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Abstract

Satisfiability Modulo Theories (SMT) solvers can be used to decide the sat-
isfiability of some First-Order (FO) logic formulas with respect to some FO-
theory. In particular, SMT solvers can be used to solve formulas of the theory
of quantifier-free non-linear real arithmetic (QFNRA).
In 2020 Brown et al. proposed a partial theory solver aiming to reduce the
complexity of the given QFNRA constraints in DNF. This partial solver could
be used as preprocessing for DNF formulas. The goal of this thesis is to mod-
ify the introduced algorithms to work as inprocessing using incrementality and
backtracking.
After implementing the simplification algorithms in their original and modi-
fied form in SMT-RAT, we show that they highly improve the performance of
the solver. Our modifications do not only provide a significantly higher num-
ber of solved instances, but also a runtime improvement compared to its non-
incremental equivalent.



iv



Contents

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 SMT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 QFNRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Simplification 13
3.1 Blackbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Whitebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Simple Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Constraint Selection and UNSAT Core . . . . . . . . . . . . . . . . . . 29

4 Incrementality & Backtracking 33
4.1 General Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Blackbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Whitebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Simple Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Experiments 47
5.1 Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 SimplifyIncr vs. CompareIncr . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 SimplifyIncr vs. Simplify . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion 69
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 71

Appendix 73

A Whitebox Algorithms 73



6 Contents



Chapter 1

Introduction

1.1 Motivation

Satisfiability Modulo Theories (SMT) solvers are tools to decide the Boolean satisfia-
bility (SAT) of some First-Order (FO) logic formulas over some FO theories [DMB08].
SMT solvers can for example be used for symbolic software model checking and pro-
gram verification [BdM14].

Interesting theories are for instance Linear Arithmetic and Non-Linear Arithmetic
over the reals or integers [Seb07]. Sets of quantifier-free linear real arithmetic (QFLRA)
formulas are decidable in polynomial time, while the complexity of sets of quantifier-
free non-linear real arithmetic (QFNRA) formulas depends on the complexity of its
polynomials and can reach exponential complexity [Pro14]. Usually, SMT solvers are
composed of a SAT solver and theory solvers. Additionally, one can initially simplify
the constraints before the input is processed. This is called preprocessing. If this
step occurs between the SAT solver and the theory solver, it is called inprocessing.
Currently, there is not much literature on pre- or inprocessing for QFNRA formulas,
but since non-linear arithmetic is more complex to solve than linear arithmetic, a
simplification of non-linear constraints could bring a performance advantage.

For that reason, Brown et al. [BVE20] describe a partial solver based on DNF for-
mulas. They developed ways to derive a combination of simpler constraints from
complex QFNRA constraints. Either the algorithms deduce unsatisfiability or they
return some simpler constraints that are derived from more complex input constraints
and can be used to ease the later solving process. Usually, SMT solvers work incre-
mentally and with backtracking. This means that prior calculations are reused for
new input constraints and the solver can return to a working state when constraints
are removed.
Brown et al. do not use incrementality and backtracking in their stand-alone solver,
which is the primary focus and contribution of this thesis.
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1.2 Related Work
This thesis builds heavily on the papers by Brown et al. [Bro09], [BS10], [Bro12],
[BVE20]. In these, primarily so-called Blackbox and Whitebox simplification algo-
rithms were developed. Blackbox simplification focuses on the factor structure of
the involved polynomials, treating each factor as a variable and thus considering the
factors themselves as ”blackboxes”. Whitebox simplification on the other hand tries
to derive information about the sign of each factor from its polynomial structure and
prior knowledge about variable signs (e.g. x + y < 0 or x + y ≥ 0). In [BVE20],
Brown et al. have built a partial solver based on these simplification strategies. This
article is the foundation for this thesis and is described in more detail in Chapter 3.

1.3 Research Questions
The aim of this thesis is divided into two tasks. The first step is to implement the
simplification described in [BVE20] in the SMT-RAT solver [smtb]. The second task
is to adapt this approach for incrementality and backtracking. For this, we use the
incrementality of the theory solver, thus not replacing any constraints which were
already given to the backend. We will analyze the impact of this adaption on the
solver and investigate the question to which extent this inprocessing brings general
advantages.

1.4 Outline
In Chapter 2 we will give a short overview over some preliminaries. This includes the
introduction of lazy SMT solvers as well as quantifier-free non-linear real arithmetic.
In Chapter 3 we will explain the simplification steps as described in [BVE20]. The
adaption to incrementality and backtracking is given in Chapter 4. In Chapter 5 we
evaluate the describes techniques, including successfulness in solving the test instances
and the runtime. Finally, in Chapter 6 we will give a short summary, discussion as
well as outlook on promising future work.



Chapter 2

Preliminaries

2.1 SMT Solvers

input formula in CNF

SAT or
UNSATSAT solver

theory solver(s)

theory constraint set (partial) SAT or
UNSAT + explanation

Boolean abstraction

solution or
unsatisfiable

(partial) solution

Simplification

Figure 2.1: Mechanism of lazy SMT solving, as described in [ÁAB+16], with the
addition of simplification (black), describing the inprocessing considered in this thesis.

Many solvers like SMT-RAT implement lazy SMT solving [Seb07]. These combine a
SAT solver, handling the Boolean structure, with one or more theory solvers [Seb07].

Definition 2.1.1 (Conjunctive Normal Form [oM]). A quantifier-free first-order logic
formula over a theory is in conjunctive normal form (CNF) if it has the form

n∧
i=1

mi∨
j=1

Ci,j ,

where n ∈ N, and for each i ∈ {1, . . . ,n} we have mi ∈ N and Ci,j is either an atomic
theory constraint or its negation.

The input formula in Conjunctive Normal Form (CNF) is mapped to its Boolean skele-
ton, which is then checked by the SAT solver for satisfiability. The Boolean skeleton
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represents the Boolean Structure of the Formula, where each constraint is replaced by
a fresh variable. Assume for simplicity that the input CNF contains no negation. If
the Boolean skeleton is already unsatisfiable, this also applies to the original formula.
Otherwise, the SAT solver finds a solution which needs to be checked for consistency
in the respective theory. For this, the conjunction of the constraints that the SAT
solver has assigned as true1 is passed on to the theory solver. If the solution is not
applicable to the theory, the theory solver returns a preferably small subset of the
passed constraints that cannot be satisfied at the same time. This set is called the
UNSAT core. If the SAT solver cannot find a new assignment considering the learned
UNSAT cores, the formula is unsatisfiable (UNSAT). If the theory solver finds that
the theory is consistent and the SAT solver does not need to add new constraints, the
formula is satisfiable (SAT). This solver structure is depicted in Fig. 2.1. Note that
we added the inprocessing (simplification) considered in Section 3.4.

The standard procedure for the SAT solver is the Davis-Putnam-Logemann-Loveland
(DPLL) procedure [Seb07]. In this procedure, decisions about the assignment of lit-
erals are made and propagated. If a contradiction occurs, conflict resolution takes
place, whereby a preferably small set of constraints is selected that explains the cur-
rent conflict. The constraints of this set are learned as a new clause.

Example 2.1.1 (SMT Solving). Consider a QFNRA formula φ = a ≤ 5 ∧ (a <
10 ∨ b > 5) ∧ b ≤ 0.
The SAT solver considers the Boolean skeleton ψ = x1 ∧ (x2 ∨ x3) ∧ x4. A possible
assignment by the DPLL algorithm is x1 : true, x2 : false, x3 : true, x4 : true. Thus,
the theory solver receives the formula a ≤ 5∧ b > 5∧ b ≤ 0, which is unsatisfiable with
the UNSAT core {b > 5, b ≤ 0}. Thus ¬(x3 ∧ x4) is added to ψ and the next iteration
starts. A satisfiable assignment is x1 : true, x2 : true, x3 : false, x4 : true with a = 5
and b = 0.

A less lazy SMT solver has three important main properties [ÁAB+16]:
Incrementality : After checking the consistency of a set of constraints that result
should be used to re-check the set after adding additional constraints.
Explanation: In case of unsatisfiability, the algorithm should return a set of contra-
dictory constraints which should be as small as possible.
Backtracking : It should be possible to remove constraints in reverse chronological
order without losing all progress.

These properties are helpful, because inconsistencies in the theory can be found ear-
lier, without losing unnecessary time at the SAT solver. Reusing past calculations
saves runtime.

The combination of multiple theory solvers has the advantage that i.e. for QFNRA
formulas, the linear constraints can be checked with less complex, faster methods,
before the non-linear constraints are handled with a second theory solver.

1If no negation appears in the input formula then false constraints do not need to be considered.
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2.2 QFNRA
In this thesis we focus on quantifier-free nonlinear real arithmetic (QFNRA), which
is defined inductively via formulas, constraints and polynomials [Pro14]:

Definition 2.2.1 (QFNRA). We fix the variables {x1,...,xn}. Then

p := r | x | (p+ p) | (p− p) | (p · p)
c := p < 0 | p = 0

φ := c | (φ ∧ φ) | ¬φ

where r ∈ Q is a constant and x ∈ {x1,...,xn} is a variable. We call p polynomials
and define C to be the set of constraints c.

Definition 2.2.2 (Degree). For a polynomial p = a1x
e1,1
1 ·...·xen,1

n +...+akx
e1,k
1 ·...·xen,k

n

the degree of p is defined as deg(p) := max1≤j≤k(
∑n

i=1 ei,j) [CLJÁ12].

Constraints of the form p ≥ 0, p ≤ 0, p > 0, p ̸= 0, as well as formulas of the form
(φ ∨ φ) are syntactic sugar and thus derivable from this grammar.

Example 2.2.1 (Syntactic Sugar).

(φ ∨ φ) := ¬(¬φ ∧ ¬φ)

p > 0 := 0− p < 0

p ≤ 0 := (p < 0) ∨ (p = 0)

If all polynomials in φ have a maximum degree of 1, they are called linear and φ
becomes a quantifier-free linear real arithmetic (QFLRA) formula, for which faster
methods, e.g. Simplex [Nab09], for satisfiability checking exist.
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Chapter 3

Simplification

In 2020, Brown et al. designed a partial solver for QFNRA formulas [BVE20]. The
aim of this solver is to either deduce UNSAT or less complex constraints implying
the given formula. These constraints can then for example be handed to a complete
solver. What exactly defines the simplicity of constraints is not clear. There are many
points of consideration, like number of variables, number of terms or the degree of
the involved polynomials. We will discuss this topic in more detail in Section 3.4.
In general, a why-mapping is created, which indicates for constraints from which
combination of other constraints they can be derived.

Definition 3.0.1 (why-map). The why map is used to collect all derived implications.

why : C →
{∧

C
}

∀f ∈ C : ∀g ∈ why(f) : g ⇒ f

Constraints f which were handed to inprocessing by the SAT solver are called given.
why is initialized as

why(f) :=

{
{given} if f is given
{} else

We update implications in why as

why(f) := why(f) ∪ {g}

or write
g ⇒ f is added to why .

The partial solver is composed of mainly three algorithms: Blackbox, Whitebox and
SimpleSubstitution. Blackbox considers the factors of the constraints as ”blackboxes”
and thus focuses on their factor structure. Whitebox derives signs for the factors based
on the polynomial structure and the known variable signs. Lastly, SimpleSubstitution
is used to replace variables using simple equations. According to Brown et al. these
three algorithms are executed until there are no new derivations. For the case that
UNSAT was found, they also explain a strategy to find an UNSAT core. Otherwise,
the constraints to give to the next solver have to be selected, for which the algorithm
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Simplify was designed. In the following we will illustrate the Blackbox, Whitebox and
SimpleSubstitution as described in [BVE20]. Lastly, the Simplify algorithm is used to
narrow down the constraints to pass to the theory solver and the creation of UNSAT
cores is clarified.

3.1 Blackbox

The first deduction approach is Blackbox simplification. It is important that polyno-
mials of the form

∑
j ajx

dj

j need to be factorized to be of the form Πif
di
i . Blackbox

simplification focuses solely on the factor structure, which means that coefficients,
exponents and variables in the factors are not relevant for these deductions. Thus, as
the name suggests, it considers the factors to be blackboxes. First, the data is pre-
processed for the actual Blackbox algorithm, which also leads to the first deductions.
Afterwards, StrictBlackbox is used to simplify strict constraints and MinWtBasis does
the same for non-strict constraints.

