
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Augmented Reality für die Visualisierung von
Windparks

Augmented Reality for the Visualization of Wind Farms

Masterarbeit
Informatik

12 2022

Vorgelegt von Jiani Qu
Presented by Matrikelnummer: 423889

jiani.qu@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. Thomas Noll
Second examiner Lehr- und Forschungsgebiet: Softwaremodellierung und Verifikation

RWTH Aachen University

Betreuer Dr. rer. nat. Pascal Richter
Supervisor Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contribution . 3
1.4 Outline . 4

2 Choice of Technologies 4
2.1 Evaluation of Technologies . 5

2.1.1 AR.js . 6
2.1.2 WebXR . 7
2.1.3 ARCore and ARKit . 7
2.1.4 AR Foundation . 8
2.1.5 Sum-up . 9

2.2 Overview of Unity and AR Foundation 9
2.2.1 Unity Overview . 10
2.2.2 Unity Main Mechanics . 11
2.2.3 AR Foundation Architecture . 12

3 Software Engineering 13
3.1 Requirements Engineering . 14

3.1.1 Functional Requirements . 14
3.1.2 Hardware Requirements . 15
3.1.3 Software Requirements . 15

3.2 Prototyping . 15
3.3 Software Architecture . 18

4 Implementation 20
4.1 Geo-located Wind Turbines . 20
4.2 Map for Orientation . 22
4.3 Wind Farm Scenes . 26
4.4 Windmill Functionalities . 30
4.5 Noise and Shadow Cast Information . 34
4.6 Gamification Contents . 37
4.7 Integration with the Ionic Project . 39

5 Evaluation 45
5.1 Quantitative Evaluation of the Geospatial API for AR Content Placement 45

5.1.1 Position Detection . 45
5.1.2 Orientation Estimation . 49

5.2 Comparing AR and Real-World Wind Farms 52

II

6 Conclusion 56
6.1 Conclusion . 56
6.2 Challenges and Difficulties . 57
6.3 Future Work . 57

References 60

III

1 Introduction

1.1 Motivation

Due to the negative impact of fossil fuel combustion on the environment and its lim-
ited availability and non-renewable nature, switching from fossil fuels to other energy
sources has become a necessity for many countries in order to sustain the increasing
energy demand [24, 20].

Germany has long been the global pioneer in applying renewable energy and environ-
mental technologies and remains focused toward its energy transition to become more
climate-friendly and less dependant on fossil fuels as reported by International Trade
Ministration1. Today, renewable energy sources are among the most important sources
of electricity of Germany and the share of renewables in electricity consumption has
experienced a steady growth in the past two decades according to German Federal
Ministry for Economic Affairs and Energy2, from about only 6% in 2000 to about 45%
in 2020, of which wind energy accounts for the largest contribution of about a half.

However, in 2021, for the first time since 1997, the portion of renewable energy in terms
of electricity consumption has not only not increased but decreased by 4.1 percent be-
low that of the previous year (45.2 percent in 2020). In addition to the lower electricity
generation from wind turbines due to the weather, the decline is also due to the overall
increase in electricity consumption (by 2.4 percent compared to the previous year) in
2021. All other renewable energy sources remained around the same level as previous
year and were unable to compensate for the minus in wind energy, which is responsible
for the entire decline.

On top of increasing energy demands, Ukraine crisis also calls for energy independence
more urgently. Currently, Germany has the goal to generate 65 percent of electricity
consumption through renewables by 2030 as stated in the Renewable Energy Sources
Act3, which might be updated soon in July to enable a full supply from renewables
by 2035 by a new package of laws. Due to the leading share of wind energy among all
renewable energy sources, it plays an important role in expanding renewables and its
capacity is expected to double to 110 gigawatts by 20304.

In spite of increasing public awareness on climate, the social acceptance of wind farm
facilities still poses potential challenges to the further expansion of renewable energy
as pointed out in a research by European Commission [8]. Two of the key factors
influencing social acceptance are, for example, physical characteristics such as the size

1https://www.trade.gov/energy-resource-guide-germany-renewable-energy
2https://www.bmwk.de/Redaktion/EN/Dossier/renewable-energy.html
3https://www.erneuerbare-energien.de/EE/Redaktion/DE/Pressemitteilungen/2020/20201228-
altmaier-eeg-tritt-wie-geplant-zum-1-januar-2021-in-kraft-zentraler-schritt-fuer-die-
energiewende.html

4https://www.dw.com/en/ukraine-crisis-forces-germany-to-change-course-on-energy/a-60968585

1

and proximity of the turbines and consequently negative impacts such as noise level and
visual pollution etc., and the perceived fairness in the decision-making process, namely
transparency and openness with regard to the availability and quality of information
provided.

In order for individuals and neighborhoods under impact of planned wind farms to form
opinions as unbiased as possible in hopes of increasing social acceptance and supporting
expansion of renewables, in this thesis, we aim to convey transparent information of
the visual aspects of wind farms using augmented reality (AR) technologies. For this
purpose, we ask two research questions:

• How should an AR application for wind farms visualization look like?

• How should such an application be evaluated?

In order to answer these question, we set out to design, develop and evaluate an
application to show users a realistic 3D virtual visualization of the planned wind farm
according to the exact coordinates of wind turbines, integrating to the display of real-
world view as a so-called augmentation. In this way, people will be able to experience
the visual impacts of planned wind farms beforehand in a very exact way.

Currently, AR applications are able to be developed on AR headsets, smartphones,
and even browsers. We choose smartphones as the target device for our application for
the sake of better usability and accessibility, as in a real-world use-case, users ideally
should be able to carry their personal devices around and perceive the visuals of wind
turbines throughout the day.

1.2 Related Work

In this section, we introduce some some background information about augmented
reality, its history and current state of research that is most relevant to our project.

The term ”augmented reality” (AR) refers to a set of technologies that allows the
visual perception of real-world environments to be enriched by computer-generated
elements [4, 28]. With the rapid advances over the past few decades in computational
power, hardware and research areas such as computer vision and computer graphics,
AR has evolved from large indoor interactive facilities that failed to render real-time
augmentations robustly, to small mobile devices that can be moved around freely and
access digital contents almost everywhere [6, 15].

One of the earliest research prototypes of mobile augmented reality (MAR) was a
touring machine system that was designed in 1993 for road navigation on a campus.
However, due to the restricted technology at that time, the whole device has to be
carried around in a huge backpack and could not understand the physical environment
correctly [1]. Nowadays, not only are most AR devices wearable that can aid an
individual’s activities without restricting with the user’s movements [29], but also many

2

smartphones are able to support AR contents, which makes AR content more accessible
to all.

Among the main application areas of AR [4, 3], outdoor application is the category
that our project falls into. Apart from applications that only adds visual hints or small
interactive markers for the users to tap on to get information, there has been also more
complex and hardware-intensive ones being developed. CityViewAR was for example
such a mobile outdoor AR application that reproduces destructed historical buildings
virtually on-site in a city-scale[14], the virtual 3D buildings are placed where they once
were with help of mobile phone’s camera and screen, so to say. This is similar to what
we want to achieve. However, the paper pointed out that the developers encountered
difficulties accurately registering virtual structures to the real world due to errors
produced by the GPS sensors of at least 10-20 meters. The issue gets worse if the user
tries to look at a nearby virtual building at a distance within the error range. The GPS
error was deemed unavoidable, so Lee et al. provided a solution for improving usability
by allowing users to use a suggested ”AR viewpoint” as their location. However, this
falls into the category of VR, as the entire scene is then virtual. It was also mentioned
that correct visual occlusion is not implemented in this project.

In another project that was presented at the WindEurope Summit 2016, Grassi and
Klein also took the 3D AR approach to improve social acceptance and public partic-
ipation in wind farm projects, but their paper focused more on the planning aspect
rather than the technical details for realising the AR contents. In fact, the technical
implementation for the 3D AR visualization was hardly mentioned in the paper.

1.3 Contribution

Although Big Tech companies such as Google and Apple provide state-of-the-art AR
development kits (ARCore and ARKit) for mobile end, AR visualization of wind farms
still poses quite a few challenges even using these tools. According to our investigation,
most existing AR apps have use cases where visualized contents are at a close distance
within a couple of meters (more details in Chapter 2), whereas in our case, reasonably
precise visualization of wind turbines from hundred meters or even kilometers away
is expected. Consequently, depth estimation and obstacle occlusion can be difficult.
Thus, we have to first find out the capability of current technologies for visualizing
AR contents at great distances. We also hope to explore technical possibilities of
integrating computer vision or machine learning methods into existing tools if not
provided.

Our main focus of this work is on software development. We aim to improve the user
experience for the app instead of only developing a mere experimental prototype, which
includes, for example, smooth performance, map or directions for the wind farm site
etc.

3

To summarize, we contribute by creating a ready-to-use AR app that realistically
visualizes planned wind farms at real-world locations, which is ready to be extended
for more advanced occlusion functionality and is integrated with an existing Ionic app.
Our goal is to increase social acceptance of wind farm projects by providing clear and
accurate information and increasing citizen involvement.

1.4 Outline

First and foremost, it is of utter importance to decide, which AR technologies are
capable and suitable for developing such an app. This is a very crucial decision as it
determines if our software solution will be successful. In Chapter 2, we evaluate the
estimated performance of different AR technologies and take core requirements into
consideration and finally choose Unity and its AR framework AR Foundation as our
main development tool.

Then, in Chapter 3, we describe the process of developing our application system-
atically by consciously following software engineering (SE) standards. We adopt the
prototyping SE model by first identifying requirements, putting forward a high fidelity
UI mockup as our accepted prototype, and then the implementation is reported in
detail in Chapter 4.

In Chapter 5, we evaluate the core functionality of our solution, namely AR wind farm
placements, by conducting both quantitative and qualitative tests. Finally we conclude
this thesis in Chapter 6 by providing a sum-up of this thesis, discussing the challenges
and difficulties encountered during the project, and giving future work suggestions.

2 Choice of Technologies

In the previous chapter, we already explained that our wind farm AR application
should be developed for smartphones because of better accessibility, since most people
own a mobile phone today, whereas the same can’t be expected for AR glasses or
headsets. However, the choice of technologies is also crucial for multiple reasons such
as compatibility, device support and development overhead etc.

In this chapter, we first share our investigation into a number of suitable AR frame-
works for mobile end in Section 2.1, and in Section 2.2, we give a detailed overview of
our chosen development platform Unity and its AR framework AR Foundation.

4

2.1 Evaluation of Technologies

Cao et al. conducted an extensive research into all existing mobile augmented reality
(MAR) frameworks in 2021, investigating their platform supports, tracking abilities,
some key features, sensors etc. Table 1 shows an excerpt of all MAR frameworks that
we will discuss in detail next.

ARCore ARKit AR.js WebXR AR Foundation

Platform support
Android ✓ ✗ ✓ ✓ ✓

iOS O ✓ ✓ ✓ ✓

HTML5 ✗ ✗ ✓ ✓ ✓

Unity ✓ ✓ ✗ ✗ ✓

Features
Occlusion ✓ ✓ ✗ ✓ ✓

Sensors
Camera ✓ ✓ ✓ ✓ ✓

LiDAR ✗ ✓ ✗ O ✓

IMU ✓ ✓ ✗ O ✓

GPS ✓ ✓ ✓ O ✓

Table 1: Comparison of several MAR frameworks. Features and functions that are not
fully supported are marked with ”O”. For example, only a part of ARCore
features are supported on iOS platform. As for the WebXR framework, the
support for LiDAR, IMU and GPS sensors is determined by the underlying
system or hardware, because WebXR works in a fashion as an interface.

There are several core features required for our application. Naturally, in order to
generate virtual wind turbines on top of real-world scenes, the smartphone must have
a camera. In addition, a GPS sensor is also necessary, as we need to generate the
visualization based on the coordinates of the planned turbines, the position of the
users holding their mobile devices, and the direction in which they are pointing their
camera. This allows us to calculate the correct distance between the users and the
turbines and adjust the size and position of the turbines accordingly. The framework
that we choose should, of course, have support for these hardware sensors.

In addition to the basic requirements, it is important that the AR application can
be integrated with an existing app that provides people with other wind farm-related
information, such as a 2D map view of turbine locations, a 2D visualization of noise
propagation and shadow casting, and a Q&A section. This existing app was developed

5

Browser Compatibility
Chrome ✓

Edge ✓

Firefox ✗

Internet Explorer ✗

Opera ✓

Safari ✗

Chrome Android ✓

Firefox for Android ✗

Opera Android ✓

Safari on iOS ✗

Samsung Internet ✓

WebView Android ✗

Table 2: WebXR Browser compatibility5. Among the mainstream and more popular
browsers on both desktop and mobile ends, WebXR does not support Firefox
or Apple’s Safari at all.

using the Ionic framework6, which allows for the creation of apps for Android, iOS,
and the web from a single code base using web technologies like HTML, CSS, and
JavaScript. It is also crucial that our application can be extended to support ma-
chine learning inference for object occlusion. Other desirable features include built-in
obstacle occlusion functionality in the framework, simplicity of use to reduce develop-
ment overhead, and the ability to function offline, as wind farm areas are often poorly
covered by 3G/4G internet.

2.1.1 AR.js

Among all the available AR frameworks, a few stand out as suitable for our require-
ments. AR.js7 is a lightweight library for AR on the web that is fully based on
JavaScript, which means that it does not require installation and can run on any
device with a mainstream browser that supports WebGL and WebRTC. This makes
it very easy to integrate into the Ionic app. AR.js is easy to use and allows for rapid
prototyping, and has been adopted in several research projects[21, 22, 26, 16], but most
of them use its more stable feature: marker tracking, where AR content is displayed
when a marker is detected. However, this is not applicable in our case.

Since we were unable to find much information about AR.js’s performance of its
location-based features, we tested them ourselves by building a dummy prototype that
placed a 3D cube at a specific geographical location. Unfortunately, the results were

5https://developer.mozilla.org/en-US/docs/Web/API/WebXR Device API#browser compatibility
6https://ionicframework.com/docs/
7https://ar-js-org.github.io/AR.js-Docs/

6

rather unsatisfactory. AR.js was not performant enough, as the AR content displayed
laggy and jumpy transitions when the device was moved towards or away from the
content. More specifically, the content changed in size and position abruptly instead
of continuously each time the location of the device changed by about 1-2 meters. In
addition to this, AR.js still has many open issues related to its location-based features
on their GitHub project8 and does not support obstacle occlusion. Taking all these
factors into consideration, we decided against using the AR.js library.

