implemented. Finally, the
generation of infeasible subsets was changed to create smaller sets and speed up the
computation.

During the realization of these changes we were able to identify, that the incre-
mentality had a problem in the previous implementation. We were able to fix that
problem and conclude that incrementality actually outperforms a non-incremental
approach. Meanwhile, the testing of the optimizations presented in this thesis pro-
duced rather poor results. The new constraint types needed more memory than the
old type, due to missing optimizations in memory consumption. Additionally, only
the generation of smaller infeasible subsets gave the method a significant boost in the
number of solved instances. In comparison, the different treatment of equalities was
able to reduce the runtime on unsatisfiable instances but not by a significant amount.
The reversing of decisions did not provide much difference in the performance, which
we traced back to the fact that the heuristic for variable choice has a lower impact
than assumed. Furthermore, we judged that continuing on a conflicting branch does
not lead to a proof for unsatisfiability as continuing after a conflict decreased the
performance of the solver.
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5.2 Future Work
While the new constraint types did not lead to an improvement, there is definitely
the potential for further development. As explained in Section 3.1 a constraint can
be remembered by only saving one coefficient for every variable that occurs in the
constraint. If one is able to optimize the memory usage, while not increasing the
complexity for combining the constraints, it should be possible to reduce the number
of memory outs significantly.

Another chance to increase the performance of this method lies again with the
equalities. Currently, eliminating an equality with an inequality instantly turns any
resulting conflict into a local conflict. An alternative way to handle the resulting
constraint, would be to use two different derivation coefficients. One for the same-
bound combination and one for the upper-lower combination. Such a treatment may
lead to a global conflict faster than treating everything like a local conflict.

Furthermore, the algorithm may profit more from using the reversing of decisions,
if we use a stricter measure, when identifying possible candidates for reversing. This
way we can minimize the losses made by resetting a branch due to a new variable
choice. Another option would be to change the heuristics all together. Following the
VSIDS idea from SAT solving, we could preferably choose variables and constraints
that have been involved in conflicts recently.
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