Example 3.1.1. For a running example, we will consider the set F ∗ = (a+ c2)(a2 +
b) < 0 ∧ (a + c2)2(a2 + b) < 0 ∧ a + b ≤ 0 ∧ (a + c2)4(a + b) ≥ 0 ∧ b + c = 0 ∧ a3 >
0 ∧ b < 0 ∧ c > 0. Depending on the impact on the current derivations, subformulas
may be omitted.

3.1.1 Preprocessing

Definition 3.1.1 (Monomial Inequalities, Combinatorial Mapping).
Let A∗

i = Πjf
dj

j σ0, where fj are the distinct factors of F ∗, dj ∈ N and σ ∈ Srelop.
Srelop is defined in Section 3.2.1.
Let {x1,...,xk} be a set of distinct fresh variables, one for each factor in A∗

1 ∧ ...∧A∗
m.

We define Ai := Πk
j=1x

dj

j σ0

Example 3.1.2 (Combinatorial Mapping). For the running example, we map the
factors as follows:

(a+ c2) 7→ x1, (a
2 + b) 7→ x2, (a+ b) 7→ x6, (b+ c) 7→ x7, a 7→ x3, b 7→ x4, c 7→ x5

This leads to a new formula, relevant for the rest of the Blackbox algorithm:

F = x1x2 < 0︸ ︷︷ ︸
A1

∧x21x2 < 0︸ ︷︷ ︸
A2

∧x6 <= 0︸ ︷︷ ︸
A3

∧x41x6 >= 0︸ ︷︷ ︸
A4

∧x7 = 0︸ ︷︷ ︸
A5

∧x33 > 0︸ ︷︷ ︸
A6

∧x4 < 0︸ ︷︷ ︸
A7

∧x5 > 0︸ ︷︷ ︸
A8

Strict and non-strict constraints have separate derivation processes. Thus, we have
to differentiate between strict and non-strict constraints and variables. A variable is
strict, if it occurs in at least one strict constraint. If the variable has the exponent 0,
the constraint would evaluate to 0 as well, making it non-strict.

Definition 3.1.2 (Variable Strictness). Let a variable be strict if it occurs in at least
one constraint Ai with Ai = Πjf

dj

j σ0 and σ ∈ {<,>, ̸=}. We reorder the variables so
that Xs = {x1,...,xs} are the strict variables and Xn = {xs+1,...,xn} are the non-strict
variables.
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For all strict variables, the strictness and its reason, i.e. the strict constraints it occurs
in, are documented in the mapping. Thus, for all xj ∈ Xs

why(xj ̸= 0) = {Ai | xj appears in Ai and Ai is strict}

is added to why .

Example 3.1.3 (Variable Strictness). In our running example

Xs = {x1, x2, x3, x4, x5}, Xn = {x6, x7}

why(x1 ̸= 0) = {A1, A2} why(x2 ̸= 0) = {A1, A2}
why(x3 ̸= 0) = {A6} why(x4 ̸= 0) = {A7} why(x5 ̸= 0) = {A8}

As the product of strict variables is always strict, we normalize non-strict constraints
in such a way that they become strict, if all of their variables are strict.

Definition 3.1.3 (Non-strict Normalization). Let Ai be of the form mσ0 with σ ∈
{LEOP,GEOP,EQOP}. Then they are transformed to their strict equivalent, if
∀v ∈ Vars(Ai) ∩Xs:

A′
i :=


m < 0 if Ai = (m ≤ 0)

m > 0 if Ai = (m ≥ 0)

FALSE if Ai = (m = 0)

These normalizations are documented in why as

why(A′
i) = why(A′

i) ∪
{
mσ0 ∧

∧
xj∈Vars(m)

xj ̸= 0
}

why(Ai) = why(Ai) ∪ {A′
i}

For all xj of m the mapping is adapted as well:

why(xj ̸= 0) = why(xj ̸= 0) ∪ {A′
i}

The strictness of a variable also impacts its normalization. Strict variables with an
even exponent may be omitted, as they do not impact the sign of the polynomial.
Non-strict variables on the other hand may still be zero and thus also impact the sign.
Even exponents should therefore not be omitted for non-strict variables.

Definition 3.1.4 (Variable Normalization). Given a monomial inequality A = Π
dj

j σ0
we define

N (A) := Π
d′
j

j σ0

with d′j defined according to its strictness as

d′j :=

{
dj mod 2 xj ∈ Xs

2− (dj mod 2) xj ∈ Xn
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For strict variables we add

why(N (Ai)) = why(N (Ai)) ∪ {Ai ∧
∧

strict xj∈Vars(Ai)

xj ̸= 0}

why(Ai) = why(Ai) ∪ {N (Ai) ∧
∧

strict xj∈Vars(Ai)

xj ̸= 0}

For non-strict variables on the other hand it suffices to add

why(N (Ai)) = why(N (Ai)) ∪ {Ai}

why(Ai) = why(Ai) ∪ {N (Ai)}

Example 3.1.4 (Variable Normalization). In our running example, variable normal-
ization only impacts A2, A4 and A6:

N (A2) := x2 < 0 N (A4) := x6 >= 0 N (A6) := x3 > 0

Thus the resulting formula is

N (F ) := x1x2 < 0︸ ︷︷ ︸
A′

1

∧x2 < 0︸ ︷︷ ︸
A′

2

∧x6 <= 0︸ ︷︷ ︸
A′

3

∧x6 >= 0︸ ︷︷ ︸
A′

4

∧x7 = 0︸ ︷︷ ︸
A′

5

∧x3 > 0︸ ︷︷ ︸
A′

6

∧x4 < 0︸ ︷︷ ︸
A′

7

∧x5 > 0︸ ︷︷ ︸
A′

8

We add the following to why :

why(A′
2) = {A2 ∧ x1 ̸= 0} why(A′

4) = {A4 ∧ x1 ̸= 0} why(A′
6) = {A6}

why(A2) = {A′
2 ∧ x1 ̸= 0} why(A4) = {A′

4 ∧ x1 ̸= 0} why(A6) = {A′
6}

The primary means of deduction in the Blackbox algorithm is Gaussian elimination.
Gaussian elimination is only executed in the way that rows of a matrix are added
modulo 2. Therefore, Brown et al. define a vector representation for the normalized
constraints using a bijection denoted as Γ.

Definition 3.1.5 (Vector Representation). Let Ai := Πjx
dj

j σ0. For two vectors u, v
let u⊕ v denote the concatenation. We define the Vector Representation of Ai as

Γ(Ai) :=


[d1,...,dr,0]⊕ [dr+1,...,dn] if σ ∈ {>,≥}
[d1,...,dr,1]⊕ [dr+1,...,dn] if σ ∈ {<,≤}
[0,...,0,0]⊕ [0,...,0] if σ ∈ {≠}
Γ(Πjx

2dj

j ≤ 0) if σ ∈ {=}

This definition is extended to a bijection from a formula to a matrix, denoted by
Γ−1(Ai).

As a zero-vector does not have any impact on the deductions, it is not necessary to
add formulas with σ ∈ {≠} to the matrix. Γ works for equalities, as even exponents
always lead to a value ≥ 0. If a factor consisting only of values ≥ 0 is restricted to be
≤ 0, the only possible solution is 0.
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Example 3.1.5 (Vector Representation). As A′
6, A

′
7 and A′

8 are strict constraints
only containing a single variable which does not occur in any other constraint, we will
omit them for simplicity for the rest of Blackbox deductions.

Applying Γ to N (F ) leads to:

x1 x2 σ x6 x7
A′

1 1 1 1 0 0
A′

2 0 1 1 0 0
A′

3 0 0 1 1 0
A′

4 0 0 0 1 0
A′

5 0 0 1 0 2

This preprocessed matrix is then used for the actual Blackbox deductions. These are
separated according to the strictness into StrictDeductions and MinWtBasis.

3.1.2 Strict Deductions

Algorithm 1 StrictBlackbox, given in [BVE20]

Input: B: set of normalized vectors with strict variables x1,...,xs and non-strict vari-
ables xs+1,...,xn, why as defined in Definition 3.0.1

Output: Bs, Bn so that either Γ−1(B) is UNSAT and Bs = FALSE or Γ−1(B) is
SAT and Bs, Bn are vector sets where Bs is strict and in row-echelon form
and Bn is non-strict and Γ−1(B) ≡ Γ−1(Bs) ∧ Γ−1(Bn)

1: split B into its strict B′ and non-strict Bn row vectors
2: form matrix M from vectors of B′

3: produce M ′ by Gaussian elimination of M , matrix K: K ·M =M ′

4: for i from 1 to |B′| do
5: N := set of column indices of non-zero entries of row i of K
6: E := {Mi,_ | i ∈ N} ▷ The elements of E sum to w: the ith row of M ′. As

K was constructed by Gaussian elimination steps, E is minimal in the sense
that no strict subset sums to w

7: w := row i of M ′

8: if w is [0,...,0,1]⊕ [0,...,0] then
9: add why(FALSE) = why(FALSE) ∪ {

∧
u∈E Γ−1(u)}

10: return Bs := FALSE, Bn

11: else if w is not zero then
12: add why(Γ−1(w)) = why(Γ−1(w)) ∪ {

∧
u∈E Γ−1(u)}

13: for v ∈ E do
14: add why(Γ−1(v)) = why(Γ−1(v)) ∪ {

∧
u∈E−{v}∪{w} Γ

−1(u)}
15: else
16: for v ∈ E do
17: add why(Γ−1(v)) = why(Γ−1(v)) ∪ {

∧
u∈E−{v} Γ

−1(u)}
18: Bs :=

∧
v∈D v, where D is set of non-zero rows in M ′

19: return Bs, Bn

StrictBlackbox (Algorithm 1) is structured in a way that only the first three lines
of code represent the actual computations. The rest of the algorithm describes the
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possible derivations.
For strict deductions, only the rows of the matrix representing a strict monomial
inequality are considered. Those are all the rows with zero v part: v = [dr+1,...,dn] =
[0,...,0].

Example 3.1.6 (Strict Matrix). In our running example, we select the following
strict rows:

x1 x2 σ x6 x7
A′

1 1 1 1 0 0
A′

2 0 1 1 0 0

From the following examples for StrictBlackbox we will omit the first column and row
for simplicity.

Lemma 3.1.1 ([BVE20]). For the mapping F ⇒ A ∧ A′ with Γ(A) = u ⊕ v and
Γ(A′) = u′ ⊕ v′ addition mod 2 holds:

F ⇒ Γ−1(N ((u+ u′)⊕ (v + v′)))

Lemma 3.1.1 is used as the basis for the StrictBlackbox algorithm as described in
Algorithm 1.

Lemma 3.1.2 (StrictBlackbox UNSAT [BVE20]). F is satisfiable iff [0,...,0,1] ⊕
[0,...,0] is not deducible from M .

In StrictBlackbox, M is transformed to reduced row echelon form [Leo09], where σ
is never used to pivot and rows are not swapped. The algorithm returns UNSAT if
[0,...,0,1]⊕ [0,...,0] is deduced.

Every row of M ′, the matrix in reduced row echelon form, is a deduction, for which
the explanation is tracked in the why-mapping.

Lemma 3.1.3. If u is a row of M ′ and w is a vector so that wM = u and mi are
the rows of M , then according to [BVE20] it follows that∧

i s.t. wi=1

Γ−1(mi) ⇒ Γ−1(u)

These deductions are added to why. Additionally, any row of M producing u is
implied by u in combination with the other rows summing to u.

Example 3.1.7 (StrictBlackbox). Performing Gaussian elimination on[
1 1 1 0 0
0 1 1 0 0

]
leads to the new matrix [

1 0 0 0 0
0 1 1 0 0

]
Thus from x1x2 < 0∧x2 < 0 we deduced x1 > 0∧x2 < 0. We append why as follows:

why(x1 > 0) = why(x1 > 0) ∪ {x1x2 < 0 ∧ x2 < 0}
why(x1x2 < 0) = why(x1x2 < 0) ∪ {x1 > 0 ∧ x2 < 0}
why(x2 < 0) = why(x2 < 0) ∪ {x1x2 < 0 ∧ x1 > 0}
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Why does Gaussian elimination of the exponents work? Let A1 = Πx
dj

j < 0 and
A2 = Πx

ej
j < 0. Then Πx

dj+ej
j > 0.