2.1.2 WebXR

WebXR9 is another web solution for immersive experiences that provides compatible
web browsers with access to not only AR, but also VR content. It is created by
the Immersive Web Community Group, which has contributors from some BigTechs
such as Google, Microsoft, Mozilla etc. WebXR is, at its core, an API that serves
as an interface between web XR content and the devices on which it is displayed [6],
but the functionalities and features vary between different browsers and platforms
(Table 2 shows the browser compatibility of WebXR.). For example, AR content
on Google Chrome browser of Android devices are powered by Google’s ARCore10;
whereas on Microsoft Edge browser of Windows Mixed Reality simulator or Hololens
211, AR content can only be created by a collection of JavaScript libraries such as A-
Frame12, BabylonJS13, three.js14 and WebGL15; and it is not supported by iOS devices
at all16. This very nature of WebXR indicates too much development overhead if
we want to launch our app on as many devices as possible, and that iOS, a major
smartphone platform, has to be left out, which is why WebXR is also taken out of our
consideration.

2.1.3 ARCore and ARKit

ARCore17 is Google’s framework for building augmented reality experiences on different
platforms and devices. Its motion tracking technology identifies interesting points
through the camera, and tracks movements of those points over time, which is then,
along with information from the phone’s inertial sensors (IMU), used for determining
the position, orientation and velocity of the phone as it moves across space. This

8https://github.com/AR-js-org/AR.js/issues
9https://www.w3.org/TR/webxr/

10https://developers.google.com/ar/develop?hl=sv
11https://docs.microsoft.com/en-us/hololens/hololens2-hardware
12http://aframe.io/
13http://www.babylonjs.com/
14https://threejs.org/
15https://developer.mozilla.org/en-US/docs/Web/API/WebGL API
16https://developer.mozilla.org/en-US/docs/Web/API/WebXR Device API#browser compatibility
17https://developers.google.com/ar

7

is exactly what AR.js fails to do. In another prototype that we built using ARCore
that is similar to the AR.js one, we confirmed the excellent quality of the geospatial
AR content rendering, as the virtual content looks really ”attached” to its coordinates
stably in the moving camera. Positioning AR content in real-world coordinates has
to utilize the Geospatial API, which is backed by Google Earth and Google Maps to
achieve greater precision, so the internet connection is a must.

Some other features of ARCore include, for example, environmental understanding,
surface detection, light estimation etc. What interests us most is its built-in capability
of depth estimation and consequently obstacle occlusion. According to the official
documentation, the algorithm can get robust, accurate depth estimations up to 65
meters away, which is still far nearer than in our use cases. A possible approach would
be to use Google’s ML Kit18 along with ARCore to enhance object occlusion.

Apple’s ARKit19 has similar features as ARCore and takes depth detection to another
level on some of its devices with LiDAR Scanner (laser imaging, detection, and rang-
ing). It is also possible to integrate machine learning into ARKit with Apple’s Core
ML20. However, ARCore and ARKit’s great power do depend on the device’s hardware
and only rather new models support these frameworks. Other than that, as shown in
Table 1, ARKit supports only iOS devices, and although ARCore can also be used on
the iOS platform, not all features and functions are supported. This means, we still
need to develop apps for Android and iOS platforms separately, which doubles the
workload.

2.1.4 AR Foundation

AR Foundation21 is a Unity AR framework that supports AR content in a multi-
platform way that includes ARKit, ARCore, HoloLens etc. It presents an interface
that allows deploying one single application across multiple devices, in other words, we
would only need to write one version of Unity code, that will be implemented concretely
and automatically on the target platforms. i.e. Android and iOS, and most of ARCore
and ARKit’s features are supported by AR Foundation. This looks very promising for
us because of largely reduced development overhead. Apart from this, according to
our research, Unity is a good choice for developing interactive 3D applications, as it
is in its core a game engine, while using Android Studio, a native android application
development platform, for example, would be much less intuitive for interactive 3D
contents.

Unity also has its own machine learning library: Barracuda22. However, despite that
all Unity platforms are supported by Barracuda’s CPU inference, it doesn’t have all-

18https://developers.google.com/ml-kit
19https://developer.apple.com/augmented-reality/arkit/
20https://developer.apple.com/documentation/coreml
21https://unity.com/unity/features/arfoundation
22https://docs.unity3d.com/Packages/com.unity.barracuda@2.0/manual/index.html

8

around support for GPU inference23. This was confirmed as part of a previous student
project developing a prototype using Unity. As Barracuda can’t be run on Android
Unity platforms with OpenGL ES graphics API, which is mandatory for ARCore, its
machine learning algorithms can only be run on CPU, which greatly increases the
execution time, reduces efficiency and even often leads to app crashes.

Nevertheless, being an all-around game development engine, Unity provides the pos-
sibility to access third-party libraries and codes through plugins and even low-level
native-plugins that are unavailable to Unity otherwise. Yet, diving into low-level codes
or developing a plugin is not an easy task. Luckily, we discovered the possibility to
import TensorFlow Lite, the mobile library of the mainstream machine learning plat-
form TensorFlow, as a Unity plugin24, which supports GPU acceleration with Metal
on iOS/macOS, and OpenGL on Android25.

2.1.5 Sum-up

In this chapter, we investigated several possible AR technologies for our mobile app
development. Having access to the Unity prototype developed by another student
group, we are able to observe the relative performances of Unity, AR.js and ARCore
by only building prototypes for the latter two. We directly ruled out AR.js because of
its poor performance, and WebXR because of its huge development and maintenance
overhead that we can’t afford to take.

There are two main operating systems for smartphones: Android and iOS. Although
over 70% of smartphones are powered by Android [12], we still wish to cover both
platforms, but Android’s ARCore framework has only limited support for iOS, and
iOS’s ARKit doesn’t back other systems at all. Unity’s AR Foundation framework
can serve as an interface for them both, which allows us to develop a single Unity
application that can be exported to both platforms. Moreover, Unity allows us to
integrate the AR app into the Ionic app on both platforms, and our app is extendable
with potential machine learning algorithms for far-field object occlusion. So, in the
end, we decided for Unity as our development platform and AR Foundation as our
chosen AR framework for this project.

2.2 Overview of Unity and AR Foundation

This section contains some overview and general information about Unity and AR
Foundation. We will first talk about what Unity is, its advantages and disadvantages
compared to other development tools suitable for our project. Then, in subsection
2.2.2, the main mechanics of Unity will be introduced for a better understanding, as

23https://docs.unity3d.com/Packages/com.unity.barracuda@2.0/manual/SupportedPlatforms.html
24https://github.com/asus4/tf-lite-unity-sample
25https://medium.com/@asus4/tensorflow-lite-on-unity-4a134e43cbc6

9

it is a game engine different from conventional development tools which uses explicit
terminologies and rules (e.g. physics engine) enabling users to concentrate on game
mechanics without writing too much code to interact with the hardware. At last, we’ll
show AR Foundation’s architecture and how it supports multi-platforms.

2.2.1 Unity Overview

Unity, or Unity Editor 26, is a 3D/2D game engine that provides built-in features es-
sential for game development, such as 3D rendering, physics etc. It uses the object
oriented language C# as the scripting language to implement game logic, and it is
supported on all mainstream operating systems on computers, namely Windows, ma-
cOS and Linux. It is not an integrated development environment (IDE) itself, but
comes with Visual Studio on Windows and macOS by default, and supports two other
IDEs: Visual Studio Code and JetBrains Rider that are compatible with Linux as well.
Generally, the IDEs only serve as Unity’s external script editor, whereas most of the
resource management is taken care of automatically in Unity.

Beside the reasons for choosing Unity’s AR Foundation as our AR framework explained
earlier, Unity itself comes with a number of advantages. Unity has a huge range of
platform support from the web and mobile devices to high-end PC and consoles -
especially commonly used for the mobile Android and iOS platforms, which contributes
greatly to it being one of the most popular game engines.

Another reason for the popularity is that Unity is easy to use and highly user-friendly
to both beginners and experts. Unity comes with a large Asset Store, where devel-
opers can upload collections of files and data from their Unity projects, or elements
of projects, that are shared to the community as ready-to-use building blocks. Some
powerful assets, for instance, are visual scripting tools, which enables artists or begin-
ners that have little or even none coding skills to develop a game or application with
Unity.

Also for more experienced developers, Unity Editor is designed in a way that saves
tedious efforts compared to IDEs. For example, settings and dependencies of an ap-
plication can be mostly managed through clicking on Unity’s GUI, such that excessive
setup codes or scripts are not necessary anymore. Moreover, the GUI allows intuitive
drag-and-drop actions not only for organizing folder structure, but also for defining
some basic game logic, which we will explain in more detail in the next subsection
2.2.2.

In a nutshell, Unity has wider platform support, faster development iteration time,
smoother learning curve, larger active community, is better suited for lightweight games
or applications compared to other game engines.

26https://docs.unity3d.com/Manual/

10

When compared to native mobile app development tools, i.e. IDEs for building apps ex-
clusively for a single platform, such as Android’s Android Studio and iOS’s Xcode how-
ever, Unity’s easy-to-use and cross-platform support attributes still remain its biggest
advantages, but these are also where the shortcomings stem from. Apps developed
by native IDEs have better performance and are smaller in size, because they can
communicate with the underlying system directly, and have overall better accessibility.
Also, being a game engine that excels in dealing with animations, Unity redraws each
and every frame, whereas native Android or iOS optimizes and redraws only when
needed.

2.2.2 Unity Main Mechanics

Because Unity’s mechanics and workflow differ from the most conventional development
tools, we introduce some of the most important concepts and features of Unity in order
to achieve better understanding for later chapters of this thesis.

The most important concept in Unity Editor is GameObject. Essentially, any visible
or invisible object in the game or application is a GameObject, which can represent 3D
objects, properties, scenery, cameras, controllers and much more. It is a fundamental
building block for Scenes. Each Scene in a game can be understood as a unique level,
and for applications that don’t have levels, one Scene suffices. Except for default
location properties, the functionality and behavior of a GameObject is defined by its
Components that determine how the GameObject looks, and what the GameObject
does. A GameObject can contain any number of Components and Unity provides a
lot of useful built-in Components that largely accelerate the development process.

In most cases, the target features of an application or game are more complicated
than what the built-in Components are capable of – and that’s where scripting comes
in. Developers can create their own Components and control the GameObjects using
C# scripts. By default, a new script created in Unity Editor implements a class that
derives from the built-in base class ”MonoBehaviour”, which provides useful hooks to
events, so that initializations can be done at the start and actions can be defined for
each frame update for example. Such a class that derives from MonoBehaviour can be
thought of as a blue print for creating a new Component type that can be attached to
GameObjects.

As briefly mentioned previously, Unity provides drag-and-drop utility for some basic
program logic in its GUI, mainly references and bindings. For example, when view-
ing a GameObject in detail, one can drag and drop its Components to reorder them
or drag a script from resources folder to the GameObject to attach the script to the
object. Other than this, drag-and-drop is also commonly used for grouping, order-
ing, linking or creating hierarchies for GameObjects, which helps to move, scale, or
transform a collection of GameObjects. Besides grouping GameObjects in hierarchies,
any GameObject can be stored with all its Components, property values, and child

11

GameObjects as a reusable asset called Prefab by simply dragging the GameObject
from the Hierarchy window to the Project window where all the assets are located.

Scripting and coding in Unity is very powerful. Apart from deriving from the default
MonoBehaviour class to define GameObject functionalities, scripts can do a range of
other things from extending built-in classes, to getting callbacks and specifying actions
for different build stages. Even code created outside of Unity in other programming
languages can be included in the form of a plugin.

2.2.3 AR Foundation Architecture

AR Foundation is Unity’s solution to provide a common layer for AR applications that
can be ported to Android, iOS and a couple of other AR/XR platforms easily with
only one code base. It is a development toolkit that is based upon the unified Unity
XR plugin framework, which serves to improve Unity’s multi-platform beneficence and
enables direct integration. It provides an interface for Unity developers to use, but
doesn’t implement any AR features itself. Figure 1 shows the tech stack of Unity XR
plugin framework 27.

AR Foundation has a highly modular system. As we can see, the bottom layer con-
tains various individual provider plugins that equip Unity with access to native AR
functionalities in separate packages. On top of that, XR Subsystems provide a level of
abstraction between Unity application codes and platform-specific software develop-
ment kits (SDK) such as ARCore and ARKit. Each subsystem defines a specific feature.
For example, the plane subsystem defines an interface for plane detection. The same
application code is used in Unity to interact with a detected plane on Android, iOS,
or other platforms with an concrete implementation of the plane subsystem 28. On
the top, AR Foundation toolkit communicates with the subsystems and provides the
main AR API for Unity applications that comes with some ready-made components
and classes, e.g. ARPlaneManager and ARRaycastManager 29[17].

As of now, because AR technologies are still being researched and developed, some
latest AR functionalities are not yet integrated into AR Foundation, such as Google
ARCore’s Geospatial API and Apple ARKit’s ARGeoAnchor. Especially the Geospa-
tial API from ARCore is important for us, because it can place wind turbines according
to their real-world GPS coordinates with greater accuracy. ARCore’s Geospatial API
is supported on the iOS platform and also in Unity by using the ARCore Extensions
package, a separate package built on top of AR Foundation. This makes it a good
candidate for its use in our targeted cross-platform app to place the wind farm at
geospatial locations with only one code base.

27https://blog.unity.com/technology/unity-xr-platform-updates
28https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/arsubsystems/arsub-

systems.html
29https://www.andreasjakl.com/ar-foundation-fundamentals-with-unity-part-1/

12

Figure 1: The Unity XR plugin framework and AR Foundation tech stack. Unity XR
framework unifies individual provider plugins, with which the AR Foundation
toolkit interacts.

3 Software Engineering

This chapter presents the software engineering process of our application. In order to
develop a software application, it is of utter importance to first identify the require-
ments, which are described in Section 3.1. In Section 3.2, according to the organized
requirements, we take an UI-First approach to first build an interactive prototype-
like mockup that closely resembles the final design of the AR application, so that the
feasibility of the design can be evaluated early on. At last, the architecture of our
application is laid out in 3.3. We generally adopt the idea of the prototype model,
an iterative software development life cycle model, where a prototype is built at an
early stage of the project as a basis for the final product implementation. The stages
after the proposed prototype being accepted are similar to the classical waterfall model
(implementation -> testing -> deployment -> maintenance).

13

3.1 Requirements Engineering

Careful preparation and planning is essential for successful software development. In
this section, we first utilize use case - a commonly used tool in software development -
to identify the functional requirements of our application, and then derive the hardware
and software requirements from the findings of our technology evaluation of the last
chapter.

In order to better organize the requirements, we create a Requirement Trace Matrix
as shown in Table 3 at the end of this section that supports the identification of all
requirements, and enables us to easily check the coverage of all requirements throughout
our project’s development phase [7]. Moreover, documenting the requirements in this
way also allows stakeholders including future developers to quickly understand the
scope, objectives and goals of this application to further develop or extend on its
basis.

3.1.1 Functional Requirements

Use cases describe the ways users interact with the system from their point of view. We
utilize this methodology for our requirement analysis to identify, clarify and organize
the outwardly visible requirements, i.e. the functional requirements of our application
system [25]. Our use cases are laid out in this subsection in casual text form.

The main scenarios of our primary use case are as follows:

Users will see 3D virtual wind turbines on their device screen placed in real-world
positions when they point their device’s camera to the planned wind farm sites. No
matter where the users are, they will be able to see a map of the turbines, so that they
would know where to point their camera to, or in which direction they should go, in
order to be near to the planned wind farm sites to see the AR visualizations.

Apart from the AR visualizations, other information such as the noise level and annual
shadow cast duration from the wind farms should also be shown to the users according
to their real-time position. Also, users are allowed to set wind speed and wind direction.
The wind turbines and their wings will rotate accordingly.

As multiple plans for wind farms will be proposed, users will be able to switch through
different scenarios. For different plans, various models of turbines and different loca-
tions and layouts may be suggested, which should also be reflected visually. Users will
also be able to see additional text information about each individual wind turbine, for
example the manufacturer etc.

Users should be able to enter this AR application directly through the Ionic app, and
if they quit the AR view, they should be directly returned to the Ionic app.

14

Secondary scenarios comprise of gamification aspects of the application that contribute
to making the application more attractive or making the concept of renewable energy
and environmental protection more fun to know about. Examples of gamification
content include the following:

At different times of a day, some other visually attractive AR events will take place
near the planned wind farm sites for users to see, such as hot-air balloons flying in the
sky, animals running around or a rocket launching distantly. Users can also explore
around the wind farm sites by collecting randomly spawned stars at certain locations
and get statistics of their star-collections.

3.1.2 Hardware Requirements

According to our previous AR technology evaluation and our choice of the ARFoun-
dation framework, and thus respectively ARCore and ARKit for Android and iOS
platforms, the hardware requirements are rather clear, as the device has to be sup-
ported by the underlying frameworks.

An extensive list of devices supported by ARCore can be found on the documenta-
tion site of ARCore 30, including the iOS devices that supports ARCore. The ARKit
supported iOS devices are also documented in Apple’s documentation archive 31. Gen-
erally, ARCore and ARKit are only supported on more recent devices that are released
after 2017.

3.1.3 Software Requirements

• Android or iOS mobile operating system

• Android 7.0 Nougat+, API level 24+

3.2 Prototyping

The“Prototype Model” is an iterative software development model, where a prototype,
i.e. an incomplete version of the software application that simulates only a few aspects
of the final product, is built, tested, and refined. These steps are looped until a final
accepted prototype is achieved, which then serves as the basis for the final software
product. Prototyping is valuable for detecting missing functionalities early on in the
development phase, testing the usability and feasibility of a design solution, and thus
reducing risks of a project failing.

30https://developers.google.com/ar/devices
31https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOS-

DeviceCompatibility/DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html

15

Entry Requirement Type
1 The user shall be able to enter the AR application through the main

Ionic app and go back to Ionic app from the AR application.
Functional

2 The user shall be able to see 3D wind turbines on their destined
position if they point their device camera to the planned wind farm
sites.

Functional

3 The user shall be able to see the position of wind turbines with
respect to their current position on a map to gain orientation to
the wind farm sites.

Functional

4 The user shall receive error notifications if their device position
cannot be determined.

Functional

5 When the user clicks on a 3D wind turbine, information about this
particular turbine will be shown to the user.

Functional

6 The user shall be able to switch through different wind farm planes
to see different layouts and types of wind turbines at different lo-
cations.

Functional

7 The user shall be able to set the wind speed and wind direction
and the 3D wind turbines will simulate the real-world situations
accordingly with self-rotations and wing-rotations.

Functional

8 The user shall be able to see other information about the potential
influences from the planned wind farms, such as noise level and
annual shadow cast duration according to their current position.

Functional

9 The user shall be able to read about some facts about wind farms
and renewable energy in an interesting way.

Nice-to-have

10 The user shall be able to see some optional cool 3D events or visual
effects if they wish to, such as hot-air balloons in the sky etc.

Nice-to-have

11 The user shall be able to switch on or off the additional visusal
effects.

Nice-to-have

12 The user shall be able to collect randomly spawned stars around
planned wind farm sites when they walk close to the stars.

Nice-to-have

13 The user shall be able to see statistics of their collection of stars as
feedback and motivation to collect more.

Nice-to-have

14 The user’s device has to be an Android or iOS device that supports
ARCore or ARKit.

Hardware

15 The user has to run the application inside an Android or iOS mobile
operating system.

Software

Table 3: The Requirements Trace Matrix for our AR application. It contains all re-
quirements from functional to non-functional requirements of this application
project and serves as a requirements document to effectively communicate
with all stakeholders.

16

For the development of highly interactive software systems, such as web and smart-
phone applications, prototyping, and, in particular, interface prototyping has become
increasingly important, as the acceptance of such systems depends to a large degree
on the quality of their user interface [5]. Bäumer et al. pointed out in their work that
user interface prototypes can range from complete mockups without functional aspects
to fully functional systems[5]. They classified different types of prototypes into four
categories depending on how and to what degree the functionality is implemented in
a prototype: presentation prototypes, functional prototypes, breadboards and pilot
systems.

• Presentation Prototypes are built to illustrate potential solutions to a set of
given requirements and are often used as part of the project proposal, therefore
strongly focused on the user interface.

• Functional Prototypes implement strategically important parts of both the user
interface and the functionality of a planned application.

• Breadboards are utilized for investigating technical aspects such as system archi-
tecture or functionality. They serve to inspect certain factors of special potential
risks and are not intended for end users.

• Pilot Systems are very mature prototypes that are close resemblances of the
final product regarding both interface and functionality which can already be
practically applied.

A more general way to categorize prototypes is according to their fidelity. The fidelity
of a prototype is determined by how it appears to the viewer rather than by how closely
it resembles the final product. In other words, the degree to which the prototype accu-
rately simulates the appearance and user experience of the final product, rather than
the accuracy of the code and other features hidden from the user, is what determines
the fidelity of the prototype [23, 27].

On one hand, low-fidelity prototypes involve minimal functionality and restricted in-
teractivity and often simply sketched on paper. They are valuable in early stages of
development where requirements are not fully gathered or still being evaluated, in that
they can be the communication medium between users and developers and help in the
brainstorming process. On the other hand, high-fidelity prototypes are almost fully
interactive and allow users to interact with the user interface as if it were a real prod-
uct. They define the navigation scheme of a system clearly and are much more helpful
than low-fidelity prototypes for error checking [23]. Developers can use high-fidelity
prototypes as a living specification of the functional and operating requirements.

Because our project has a small scale and most requirements are already specified, we
started out with a low-fidelity wireframe that focused on our application’s navigation
logic in order to rapidly gain insights to the functional feasibility. Then, we designed
a high-fidelity prototype - a mockup - with the web-based interface prototyping tool

17

Figma32 that resembles the final product visually up to several icons and images. This
mockup contains not only static pages, but also functional linking between buttons
and pages. In this way, we finished up the prototyping phase of our application with
a “Presentation Prototype” as defined by Bäumer et al.. It is not yet a “Functinoal
Prototype” because the most important functionality is not implemented. Screenshots
of the mockup are presented in Figure 2.

Figure 2: Several pages of the app interface mockup that almost entirely resembles the
final product’s UI visually.

3.3 Software Architecture

The Unity system is designed in a way that is highly compatible with a component-
based architecture because of its emphasis on its core concept of game objects and
Components. A component-based software architecture focuses on the decomposi-
tion of the system design into distinct individual functional or logical components33.
There are different understandings of component-based development in academia and
industry. While industry views a component as a reusable and self-deployable unit
encapsulating functionality and behaviors of a part of the software system, researchers
in academia usually define components as well-defined entities that are typically small
with easily understandable functional and non-functional properties[10]. Either way,
the most important feature of components is reusability, and the larger the compo-
nents are, the greater the productivity can be achieved by reusing them. As Unity

32https://www.figma.com
33https://www.tutorialspoint.com/software architecture design/component based architecture.htm#

18

emphasises the proper use of components, we naturally adopt the idea of component-
based software engineering throughout our development. This means avoiding highly
coupled inheritance relations of classes conventional in Object-Oriented Programming
(OOP) and employing well-defined entity classes of the academic definition that can
be attached to other object or classes with little restriction.

Moreover, for the general architecture of our application, we adopt the well-known
Model-View-Controller (MVC) pattern. In the MVC pattern, Model stands for the
database of the application, and if applicable, it also entails the data structure and
management logic for the database, independent from any interface. View is the visual
representation of the information depicted by the model. In the web/app development
context, the view represents the complete user interface, including all UI elements such
as menus and buttons, so it can also receive user inputs. Controller is the “brain” of
the application that actually handles user inputs and converts it to commands for
the model or view. The controller determines if a user input should change the data
provided by the model and manipulates the model accordingly. So principally, the
model is responsible for the view updates. However, sometimes, the controller could
also apply direct updates on the view if the model isn’t changed. An illustration of
MVC pattern is shown in Figure 3.

Figure 3: An illustration of the model-view-controller (MVC) pattern34.

In the case of our application, the view is exactly our graphical user interface. As for
the model, the data that we receive and build upon are static and need no changes
from this application. This is due to the application being solely developed for citizens
to experience the impact of planned wind farms, not for the stakeholders such as the
city government to manipulate and edit the underlying data. The only manipulatable

34https://developer.mozilla.org/en-US/docs/Glossary/MVC

19

variables are the wind speed and wind direction that are temporary and only retained
for the current session, which are not stored in the base database.

The controller part may consist of different controllers. We separate the responsibilities
for geospatial visualizations and UI visuals. Most user interface elements that do not
depend on geospatial localizations are controlled by a UI-controller, and the geospatial-
relevant elements (mostly the 3D windmill models and 2D windmill sprites on maps)
are managed by a geospatial-manager that places 3D objects according to coordinates
stored for them in the model. To control the rotation of wind turbines and their wings
according to user settings, another windmill controller is implemented as a reusable
component for each windmill game object locally to easily manipulate the 3D models.
This choice leads to better modularity and clearer separation of code.

4 Implementation

This chapter addresses the concrete implementation of our application. We illustrate
the functional implementations according to the software requirements and design in
the previous Chapter 3 in detail.

4.1 Geo-located Wind Turbines

The core objective of our application is to provide realistic AR wind turbine visualiza-
tions for citizens living near planned wind farm sites so that they can experience the
visual impacts virtually. This requires placements of wind turbines to be as accurate
as possible. The AR approach is a bit different as the VR approach, in that VR creates
virtual objects for the whole virtual environment with no real-world visuals, whereas
AR provides virtual augmentations that should be immersed into the real-world en-
vironment. So the correct placement of objects in AR is more challenging, because
not only device movements and relative device orientation change, but also reference
points, such as markers in the case of marker-based AR, must be recognized. In the
case of geo-location-based AR, a correct rendering of AR objects additionally relies on
device location based on GPS and its true heading, namely, the orientation relative to
true north.

Recent smartphones have a GPS horizontal position error of under 5-10 meters most
of the time under open sky, but the position accuracy worsens when the device is
near buildings and trees [18], because GPS positioning relies on measuring the delay
of radio signals from satellites and disruption can be caused by signals reflecting off
surfaces. As for heading, it was already pointed out in numerous previous studies that
the built-in compass headings produced by magnetometer has poor accuracy that can
be a critical issue for AR applications [2, 18], since this sensor is easily skewed by
magnetic objects.

20

To tackle this issue, Google’s ARCore Geospatial API 35 provides an advanced solu-
tion to improve the device position and heading by using a technique called global
localization which combines Google’s Visual Positioning System (VPS), Street View,
and machine learning 36. VPS has a localization model consisting of trillions of 3D
point clouds learned from Google Street View data around the globe. By scanning
surroundings with the device camera, images are sent to Geospatial API along with
GPS and orientation data, where recognizable parts of these images are identified by
deep neural networks and then compared to corresponding parts of the localization
model inside VPS based on given location data. A significantly more accurate position
and orientation of the device is at last calculated by computer vision algorithms which
was previously impossible with GPS and phone sensors alone. It’s worth noting that
internet is required for Geospatial API to work on a device.

In order to place Unity game objects at specific real-world locations through ARCore’s
Geospatial API, they have to be attached to so-called ”Geospatial anchors”. An anchor
is created with a pose that describes the anchor’s orientation and position in the world
space for a single frame. World space is the coordinate space in which the camera and
virtual objects are positioned, and all positions of all objects including the camera are
updated each frame. Positions of Geospatial anchors are based on geodetic latitude,
longitude, and altitude, and orientations are expressed in quaternions.

1 ARGeospatialAnchor anchor =

2 ARAnchorManager.AddAnchor(

3 latitude ,

4 longitude ,

5 altitude ,

6 quaternion);

7
8 GameObject go = Instantiate(WindmillPrefab , anchor.transform);

Listing 1: Creating Geospatial anchor and instantiating objects to attach to the anchor.

As shown in Listing 1, an ARGeospatialAnchor is created by ARFoundation’s ARAn-
chorManager. One or multiple game objects can be attached to the anchor by instan-
tiating as children of the anchor. The instantiation takes an object, in this case, a
windmill prefab which is a game object that contains the 3D mesh, colliders and ma-
terials of the windmill, and the transform of its parent the anchor, as its arguments.

However, it is very crucial, when to place the anchors. The AR Session is the main
entry point to ARCore and other provider APIs, which controls the life cycle of an AR
experience. Together with AR Session Origin that transforms AR coordinates into
Unity world coordinates, AR Session can enable AR processes, such as motion track-
ing and environmental understanding. All anchors that are placed before ARSession

35https://developers.google.com/ar/develop/geospatial
36https://ai.googleblog.com/2019/02/using-global-localization-to-improve.html

21

is ready will be null, and thus not able to be updated to their correct position any-
more. This is also because, using the Geospatial API, the device position and headings
and all anchors are dependent on an AREarth instance, which represents the earth by
abstracting it with an ellipsoid according to WGS84 specification 37 and provides the
localization ability. The AREarth object should only be used when its TrackingState
is TrackingState.TRACKING, which includes anchor instantiations 38. The Track-
ingState is TrackingState.PAUSED when, for example, device tracking is lost, or if the
ARSession is currently paused. In this case, the properties of the AREarth instance
may be wildly inaccurate and should generally not be used.