Example 3.1.8 (Gaussian Elimination). Again we consider x1x2 < 0 and x2 < 0. If
we now multiply e.g. the first constraint (x1x2 < 0) with the second polynomial (x2),
we reach x1x

2
2. As x2 is negative according to constraint 2, we multiplied the first

constraint by a negative number. Thus, the sign is turned around and the resulting
constraint is x1x22 > 0. As we already used for variable normalization, even exponents
can be omitted and thus we reach the result of x1 > 0.

For the rest of Blackbox (Algorithm 3), the rows making up the strict part of M will
be replaced by the resulting matrix of StrictBlackbox. Brown et al. state that the
implications of Algorithm 1 prove that Γ−1(B) ≡ Γ−1(Bs)∧Γ−1(Bn), where B is the
vector form of F , and Bs and Bn are the strict/non-strict submatrices of B.

3.1.3 Non-strict Deductions
Similar to the strict deductions, the goal of non-strict deductions (Algorithm 2) is to
either find implications between the constraints or derive less complex constraints. In
the latter case, this would always be an equality. As non-strict inequalities are always
satisfiable by setting a non-strict variable to 0, if F was unsatisfiable, it would have
already been deduced during the strict deductions. Thus, it is not the goal to find
unsatisfiability in MinWtBasis (Algorithm 2).

In the strict deductions, Gaussian elimination was used to reduce the total occur-
rences of strict variables in the constraints. MinWtBasis tries to achieve the same for
non-strict variables with a slightly different approach. For this, we define a support
S(w) of w which is the set of indices of the non-strict part at which w is non-zero. The
weight of the vector w is defined as wt(w) = |S(w)|, the number of non-zero entries
of the non-strict part of w. MinWtBasis produces constraints which try to minimize
the sum of weights, leading to fewer occurrences of non-strict variables.

The MinWtBasis algorithm (Algorithm 2) maintains two vector sets: B is the given
vector set (M), while Bf contains derived or used constraints. As a first step, we
select a row w with the highest weight (line 2). If no row with wt(w) > 0 exists,
the weights can not be minimized any more and we return Bf ∪ B as the resulting
set. Then we drop w from B and define B≤, B< as the rows b, for which S(b) is
a (strict) subset of S(w) (lines 3-5). Now we want to find out if other constraints
already include all the information w can provide or if the non-strict variables in w
actually evaluate to 0.

Example 3.1.9. Given

x1 x2 σ x6 x7
A′

1 1 0 0 0 0
A′

2 0 1 1 0 0
A′

3 0 0 1 1 0
A′

4 0 0 0 1 0
A′

5 0 0 1 0 2
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we select w = A′
3. Thus B = {A′

1, A
′
2, A

′
4, A

′
5}, B≤ = {A′

1, A
′
2, A

′
4}

and B< = {A′
1, A

′
2}.

Algorithm 2 MinWtBasis from [BVE20]

Input: B: set of vectors that are images of inequalities in normalized conjunction F
Output: Bf : minimum-weight set of vectors subject to

∧
b∈Bf

Γ−1(N (b)) ≡ F

1: Bf := {}
2: w := a maximum weight element of B with wt(w) > 0, if none exists: return
Bf ∪B

3: B := B/{w}
4: B≤ := {b ∈ B | S(b) ⊆ S(w)}
5: B< := {b ∈ B | S(b) ⊂ S(w)}
6: check whether exists subset T ⊆ B< such that∑

t∈T

t ≡ [0,...,0,1]⊕ [0,...,0](mod 2)

if yes: goto step 2
7: ▷ w removed from B and not added to Bf , as N (

∑
t∈T t) defines equation on

a subset of variables appearing in the monomial w defines. This gives a
new explanation for w. Assuming T is a minimal subset of B< summing
to [0,...,0,1]⊕ [0,...,0] mod 2. Add

∧
t∈T Γ−1(t) ⇒ Γ−1(w) to why ◁

8: form matrix M over GF(2) whose rows are the elements of B≤ modulo 2
9: transform M into row-echelon form by Gaussian elimination

10: w′ := result of reducing w mod 2 by rows of M
11: if w′ or some row of M equals [0,...,0,1]⊕ [0,...,0] then
12: add w∗ := N (2w + [0,...,0,1]⊕ [0,...,0]) to Bf

13: ▷ If w∗ = w, we have not deduced anything new at this point. We have merely
noticed that w is an equation. Otherwise we have deduced the equation
Γ−1(w∗) and learned that Γ−1 is implied by it. In that case, let T ∗ be
a minimal subset of B≤ ∪ {w} with sum modulo 2 equal to [0,...,0,1] ⊕
[0,...,0], which can be constructed with linear algebra over GF(2). Add∧

t∈T∗ Γ−1(t) ⇒ Γ−1(w∗) and Γ−1(w∗) ⇒ Γ−1(w) to why ◁
14: remove from B any element with the same support as w∗

15: ▷ Vector v is removed from B if its support is the same as w∗. For each
such v we add Γ−1(w∗) ⇒ Γ−1(v) to why ◁

16: else if w′ ̸= [0,...,0,1]⊕ [0,...,0] then
17: Bf := Bf ∪ {w}
18: ▷ If fall through both ”if ” ’s, w′ = 0. So some subset of B≤ sum to be equivalent

to w mod 2. Let T ′ be a minimum sized subset with this property, which is
constructable via linear algebra over GF(2). Add

∧
t∈T ′ Γ−1(t) ⇒ Γ−1(w) to

why ◁
19: goto step 2

If Gaussian elimination mod 2 of B< can produce [0,...,0,1] ⊕ [0,...,0], we found a
new derivation for w (line 6). Opposed to StrictBlackbox, [0,...,0,1] ⊕ [0,...,0] does
not mean that UNSAT was found. For non-strict constraints the 1 in the operator
column stands for ≤ and since the calculations are executed modulo 2, we simply
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derived an equality. Therefore, if this test succeeded, we know that already constraints
with smaller weights contain all the information of w. Therefore, by removing w no
information is lost but the number of occurrences of non-strict constraints is reduced.
If T is the minimum set of rows leading to [0,...,0,1]⊕ [0,...,0] we add

why(Γ−1(w)) = why(Γ−1(w)) ∪ {
∧
t∈T

Γ−1

(t)}

If this test was successful, we found a new derivation for w and therefore do not need
w in the result set. We start again by selecting a new w in line 2. Otherwise, we
continue by transforming B≤ to reduced row echelon form (M ′) and row reducing w
mod 2 by M ′ (lines 8-10). Let w′ be the result of the row reduction. There are three
possible results:

1. w′ or some row of M ′ is [0,...,0,1]⊕ [0,...,0] (lines 11-15).
We derived that the product of the variables in w is 0. Thus, we add w∗ =
N (2w + [0,...,0,1] ⊕ [0,...,0]) to Bf and remove all rows v ∈ B with S(v) =
S(w∗) from B. This removal can be done as Πj∈S(w∗)xj = 0 and therefore all
constraints containing all non-strict variables of w∗ evaluate to 0 as well. We
add the implication of the dropped rows as

why(Γ−1(v)) = why(Γ−1(v)) ∪ {Γ−1(w∗)}

Additionally, if w ̸= w∗ we derived a new equality and save its derivation as:

why(Γ−1(w)) = why(Γ−1(w)) ∪ {Γ−1(w∗)}

why(Γ−1(w∗)) = why(Γ−1(w∗)) ∪ {
∧
t∈T

Γ−1(t)}

2. w′ = [0,...,0,0]⊕ [0,...,0] (line 18).
The sum of some rows T sum to w mod 2. Thus, we found a new derivation
for w:

why(Γ−1(w)) = {
∧
t∈T

Γ−1(t)}

w is not added to the result set again as T contains constraints implying w.

3. In all other cases, there are no new derivations and w is added to Bf (lines
16-17).

Example 3.1.10. The test for B< fails for w = A′
3. w′ is constructed as w′ =

A′
3 +A′

4 = ([0,0,1]⊕ [1,0]) + ([0,0,0]⊕ [1, 0]) = [0,0,1]⊕ [0,0]( mod 2).
This is consistent with the first case distinction. Thus w∗ = N (2 ∗ ([0,0,1]⊕ [1,0]) +
([0,0,1]⊕ [0,0])) = [0,0,1]⊕ [2,0]. A′

4 is dropped from B, as it has the same support as
w∗. We derived:

why(Γ−1(x6 ≥ 0)) = why(Γ−1(x6 ≥ 0)) ∪ {Γ−1(w∗)}
why(Γ−1(x6 ≤ 0)) = why(Γ−1(x6 ≤ 0)) ∪ {Γ−1(x6 = 0)}
why(Γ−1(x6 = 0)) = why(Γ−1(x6 = 0)) ∪ {x6 ≤ 0 ∧ x6 ≥ 0}

The cycle continues with w = A′
5.
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Algorithm 3 Blackbox from [BVE20]

Input: F ∗: conjunction of real polynomial constraints
Output: G∗,why∗: if F ∗ identified as UNSAT G∗ is FALSE, otherwise G∗ simpli-

fied conjunction of polynomial constraints equivalent to F ∗, why∗ maps
inequalities discovered to be implied by F ∗ to sets of deductions that imply
them

1: F := combinatorial part of F ∗

2: Initialize why with given ⇒ Ai for each Ai in F
3: F 1 := normalization of F
4: B1 := Γ(F 1)
5: B2

s , B
2
n := StrictBlackbox(B1)

6: if B2
s = FALSE then

7: return FALSE, why
8: B3 := MinWtBasis(B2

s ∪B2
n)

9: B4
f := B3 with non-strict elements reduced by the elements of B2

s

10: ▷ In this context reduced means row-reduced, as in Gaussian elimination. If w
is reduced to w∗ and T is the minimal subset of B2

s such that w +
∑

t∈T t =
w∗, then the deductions added are: Γ−1(w) ∧

∧
t∈T Γ−1(t) ⇒ Γ−1(w∗) and

Γ−1(w∗) ∧
∧

t∈T Γ−1(t) ⇒ Γ−1(w) ◁
11: G := Γ−1(B2

s ∪B4
f )

12: add xi ̸= 0 to G, for each strict variable xi not already appearing in a strict
inequality in G

13: apply the reverse of the mapping that produced F from F ∗ in order to recover
G∗ and why∗ from G and why

14: return G∗,why∗

3.1.4 General Algorithm
Finally, Algorithm 3 combines these simplification algorithms and adds some final
deductions. Lines 1-8 correspond to the algorithm steps described so far. After
MinWtBasis is completed, the resulting non-strict rows are row-reduced by the strict
rows (line 9). For row w to be reduced to w∗, we find a minimal subset T of the strict
rows so that w +

∑
t∈T t = w∗. This is documented as

why(Γ−1(w∗)) = why(Γ−1(w∗)) ∪ {Γ−1(w) ∧
∧
t∈T

Γ−1(t)}

why(Γ−1(w)) = why(Γ−1(w)) ∪ {Γ−1(w∗) ∧
∧
t∈T

Γ−1(t)}

For strict variables not appearing in a strict constraint of the matrix (0 column),
xi ̸= 0 is added to the result set (line 12). This might for example be the case for
some constraint with σ ∈ {̸=}. In the end, the matrix is transformed back to a
conjunction of constraints and the combinatorial mapping is reversed (line 13).



Whitebox 23

Example 3.1.11 (Blackbox). The final matrix is

x1 x2 σ x6 x7
1 0 0 0 0
0 1 1 0 0
0 0 1 2 0
0 0 1 0 2

Using Γ−1 we get F ′ = x1 > 0 ∧ x2 < 0 ∧ x6 = 0 ∧ x7 = 0. This corresponds to
F = (a+c2) > 0∧(a2+b) < 0∧(a+b) = 0∧(b+c) = 0, leaving out a > 0∧b < 0∧c > 0
for simplicity.

3.2 Whitebox
Whitebox deductions focus on the factor structure. We want to deduce information
about the sign of the polynomial based on the factor structure and the sign of the
variables. This is useful in two ways: First of all, we may deduce a sign for a single
factor, which is then helpful for further deductions in Blackbox. Secondly, we may
find interdependencies between different polynomials, possibly leading to a smaller
final set of constraints for the theory solver. Note that we will not go into as much
detail about Whitebox as we did for Blackbox, as this algorithm does not need much
adaption for Incrementality and Backtracking. Additional algorithms can be found
in Appendix A. First, we will give a definition of the used operators.

3.2.1 Relational Operators
Considered are conjunctions of monomial inequalities F = A1 ∧ ... ∧ An. These are
defined as ae11 · ... · aekk σ0, where ai are variables, e ∈ N and σ is a relational operator.

Definition 3.2.1 (Relational Operators). The set of relational operators is given as
Sop = {NOOP , LTOP , EQOP , LEOP , GTOP , NEOP , GEOP , ALOP}, where
NOOP := ⊥ := FALSE and ALOP := ⊤ := TRUE and all others are the common
operators. E.g. LTOP :=< and GEOP :=≥. Additionally Brown et al. defined S+

op

= Sop −{NOOP} and Srelop = Sop −{NOOP,ALOP}.
For Whitebox deductions it is important to have an ordering of relational operators.

Definition 3.2.2 (Strength). For σ, τ ∈ Sop : σ ⪯ τ if ∀x ∈ R : [xσ0 ⇒ xτ0]. σ is
stronger than τ if σ ≺ τ , i.e. σ ⪯ τ and σ ̸= τ .

Definition 3.2.3 (Maximal Weakness). Transferring Definition 3.2.2 to vectors of
relational operators, for u, v ∈ Sn

op : u ⪯ v if ∀i ∈ {1,..., n} : ui ⪯ vi. v is maximally
weak with regards to some property P , if there is no weaker vector w satisfying this
property P .

Figure 3.1 shows a partial ordering of relational operators in regards to strength.

Definition 3.2.4. For any x ∈ R Brown et al. define op(x) as the strongest element
of Sop satisfied by x:

op(x) :=


LTOP x < 0

GTOP x > 0

EQOP else
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NOOP EQOP NEOP ALOP

LTOP LEOP

GTOP GEOP

Figure 3.1: Ordering of relational operators as given by [BVE20]

For the Whitebox algorithm, it is necessary to be able to do arithmetic and logical
operations. Therefore, it is also important to define ·,+,∧,∨.

Definition 3.2.5. For σ, τ ∈ Sop σ · τ is defined as the unique strongest γ ∈ Sop so
that ∀x,y ∈ R : [xσ0 ∧ yτ0 ⇒ x · yγ0]. + is defined analogously. σ ∧ τ is defined
as a unique γ ∈ Sop such that ∀x ∈ R : [xσ0 ∧ xτ0 ⇔ xγ0]. σ ∨ τ is again defined
analogously.

Table 3.1 represents tables of which σ, τ lead to which γ for ·,+,∧,∨.

× ⊥ < = ≤ > ̸= ≥ ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
< ⊥ > = ≥ < ̸= ≤ ⊤
= ⊥ = = = = = = =
≤ ⊥ ≥ = ≥ ≤ ⊤ ≤ ⊤
> ⊥ < = ≤ > ̸= ≥ ⊤
̸= ⊥ ≠ = ⊤ ≠ ̸= ⊤ ⊤
≥ ⊥ ≤ = ≤ ≥ ⊤ ≥ ⊤
⊤ ⊥ ⊤ = ⊤ ⊤ ⊤ ⊤ ⊤

+ ⊥ < = ≤ > ̸= ≥ ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
< ⊥ < < < ⊤ ⊤ ⊤ ⊤
= ⊥ < = ≤ > ̸= ≥ ⊤
≤ ⊥ < ≤ ≤ ⊤ ⊤ ⊤ ⊤
> ⊥ ⊤ > ⊤ > ⊤ > ⊤
̸= ⊥ ⊤ ≠ ⊤ ⊤ ⊤ ⊤ ⊤
≥ ⊥ ⊤ ≥ ⊤ > ⊤ ≥ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

∧ ⊥ < = ≤ > ̸= ≥ ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
< ⊥ < ⊥ < ⊥ < ⊥ <
= ⊥ ⊥ = = ⊥ ⊥ = =
≤ ⊥ < = ≤ ⊥ < = ≤
> ⊥ ⊥ ⊥ ⊥ > > > >
̸= ⊥ < ⊥ < > ̸= > ̸=
≥ ⊥ ⊥ = = > > ≥ ≥
⊤ ⊥ < = ≤ > ̸= ≥ ⊤

∨ ⊥ < = ≤ > ̸= ≥ ⊤
⊥ ⊥ < = ≤ > ̸= ≥ ⊤
< < < ≤ ≤ ≠ ̸= ⊤ ⊤
= = ≤ = ≤ ≥ ⊤ ≥ ⊤
≤ ≤ ≤ ≤ ≤ ⊤ ⊤ ⊤ ⊤
> > ̸= ≥ ⊤ > ̸= ≥ ⊤
̸= ̸= ̸= ⊤ ⊤ ≠ ̸= ⊤ ⊤
≥ ≥ ⊤ ≥ ⊤ ≥ ⊤ ≥ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

Table 3.1: Arithmetic and logical operations on relational operators as described in
[BVE20]
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3.2.2 Algorithm
After Blackbox focused on derivations from the factor structure, the Whitebox algo-
rithm (Algorithm 4) focuses on the polynomial structure of each factor. Thus the
factors are not considered as variables like in Blackbox (Algorithm 3). Note that the
only relevant property of the variables occurring in the factors is their sign, not their
actual value.

Algorithm 4 Whitebox from [BVE20]

Input: F : formula of the form F = A1 ∧ ... ∧Ar over the variables x1,...,xn, where
each Ai is of the form qσ0

Output: Conjunction G, which is equivalent to F and why as described before
1: create empty why map
2: for each Ai add why(Ai) = {given}
3: α := [ALOP,...,ALOP ]
4: For each xi set αi to the strongest σ such that xiσ0 appears in F or ALOP if

none exists
5: P := set of all irreducible factors of the Ais and variables
6: for p ∈ P do
7: β := PolynomialSign(p,α)
8: α′ := PolynomialSignProof(p,α, β)
9: I := {i ∈ {1,...,n} | α′

i ̸= ALOP}
10: Add why(pβ0) = why(pβ0) ∪ {

∧
i∈I xiα

′
i0}

11: for p,q ∈ P , where p ̸= q do
12: κ := strongest sign condition on q appearing in F
13: (α′, γ, t, β) := DeduceSignExplain(p,q,κ,α)
14: I := {i ∈ {1,...,n} | α′

i ̸= ALOP}
15: Add why(pγ0) = why(pβ0) ∪ {qκ0 ∧

∧
i∈I xiα

′
i0}

16: G := conjunction of all inequalities appearing as keys in why
17: return G,why

Whitebox (Algorithm 4) is structured in two main parts. The first part (lines 6-10)
focuses on the sign deductions possible for each single factor considering the given
variable signs (α). PolySign (Appendix A, Algorithm 12) derives the sign of the factor
(β) given the variable signs in α and the prior defined arithmetic (Table 3.1) in line 7.
Note that if we do not know a variable sign, it is assigned to ALOP, meaning it could
be any sign. In line 8, PolySignProof (Appendix A, Algorithm 14) then derives the
weakest possible variable signs (α′) necessary to derive β. The corresponding why
map entries are

why(pβ0) = why(pβ0) ∪ {
∧
i∈I

xiα
′
i0}.

Note that all α′
i are weaker or equal to αi. To be able to properly use Simplify

(Algorithm 7) later, we use the following addition:

∀i ∈ I : why(xiα′
i0) = why(xiα′

i0) ∪ {xiαi0}

Example 3.2.1 (Whitebox Part 1). Let P defined as in Algorithm 4. Then P =
{a + c2, a2 + b, a + b, b + c, a, b, c} and α = [GTOP,LTOP,GTOP ]. Let p = a + c2.
Then we can deduce β = GTOP using α′ = [GTOP,ALOP,ALOP ].

why(a+ c2 > 0) = why(a+ c2 > 0) ∪ {a > 0}
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The second part of Whitebox (lines 11-15) uses the approach that it may be possible
to derive a sign for one factor considering the sign of another factor. Thus we try
to determine the sign of p using qκ0 and α. κ may have already been derived in
Blackbox or in the first derivation part of Whitebox. If we cannot find a κ ̸= ALOP ,
we do not consider that q. Brown et al. describe that for a proper selection of t, it is
often possible to derive something about p using p+ tq. Thus in DeduceSignExplain
(Appendix A, Algorithm 17) we find intervals of t, in which p+ tq leads to a common
sign β (line 13). Knowing this β, κ and t we can derive a sign γ for p, by extracting
the corresponding value from the following tables:

Tded[κ,LTOP,β]
β/κ ⊥ < = ≤ > ̸= ≥ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
< ⊥ < < < ⊤ ⊤ ⊤ ⊤
= ⊥ < = ≤ > ̸= ≥ ⊤
≤ ⊥ < ≤ ≤ ⊤ ⊤ ⊤ ⊤
> ⊥ ⊤ > ⊤ > ⊤ > ⊤
̸= ⊥ ⊤ ≠ ⊤ ⊤ ⊤ ⊤ ⊤
≥ ⊥ ⊤ ≥ ⊤ > ⊤ ≥ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

Tded[κ,GTOP,β]
β/κ ⊥ < = ≤ > ̸= ≥ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
< ⊥ ⊤ > ⊤ > ⊤ > ⊤
= ⊥ < = ≤ > ̸= ≥ ⊤
≤ ⊥ ⊤ ≥ ⊤ > ⊤ ≥ ⊤
> ⊥ < < < ⊤ ⊤ ⊤ ⊤
̸= ⊥ ⊤ ≠ ⊤ ⊤ ⊤ ⊤ ⊤
≥ ⊥ < ≤ ≤ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

Table 3.2: Strongest sign condition for p given κ,β and t as described in [BVE20].
Here, LTOP and GTOP are the sign of t.

Again we find the weakest α′ necessary to deduce γ and add the deduction to why :

why(pγ0) = why(pγ0) ∪ {qκ0 ∧
∧
i∈I

xiα
′
i0}

Note that for t = 0, the deduction did not depend on q, but solely on p. Thus γ = β
and qκ0 is not necessary for the deduction.

Example 3.2.2 (Whitebox Part 2). Again P = {a + c2, a2 + b, a + b, b + c, a, b, c},
α = [GTOP,LTOP,GTOP ] and p = a + c2. Let q = a + b and κ = EQOP . Then
we can deduce γ = GTOP from using qκ0 and α′ = [ALOP,LTOP,ALOP ].

why(a+ c2 > 0) = why(a+ c2 > 0) ∪ {a+ b = 0 ∧ b < 0}

Repeating Blackbox at a later point will have the advantage that single variables
(factors) already derived a sign using Whitebox, leading to even simpler deductions
for other constraints.

3.3 Simple Substitution
The final simplification method is SimpleSubstitution (Algorithm 6). For simple sub-
stitution, variables are eliminated if they are equated to a constant value or a multiple
of another variable. If variables are multiples of each other, one variable must be se-
lected to be substituted by the other variable.
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Algorithm 5 SubstitutionMapping
Input: F, a formula of the form A1 ∧ ... ∧Ak over the variables x1,...,xn, where

Ai =
∑

j x
dj

j σ0, σ ∈ Srelop

Output: (V, sub, reason) so that for all x ∈ V : [reason[x] ⇒ x = sub[x]], V ⊆
{x1,...,xn}

1: K1 := {Ai | i ∈ {1,...,k} ∧ σi = EQOP ∧ |V ars(Ai)| = 1 ∧Ai linear}
2: K2 := {Ai | i ∈ {1,...,k} ∧ σi = EQOP ∧ |V ars(Ai)| = 2 ∧Ai linear}
3: V := ∅
4: for k ∈ K1 of the form ax+ c = 0 do
5: if x ∈ V then
6: continue
7: V := V ∪ {x}
8: sub[x] := − c

a
9: add k to reason[x]

10: for k ∈ K2 of the form axi + bxj = 0 do
11: if xi ̸∈ V ∧ xj ̸∈ V then
12:
13: V := V ∪ {xi}
14: sub[xi] := − b

axj
15: add k to reason[xi]
16: else if xi ∈ V ∧ xj ̸∈ V then
17: V := V ∪ {xj}
18: sub[xj ] := −a

b sub[xi]
19: add k ∧ reason[xi] to reason[xj ]
20: else if xi ̸∈ V ∧ xj ∈ V then
21: Analogue to case ”xi ∈ V ∧ xj ̸∈ V ”
22: else
23: if sub[xi], sub[xj ] are both constant or both not constant then
24: continue
25: else if sub[xi] is constant then
26: sub[xj ] := −a

b sub[xi]
27: overwrite reason[xj ] by reason[xi] ∧ k
28: else if sub[xj ] is constant then
29: Analogue to case ”sub[xi] is constant”
30: return (V,sub,reason)

Brown et al. define V , the set of variables to be substituted, sub[·] a mapping from the
elements of V to the value/expression by which it is to be substituted, and reason[·], a
mapping from the elements of V to a conjunction of the form Ai1 ∧ ...∧Aik such that
reason[x] ⇒ x = sub[x]. Accordingly, reason is an explanation for the substitution.