The Update() method, shown in Listing 2, is a Unity method that is called once every
frame after application start. We check the localization state by EarthTrackingState.
Whenever the tracking is lost, we disable all AR contents so that they can’t be seen
on the screen anymore to avoid undesirable visuals like objects jumping around. In
addition, a message will be shown to the user to make it clear that the application
is localizing, and when localization is regained, the AR contents are enabled again to
be shown to the user. If the ARSession is not ready or the AREarth has not started
tracking yet, the message will also be shown until the first time localization is done,
and the Geospatial anchors and windmills will be placed. The array windmillObjects
stores references to all windmill game objects and firstTimePlacement is a boolean
variable that help us to instantiate the windmill game objects only once and to avoid
duplicates.

4.2 Map for Orientation

For better orientation and overview to the user, we implement a map that shows the
position of wind turbines that can help the user to go to wind farm sites and look in
the correct direction with their devices’ cameras to see the AR contents. As shown in
Figure 5, the triangle fixed in the center of the map represents the user, and it always
points towards the front, identical to the direction the device is heading. Each time
the user moves or changes direction, the position of all windmill icons are updated.
In addition, the button that opens the map is itself a minimized version of the map,
supporting the orientation of the user.

Because positions of windmills in the world space are determined by the Geospatial
API through real-world coordinates, in order to show them on a 2D map, the windmills
have to be placed in the 3D world space first. For each placed windmill, we first instan-
tiate two 2D graphic sprites that represent it on the two maps respectively (Listing 3).
Then, the positions of 3D windmills are reflected on the 2D map space through the
sprites, so that the map should look like a top-down view of the 3D. This means, the
vertical Y axis of the 3D world space should be disregarded, the horizontal X axis of 3D

37https://en.wikipedia.org/wiki/World Geodetic System
38https://developers.google.com/ar/reference/java/com/google/ar/core/Earth

22

remains the X axis of 2D, and the horizontal Z axis of 3D becomes Y axis of 2D, as re-
flected in line 24 and 25 of Listing 4. Figure 4 illustrates the alignment of axes in Unity.

1 void Update ()

2 {

3 bool isSessionReady =

4 ARSession.state == ARSessionState.SessionTracking;

5 var earthTrackingState = AREarthManager.EarthTrackingState;

6 if (! isSessionReady || earthTrackingState != TrackingState.

Tracking)

7 {

8 //Lost localization during the session

9 if (! _isLocalizing)

10 {

11 _isLocalizing = true;

12 foreach (var go in _windmillObjects)

13 {

14 go.SetActive(false);

15 }

16 }

17 LocalizationPanel.SetActive(true);

18 }

19 else if (_isLocalizing)

20 {

21 // Finished localization

22 _isLocalizing = false;

23 LocalizationPanel.SetActive(false);

24
25 // Activate all AR GameObjects or place them for the first

time

26 if (! _firstTimePlacement)

27 {

28 foreach (var go in _windmillObjects)

29 {

30 go.SetActive(true);

31 }

32 }

33 else

34 {

35 _firstTimePlacement = false;

36 PlaceWindmills ();

37 InstantiateWindmillSprites ();

38 }

39 }

40 ...

41 }

Listing 2: Handling localization and placing windmills after the first successful
localization.

PlaceWindmills function is shown in Listing 9 and InstantiateWindmillSprites in List-

23

ing 3.

1 public void InstantiateWindmillSprites ()

2 {

3 for (int i = 0; i < _windmillSprites.Count; i++)

4 {

5 // Sprites on the bigger map

6 GameObject WindmillSprite = Instantiate(WindmillSpritePrefab ,

SpritesContainer.transform);

7 _windmillSprites.Add(WindmillSprite);

8
9 // Sprites on the mini map button

10 GameObject MiniSprite = Instantiate(DotSpritePrefab ,

MinimapBtn.transform);

11 MiniSprite.transform.localScale = new Vector3 (.5f, .5f, .5f);

12 _miniSprites.Add(MiniSprite);

13 }

14 }

Listing 3: Instantiating 2D windmill sprite game objects on both maps.

Figure 4: Unity’s axes alignment.

In an AR app with an AR camera, the origin of the 3D world space is exactly the
position of the device at session startup and is fixed. When the user moves around
after an AR session is initialized, the device or camera position will be updated each
frame relative to the established axes. The origin of the 2D screen space is at the
bottom left corner of the screen, not where the user triangle sprite is placed at. To
reflect the relative positions of the user and windmills on the 2D map, we first put the
sprites to the center of the map (also the position of the user triangle), and then move
them according to their 3D translations to the device.

Windmill sprites that are out of the map further away than 250 meters are also shown
in order to give the user a rough orientation, but on the rim of the map to extinguish
from those that are within the radius. They also have different graphics. Sprites on the
rim appear as dots and those within the radius appear in turbine form. All windmill
sprites on the minimized map button have dot form to attain the functionality but in
a generalized way (because the button is rather small on screen and unsuitable for too

24

much information). To place sprites on the mini map button, we only have to duplicate
and scale the local position of the sprites on the bigger map, i.e. their position with
respect to the parent circle image objects framing the maps.

1 public void UpdateSpritesPosition ()

2 {

3 for (int i = 0; i < _windmillSprites.Count; i++)

4 {

5 var mill = _windmillObjects[i];

6 var sprite = _windmillSprites[i];

7 var miniSprite = _miniSprites[i];

8 Vector3 translate = new Vector3(

9 (mill.transform.position.x - ARCamera.transform.position.

x),

10 (mill.transform.position.z - ARCamera.transform.position.

z), 0);

11 sprite.transform.position = spritesOrigin;

12 float dist = translate.magnitude;

13
14 if (dist < 250)

15 {

16 sprite.transform.Translate(translate);

17 if (sprite.GetComponent <Image >().sprite != windmillSprite

)

18 {

19 sprite.GetComponent <Image >().sprite = windmillSprite;

20 }

21 }

22 else

23 {

24 sprite.transform.Translate(translate/dist *250);

25 if (sprite.GetComponent <Image >().sprite != dotSprite)

26 {

27 sprite.GetComponent <Image >().sprite = dotSprite;

28 }

29 }

30
31 miniSprite.transform.localPosition = sprite.transform.

localPosition /5f;

32 }

33 }

Listing 4: Updating sprites position on map in real time and change their graphics
according to the distance.

After positioning the sprites in their local space, we still have to address the rotation
of the camera. Instead of looping through and transforming every sprite separately,
we directly rotate the parent containers around the Z axis. The Geospatial API some-
times carry out re-localizations where the detected device orientation can change, but
luckily, all orientation changes are directly reflected in the AR Camera’s transform.

25

The parent containers only have to rotate according to the degrees changed around
the Y axis of the camera as shown in line 9-10 of Listing 5. The if-case in line 5 ensures
that the map update will only be carried out after the placements of windmills.

1 void Update ()

2 {

3 ...

4
5 if (! _firstTimePlacement && _windmillSprites.Count > 0)

6 {

7 UpdateSpritesPosition ();

8
9 SpritesContainer.transform.Rotate(0, 0, ARCamera.transform.

eulerAngles.y - prevHeading);

10 MinimapBtn.transform.Rotate(0, 0, ARCamera.transform.

eulerAngles.y - prevHeading);

11 }

12 prevHeading = ARCamera.transform.eulerAngles.y;

13 }

Listing 5: Updating the map each frame after geospatial windmill placements.

Furthermore, we show the distance between the user and the closest windmill by di-
rectly using the built-in distance function for two vectors. As one Unity unit equals
to one meter in real-life, we don’t need to carry out complicated calculations for the
distance using GPS coordinates anymore.

4.3 Wind Farm Scenes

For the planning of wind farms in a certain area, multiple scenarios of different con-
struction plans of windmills are often provided for residents, which might contain
different locations and layouts of wind farms and different types of wind turbines.

In order to enable users to navigate through various possible scenarios visually, we
designed a button that shows a panel of all scenarios on click as illustrated in Figure
6. After clicking on a chosen scenario, the corresponding 3D windmills planned for
that scenario will be rendered in the camera view and their sprites accordingly on the
map.

We store the scenario data in a JSON data as depicted in Listing 6. We use the built-in
JsonUtility.FromJson method to directly create objects from the JSON representation.
This method uses Unity’s serializer internally 39, which automatically transforms data
structures that Unity can store and reconstruct, therefore all types created and their
fields must be public and serializable. The target classes also have to be plain classes

39https://docs.unity3d.com/ScriptReference/JsonUtility.FromJson.html

26

Figure 5: Orientation map. Wind turbines outside of the map range are shown on the
rim as dots. A minimized map is always shown in the lower right corner on
the b

Figure 6: Wind farm scenarios panel, can be opened by the button on the bottom in
the middle.

27

or structures and cannot be derived from MonoBehaviour. Thus, we declare the cor-
responding classes as shown in Listing 7.

1 {

2 "scenarios":

3 [

4 {

5 "nameScenario": string ,

6 "turbines":

7 [

8 {

9 "longitude": double ,

10 "latitude": double ,

11 "altitude": double ,

12 "label": string ,

13 "manufacturer": string ,

14 "height_m": float ,

15 "bladeDiameter_m": float ,

16 "accentColor_hex": string

17 },

18 ...

19],

20 "noiseLines": [

21 {

22 "value": int ,

23 "coords": [

24 {

25 "longitude": double ,

26 "latitude": double

27 },

28 ...

29]

30 },

31 ...

32],

33 "shadowLines": [

34 {

35 "value": int ,

36 "coords": [...]

37 },

38 ...

39]

40 },

41 ...

42]

43 }

Listing 6: JSON structure for storing scenarios and windmill data.

28

1 [System.Serializable]

2 public struct Windmill

3 {

4 public double longitude;

5 public double latitude;

6 public double altitude;

7 public string label;

8 public string manufacturer;

9 public float height_m;

10 public float bladeDiameter_m;

11 public string accentColor_hex;

12 public float[] rpm;

13 }

14 [System.Serializable]

15 public struct LatLngCoord

16 {

17 public double longitude;

18 public double latitude;

19 }

20 [System.Serializable]

21 public struct ContourLine

22 {

23 public int value;

24 public LatLngCoord [] coords;

25 }

26 [System.Serializable]

27 public struct Scenario

28 {

29 public string nameScenario;

30 public Windmill [] turbines;

31 public ContourLine [] noiseLines;

32 public ContourLine [] shadowLines;

33 }

34 [System.Serializable]

35 public struct WindfarmScenarios

36 {

37 public Scenario [] scenarios;

38 }

Listing 7: Wind farm scenario and windmills object type declaration in Unity.

Each wind farm scenario has a list of windmills (turbines) and a name to distinguish
them from each other. All scenarios, their name and descriptions are shown to users on
GUI as buttons. Each windmill also has its real-world geospatial coordinates and other
relevant information that are to be shown to the user when clicking on the AR wind-
mills (more about this in Section 4.4). We call the JsonUtility.FromJson method in
Unity’s Start method, which is called exactly once per script before any of the Update
methods is called, to store the structured data. Then, the scenarios panel’s buttons are
dynamically generated according to the stored data. Also, the first scenario is stored
in a global variable as the default scenario shown on launch, whose windmills will be

29

placed and rendered after the AR Session is ready and localization is done in Unity’s
Update method (Listing 2).

1 public void Start()

2 {

3 windfarmScenarios = JsonUtility.FromJson <WindfarmScenarios >(

WindfarmJSON.text);

4 CreateScenarioBtns(windfarmScenarios);

5 _activeScenario = windfarmScenarios.scenarios [0];

6 }

7
8 public void CreateScenarioBtns(WindfarmScenarios scenarios)

9 {

10 //Add scenario buttons to the panel according to given values

11 foreach (Scenario scenario in scenarios.scenarios) {...}

12 }

Listing 8: Reading and storing structured wind farm JSON data and creating GUI
dynamically for different scenarios in Unity’s “Start” method on the run.

The windmills are initially placed by the PlaceWindmills method in Listing 9 that
loops through all turbines in the active scenario and places each of them according
to the coordinates stored in the Windmill object. When a user switchs scenarios,
the ReplaceWindmill function is called, which updates the active scenario by removing
previous windmill and sprite game objects and placing new ones of the new scenario.

4.4 Windmill Functionalities

The windmills have other functionalities such as the possibility to retrieve information
about the windmill by clicking on the windmill, the ability to rotate according to the
wind direction, and a blade rotation according to the wind speed. The wind direction
and speed can be set by the user on an overlaying info panel as illustrated in Figure 8.
Information about the current device position’s noise level and shadow cast estimations
are also shown on this panel.

The wind speed can be defined by typing numbers into the input field. We restrict
the content type of the input field to integer numbers. Our JSON data file contains
wing rotation data for several turbines. A small part of the required data consists of
real-world data provided by authorities, and the research group intends to purchase
additional data to include the correct information into the app. Each turbine has an
RPM (revolution per minute) attribute, which is an array of float numbers represent-
ing the wing rotation frequency according to the wind speed. The index of each float
element represents the wind speed. The use of array instead of dictionary is because
of lack of support from Unity’s JsonUtility.

30

1 public void PlaceWindmill(Windmill turbine)

2 {

3 Quaternion quaternion = Quaternion.AngleAxis (180f + _winddir ,

Vector3.up);

4 var anchor = ARAnchorManager.AddAnchor(turbine.latitude , turbine.

longitude , turbine.altitude , quaternion);

5 _anchors.Add(anchor);

6 if (anchor != null)

7 {

8 GameObject windmillGO = Instantiate(WindmillPrefab , anchor.

transform);

9 windmillGO.GetComponent <WindmillInfo >().windmill = turbine;

10 _windmillObjects.Add(windmillGO);

11 }

12 }

13
14 public void PlaceWindmills ()

15 {

16 foreach (var turbine in _activeScenario.turbines)

17 {

18 PlaceWindmill(turbine);

19 }

20 }

21
22 public void ReplaceWindmills(Scenario scenario)

23 {

24 _activeScenario = scenario;

25 for (int i = 0; i < _windmillObjects.Count; i++)

26 {

27 Destroy(_windmillObjects[i]);

28 Destroy(_anchors[i]);

29 Destroy(_windmillSprites[i]);

30 Destroy(_miniSprites[i]);

31 }

32 _windmillObjects.Clear();

33 _anchors.Clear();

34 _windmillSprites.Clear();

35 _miniSprites.Clear();

36 PlaceWindmills ();

37 InstantiateWindmillSprites ();

38 }

Listing 9: “PlaceWindmill” function for placing turbines, and “ReplaceWindmill”
function for scenario switching.