As Brown et al. do not define the creation of V , sub and reason, Algorithm 5 gives
an own approach for the derivation.

First, all variables that can be mapped to constants are included in V and the cor-
responding constraints are stored in reason (lines 4-9). If they are already in V ,
sub and reason are not updated (lines 5-6). Possible contradictions will be found in
Simplify (Algorithm 7). Then, variables that are equated with other variables are
considered (lines 10-29). If none of the variables are already used for a substitution, a
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variable is selected and V , sub and reason are adjusted accordingly (lines 11-15). If a
variable is already included, it is substituted in the constraint and the other variable
is mapped to the result (lines 16-21). If both variables are already substituted, a
distinction must be made between cases (lines 22-29). If the sub mapping for one of
the variables is constant, the constant value can be inserted into the equation and
the result is used instead of the original mapping of the other variable (lines 25-29).
We do not consider the case where both sub mappings are not constant, we then just
keep the already existing mapping. SimpleSubstitution handles the case when both
variables are constant but the equation is unsatisfiable after substitution. The result
of SubstitutionMapping combined with the input formula is used as the input for
SimpleSubstitution (Algorithm 6).

Algorithm 6 SimpleSubstitution from [BVE20]

Input: F : formula of the form F = A1 ∧ ... ∧ Ar, V : set of variables to eliminate,
sub[·]: map of each x ∈ V to the value/expression that will be substituted for
x, reason[·]: map from each x ∈ V to a conjunction of the form Ai1 ∧ ...∧Aik

such that reason[x] ⇒ x = sub[x].
Output: F ′: formula such that F ′ ∧

∧
x∈V x = sub(x) is equivalent to F , why ,

where for each Aj in F that does not appear in F ′, there is an atom A′
j in

F ′ such that why[Aj ] and why[A′
j ] are both non-empty.

1: F ′ := TRUE
2: for Aj in F do
3: Vj := Vars(Aj) ∩ V
4: A′

j := result of substituting variables Vj in Aj using sub[·]
5: if A′

j = FALSE then
6: add

∧
x∈Vj

reason[x] ⇒ ¬Aj and Aj ∧ ¬Aj ⇒ FALSE to why
7: else if Aj in in reason[x] for some x ∈ Vj then
8: continue
9: else if Aj = A′

j then
10: F ′ := F ′ ∧A′

j

11: else
12: F ′ := F ′ ∧A′

j

13: Add why(A′
j) = why(A′

j) ∪ {Aj ∧
∧

x∈Vj
reason[x] ⇒ A′

j}
14: Add why(Aj) = why(Aj) ∪ {A′

j ∧
∧

x∈Vj
reason[x] ⇒ Aj}

15: return F ′,why

SimpleSubstitution iterates over all constraints and substitutes the variables accord-
ing to their sub mapping (line 4). If the resulting constraint is FALSE, the reasons
are used for the why mapping (lines 5-6). Constraint which appear in reason, should
not be substituted, as their original form is necessary for the deductions (lines 7-8)
and they would just evaluate to TRUE. The substituted constraints are added to
the formula and reason is used for the why mapping (lines 11-14). The final set of
constraints consists of all reason constraints, unimpacted and substituted constraints.

Example 3.3.1 (SimpleSubstitution). In our running example we find:

V = {a, b}
sub[b] = −c reason[b] = [b+ c = 0]

sub[a] = c reason[a] = [a+ b = 0, b+ c = 0]
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After substitution, we reach for instance:

why(c+ c2 > 0) = why(c+ c2 > 0) ∪ {a+ c2 > 0 ∧ a+ b = 0 ∧ b+ c = 0}

3.4 Constraint Selection and UNSAT Core

3.4.1 Selection

The goal of the algorithms introduced by Brown et al. [BVE20] is to either find
UNSAT or to simplify the constraints before giving them to the next solver. Simplify
(Algorithm 7) is used to select preferably noncomplex constraints based on why.
For this purpose, all constraints (original and derived) are sorted according to a
criterion. Many options are possible for this sorting. For instance one could consider

Algorithm 7 Simplify from [BVE20]

Input: why as defined in Definition 3.0.1
Output: G: conjunction of inequality subset from which all other inequalities are

derivable by deductions in why
1: L := list of all constraints in why
2: sort L from simplest to most complex
3: FR := conjunction of all reason implications, except givens, in propositional form
4: FG := conjunction of all constraints in why in propositional form
5: for A from L in reverse order do
6: remove propositional form of A from FG

7: if A not implied by FR ∧ FG add propositional form of A back to FG

the number of terms, number of variables or degree of the respective polynomial. In
[BVE20], weights are assigned to variables depending on whether they were eliminated
in SimpleSubstitution. This weight increases with each application of the algorithm.
Variables that have not been eliminated have the highest weight. The sorting is now
primarily determined by the variable weights of each constraint. The tie breaker is
defined in Definition 3.4.1.

Definition 3.4.1 (Constraint Sorting). Let a constraint be of the form f1 · ... · fkσ0
and mσ is 1 if σ ∈ {≤ , ≥ , ̸=} and 0 otherwise.

mσ +

k∑
i=1

(12 +
∑

t∈terms(fi)

(7 + 2|vars(t)|))

From the bottom up, the constraints are then removed one by one and only added
again if they are not implied by the remaining set of constraints as determined by
why.

Example 3.4.1 (Simplify). As an example we give the why mapping after one iter-
ation of Blackbox, Whitebox and SimpleSubstitution after sorting, where the mapping
is illustrated referencing the constraint id instead of the constraint itself. Note that
a3 > 0 was automatically converted to a > 0 and is thus handled as a given.
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id constraint why
7 c > 0 given
12 c ̸= 0 7, 4 ∧ 10 ∧ 16, 4 ∧ 11
17 c(c− 1) ̸= 0 4 ∧ 8 ∧ 16
20 c(c− 1) < 0 4 ∧ 13 ∧ 16
18 c(c+ 1) ̸= 0 4 ∧ 9 ∧ 16
19 c(c+ 1) > 0 4 ∧ 15 ∧ 16
22 c2(c− 1)(c+ 1) 0 ∧ 4 ∧ 16
21 c3(c− 1)(c+ 1)2 < 0 1 ∧ 4 ∧ 16
5 a > 0 given
10 a ̸= 0 5, 4 ∧ 12 ∧ 16
9 a+ c2 ̸= 0 0, 1, 4 ∧ 16 ∧ 18
15 a+ c2 > 0 0 ∧ 13, 5, 6 ∧ 16, 4 ∧ 16 ∧ 19
6 b < 0 given
11 b ̸= 0 6, 4 ∧ 12
13 a2 + b < 0 1 ∧ 9, 0 ∧ 15, 4 ∧ 16 ∧ 20
8 a2 + b ̸= 0 0, 1, 4 ∧ 16 ∧ 17
16 a+ b = 0 2 ∧ 14
4 b+ c = 0 given
2 a+ b ≤ 0 given, 16
14 a+ b ≥ 0 3 ∧ 9, 16
0 (a+ c2)(a2 + b) < 0 given, 13 ∧ 15, 4 ∧ 16 ∧ 22
1 (a+ c2)2(a2 + b) < 0 given, 9 ∧ 13, 4 ∧ 16 ∧ 21
3 (a+ c2)4(a+ b) ≥ 0 given, 6 ∧ 14

Starting at the bottom, we drop 3 and check if it is still implied. As 3 is still implied
by 6 ∧ 14 we do not add it again. In the same way we remove 1, 0, 14 and 2, as at
least one of their implications is still fully contained. Constraint 4 has to be kept, as
given does not suffice to be implied in this algorithm. Therefore we also know that
we have to keep 7, 5 and 6 as they are not implied by anything else. We have to keep
16, as 2 (and 14) is not in the set any more. We continue this way until we reach the
following conclusion:

Dropped: {0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15}
Result set: {4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22}

With further iterations we could simplify the constraints even more.

3.4.2 UNSAT Core

If we found UNSAT, we want to check if the SAT solver may find a different (par-
tial) solution. To make sure that the current constraints leading to UNSAT are not
repeated, the SAT solver learns the UNSAT core. As the SAT solver only knows of
given constraints, it is important to give an UNSAT core consisting of the original
constraints. For this purpose, it is possible to backtrack through the why mapping
from FALSE until the necessary original constraints have been found. Brown et al. do
not specify how to backtrack the implications. We implemented why as a mapping
of a constraint to a vector of constraint sets. These vectors are filled in the order they
are created. Therefore we always use the first implication of the vector to reach the
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given constraints as fast as possible.

We go through why by starting with FALSE and selecting the first element of
why(FALSE). Then each derived constraint is also replaced with its first impli-
cation until all constraints are implied by given.

Example 3.4.2 (UNSAT Core). Let the following table be the result of the simplifi-
cation:

id constraint why
0 xz2w3 ≤ 0 given, 2 ∧ 5
1 (x+ y)3(z − 1) < 0 given
2 z + 1 > 0 given
3 w − 2 ̸= 0 given
4 x2z − xw + 1 < 0 given, 8
5 (z + 1)3x ≤ 0 given, 6
6 x = 0 2 ∧ 5
7 x2z − xw + 1 > 0 6, 8
8 FALSE 4 ∧ 7

Now we start with FALSE and backtrack until all used id’s are implied by given:

FALSE

⇒ 4 ∧ 7

⇒ 4 ∧ 6

⇒ 4 ∧ 2 ∧ 5

As 2, 4 and 5 are given, the returned UNSAT core is 2 ∧ 4 ∧ 5, which is {z + 1 >
0, x2z − xw + 1 < 0, (z + 1)3x ≤ 0}.
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Chapter 4

Incrementality & Backtracking

After knowing how the simplification algorithm designed by Brown et al. in [BVE20]
works, we will now adapt this algorithm to comply with incrementality and back-
tracking. This means, that for incrementality we want to be able to add a new
constraint after a subset was already processed and reuse the prior calculations. The
goal in backtracking is to reach a valid state for the remaining constraints after one
is removed. For example, in Blackbox we need to add a new row to the processed
matrix and also reach a valid matrix state, where all rows are implied in backtracking.
For this, we will first give the general algorithm used as the basis for backtracking,
before considering the adaptions necessary for Blackbox (Algorithm 3), Whitebox
(Algorithm 4), SimpleSubstitution (Algorithm 6) and Simplify (Algorithm 7).

Definition 4.0.1. Let C be the set of constraints added to the algorithm. This can
be either as a given constraint or a newly derived constraint. We denote a constraint
in this set as c ∈ C.
Let F be the set of constraints processed before. Thus, after one call to Simplify
F := F ∪ C.

4.1 General Backtracking
When a given constraint c is backtracked, we have to make sure that all constraints
depending on this constraint are also backtracked. If a constraint is implied by another
constraint which does not depend on c, it does not have to be backtracked.
The goal of general backtracking is to clear the why map in a way that there is no
residue of a backtracked constraint any more. For this, there are a few main steps:

1. given is removed from why(c): why(c) = why(c)/{given}.