The provided RPM values for each turbine cover different wind speed ranges and most
of them start to rotate only when the wind speed is above 3 m/s. Furthermore, RPM
values for wind speed either lower than 3 m/s or above 20 m/s are often missing from
the data on hand. For missing RPM values at low wind speed, we simply set them
to 0 in the array. For those at high wind speed, we set the rotation frequency to the

31

highest provided RPM of this certain turbine, i.e. the last float value of the array. The
placeholder wind speed is 0 m/s at app start.

In order for Unity to utilize the RPM values, we have to convert them into degrees per
second:

1RPM = 360◦/minute = 6◦/second

as shown in line 13-15 in Listing 10. As the blades of turbines rotate around their
intersection and each windmill rotates around themself, which means that these rota-
tions are all local. We attach the script to each windmill prefab that contains different
parts of the 3D model including the turbine blades as child game objects, so that the
blades can be easily accessed and manipulated.

1 public class WindmillController : MonoBehaviour

2 {

3 public GeospatialManager.Windmill windmill;

4
5 private void Update () {

6 if (windmill.rpm != null)

7 {

8 float rpm = windspeed >windmill.rpm.Length -1

9 ? windmill.rpm[windmill.rpm.Length -1]

10 : windmill.rpm[windspeed];

11
12 if (windspeed > 0)

13 {

14 blades.transform.RotateAround(blades.transform.

position , transform.forward , 6*rpm*Time.deltaTime)

;

15 }

16 }

17
18 transform.localRotation = Quaternion.Slerp(

19 transform.localRotation ,

20 Quaternion.Euler(0, GeospatialManager.Instance._winddir ,

0),

21 Time.deltaTime*smooth);

22 }

23 }

Listing 10: Script attached to each windmill prefab that controlls the blades rotation
and turbine self-rotation.

The initial wind direction is south, so the turbines should be facing north, as shown in
Line 3 of Listing 9, (180 degrees of rotation around the Y axis of a normal model that
is facing the +Z axis). The global variable winddir indicates the orientation offset
between windmills and the current true north in the world space according to the set
wind direction and its initial value is 0. Table 4 shows the corresponding offsets of
different wind directions.

32

Wind Direction Orientation Offset
S 0◦

SSW 22.5◦

SW 45◦

WSW 67.5◦

W 90◦

WNW 112.5◦

NW 135◦

NNW 157.5◦

N 180◦

NNE −157.5◦

NE −135◦

ENE −112.5◦

E −90◦

ESE −67.5◦

SE −45◦

SSE −22.5◦

Table 4: Orientation offset of wind turbines’ Y axes from the true north according to
the currently set wind direction.

For self-rotation according to the wind direction, we don’t have real-world data about
the speed of rotation, nor do we need to simulate a real-world situation where the
change might happen very slowly. But we still show the user a smooth animation by
using the Quaternion.Slerp method (line 20 of Listing 10) that spherically interpolates
between the original and target headings of the turbine. The smooth factor determines
the interpolation rate, so a larger value would result in a faster rotation. As anima-
tions involve updating each frame, turbine self-rotation and wing-rotation are both
implemented in Unity’s Update function.

Each time when the user clicks on a rotate button to change the wind direction, the
UIController will update the winddir variable in GeospatialManager (Listing 11),
which is referenced as the rotation destination of the turbines.

When a user click on a 3D model of a windmill shown on their device’s screen, an
information panel will pop up that shows some of the data stored in the Windmill-
Controller component attached to the windmill game object as illustrated in Figure
9.

We use ray casting to detect touches on a model. First of all, it is essential for the 3D
wind turbine model to have collider components that handle physical collisions of game
objects in Unity and define the shape of collideable areas. Since colliders are invisible,
for optimal performance, they do not need to have the exactly shape of the model
(more vertices to compute), so we assign primitive box colliders or capsule colliders to

33

the windmill parts whenever possible.

1 public class UIController : MonoBehaviour

2 {

3 public void OnWindDirRCWBtnClicked ()

4 {

5 RotateWindDirBtnCW ();

6 UpdateWindDirText ();

7 GeospatialManager._winddir += 22.5f;

8 }

9
10 public void OnWindDirRCCWBtnClicked () {...} // Analogous to above

11 }

Listing 11: Handeling click events on wind direction rotation buttons.

Being called each frame in the Update method, the OnScreenTouched method acts
as a listener for touch events and detects any touch input on the screen. If a user
puts multiple fingers on the screen at the same time, only the first touch will be used
for ray casting. Also, only the initial point of contact with the screen is considered
(TouchPhase.Began in line 23 in Listing 12), so sliding across a windmill game object
will not activate the pop up panel.

Furthermore, touches on UI elements are recognized and blocked. For example, when
the user clicks on a button that is in front of and overlaps with a windmill game object,
only the button should be activated without the windmill’s info panel popping up at
the same time. This is done by implementing an extension method for the Unity’s
Vector2 type (positions on screen are 2D coordinates) as shown in Listing 12. The
Unity EventSystem manages input events in a scene and its RaycastAll method utilises
the GraphicRaycaster in our scene. The GraphicRaycaster is a component attached
to the Canvas by default that raycasts against graphic elements such as UI images. If
the raycast through the touch position hits any graphics, it means the user is pointing
on UI.

If the touch is not over any UI, we shoot another ray through the physics engine to
detect hits on colliders that directly outputs the first hit object. Since our windmill
models are the only game objects that have colliders attached to them, a pop up panel
that shows the hit object’s information will be directly activated.

4.5 Noise and Shadow Cast Information

Apart from wind direction and speed that can be customized by users, the information
panel (Figure 8) also shows information about the noise level and annual shadow cast
minutes according to the device’s position. The input data are contour lines (closed
polygons) consisting of GPS coordinates that line out areas with shared values.

34

1 public static class Vector2Extensions

2 {

3 public static bool IsPointOverUIObject(this Vector2 pos)

4 {

5 PointerEventData eventPosition = new PointerEventData(

EventSystem.current);

6 eventPosition.position = new Vector2(pos.x, pos.y);

7
8 List <RaycastResult > results = new List <RaycastResult >();

9 EventSystem.current.RaycastAll(eventPosition , results);

10
11 return results.Count > 0;

12 }

13 }

14
15 public class GeospatialManager : MonoBehaviour

16 {

17 private void OnScreenTouched ()

18 {

19 if (Input.touchCount > 0)

20 {

21 Touch touch = Input.GetTouch (0);

22
23 if (touch.phase == TouchPhase.Began && !touch.position.

IsPointOverUIObject ())

24 {

25 Ray ray = Camera.main.ScreenPointToRay(touch.position

);

26 RaycastHit hitObject;

27
28 if (Physics.Raycast(ray , out hitObject))

29 {

30 GameObject go = hitObject.collider.gameObject;

31 if (go != null)

32 {

33 UIController.OnWindmillGOClicked(go.transform

.parent.transform.parent.gameObject);

34 }

35 }

36 }

37 }

38 }

39
40 private void Update ()

41 {

42 ...

43 OnScreenTouched ();

44 }

45 }

Listing 12: Listening to touch events, raycasting and pop up information panel of a
windmill on click.

35

The format of the input JSON data is as shown in Listing 6 (line 20-39) and the
corresponding Unity structs in Listing 7.

Because noise data and shadow cast data are similar in their format, we process the
data accordingly. We use a point-in-polygon (PNPOLY)40 algorithm to determine
which area the current position of the device is in.

To check if a point is in a polygon within a conventional Cartesian coordinate system,
one can shoot a ray starting from the test point, and count how many edges it crosses.
If and only if the total number of edges the ray crosses is an odd number, according
to the Jordan curve theorem [9], it implies that the test point is inside the polygon.

The algorithm is as depicted in Listing 13. We have a boolean variable that denotes if
a point is inside a given polygon from the data, whose initial value is false, i.e. outside
by default. We then ”shoot a ray towards the north pole” and check the intersection
by iterating through the array of arranged coordinates, taking two coordinates each
time that are adjacent to each other forming an edge of the polygon. If the longitude
values of both coordinates of an edge are bigger (to the east) or smaller (to the west)
than that of the device’s position, an intersection is already impossible, so we directly
continue with the next edge. Otherwise, we check if the ray crosses the edge based on
linear equations.

Assume we check the intersection of an edge with two vertices P (x1, y1), P (x2, y2),
and a ray shooting from point P (xt, yt) towards and parallel with +x axis. The linear
equation of the edge is L1 : y = k∗x+b with k = y1−y2

x1−x2
and b representing the distance

of the intersection of this line and Y axis to the origin. The linear equation of the ray
is L2 : y = yt. The intersection is the solution to L1 = L2 and it has to be on the ray
x > xt. So if and only if (yt − y1)/k + x1 > xt, the ray intersects the edge (line 7 of
Listing 13).

1 private bool IsCoordInPoly(double lat , double lng , GeospatialManager.

LatLngCoord [] poly)

2 {

3 bool inside = false;

4 for (int i=0, j=poly.Length -1; i<poly.Length; j=i++)

5 {

6 if ((poly[i].longitude >lng) != (poly[j].longitude >lng) &&

7 lat < (poly[j].latitude -poly[i]. latitude) * (lng -poly[i].

longitude) / (poly[j].longitude -poly[i]. longitude) +

poly[i]. latitude)

8 {

9 inside = !inside;

10 }

11 }

12 return inside;

13 }

Listing 13: Checking if a coordinate is in a polygon.

40https://wrfranklin.org/Research/Short Notes/pnpoly.html

36

1 private void UpdateNoiseInfo ()

2 {

3 var noiseLines = GeospatialManager._activeScenario.noiseLines;

4 var pose = GeospatialManager.pose;

5 int decibel = 0;

6
7 for (int i=0; i<noiseLines.Length; i++)

8 {

9 if (IsCoordInPoly(pose.Latitude , pose.Longitude , noiseLines[i

]. coords))

10 {

11 decibel = noiseLines[i].value;

12 break;

13 }

14 else

15 {

16 decibel = 0;

17 }

18 }

19 }

20
21 private void UpdateShadowInfo ()

22 {

23 var shadowLines = GeospatialManager._activeScenario.shadowLines;

24 var pose = GeospatialManager.pose;

25 int shadowTime;

26
27 ...// Analogous as above

28 }

Listing 14: Checking if the current device position is in any noise or shadow contour
lines from the data.

Our noise and shadow cast data, i.e. the ContourLine objects (line 21, Listing 7), are
arranged in descending order according to their values in advance. To determine noise
level and shadow cast duration, we iterate through the contour lines from higher values
to lower values, so that once the current position is within the bounds of a contour
line, the iteration can be stopped. With the PNPOLY algorithm41, if a current position
is directly on an edge of polygon, it is not considered as in the polygon and will be
assigned the next lower value if a lower value exists.

4.6 Gamification Contents

The hot air balloon button in the app is the access point to our nice-to-have gam-
ification contents (Figure 10). In this version of our application, the nice-to-have
requirements listed in Table 3 are only partially functionally implemented due to their

41https://wrfranklin.org/Research/Short Notes/pnpoly.html

37

low priority. When a user clicks on the hot air balloon button, a multi-page panel
will be shown, where the user can swipe left and right on the top and bottom parts
of the panel to switch pages, and swipe up and down in the content area to scroll the
page. Each page should represent a different kind of ”game” the user can experience:
one page for visually appealing 3D events, one page for stars collecting game, and
potentially more game ideas in the future.

Figure 7: Serialized fields of the EventCountDown script attached to the event card
prefab and the BalloonController script attached to hot air balloon game ob-
jects. EventCountDown controlls the text shown in ”Count Down Text” and
the visibility of the ”Event Game Object” according to the given event start
and end time. BalloonController controlls the general speed and direction
of a balloon object and the sin-function wiggle frequency and amplitude on
either X or Y axis.

The 3D events are displayed on the first page. On the top, the user can toggle the
visibility of these events on and off with a toggle. The events are switched off by
default at app start. Below the toggle, a list of possible 3D events are supposed to
be shown. Each event contains an image icon of the event, the text description to
the event, and a count-down to the time point the event is going to happen, because
different events may happen at, for example, different times of a day or week. We store
this combination of UI objects into a prefab that will be referred as an event card here
onward. Also, an individual controller script is attached to the event card in order
to calculate and show the user the countdown time, to link the event card with the
event’s 3D objects and to show or hide the corresponding 3D objects on screen. Figure
7 shows the serialized fields of the script, or in another word, the reconstructable fields.
In this version of the app, the start and end time of an event can be directly entered
by developers in the serialized fields in Unity Editor.

Currently, we only implemented a hot air balloon event as an example, because further
events such as animals running around might involve purchasing 3D models with more
complex animations. For the hot air balloon event, we downloaded a free model42 and
computed its animation directly with a script. One can define the start position of a

42https://free3d.com/3d-model/hot-air-balloon-v1–156268.html

38

hot air balloon in the ”transform” component of its 3D model prefab. Additionally, our
script act as a component where the moving speed and linear direction of the balloon
can be freely adjusted. We also add an extra wiggle movement of hot air balloons by
sinus curves. For example, if a balloon is moving mostly in an upwards direction, we
can turn on the wiggle on the X axis, if moving horizontally, then Y axis, to make
the movement more intricate. The serializable fields are as shown in Figure 7, the
amplitude, frequency and axis for the sinus wave movement, and speed of the general
movement can be defined individually for each hot air balloon in the editor. Because
the position of the balloon is different in each frame due to the movement, it has to be
updated as in Listing 15.

1 void Update ()

2 {

3 transform.Translate(Speed * Time.deltaTime , Space.World);

4 var wiggle = Mathf.Sin(Time.realtimeSinceStartup * Frequency) *

Amplitude;

5
6 if (WiggleOnX) transform.Translate(wiggle , 0, 0, Space.World);

7 if (WiggleOnY) transform.Translate(0, wiggle , 0, Space.World);

8 }

Listing 15: Update the position of a hot air balloon each frame according to serialized
fields variables.

The second page of the multi-page panel is a placeholder of the star-collecting game,
for which only a part of the interface is implemented.

4.7 Integration with the Ionic Project

The main WindFarm app is developed with the Ionic framework and our AR appli-
cation serves as a part of the main app. Ionic is a development toolkit for building
cross-platform applications from a single code base written with web development tech-
nologies. In this project, we focused on the integration for the Android platform. The
integration consists of two critical steps: merging the two projects into one Android
native project, and bridging the web interface of the Ionic project and the Unity AR
app.

In order to merge the applications, we first have to export both of them into native
Android projects to create an intersection point, and then, our AR application is
plugged into the main app as a library.

By default, native Android projects are handled by the Gradle build system and the
main programming language is Java. To import the Unity project into the Ionic
project, we open the exported native Ionic project in the Android Studio IDE and edit
its settings.gradle file. The exported Android native Unity project has two modules,

39

launcher and unityLibrary. The former is a simple launcher wrapper, and the latter
contains our AR application contents. We only need to import the latter, as our AR
application will not be launched as an standalone app but only by the Ionic app. We
import the unityLibrary module by directly pointing to its folder path (Listing 16). In
this way, any future changes to the Unity project will be automatically recognized.

Furthermore, we discovered that the Unity project not only has a minimum requirement
for the Gradle version43, but also might be incompatible with the newest versions
depending on the Unity Editor version. So we might have to adjust the Gradle plugin
and distribution version of the main (Ionic) project in the project structure. Currently,
we developed with the Unity Editor 2021.3.5f1 and set the Gradle plugin version to
7.1.3 and distribution version 7.3.1. Unity settings in the gradle.properties file should
also be copied over to the main project.

Then, we have to implement the unityLibrary module as a dependency in the Ionic
app level build.gradle file in order to be able to call it (Listing 17). Because the de-
pendencies of the two exported projects might partly conflict with each other or have
duplicates, we have to comment out the conflicting implementation references in the

1 include ’:unityLibrary ’

2 project (’:unityLibrary ’).projectDir = new File(’{localPath }/unity/

unityLibrary ’)

Listing 16: Import the Unity project by importing its “unityLibrary” sub-folder. These
lines are added to the “settings.gradle” file of the native Ionic app.

1 repositories {

2 flatDir{

3 dirs ’{localPath }/unity/unityLibrary/libs’, ’libs’

4 }

5 }

6 dependencies {

7 implementation project(’:unityLibrary ’)

8 }

Listing 17: Add the “unityLibrary” dependency in the app level “build.gradle” file and
link to the module’s “libs” folder.

unityLibrary level of build.gradle file and manually delete the .jar files from the libs
folder to resolve the errors.

After solving dependency problems, we move on to creating a bridge between the two
projects. Capacitor44 is a cross-platform native runtime that is installed with newer
versions of Ionic by default. Only with Capacitor, were we able to export and deploy
the Ionic project natively. We want to be able to open the AR app by clicking on a

43https://docs.unity3d.com/Manual/android-gradle-overview.html
44https://capacitorjs.com/docs

40

button in the Ionic app’s interface as listed in the requirements (Table 3) and this can
be done by creating a Capacitor plugin which enables Javascript to interface directly
with native APIs.

As shown in Listing 18, our plugin is a Java class extending the Capacitor Plugin class.
The “name” attribute inside the @CapacitorPlugin() annotation indicates the name of
the plugin to be registered. The frontend Javascript also accesses the plugin according
to this name and will be able to call the methods annotated with @PluginMethod. An
Android Intent is an abstract description of an operation to be performed and is often
used for binding codes in different applications45, as it can be used to launch activ-
ities from different sources. The UnityPlayerActivity of a Unity Android application
is responsible for basic interactions between the Android operating system and the
application46, and is our accessing point to the AR app. What we do in the startAR
method is basically wrapping the Unity native functions in an Intent to start the Unity
app.

1 @CapacitorPlugin(name = "UnityActivity")

2 public class MainUnityActivity extends Plugin {

3
4 @PluginMethod

5 public void startAR(PluginCall call) {

6 Intent arIntent = new Intent(this.bridge.getWebView ().

getContext (), UnityPlayerActivity.class);

7 arIntent.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);

8 this.bridge.getWebView ().getContext ().startActivity(arIntent)

;

9 }

10 }

Listing 18: Capacitor plugin that acts as a wrapper for native functions to be called by
Javascript. This UnityActivity plugin enables the Ionic frontend Javascript
to start the Unity AR app.

To register the plugin, we need to override the onCreate method of the exported Ionic
MainActivity class (Listing 19). This is where the Ionic app starts.

1 public class MainActivity extends BridgeActivity {

2 @Override

3 public void onCreate(Bundle savedInstanceState) {

4 this.registerPlugin(MainUnityActivity.class);

5 super.onCreate(savedInstanceState);

6 }

7 }

Listing 19: Register plugins in the MainActivity class of the exported Ionic project.

45https://developer.android.com/reference/android/content/Intent
46https://docs.unity3d.com/Manual/AndroidUnityPlayerActivity.html

41

To call the plugin method from the frontend interface, we have to also register the
plugin there according to the natively registered name (Line 2 of Listing 20), and then
simply call the startAR plugin method.

1 import { registerPlugin } from ’@capacitor/core’;

2 const UnityActivity = registerPlugin(’UnityActivity ’);

3
4 export default {

5 methods: {

6 async startARApp () {

7 UnityActivity.startAR ({ message: ’...’});

8 }

9 }

10 }

Listing 20: Frontend code for registering the plugin and using the plugin method.

42

Figure 8: Information panel as an see-through overlay, so that the user can see the
camera feed and AR contents, especially immediate changes after setting
wind speed and direction. This panel contains buttons and input fields for
wind attributes, as well as noise and shadow cast information about the
current position.

Figure 9: Information pop-up window shown after clicking on a windmill object.

43

Figure 10: The screenshot on the left shows the game panel that is opened by the
balloon button on the bottom left side of the screen, the one on the right
shows the hot air balloon event. When ”Make the world beautiful” is toggled
on, 3D events will happen at appointed time indicated by the event count
down on the panel.

44

5 Evaluation

In this chapter, we evaluate our application in two ways. First, in Section 5.1, we
evaluate the precision of the geospatial placement functionality of ARCore’s Geospatial
API that we implemented in our application. The quality of geospatial placements
depend on both the detected position and orientation of the device. We conducted
quantitative studies to evaluate these two factors. In the second test, described in
Section 5.2, we compare augmented wind turbines with existing real-world turbines
visually by placing the augmentations exactly according to established turbine data.
This allows us to evaluate our application qualitatively.

5.1 Quantitative Evaluation of the Geospatial API for AR Content
Placement

The Geospatial API provides advanced solutions for detecting devices’ position and
heading direction with the VPS system as mentioned in Section 4.1. With the added
benefit of CV and ML methods through cloud computing services, we observed the
Geospatial API exhibiting overall rather good performance. In this test, our goal is to
validate our observation quantitatively and find out if Geospatial API really provides
better results for placing geo-located virtual content. We want to evaluate the quality of
the orientation estimations and understand to what extent and under which conditions
the position detection is superior to using GPS data alone. By conducting a thorough
evaluation, we can better understand the capabilities and limitations of the Geospatial
API for placing virtual content in the real world.

5.1.1 Position Detection

In this evaluation, we aim to determine the precision of the Geospatial API’s position
detection and compare it to GPS and the Location Service provided by our development
tool Unity.

According to Google’s documentation 47, Google Street View has three photo types:
photo sphere, photo path and street view. They provide the initial raw data for the
point clouds of the localization model that the VPS depends on.

• Photo Sphere is the type of single 360°panorama photos taken individually with-
out connecting to other nearby photos through navigation.

• Photo Path is where multiple non-360°photos near each other are connected
through navigation.

47https://support.google.com/maps/answer/10443241?visit id=638060097983000160-
2966048377&p=sv imagekey&rd=1

45

• Street View is where multiple 360°photos are connected through navigation.
Google’s Street View cars drive through almost all streets in countries and cities
that allow such image data collection. Private Street View Studio users can also
upload photos.

Due to the different number of photos and the navigation information, the quality of
point clouds learned from the three photo types can obviously vary. We also want
to observe how the photo types influence the positioning accuracy of the Geospatial
API.

Thus, we hand-picked 11 test points around Aachen and noted their latitude/longitude
coordinates according to two criteria: the Street View type, and distinct visual cues
on Google Maps with satellite view. Three test points are captured by street view
photos, two are along photo paths, three near photo spheres, and three near no photo
references. All test points are under open sky. In order to determine the precision
of all positional data, we have to position ourselves at the test points as exactly as
possible to minimize the error contribution from ourselves to actually measure the
offsets produced from the data. So all test points are easily distinguishable from the
environment, for example, the center of a manhole cover, the corner of a building etc.
The coordinates of the test points are acquired by right-clicking on Google Maps and
they have 15 decimal degrees of accuracy. For our test, we decided for 6 decimal degrees
of accuracy for our test points input, corresponding to about 0.1 meter of distance for
both longitude and latitude 48.

Our test application places an object using the test point’s latitude/longitude coor-
dinates and the first detected device altitude by the Geospatial API, as the altitude
information provided by Google Earth is too inaccurate. The test application logs the
device’s positional data estimated from both the Geospatial API and Unity’s Location
Service. It also logs the horizontal offset distance between the test point’s coordinates
and each estimated coordinates calculated by the haversine formula as shown in Equa-
tion 149, where d is the distance between the two points, r is the radius of the earth,
lat1, long1, lat2, long2 are the latitude and longitude values of the first and second
point respectively. Additionally, the vertical offset (difference between initial and cur-
rent estimated altitude) and overall offset of the placed object are also logged. The
GPS values are collected by our device’s built-in compass application.

d = 2r · arcsin

√
sin2

(
lat2− lat1

2

)
+ cos lat1 · cos lat2 · sin2

(
long2− long1

2

)
(1)

For the data collection, we place ourselves with the device directly at each test point.
Standing still, we then turn on our test application. After the first estimation values

48https://en.wikipedia.org/wiki/Decimal degrees
49https://en.wikipedia.org/wiki/Haversine formula

46

are registered, we rotate around ourselves slowly for 360 degrees for the Geospatial API
to capture more surrounding information. After that, we wait for another 10 seconds
without moving to make sure the values are stable, save the values, restart the test
application and repeat the same procedure for 5 times on two days separately. On one
day the sky was clear and the other almost completely covered by clouds. The GPS
data from the built-in compass is also taken 10 times, each with a re-estimation.

Table 5 shows our test results. We can observe that the Geospatial API has the highest
accuracy for estimating in the horizontal space, and the Unity Location Service the
worst. On average, the Geospatial API produces a horizontal position error of under
only 3 meters, the GPS about 20 meters and the Unity Location Service about 80
meters. The GPS data results are mostly relatable to existing researches [18, 19]
stating that a level of accuracy around 20 meters is commonly due to multipath errors,
mainly influenced by landscape characteristics. Test point 2, 7 and 8, having an average
error of over 20 meters, are for example near tall buildings or surrounded by leaf-on
trees.

Test point 11 is an interesting position, as both the lowest and largest error from the
GPS were measured there and no other test point has such a large difference of over
250 meters. This point is on the edge of an open field, near to only a few leaf-off
trees. The errors from the Unity Location Service on this point is also very high, all
positional estimation are more than 200 meters off, with an average of over 300 meters.
From the results of the Location Service, a total of five points have an average error
of more than 50 meters (test point 4, 5, 6, 9, 11). Of those points, point 4 is on an
outdoor parking lot, point 6 is on an empty sports field and point 9 is in a park. Point
5 is also worth noting, as the errors measured with a clear sky were all around only 6
meters, but then on a cloudy day all above 1 km, and the results are independent of
the internet.

We are very surprised by the results produced by Unity’s Location Service, as it is very
far-off from the actual GPS data of the same device. We looked into this issue online
and found some reports of same large errors on the Unity forum, but this issue is still
unresolved.

As for the performance of the Geospatial API, we observed the best results for test point
1 to 3 that are captured in photos of the “street view” type. Among all the samples
taken for these three test points, the largest horizontal error is under 3 meters, the
average horizontal errors are under 1 meter and the average overall errors are about
2 meters only. However, no distinct difference can be observed between test points of
the type “photo path”, “photo sphere” or “none”.

It is to be noted that the vertical error we measured are actually only an indicator
of how stable the altitude estimations are. We observed a very stable estimation of
horizontal position from the Geospatial API. The first latitude/longitude estimations
remained mostly stable throughout the session, but the estimated altitude changed a
lot just as shown in table with an average of more than 7 meters. This observation tells