2. If why(c) = ∅ we remove all implications containing c. Otherwise, we stop
backtracking if step 4 does not apply.

3. We drop all constraints for which why is mapped to ∅. These are not implied
by any conjunction of constraints any more.

4. There may be loops of constraints implying each other. This may happen e.g.
in line 15 of StrictBlackbox (Algorithm 1). Thus, if a constraint is only implied
a loop with no path to a given constraint, it has to be backtracked.
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5. All removed constraints are backtracked the same way.

Example 4.1.1 (Backtracking). Backtracking constraint 2 from Example 3.4.2, we
also backtrack 6, as it solely depends on 2. The corresponding why mapping looks as
follows:

id constraint why
0 xz2w3 ≤ 0 given
1 (x+ y)3(z − 1) < 0 given
3 w − 2 ̸= 0 given
4 x2z − xw + 1 < 0 given, 8
5 (z + 1)3x ≤ 0 given
7 x2z − xw + 1 > 0 8
8 FALSE 4 ∧ 7

As FALSE is still included, we may try to find the new UNSAT core:

FALSE

⇒ 4 ∧ 7

⇒ 4 ∧ 8

We reached a loop. FALSE implies itself, even though it is not a given. If we find
this kind of loop (not necessarily starting from FALSE), we backtrack the looping con-
straint. Here we could start from constraint 8, leading to constraint 7 being backtracked
as well.

id constraint why
0 xz2w3 ≤ 0 given
1 (x+ y)3(z − 1) < 0 given
3 w − 2 ̸= 0 given
4 x2z − xw + 1 < 0 given
5 (z + 1)3x ≤ 0 given

The final table does not contain any loops.

Example 4.1.2. Let F = {x ̸= 0, xy < 0} be the current set of constraints and
c = (x ̸= 0). Then it is still valid that why(x ̸= 0) = {xy < 0}. Thus, we have to
keep c and just consider it as a derived constraint instead of given.

This approach is the basis for our backtracking. In the following, we will explain the
additional steps necessary to use the algorithms on incremental inputs and backtrack
the simplification algorithm. Note that every following adaption only happens, if c is
not implied anymore. Otherwise, we stop after removing given.

4.2 Blackbox
From all the algorithms, Blackbox is the hardest to adapt to Incrementality and Back-
tracking. For instance, the differing normalization for strict and non-strict variables
cannot handle changes in strictness.
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Example 4.2.1 (Strictness Change). Let F = {x2y ≤ 0, x > 0}. Then Xs = {x},
Xn = {y} and we reach the following matrix:

x σ y
0 1 1
1 0 0

As x is strict, x2 is interpreted as x0. Thus, this reads as y ≤ 0 ∧ x > 0.
Now we backtrack x > 0. Then Xs = ∅, Xn = {x, y}. Thus, we move x behind σ and
remove the second row:

σ x y
1 0 1

What we want to read is x2y ≤ 0, as x ̸= 0 is not implied any more. But what we
read is y ≤ 0. This is because x was strict before and there is no way of knowing if
the 0 is actually a 0 or a former 2.

To deal with this problem, we use a different normalization when writing into the
matrix, than reading from it. N is the normalization as described in Section 3.1,
while N ′ is the normalization formerly used for non-strict constraints. Now we use
N for writing and N ′ for reading from a matrix.

Example 4.2.2 (Strictness Change). Let F = {x2y ≤ 0, x > 0}. Then Xs = {x},
Xn = {y} and we reach the following matrix:

x σ y
2 1 1
1 0 0

This reads as y ≤ 0 ∧ x > 0.
Now we backtrack x > 0. Then Xs = ∅, Xn = {x, y}. Thus, we move x behind σ and
remove the second row:

σ x y
1 2 1

This reads as x2y ≤ 0.

For the following adaptions we also define:

Definition 4.2.1. Let k be the number of rows of the matrix. Then

O1 : {1,...,k} 7→ C is a mapping of a row of the matrix to the formula which
was originally written to that line, normalized with N ′.

O2 : {1,...,k} 7→ C is O1, but normalized with N .

For each newly created row i (e.g. MinWtBasis), we add

why(O1[i]) = why(O1[i]) ∪ {O2[i]}

why(O2[i]) = why(O2[i]) ∪ {O1[i] ∧
∧

v∈Xs,v∈V ars(O1[i]),v ̸∈V ars(O2[i])

v ̸= 0}
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4.2.1 Incrementality
First, the new constraints are normalized as usual. Note that even though we adapted
the normalization, we still also imply the constraints following from the initial nor-
malization as before, to ensure that everything used at a later point was implied. The
first significant difference is the adaption of the matrix.

1. c contains a variable which is not included in the matrix:
We add a new zero-column in the matrix, corresponding to the constraints’
strictness, before adding a new row for the new constraint.

2. c is strict and contains a variable x ∈ Xn:
We move the corresponding column in front of σ and imply all constraints c′
which are impacted. Let c′′ be the impacted constraints after x was added to
Xs and moved.

why(c′′) = why(c′′) ∪ {c′ ∧ x ̸= 0}

Additionally, O2 is updated and we again imply O1 by the new O2 and the
strictness of the variables.

Example 4.2.3 (Incremental Blackbox). Let the current state of the matrix be

idx x1 x2 σ x3
0 1 2 0 1

with O1[0] = x1x
2
2x3 ≥ 0, O2[0] = x1x3 ≥ 0.

Now we add the constraint w4z > 0. This leads to O1[1] = w2z > 0, O2[1] = z > 0.
We update why as follows:

why(w4z > 0) = why(w4z > 0) ∪ {w2z > 0}
why(w2z > 0) = why(w2z > 0) ∪ {w4z > 0, z > 0 ∧ w ̸= 0}
why(z > 0) = why(z > 0) ∪ {w2z > 0}
why(w ̸= 0) = why(w ̸= 0) ∪ {w4z > 0, w2z > 0}
why(z ̸= 0) = why(z ̸= 0) ∪ {w4z > 0, w2z > 0, z > 0}

The transformed matrix is

idx x1 x2 x4 x3 σ
0 1 2 0 1 0
1 0 0 2 1 0

Thus O2[0] changed to O2[0] = x1x3 > 0 and

why(O2[0]) = why(O2[0]) ∪ {O1[0] ∧ x1 ̸= 0 ∧ x2 ̸= 0 ∧ x3 ̸= 0}
why(O1[0]) = why(O1[0]) ∪ {O2[0]}.

Next we consider changes to StrictBlackbox. As the matrix before adding new con-
straints was already in reduced row-echelon form, it is not necessary to perform Gaus-
sian elimination on all rows. We also do not need to find more deductions for known
constraints, as they are already solved at the backend. Instead, let I1 be the set of
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Algorithm 8 StrictBlackboxIncr, Adaption to Algorithm 1
Input: M: matrix over normalized vectors with strict variables x1,...,xs and non-

strict variables xs+1,...,xn, why as defined in Definition 3.0.1, I1 set of new
strict rows of M , K original unit matrix

Output: (M , is_sat) so that either Γ−1(M) is UNSAT and is_sat = FALSE or
Γ−1(M) is SAT and is_sat = TRUE

1: I2 := {j ∈ N | j ̸∈ I1 ∧ j strict row of M}
2: produce M ′ by Gaussian elimination of rows I1 of M and row reduction of the

result by rows I2
3: update K, so that K ·MO =M ′, where MO is the original matrix without any

Gaussian elimination.
4: K ′ := matrix so that K ′ ·M =M ′

5: for i ∈ I1 do
6: N1 := set of column indices of non-zero entries of row i of K
7: N2 := set of column indices of non-zero entries of row i of K ′

8: E1 := {Γ(O2[i]) | i ∈ N1}
9: E2 := {Mi,_ | i ∈ N2 ∧ i ̸∈ I1} ∪ {Γ(O2[i]) | i ∈ N2 ∧ i ∈ I1}

10: w := row i of M ′

11: if w is [0,...,0,1]⊕ [0,...,0] then
12: add

∧
u ∈ E1

Γ−1(u) ⇒ FALSE to why
13: add

∧
u ∈ E2

Γ−1(u) ⇒ FALSE to why
14: return M ′, FALSE
15: else if w is not zero then
16: add

∧
u ∈ E1

Γ−1(u) ⇒ Γ−1(w) to why
17: for each v ∈ E1 add

∧
u∈E−{v}∪{w} Γ

−1(u) ⇒ Γ−1(v) to why
18: add

∧
u ∈ E2

Γ−1(u) ⇒ Γ−1(w) to why
19: for each v ∈ E2 add

∧
u∈E−{v}∪{w} Γ

−1(u) ⇒ Γ−1(v) to why
20: else
21: for each v ∈ E1 add

∧
u∈E−{v} Γ

−1(u) ⇒ Γ−1(v) to why
22: for each v ∈ E2 add

∧
u∈E−{v} Γ

−1(u) ⇒ Γ−1(v) to why
23: return M ′, TRUE

row-indices of new strict rows and I2 be the set of row indices of all other strict rows.
Then we perform Gaussian elimination on the rows of I1, before row-reducing them
by the rows of I2.
Now we define two kinds of implications. The first one implies interdependencies for
original constraints (i.e. O2). Thus, the rows of the existing transformation matrix
for the rows used for creating w are added to the row w. Secondly, we imply w by
other derived constraints. K ′ is a new transformation matrix, showing which of the
current rows sum to w. For new rows, we always use O2, as they may have been
changed as well.
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Example 4.2.4 (Incremental StrictBlackbox). Let rows 0, 1, 2 be given and rows 3, 4
be new:

idx x1 x2 x3 x4 σ
0 0 0 1 0 0
1 1 2 0 1 0
2 0 0 2 1 0
3 1 1 2 0 1
4 0 1 0 1 1

Row 2 was derived using row 0 and O2[2] = x3x4 > 0. Now first we perform Gaussian
elimination on the new rows:

idx x1 x2 x3 x4 σ
0 0 0 1 0 0
1 1 2 0 1 0
2 0 0 2 1 0
3 1 2 2 1 0
4 0 1 0 1 1

Next, the resulting rows are row reduced by rows 0, 1, 2

idx x1 x2 x3 x4 σ
0 0 0 1 0 0
1 1 2 0 1 0
2 0 0 2 1 0
3 2 2 2 2 0
4 0 1 2 2 1

The deduced constraint is x2 < 0. As the new row 3 is a ”zero”-row, we found a new
deduction for the constraint. Now for the implications we have the sets

E31 = {x1x2 < 0, x2x4 < 0, x1x4 > 0}
E41 = {x2x4 < 0, x3x4 > 0, x3 > 0}
E32 = {x1x2 < 0, x2x4 < 0, x1x4 > 0}
E42 = {x2x4 < 0, x4 > 0}



Blackbox 39

Thus we derived

why(x1x2 < 0) = why(x1x2 < 0) ∪ {x2x4 < 0 ∧ x1x4 > 0}
why(x2x4 < 0) = why(x2x4 < 0) ∪ {x1x2 < 0 ∧ x1x4 > 0}
why(x1x4 < 0) = why(x1x4 < 0) ∪ {x2x4 < 0 ∧ x1x2 > 0}

why(x2 < 0) = why(x2 < 0) ∪ {x2x4 < 0 ∧ x3x4 > 0 ∧ x3 > 0, x2x4 < 0 ∧ x4 > 0}
why(x2x4 < 0) = why(x2x4 < 0) ∪ {x2 < 0 ∧ x3x4 > 0 ∧ x3 > 0}
why(x3x4 > 0) = why(x3x4 > 0) ∪ {x2 < 0 ∧ x2x4 < 0 ∧ x3 > 0}
why(x3 > 0) = why(x3 > 0) ∪ {x2 < 0 ∧ x2x4 < 0 ∧ x3x4 > 0}
why(x2x4 < 0) = why(x2x4 < 0) ∪ {x2 < 0 ∧ x4 > 0}
why(x4 > 0) = why(x4 > 0) ∪ {x2 < 0 ∧ x2x4 < 0}

Finally, for MinWtBasis, we simply change the selection of w, so that S(w) ⊆ S(c) or
S(c) ⊆ S(w). Additionally, we do not actually delete rows in line 14, but save a list
of rows to ignore in future steps together with the row leading to its removal.