47

G
P
S

U
n
it
y
L
o
ca

ti
o
n
S
er
v
ic
e

G
eo

sp
a
ti
a
l
A
P
I

T
es
t
P
o
in
t

S
tr
ee
t
V
ie
w

L
a
ti
tu

d
e

L
o
n
g
it
u
d
e

H
o
ri
zo

n
ta
l
O
ff
se
t

H
o
ri
zo

n
ta
l
O
ff
se
t

H
o
ri
zo

n
ta
l
O
ff
se
t

V
er
ti
ca

l
O
ff
se
t

O
v
er
a
ll
O
ff
se
t

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

1
st
re
et
v
ie
w

5
0
.7
7
8
0
0
7

6
.0
7
8
7
7
6

1
1
.6

5
.1

2
3
.9

2
0
.2

7
.0
2

3
4
.3

0
.9

0
.2

2
.9

0
.6

0
.0

1
.4

1
.2

0
.2

3
.0

2
st
re
et
v
ie
w

5
0
.7
7
7
5
2
0

6
.0
7
8
8
5
1

2
2
.5

9
.8

3
9
.7

1
8
.1

1
5
.1
8

2
1
.9

0
.8

0
.2

1
.5

0
.8

0
.2

1
.6

1
.2

0
.3

2
.2

3
st
re
et
v
ie
w

5
0
.7
7
1
6
4
1

6
.0
9
0
7
8
8

1
9
.9

6
.9

2
9
.8

4
.7

1
.7
3

4
.7

0
.2

0
.1

0
.3

3
.7

0
.0

1
1
.0

3
.8

0
.1

1
1
.0

4
p
h
o
to
p
a
th

5
0
.7
7
5
8
8
0

6
.0
3
9
0
8
9

2
.1

1
.4

3
.3

8
0
.7

5
9
.5

9
5
.3

3
.7

0
.5

5
.8

8
.7

0
.7

1
3
.9

9
.4

1
.4

1
5
.8

5
p
h
o
to
p
a
th

5
0
.7
7
5
8
0
3

6
.0
4
3
0
7
6

3
.1

1
.0

4
.9

1
6
9
.3

6
.1

1
4
7
7
.8

1
.8

0
.2

3
.8

1
2
.0

0
.5

2
0
.0

1
1
.5

2
.2

2
0
.2

6
p
h
o
to
sp

h
er
e

5
0
.7
7
8
0
4
0

6
.0
6
9
5
5
1

1
1
.7

1
0
.4

1
2
.6

8
0
.1

5
9
.2

1
1
7
.7

2
.9

1
.1

5
.3

1
0
.4

0
.9

1
8
.1

1
0
.5

3
.1

1
8
.3

7
p
h
o
to
sp

h
er
e

5
0
.7
7
6
4
1
5

6
.0
8
3
6
1
1

4
9
.1

3
9
.9

7
4
.8

9
.7
7

2
.0

2
6
.0

4
.9

4
.6

5
.1

0
.3

0
.1

0
.4

4
.9

4
.6

5
.1

8
p
h
o
to
sp

h
er
e

5
0
.7
7
8
5
0
0

6
.0
7
9
6
3
7

3
2
.2

2
5
.4

4
4
.1

4
0
.9

3
5
.1

4
9
.8

3
.0

0
.3

1
2
.3

1
7
.1

0
.1

2
1
.4

1
8
.0

1
.5

2
4
.7

9
n
o
n
e

5
0
.7
7
8
3
7
2

6
.0
6
2
8
8
4

1
1
.1

4
.5

3
1
.6

1
4
3
.1

5
6
.6

2
8
1
.2

1
.6

0
.8

3
.2

8
.8

7
.7

9
.4

9
.0

8
.4

9
.5

1
0

n
o
n
e

5
0
.7
7
6
1
5
0

6
.0
6
9
3
4
9

9
.6

3
.0

4
0
.7

4
.0
6

2
.6

5
.6

5
.8

1
.7

1
2
.0

1
2
.5

8
.4

2
6
.4

1
4
.5

9
.7

2
6
.4

1
1

n
o
n
e

5
0
.7
7
5
0
8
0

6
.0
3
5
3
3
5

6
7
.9

0
.7

2
8
4
.0

3
1
7
.2

2
2
9
.3

4
8
5
.7

2
.3

2
.0

2
.4

5
.4

5
.5

4
.9

5
.8

5
.5

6
.0

M
ea

n
2
1
.9

8
0
.7

2
.5

7
.3

8
.2

T
ab

le
5:

P
os
it
io
n
d
et
ec
ti
on

te
st

re
su
lt
s
fo
r
11

te
st

p
oi
n
ts

ar
ou

n
d
A
ac
h
en
.
F
or

ea
ch

te
st

p
oi
n
t,
w
e
sh
ow

th
e
h
or
iz
on

ta
l
off

se
t

b
et
w
ee
n
th
e
te
st

p
oi
n
ts

co
or
d
in
at
es

an
d
m
ea
su
re
d
co
or
d
in
at
es

fr
om

G
P
S
,
U
n
it
y
L
o
ca
ti
on

S
er
v
ic
e
an

d
G
eo
sp
at
ia
l

A
P
I.

T
h
e
G
eo
sp
at
ia
l
A
P
I
p
la
ce
s
an

ob
je
ct

at
th
e
te
st

p
oi
n
t’
s
gi
ve
n
la
ti
tu
d
e
an

d
lo
n
gi
tu
d
e,

an
d
th
e
al
ti
tu
d
e
is

th
e
d
et
ec
te
d
d
ev
ic
e
al
ti
tu
d
e
w
h
en

p
la
ci
n
g
th
e
ob

je
ct
.
T
h
e
ve
rt
ic
al

off
se
t
th
u
s
in
d
ic
at
es

h
ow

st
ab

le
is

th
e
al
ti
tu
d
e

es
ti
m
at
io
n
of

th
e
A
P
I.

T
h
e
ov
er
al
l
off

se
t
ca
lc
u
la
te
s
th
e
ge
n
er
al

d
is
ta
n
ce

of
th
e
p
la
ce
d
ob

je
ct

fr
om

th
e
ac
tu
al

te
st

p
oi
n
t.

T
h
e
d
is
ta
n
ce

u
n
it
is
m
et
er
.
T
h
e
gr
ey

ce
ll
s
n
ot
es

th
e
m
in
im

u
m

an
d
m
ax

im
u
m

va
lu
es

of
al
l
h
or
iz
on

ta
l
off

se
ts

m
ea
su
re
m
en
ts

fr
om

on
e
so
u
rc
e.

48

Point 1 Point 2 Geospatial API
Test Site Latitude Longitude Latitude Longitude Bearing Heading Heading Acc. Error

1 50.778966 6.06902 50.779136 6.069905 73 74.3 3.6 1.3
2 50.779008 6.062531 50.779322 6.062801 28.3 30.1 1.6 1.8
3 50.782115 6.069474 50.782452 6.068933 314.3 -47.5 6.1 1.8
4 50.778007 6.078777 50.777886 6.078595 223.3 -137.3 1.3 0.6
5 50.777567 6.078771 50.777522 6.078848 132.4 131.2 2 1.2
6 50.775885 6.042464 50.775883 6.0422 269.2 -87.7 4.2 3.1

Table 6: Orientation estimation test results for 6 test sites around Aachen. For each
test site, we selected two points and recorded their latitude and longitude
values. The ground truth is the bearing of point 2 referencing point 1 and was
calculated using the haversine formula. The Geospatial API places an object
at each point. The estimated heading and heading accuracy are collected
by measuring the direction of the device at point 1 facing point 2, reported
by the API. The values are sampled 5 times for each site and we recorded
the average. The error column shows the absolute degree offset between the
ground truth bearing and the average reported heading.

us that the virtual objects should be shown on screen to users only after the positional
values has become stable.

It’s also worth pointing out that during our test, the internet was unstable near the
country border and the Geospatial API could not be used about half of the times.
It directly returned an internal error reported by Earth.EarthState and cannot be
recovered without a restart of the application.

To sum up, we observed a better accuracy of horizontal position estimation from the
Geospatial API according to geospatial coordinates than both GPS and Unity Location
Service. The VPS system improves the localization of the Geospatial API for about
5 times better for test points of “street view” type with an average horizontal error of
under 1 meter, whereas test points of other types have on average around 3 meters of
error.

5.1.2 Orientation Estimation

The orientation of a device, as returned by the Geospatial API, is known as the ”head-
ing”. Heading normally refers to the direction that an object is moving or facing,
measured in degrees from a reference direction. The Geospatial API uses the true
north as the reference direction and the heading ranges from −180◦ and +180◦, with 0
indicating the device facing true north, and positive values indicating clockwise direc-
tions from north until south. Bearing, on the other hand, refers to the direction of an
object from a specific point of reference with respect to true north and ranges between
0− 360◦.

To evaluate the precision of the Geospatial API’s orientation estimation, for each test
site, we selected two reference points to form a line. Similar to the previous study, all

49

test points are under open sky, and the coordinates are acquired again using Google
Maps. As the ground truth, we calculate the bearing from point 1 to point 2 with the
haversine formula as shown in Equation 2, where θ is the bearing angle in radians, △ is
the difference of the longitudes of the two points, lat1 and lat2 are the latitude values
of point 1 and point 2 respectively.

θ = atan2 (sin△long · cos lat2, cos lat1 · sin lat2− sin lat1 · cos lat2 · cos△long) (2)

To minimize the potential for error caused manually by ourselves, we attempt to align
the device camera with the line connecting the two points as accurately as possible.
To help with this, we added a fine vertical line to the UI of the test application that
is positioned exactly in the middle of the screen. The application places a 20 cm thin
and 100 m high semi-transparent magenta cylinder at each of the two reference points
according to the previously acquired coordinates with the Geospatial API. For data
collection, we position ourselves first roughly at a close distance of several meters from
point 1 facing the direction of point 2, and turn on the test application. Then, we move
around and adjust our position at a normal walking speed until the two cylinders are
aligned with the middle line on the screen as closely as possible and log the heading
given by the API. In the best case scenario, the line overlaps completely with the
vertical center line of both cylinders. Our device is held in portrait mode with the
camera facing forward the whole time when the application is on. The position of the
device relative to the two points are illustrated in Figure 11 and the screenshot of a
successful alignment is shown in Figure 12.

We collected data from six sites, with five data samples collected at each site. During
our tests, we noticed that the reported heading accuracy from the Geospatial API was
often quite large at the start of the application, and the cylinders appeared to be at
wrong positions. Therefore, each time we had to walk around to align the camera with
the cylinders, but we noticed that the reported accuracy always improved during this
process.

This improvement is significant, as shown in Table 6. The error column calculates
the absolute difference of the bearing and the average heading by first transforming
heading values into the same range as the bearing. (Negative values plus 360 degrees.)
The performance of the Geospatial API appears to be generally good, with relatively
small differences between the haversine bearing and the heading estimations provided
by the API. In most cases, the heading accuracy estimated by the Geospatial API is
more pessimistic than our measured error. But overall, the largest average error of the
six sites is about 3 degrees, suggesting good quality of the estimations.

However, we have to point out that only test site 4 and 5 are located on crowded
streets, both of these sites are on streets with full Google Street View coverage (type
street view), and none of the other test sites is near many physical obstructions. Test

50

Figure 11: The position of our device for orientation estimation data collection. We
stand on the connecting line through both points and the device faces the
point 2.

Figure 12: Screenshot of a successful alignment example of the device and the two
cylinders at a test site. The line in the middle of the screen, the long-thin
form and the transparent color of the cylinders help us to better align on
the line.

51

sites 1 and 2 are located near tall buildings on one side, but there are few obstructions
on the other side. These factors could have contributed to the good results.

This test also suggests that the localization provided by the Geospatial API can be
improved if the user walks around. One possible explanation for this is that when
the device is moving, the Geospatial API can use data from the accelerometer, gyro-
scope, and other sensors to estimate the device’s movement and orientation, which can
improve the accuracy of the location estimation.

Based on both quantitative tests, we can conclude that the Geospatial API indeed
provides good results. Its performance for positioning is also superior to both GPS and
the Unity Location Service, but only when the device is connected to the internet.

5.2 Comparing AR and Real-World Wind Farms

For our second test, we found information about nearby established wind farms from
the NRW State Office for Nature, Environment and Consumer Protection50 and se-
lected the wind farm near Laurensberg as our test site. Figure 13 shows the geograph-
ical information of our test site. We preprocessed the information of the selected 12
turbines denoted in cyan to fit our JSON format (Listing 6) and created a new scenario.
The turbines are selected according to the distance to our planned movement path for
testing, namely, within 3 kilometers.

Figure 13: Real world wind turbines at the test site. All nearby turbines positions are
noted with a wind turbine icon, but only the cyan-colored ones are visualized
for our test scenario that are within 3 kilometers from our walking path.
The magenta path denotes roughly our test path.

50https://www.energieatlas.nrw.de/site/bestandskarte#

52

The turbine information provided by the state includes turbine id, manufacturer, type
of turbine model, power, hub height, diameter, horizontal position etc. The height of
our 3D turbine model is adjustable and can reflect the real-world height realistically.
However, altitude information is not given in this database. During our development
process, we already found out that the altitude of a position provided by Google Earth
and that measured by the Geospatial API can have a large difference ranging from
2 meters to more than 10 meters. As horizontal position error is very noticeable on
screen, especially when the virtual objects are floating in the sky, we added a simple
functionality to adjust the altitude of all virtual turbines by typing in altitude values
manually.

Figure 14 shows screenshots taken during our test after manually adjusting the altitude
of virtual turbines. The left screenshot illustrates turbines at a far distance of about
2 kilometers away from the device camera, and the turbines on the right are middle-
distanced about 500 to 800 meters away. The white turbines are real-world turbines
captured by the camera and the gray ones in front of them are virtual 3D models
rendered on top of the camera feed. From the screenshots, we can see that the generated
turbines and real turbines almost overlap with each other, and the hub height of the
turbines are also rather correct. The reason why some of them appear higher than
the real-world references are either because of the wrong altitude, (we set all turbine
altitude to the same value for simplicity, but the terrain is not completely flat), or
because the real turbines are partly occluded by the terrain.

We also walked to the base of a turbine to observe a close-distanced visualization
as shown in Figure 15. The horizontal accuracy of the device pose reported by the
Geospatial API is around 2 meters, and the vertical accuracy about 1.5 meters. But
by pointing the camera to the bottom of the turbine, we would say that visually, the
virtual turbines looks about only 0.5 to 1 meter away from the real one.

However, we observed some unrealistic movements of the placed 3D objects. Figure 16
shows two screenshots taken 1 second apart while we weren’t moving the device. From
inspecting the values on the debug console, we found out that the current pose position
or heading given by the Geospatial API changed in these occasions. The re-position
happened smoothly instead of abruptly, so the objects looked as if they were dancing
around. A re-estimation of the heading direction has more impact on the visualization.
Also, because the test location is around the borders and in the suburbs, the internet
was unstable. For more than half of the time, our application couldn’t work due to
the internal error from EarthState.

In any case, it is important for the application to work when internet connection is
unstable or unavailable. A hybrid solution of combining the Geospatial API with an
improved manual GPS method should be implemented in the future, which will be
addressed again later in Section 6.3.

53

Figure 14: Screenshots taken during the test. The left one shows a far-distanced view,
the right one a middle-distanced view. The white wind turbines are real
world turbines. The gray turbines are virtually rendered on top of the
camera feed. The metrics shown above are information from the Geospatial
API about the current pose of the device only for debugging purpose of a
development build.

54

Figure 15: Screenshot of a virtual turbine generated in place of a real turbine at a close
distance.

Figure 16: Partial screenshots of the same turbines from a far distance with 1 second of
time offset during testing. Because of a re-estimation of the device heading,
the virtual turbine was horizontally moved on screen.

55

6 Conclusion

In this project, we developed an AR application for planned wind farms, visualizing
wind turbines according to real-world GPS coordinates realistically in hope to increase
the social acceptance of wind farm projects by nearby citizens. Having some projects
and work on the wind farm subject laid out by the research group, we engineered our
application carefully respecting both the architecture and usability aspects, so that
our work can serve as an effective linking point for previous and future work. In this
chapter, we summarize the contribution of our work done during research, development
and evaluation phases in Section 6.1. In Section 6.2, we review the difficulties and
challenges encountered in this project and finally, we lay out the improvements that
should or can be done in the future in Section 6.3.