Definition 4.2.2 (Removed Set). We define LR = {(wR, w) ∈ N2 | w leads to removal}.
In case a selected w is not returned to the result set in MinWtBasis (Algorithm 2),
the tuple (w,w) is added to LR.

Example 4.2.5 (Incremental MinWtBasis). Let the matrix be

idx x1 x2 σ x3 x4
0 0 0 1 0 1
1 2 0 1 1 2
2 0 2 0 1 0

with the new row being 2. Then only rows 1 and 2 can be selected for w, as S(0) =
{x4} ̸⊆ {x3} = S(2) and S(2) ̸⊂ S(0). As |S(1)| is maximal, we select w as row 1.
We can derive [0,...,0,1] ⊕ [0,..,0] (mod 2) using rows 1 and 2. Thus, we reach the
matrix

idx x1 x2 σ x3 x4
0 0 0 1 0 1
1 2 0 1 1 2
2 0 2 0 1 0
3 2 0 1 2 2

with LR = {(1, 1), (2, 1)} and

O1[3] = x21x3x4 = 0

O2[3] = x3x4 = 0

why(O1[3]) = why(O1[3]) ∪ {O2[3]}
why(O2[3]) = why(O2[3]) ∪ {O1[3] ∧ x1 ̸= 0}
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4.2.2 Backtracking

Backtracking in Blackbox focuses mainly on two aspects: Changes in strictness and
how to deal with rows created using the backtracked constraint c. Let I be the set
of row indices impacted by a change, identifiable by a 1 entry in the transformation
matrix. First of all, if c is of the form x ̸= 0, we backtrack the strictness of x. Thus
x is moved behind σ and all rows with an entry ̸= 0 are added to I. Furthermore,
all rows, for which Γ−1(O1(i)) = c or Γ−1(O2(i)) = c have to backtracked and erased
in the following way: All rows j, for which the entry in the transformation matrix
K[j,i] = 1, have to be reset to their original form. Thus, if Mj is the j’th row of
M , Mj = Γ(O1[j]). The j’th row of K is reset as well and j is added to I. If only
Γ−1(Mi) = c, the i’th row itself is reset in the same way as j before and added to
impacted. Now for all rows in I O2 is adapted to the new level of strictness and
implied using O2:

why(O1[i]) = why(O1[i]) ∪ {O2[i]}

why(O2[i]) = why(O2[i]) ∪ {O1[i] ∧
∧

v∈Xs,v∈V ars(O1[i]),v ̸∈V ars(O2[i])

v ̸= 0}

All reset rows are considered as new rows for the next iteration of Blackbox. As a
last step, we remove all tuples from LR which contain a backtracked constraint at
any position.

Example 4.2.6. Let the following matrix be given as well as O1[4] = x20x1x2 ≥ 0
and LR = {(1,1), (2, 1)}.

idx x0 x1 x2 σ x3 x4
0 0 1 2 1 0 0
1 0 2 0 1 1 2
2 0 0 2 0 1 0
3 0 2 0 1 2 2
4 2 2 1 1 0 0

We backtrack {x2 ̸= 0, x3x4 = 0, x21x3x
2
4 ≤ 0, x1 < 0}. Thus row 4 is reset using O1,

rows 0, 2 and 3 are erased and x2 is moved:

idx x0 x1 σ x2 x3 x4
1 0 2 1 0 1 2
4 2 1 0 1 0 0

O2[4] = x1x2 ≥ 0

why(O1[4]) = why(O1[4]) ∪ {O2[4]}
why(O2[4]) = why(O2[4]) ∪ {O1[4] ∧ x1 ̸= 0}

As row 1 was not impacted by any change, there is no need for an implication update.
Lastly, as row 2 was backtracked, LR = ∅.
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Algorithm 9 BlackboxBacktracking, Adaption of Algorithm 3
Input: C: set of real polynomial constraints to backtrack, M matrix, K unit matrix,

O1, O2, Xs, Xn over the variables {x1,...,xn} as defined above
Output: M,why∗

1: I := ∅
2: for c ∈ C do
3: c′ := N (c)
4: if c′ of form xi ̸= 0 then
5: I := I ∪ {i ∈ N |Mi,j > 0, j ∈ {1,...,n}}
6: move xi behind σ
7: Xs = Xs/{xi}, Xn = Xn ∪ {xi}
8: else
9: IB := {i ∈ N | O1[i] = c′ ∨O2[i] = c′}

10: IS := IS ∪ {i ∈ N |Mi = c′}
11: IS := IS ∪ {i ∈ N | ∃j ∈ IB : K[i, j] = 1}
12: for i ∈ IS do
13: Mi = Γ(O1[i])
14: I := I ∪ IS
15: for i ∈ I do
16: O2[i] = Γ−1(Mi)
17: why(O1[i]) = why(O1[i]) ∪ {O2[i]}
18: why(O2[i]) = why(O2[i]) ∪ {O1[i] ∧

∧
v∈Xs,v∈V ars(O1[i]),v ̸∈V ars(O2[i])

v ̸= 0}
19: return M,why∗

4.3 Whitebox

Opposed to Blackbox, Whitebox can be used with Incrementality and Backtracking
with only few changes.

4.3.1 Incrementality

Whitebox is originally executed on all factors and variables. As the loops are still
executed on the polynomials of the factors, no used algorithm like PolySign (Algo-
rithm 12) or DeduceSignExplain (Algorithm 17) have to be changed. Thus, our goal is
to restrict for which factors the two loops are executed. As a basis for this restriction,
we exploit the fact that derivations are not necessary for known constraints, since
these have either already been solved in the backend or are implied by constraints for
which this is the case. We adapt three parts:

1. How we update the variable signs saved in α.

2. The definition of the set of factors and variables (P ), for which the loops are
executed.

3. For which combination of polynomials the second loop should be executed, which
derives a sign for some p ∈ P knowing the sign of some q ∈ P using p+ tq.

Let C be the set of newly considered constraints. First, we update α. Let c ∈ C be a
new constraint and a (possible) sign condition with xσ0. Then α[x] = σ if σ ≺ α[x].
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Example 4.3.1 (Update α). Let α[x] = GEOP be the current state of α and x > 0
be a new constraint. Then we update α[x] = GTOP .

Next, instead of only defining P , we define two sets P1 and P2. P1 is the main set,
containing all new factors and all variables for which α was changed. P2 on the other
hand, is only used for the second loop and consists of all other factors and variables
normally contained in P .

Example 4.3.2 (Factor Sets). Let {x2 + y, z − y, x} be the currents factors and
{z + 1} be the new factors. Additionally, α[x] changed. Then P1 = {z + 1, x} and
P2 = {x2 + y, z − y, y, z}

Now the first loop is executed for all p ∈ P1. Meanwhile, the second loop is executed

1. for all p ∈ P1, q ∈ P1 with p ̸= q and

2. for all p ∈ P1, q ∈ P2.

With this approach, we derive as much as possible about new constraints (P1) without
having unnecessary derivations for known constraints.

4.3.2 Backtracking

Building on our General Backtracking (Section 4.1), only α needs to be updated for
Whitebox. If c = (xσ0) is backtracked and α[x] = σ, then α[x] is set to the strongest
sign found in the remaining constraints. If no other sign constraint exists for x,
α[x] = ALOP applies.

Example 4.3.3 (Backtrack α). Let F = {x2 + y ≤ 0, y ≤ 0, y < 0, x > 0} be the
current set of constraints and α[y] = LTOP and α[x] = GTOP . Now we backtrack
{y < 0, x > 0}.
As y ≤ 0 still remains, we update α[y] = LEOP . For x on the other hand, there is
no remaining sign condition. Thus α[x] = ALOP .

All factors impacted by a variable change are added to P1 for the next iteration of
incremental Whitebox.

4.4 Simple Substitution

4.4.1 Incrementality

Simple Substitution does not need much adaption to be incremental. First, we update
sub and reason in Algorithm 5, using only the new constraints (given or derived). Then
we distinguish two steps:

1. If sub and reason changed, we execute SimpleSubstitution for all prior con-
straints which are impacted by this change.

Example 4.4.1. Let F = {x− y = 0, y2 + z ≤ 0} and we add y − z = 0. Then
we change from sub[x] = y, reason[x] = {x − y = 0} to sub[x] = z, sub[y] =
z, reason[x] = {x− y = 0, y − z = 0}, reason[y] = {y − z = 0}.
Thus, we reach F = {x− y = 0, y − z = 0, z2 + z ≤ 0}
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2. SimpleSubstitution is executed for all new constraints which were not used to
adapt sub and reason.

Example 4.4.2. Let F = {x − y = 0, y2 + z ≤ 0} and sub[x] = y, reason[x] =
{x − y = 0} and we add x + y2 ≥ 0. Then sub and reason are not adapted, as
the new constraints is not a linear equation.
Thus, we reach F = {x− y = 0, y2 + z ≤ 0, y + y2 ≥ 0}.

It is important to list the constraints in reason in the right order, as this is required
for backtracking.

4.4.2 Backtracking

Algorithm 10 BacktrackSubstitutionMapping
Input: c, a constraint of the form axi + bxj = 0 with b ̸= 0 ∧ a ̸= 0, V, sub, reason

so that for all x ∈ V : [reason[x] ⇒ x = sub[x]]
Output: (V, sub, reason) so that for all x ∈ V : reason[x] ⇒ x = sub[x]
1: for v ∈ V : c ∈ reason[v] do
2: R := [r1,...,rn] = reason[v]
3: if r1 = c then
4: Remove v from V, sub, reason
5: continue
6: while rn+1 ̸= c do
7: x′i ∈ V ars(rn) ∧ x′i ∈ V
8: x′j ∈ V ars(rn) ∧ x′i ̸= x′j
9: sub[v] = sub[v]

sub[x′
i]
x′j

10: Remove rn from reason[v] and update rn
11: return (V,sub,reason)

In backtracking, we want to derive the new sub and reason maps. For this, we traverse
reason in reverse order and revert the substitution until we reach the first constraint
before c. Note that we only consider constraints of the form axi + bxj = 0 for
backtracking, as all other constraints would not be used in reason. For xj = 1, this
also depicts constraints of the form ax+ c = 0.

Lemma 4.4.1. Let c = (aixi + biyi = 0) and ai,bi ̸= 0.
Let sub[xk] = − bj

aj
yi and reason[xk] = [f1,...,fn,c]. Now let reason′[xk] = [f1,...,fn].

Then sub′[xk] =
sub[xk]
sub[xi]

xi.

Proof. Let ax+ by = 0 and cy+ dz = 0 be constraints used for SubstitutionMapping.
Then sub[y] = −d

c z and sub[x] = − b
a (−

d
c z) = − b

asub[y] with reason[y] = [cy+dz = 0]
and reason[x] = [ax+ by = 0, cy + dz = 0].
We want to reach sub[x] = − b

ay with reason[x] = [ax+ by = 0].

Now sub[x]
sub[y]y =

− b
a (− d

c z)

− d
c z

y = − b
ay.

Example 4.4.3 (Backtrack SimpleSubstitution). Let sub[x] = −20z, reason[x] =
{6x + 12y = 0,−y + 10z = 0}, sub[y] = 10z, reason[y] = {−y + 10z = 0}. Now we
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backtrack −y + 10z = 0.

sub[x] =
sub[x]
sub[y]

y =
−20z

10z
y = −2y

reason[x] = {6x+ 12y = 0}

sub[y] and reason[y] are deleted and y is dropped from V .

Note that this does not apply to any sub[x] = 0, as division by 0 is prohibited. Thus,
in the case of sub[x] = 0, we traverse reason[x] in chronological order and substitute
accordingly until we reach c.

4.5 Simplify

Lastly, Simplify is only adapted slightly. As the backend is also incremental, all con-
straints that were already transmitted to the backend have been solved at this point.
Thus, it is more complex to backtrack contained constraints and to add simplifications
of these constraints, than to just add simplifications for new constraints. Therefore,
we execute the test of implication only for constraints which are not known to the
backend.

Additionally, sorting is done in an adjoining way. This means that all newly added
and newly derived constraints are sorted separately from the known constraints and
then appended, so that the known constraints are on top. This is because all known
constraints are either in the backend or implied by one of the backend constraints and
will be removed during Simplify in any case. Having these constraints at the top has
the advantage that new constraints can be implied by known constraints at any time.