6.1 Conclusion

Aiming to build a mobile AR application that shows realistic visualizations of planned
wind farms, in this thesis, we kept two research questions in mind with respect to the
design, implementation and evaluation of such an application.

The first question is, how should a mobile AR application for wind farms visualization
look like? To answer this general question, we can split it into further sub-questions:
(1) Which functionalities should such an application have? (2) How should its user
interface look like? (3) Is it possible with current technologies? (4) How to implement
the functionalities with current technologies?

We looked into relevant researches in Section 1.2 in Chapter 1, but among the work
that mentioned the application of AR, we found only few of them related to geo-
located content positioning. In Chapter 2, we further inspected a set of promising
MAR development frameworks extensively. Thereby, we are able to answer the sub-
question (3) with a yes and lay out the foundation for a successful implementation.
We selected Unity and its AR Foundation framework as our development tool mainly
according to the following criteria: performance, multi-platform support, development
cost, extensibility for occlusion with machine learning and integrability with an existing
multi-platform app from the research group.

We proceeded with the application development systematically by following estab-
lished software engineering standards. In Chapter 3, we adopted the prototype soft-
ware engineering model, collected the requirements for the application that answers
the sub-question (1), laid out a high-fidelity presentation prototype that represents
the final UI closely, answering the sub-question (2), and chose the MVC pattern as the
basis for our code architecture. Chapter 4 describes our functional implementations
in detail that answers (4). By proposing and developing an example mobile AR ap-
plication visualizing wind farms, our first research question is answered with a feasible
approach.

56

The most important function of our AR application is placing wind turbines at real-
world coordinates, so the correct estimation of the device position and orientation is
vital. We evaluated the performance of the position and orientation estimation of our
solution in Chapter 5 both quantitatively and qualitatively to find out how well the
virtual wind farm can resemble a real wind farm. Quantitatively, we measured the
precision of the positional and orientation data provided by the Geospatial API and
compared its positional data to those provided by Unity’s Location Service and the
GPS data from the device. Qualitatively, we visualized an existing wind farm and
compared the virtual objects with the reality visually. By that, the second research
question: “how should an AR application for wind farms visualization be evaluated”
is answered partially, as an evaluation of the whole application requires extensive user
studies. We will propose a usability study next in Section 6.3.

6.2 Challenges and Difficulties

During the development of our application, we encountered quite a few challenges, a
big part of which is because of the scarcity of information we can get for some specific
problems, for example the making of a hybrid application by integrating our Unity app
with the Ionic app. Of the little information we could find on this topic, most of them
are outdated, which we discovered only after a great number of trial-and-errors.

Similarly, ARCore’s Geospatial API is a very new feature, its plugin for AR Foundation
was even only published after we started this project, so even less information can be
found. In the previous half of our project, its official documentation was even partially
incomplete. Fortunately it was improved with time.

Generally, we also experienced longer iterations of feature implementation, testing and
debugging cycles when developing AR application for smartphones with AR Founda-
tion, or ARCore specifically, because only certain Android devices fulfill the hardware
requirements and we have to build and export the application to device each time to
inspect the changes made to the code. This can take between 2 minutes to more than
half an hour with Unity, slowing down the development process largely.

6.3 Future Work

In this section, we first propose a usability study for our AR application, as it provides
insights into how well the system accomplishes its goal and how it can be improved
and further answers our research question one. After that, we discuss further future
work.

57

Usability Evaluation Study Proposal

We propose a usability study according to the usability principles laid out by Ji et al.
for our AR application [13], in which its intuitiveness, effectiveness, efficiency, feedback
support, and users subjective satisfaction should be evaluated.

• Intuitiveness: Users should have a nearly effortless understanding of the nav-
igation and controls of the application. This metric encompasses familiarity,
predictability and consistency. The user interface should adhere to general con-
ventions and comply with user’s expectations. The icons, terms and layouts in
the application should be consistent. Process structures or the chain of actions
for tasks should also follow a uniform principle.

• Effectiveness: This is the most important aspect of the usability study. The
central question is: how well can users complete their tasks with the provided
application system? Suitable functionalities should be provided for users to carry
out their tasks so that they won’t be at a loss of what to do because of the lacking
of information, or be overloaded with excessive information.

• Efficiency: Ideally, users should accomplish a task in minimal time and the system
should also react and execute a certain action as quickly as possible. In our
AR wind farm visualization case, this also entails for example how quickly the
system needs to identify users position and place augmentations accordingly, or
how quickly the scenes can be switched.

• Feedback: The application must keep users informed of events actively. This
includes actions taken by the system, change of state etc. When an error occurs, a
notification explaining the reason should be provided concisely, and if applicable,
also the solution to the error.

• Subjective Satisfaction: Users should rate their experience with the application
and the tasks they carried out, their feedback and advises should also be collected.

The use cases we described in Section 3.1 can be referenced for tasks for participants.
We also suggest the evaluation study to be carried out in form of a usability testing,
where observers (we) watch, listen and take notes of participants completing their
tasks, because our AR application involves not only clicking and touching on screen,
but also more involved actions such as how users hold the device and move around are
of interest to us.

Other Future Work

The careful selection of our development tool and the software architecture that we
laid out in this project prepared it to be, first of all, extended by obstacle occlusion
functionalities. As mentioned earlier, obstacle occlusion is a very important factor for
realistic visualizations and should definitely be implemented soon. This is currently
being researched by another student project.

58

Also, because of the internet requirement from the Geospatial API, the use of the
app can be restricted, especially when in the most cases, wind turbines are located in
the suburbs where internet are sometimes unstable or unavailable. So, it is of utter
importance to develop an offline solution. By comparing the horizontal position errors
of the Geospatial API, Unity Location Service, and GPS, we can directly rule out
Unity Location Service because of its bad and inconsistent performance. A reasonable
solution would be to build a plugin for Unity to read device native GPS data, and
develop the offline object placement functionality around them.

Apart from this, we chose tools and frameworks that also support the iOS platform.
Provided the development hardware, namely a PC with the macOS operating system
and an iPad or iPhone as the test device, our AR application can be deployed to the
iOS platform with just a few additions to the code base.

The nice-to-haves listed in our requirement matrix (Table 3) can also be fully imple-
mented in the future.

59

References

[1] M. Arango, L. Bahler, P. Bates, M. Cochinwala, D. Cohrs, R. Fish, G. Gopal,
N. Griffeth, G. E. Herman, T. Hickey, K. C. Lee, W. E. Leland, C. Lowery,
V. Mak, J. Patterson, L. Ruston, M. Segal, R. C. Sekar, M. P. Vecchi, A. Weinrib,
and S.-Y. Wuu. The touring machine system. Commun. ACM, 36(1):69–77, jan
1993. ISSN 0001-0782. doi: 10.1145/151233.151239.

[2] Shiri Azenkot, Richard E. Ladner, and Jacob O. Wobbrock. Smartphone haptic
feedback for nonvisual wayfinding. In The Proceedings of the 13th International
ACM SIGACCESS Conference on Computers and Accessibility, ASSETS ’11, page
281–282, New York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450309202. doi: 10.1145/2049536.2049607.

[3] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon Julier,
and Blair MacIntyre. Recent advances in augmented reality. IEEE Comput.
Graph. Appl., 21(6):34–47, nov 2001. ISSN 0272-1716. doi: 10.1109/38.963459.

[4] Eleonora Bottani and Giuseppe Vignali. Augmented reality technology in the
manufacturing industry: A review of the last decade. IIE Transactions, 51:284–
310, 03 2019. doi: 10.1080/24725854.2018.1493244.

[5] Dirk Bäumer, Walter Bischofberger, Horst Lichter, and Heinz Züllighoven. User
interface prototyping - concepts, tools, and experience. pages 532–541, 01 1996.
doi: 10.1109/ICSE.1996.493447.

[6] Jacky Cao, Kit-Yung Lam, Lik-Hang Lee, Xiaoli Liu, Pan Hui, and Xiang Su.
Mobile augmented reality: User interfaces, frameworks, and intelligence, 2021.

[7] Jane Cleland-Huang, A. Zisman, and O. Gotel. Software and Systems Traceability.
10 2012. ISBN 978-1-4471-2238-8. doi: 10.1007/978-1-4471-2239-5.

[8] European Commission, Joint Research Centre, G Ferraro, and G Ellis. The social
acceptance of wind energy : where we stand and the path ahead. Publications
Office, 2017. doi: doi/10.2789/696070.

[9] R. Courant, H. Robbins, and I. Stewart. What is Mathematics?: An Elementary
Approach to Ideas and Methods. Oxford Paperbacks. Oxford University Press,
1996. ISBN 9780195105193.

[10] Ivica Crnkovic. Component-based software engineering — new challenges in soft-
ware development. Software Focus, 2(4):127–133, 2001. doi: https://doi.org/
10.1002/swf.45.

[11] S Grassi and T M Klein. 3d augmented reality for improving social acceptance
and public participation in wind farms planning. Journal of Physics: Conference
Series, 749:012020, sep 2016. doi: 10.1088/1742-6596/749/1/012020.

60

[12] Maral Jamalova and Milán Constantinovits. The comparative study of the rela-
tionship between smartphone choice and socio-economic indicators. International
Journal of Marketing Studies, 11:11, 07 2019. doi: 10.5539/ijms.v11n3p11.

[13] Yong Gu Ji, Jun Ho Park, Cheol Lee, and Myung Hwan Yun. A usability
checklist for the usability evaluation of mobile phone user interface. Inter-
national Journal of Human–Computer Interaction, 20(3):207–231, 2006. doi:
10.1207/s15327590ijhc2003\ 3.

[14] Gun Lee, Andreas Duenser, Seungwon Kim, and Mark Billinghurst. Cityviewar:
A mobile outdoor ar application for city visualization. pages 57–64, 11 2012. ISBN
978-1-4673-4663-4. doi: 10.1109/ISMAR-AMH.2012.6483989.

[15] Lik-Hang Lee and Pan Hui. Interaction methods for smart glasses: A sur-
vey. IEEE Access, 6:28712–28732, May 2018. ISSN 2169-3536. doi: 10.1109/
ACCESS.2018.2831081.

[16] Ziyao Li, Hou Shu, Wei Song, Xinrui Li, Lin Yang, and Shan Zhao. Design and
implementation of traditional kite art platform based on human-computer inter-
action and webar technology. In 2021 2nd International Conference on Intelligent
Computing and Human-Computer Interaction (ICHCI), pages 209–212, 2021. doi:
10.1109/ICHCI54629.2021.00051.

[17] J. Linowes. Augmented Reality with Unity AR Foundation: A practical guide
to cross-platform AR development with Unity 2020 and later versions. Packt
Publishing, 2021. ISBN 9781838982966.

[18] Krista Merry and Pete Bettinger. Smartphone gps accuracy study in an urban en-
vironment. PLOS ONE, 14(7):1–19, 07 2019. doi: 10.1371/journal.pone.0219890.

[19] Esmond Mok, Guenther Retscher, and Chen Wen. Initial test on the use of
gps and sensor data of modern smartphones for vehicle tracking in dense high
rise environments. pages 1–7, 10 2012. ISBN 978-1-4673-1908-9. doi: 10.1109/
UPINLBS.2012.6409789.

[20] Vaughn Nelson and Kenneth Starcher. Wind Energy: Renewable Energy and the
Environment. 11 2018. ISBN 9780429463150. doi: 10.1201/9780429463150.

[21] Nenad Petrović, Vasja Roblek, Merab Khokhobaia, and Ineza Gagnidze.
Ar-enabled mobile apps to support post covid-19 tourism. In 2021 15th
International Conference on Advanced Technologies, Systems and Services
in Telecommunications (TELSIKS), pages 253–256, 2021. doi: 10.1109/
TELSIKS52058.2021.9606335.

[22] Maša Radenković, Valentina Nejkovic, and Nenad Petrovic. Adopting ar and deep
learning for gamified fitness mobile apps: Yoga trainer case study. 10 2021.

[23] Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity prototyping debate.
Interactions, 3(1):76–85, jan 1996. ISSN 1072-5520. doi: 10.1145/223500.223514.

61

[24] R. Saidur, M.R. Islam, N.A. Rahim, and K.H. Solangi. A review on global wind
energy policy. Renewable and Sustainable Energy Reviews, 14(7):1744–1762, 2010.
ISSN 1364-0321. doi: doi.org/10.1016/j.rser.2010.03.007.

[25] Geri Schneider and Jason P. Winters. Applying Use Cases: A Practical Guide.
Addison-Wesley Longman Publishing Co., Inc., USA, 1998. ISBN 0201309815.

[26] Xiaoyan. Sun, Shiyuan. Gu, Linfu. Jiang, and Yingfei. Wu. A low-cost mobile
system with multi-ar guidance for brain surgery assistance. In 2021 43rd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 2222–2225, 2021. doi: 10.1109/EMBC46164.2021.9630928.

[27] TS Tullis. High-fidelity prototyping throughout the design process. In Proceedings
of the Human Factors Society 34th annual meeting, page 266. Human Factors
Society Santa Monica, 1990.

[28] D.W.F. van Krevelen and R. Poelman. A survey of augmented reality technologies,
applications and limitations. International Journal of Virtual Reality, 9(2):1–20,
Jan. 2010. doi: 10.20870/IJVR.2010.9.2.2767.

[29] Nancy J Wei, Bryn Dougherty, Aundria Myers, and Sherif M Badawy. Using
google glass in surgical settings: Systematic review. JMIR Mhealth Uhealth, 6(3):
e54, Mar 2018. ISSN 2291-5222. doi: 10.2196/mhealth.9409.

62

	Introduction
	Motivation
	Related Work
	Contribution
	Outline

	Choice of Technologies
	Evaluation of Technologies
	AR.js
	WebXR
	ARCore and ARKit
	AR Foundation
	Sum-up

	Overview of Unity and AR Foundation
	Unity Overview
	Unity Main Mechanics
	AR Foundation Architecture

	Software Engineering
	Requirements Engineering
	Functional Requirements
	Hardware Requirements
	Software Requirements

	Prototyping
	Software Architecture

	Implementation
	Geo-located Wind Turbines
	Map for Orientation
	Wind Farm Scenes
	Windmill Functionalities
	Noise and Shadow Cast Information
	Gamification Contents
	Integration with the Ionic Project

	Evaluation
	Quantitative Evaluation of the Geospatial API for AR Content Placement
	Position Detection
	Orientation Estimation

	Comparing AR and Real-World Wind Farms

	Conclusion
	Conclusion
	Challenges and Difficulties
	Future Work

	References