Example 4.5.1. Let Lold = {x2 + y ≤ 0, x ̸= 0, z ̸= 0, y ≤ 0, x + z < 0}, L = {z >
0, x < 0} and LB = {x2 + y ≤ 0, x+ z < 0}.

id constraint why
0 x2 + y ≤ 0 given, 2 ∧ 4

2 x ̸= 0 1, 6
3 z ̸= 0 1, 5
4 y ≤ 0 0 ∧ 1
1 x+ z < 0 given

5 z > 0 given
6 x < 0 1 ∧ 5

We select z > 0 to add to the backend, as x < 0 is implied. This example shows that
even though more complex constraints may be implied by less complex constraints,
it is too late, if the theory solver already solved it so far. If the order of the given
constraints changes slightly, that already impacts how complex the constraints given
to the backend are:
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id constraint why
1 x ̸= 0 0, 6
2 z ̸= 0 0, 5
0 x+ z < 0 given

4 y ≤ 0 0 ∧ 3
3 x2 + y ≤ 0 given, 2 ∧ 4

5 z > 0 given
6 x < 0 0 ∧ 5

Now in the first call of Simplify, 0 is selected, as it is only implied by given. In the
second call 4 is selected, as 3 is implied by 2 ∧ 4. In the third call we select 5, which
results in the set {0, 4, 5} = {x+ z < 0, y ≤ 0, z > 0} opposed to {x+ z < 0, x2 + y ≤
0, z > 0}.

Algorithm 11 SimplifyIncr (Adaption of Algorithm 7)

Input: why so that from given inequalities all others are derivable, Lold: sorted list
of old constraints

Output: G: conjunction of inequality subset from which all other inequalities are
derivable by deductions in why

1: L := list of all new constraints in why
2: sort L from simplest to most complex
3: Append L to Lold

4: LB := list of all constraints known to backend
5: FR := conjunction of all reason implications except givens in propositional form
6: FG := conjunction of all constraints in why in propositional form
7: for A from Lold in reverse order, A ̸∈ LB do
8: remove propositional form of A from FG

9: if A not implied by FR ∧ FG add propositional form of A back to FG
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Chapter 5

Experiments

Finally, we want to evaluate the introduced methods. They were implemented as a
module in SMT-RAT, a solver which was mainly developed for QFNRA and QFNIA
formulas [CLJÁ12]. For arithmetic computations, the own library CArL was imple-
mented [KÁ18]. From the variety of solver modules that SMT-RAT offers, we will
use an implementation of the ”Cylindrical Algebraic Covering” method [ÁDEK21] for
the experiments, which we will refer to as Covering.
For compilation, g++ version 11.3.0 was used. The code was executed on the RWTH
High Performance Computing Cluster containing 2 Intel Xeon Platinum 8160 Proces-
sors “SkyLake” (2.1 GHz, 24 cores each) and 1250 nodes with 48 cores and 192 GB
main memory each (4 GB main memory per core). Accumulated the number of cores
is 60000 [clu].
All experiments are evaluated on the benchmark set SMT-LIB QF_NRA [smta], con-
taining 12134 test instances of QFNRA formulas.
We use a time limit of 10 minutes and a memory limit of 4 GB.
If this memory limit is reached, we categorize that run as memout. Note that mem-
outs are sometimes wrongly categorized as segfaults.

In the following sections, we will take a closer look at the results produced by Simplify
with and without incrementality and backtracking. To analyse the impact of Simplify
on the whole solver process, we consider Covering without Simplify as a comparison.

5.1 Result Comparison

We compare the results of Covering with (Simplify) and without (Compare) inpro-
cessing. The solvers are each executed once incremental (Incr) and once without.
Table 5.1 shows the results of SMT-RAT with Simplify (both incremental and non-

incremental) and without Simplify. Note that at this point we set a limit of 3 iterations
of the simplification algorithms.
Simplify solves more instances than the non-incremental comparison. There are more
”sat” and ”unsat” results and fewer ”unknown”. While the number of memouts (and
segfaults) significantly decreased, the number of timeouts increased.
Incremental Simplify on the other hand solves more instances than any other consid-
ered approach. It has the highest number of ”sat” and ”unsat” and the lowest number
of ”unknown”. Memouts and segfaults are slightly higher compared to Simplify, but
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CompareIncr SimplifyIncr Simplify Compare VB
sat 4919 4939 4900 4882 4957
unsat 4777 5011 4778 4766 5067
unknown 163 134 140 161 117
timeout 1367 1475 1887 1358 1630
memout 874 536 403 926 264
segfault 34 39 26 41 99
solved 9696 9950 9678 9648 10024

Table 5.1: Result comparison with and without Simplify, each incremental and non-
incremental.

lower than CompareIncr. Opposed to this, the number of timeouts is lower than Sim-
plify, but higher than CompareIncr.

(a) All

(b) Middle segment (c) End segment

Figure 5.1: Performance profile of Simplify, SimplifyIncr, Compare and CompareIncr
with logarithmic scale.

Fig. 5.1 shows the performance profile of each of these solvers. The plotted lines
represent the number of solved instances vs. the cumulated runtime of the solved
instances. First of all, we can see that the runtime behaviour is quite similar for all
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solvers. Most instances can be solved fast, increasing only slowly, but a few hun-
dred instances are more complex, taking almost all the given runtime. This change
is relatively steep. Fig. 5.1 c) puts emphasis on the instances with a high runtime.
Simplify and SimplifyIncr differ in the way that SimplifyIncr solves more instances,
while Simplify partly has a less steep rise, showing that it has fewer instances solved
quickly. b) zooms into the range of 4000 to 7000 solved instances. In this range, Sim-
plify and Compare are almost identical to their incremental counterparts. Simplify
and SimplifyIncr have a slightly higher runtime than the other solvers.

In the following, we will take a closer look at CompareIncr vs. SimplifyIncr and
Simplify vs. SimplifyIncr.

5.2 SimplifyIncr vs. CompareIncr

We have established that SimplifyIncr performs better than CompareIncr considering
the answers. Now we will first take a look at the runtimes before establishing how
the answers changed from CompareIncr to SimplifyIncr.

5.2.1 Runtimes

Apart from the number of solved instances, the runtime is also an important assess-
ment criterion. Fig. 5.2 shows the runtime of SimplifyIncr plotted against the runtime
of CompareIncr with a logarithmic scale.

Figure 5.2: Runtime Comparison between SimplifyIncr and CompareIncr with loga-
rithmic scale. Each dot represents one instance of the SMT-LIB benchmark set.

Note that memouts are automatically assigned a runtime of 605 s, considering the
runtime limit of 600 s. Timeouts on the other hand are assigned a runtime of 610 s.
Fig. 5.2 shows that mostly both solvers lead to similar runtimes. A large number of
instances accumulate near the origin, which means that most instances can be solved
quickly. On the other hand, there are only few solved instances with a high runtime,



50 Experiments

without being categorized as memout or timeout. SimplifyIncr sometimes takes a
little longer in the middle segment, which can be detected by the isolated dots on the
right side of the middle line. CompareIncr regularly leads to timeouts/memouts when
SimplifyIncr can solve the instances quickly. On the other hand, the timeouts/mem-
outs of SimplifyIncr only start when CompareIncr needs a little more time than with
the large number of simple instances. One reason why SimplifyIncr quickly solves in-
stances that lead to timeouts or memouts in CompareIncr could be, that UNSAT has
already been found in one of the algorithms described above (Chapter 3, Chapter 4).

Additionally to the general runtime, we would like to know how much the simpli-
fications improved the runtime of the theory solver. Fig. 5.3 shows the runtime
comparison of the backend for SimplifyIncr and Simplify for those instances which
were solved and for which the backend was called at least once.

Figure 5.3: Comparison of backend runtime for SimplifyIncr and CompareIncr

Mostly all instances are oriented at the middle line, but clearly most instances are
slightly faster in SimplifyIncr opposed to Compare. As this improvement is only slight
and many instances are even slower in CompareIncr, the primary advantage of Sim-
plify is not actually its simplification but the ability to identify UNSAT in a lot of
cases.
As this runtime was measured in total, it is not clear, if Covering actually takes longer
in CompareIncr or if it was just called less often.

Fig. 5.4 shows how often Covering was called for CompareIncr vs. SimplifyIncr. It
is clear that SimplifyIncr calls Covering significantly less than CompareIncr. This
underlines the point that the main advantage of SimplifyIncr is its solving capability.
A more detailed analysis of the runtime of SimplifyIncr is given in Section 5.3.
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Figure 5.4: Number of backend calls compared for SimplifyIncr and CompareIncr
with logarithmic scale

5.2.2 Answer Transitioning

Figure 5.5: Transition of CompareIncr (y-axis) to SimplifyIncr (x-axis) normalized
with colour scheme as percentage normalized to 100% per row

Additionally to the runtime, we also want to establish how the different answers
changed. A theory could be that most of the memouts of CompareIncr became time-
outs for SimplifyIncr. One question could be where the additionally solved instances



52 Experiments

come from? There are 281 instances solved by SimplifyIncr but not by CompareIncr.
As the number of memouts decreased, while the number of timeouts increased for
SimplifyIncr, did memouts become timeouts?

Fig. 5.5 shows the number of instances transitioning from an answer for CompareIncr
to an answer of SimplifyIncr. The colour scheme is normalized to show the percent-
age of transitions per row. The number of instances which had a valid answer for
CompareIncr but transitioned to timeout, memout or segfault are exceedingly small.
On the other hand, 20 instances, making up 12%, of unknowns and 247 instances,
making up 18%, of timeouts became unsat. The number of newly found satisfiable
instances is relatively small as well. Many memouts transitioned to timeouts, which is
consistent with the changes in Table 5.1. That segfaults primarily became memouts
and timeouts is expected, as these segfaults are wrongly categorized as segfaults and
actually represent memouts.

Figure 5.6: Number of instances solved by SimplifyIncr but not by CompareIncr with
UNSAT result by Simplify or the theory solver

Fig. 5.6 only considers instances, which returned UNSAT at some point during in-
processing or the theory solver and shows how many of the instances newly solved by
SimplifyIncr had UNSAT as a result from Simplify, the theory solver or both. The
grand majority of 81% were only found to be UNSAT by Simplify. An additional
16.7% were found UNSAT by both. Thus 97.7% of newly solved instances are (par-
tially) solved by Simplify. The remaining 2.3% were then solved only by the backend
with the help of simplified constraints.

5.2.3 UNSAT Cores

How do the sizes of the UNSAT cores differ? Fig. 5.7 depicts the sizes of the UNSAT
cores of SimplifyIncr and CompareIncr against each other, which was measured as
the maximum size of the UNSAT cores of each instance. Considered are only cases
in which both solvers created an unsat core.
The range of sizes varies between 1 and 45, where the maximum value of 45 is only
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Figure 5.7: Comparison of size of UNSAT cores of SimplifyIncr and CompareIncr

reached by SimplifyIncr. We can see a clear tendency towards the middle with rela-
tively close deviations on both sides. Thus the sizes of UNSAT cores are quite similar
in most cases. Nevertheless, more instances have a bigger UNSAT core in Simpli-
fyIncr. The deeper colour close to the origin also signifies that most UNSAT cores
are relatively small. The deviations that stand out are visible in the vertical line
on the left side of the graph. These indicate that in some cases the UNSAT core of
SimplifyIncr is significantly smaller than the one of CompareIncr.

5.2.4 Benefit Correlation

Also of interest to investigate is whether there are certain characteristics for which
SimplifyIncr is particularly helpful. To this end, we examine the maximum number
of constraints that are given, the maximum degree of of these constraints and the
maximum number of terms in log scale. Note that statistics are only collected for
instances answered with ”unsat”, ”sat” or ”unknown” and since log[0] is undefined,
instances solved by Simplify itself are not visible.

Fig. 5.8 depicts the degree, number of terms and number of constraints compared
for given constraints and constraints given to the theory solver in the end.
In a) we can see that the output degree is usually reduced quite well. Even relatively
small changes in the degree can have a significant impact. There are only few in-
stances with a higher output than input degree. With a high majority, newly solved
instances lie on the middle line, meaning that the input and output degree are equiv-
alent. They also tend to have a low input degree.
For instances solved by both solvers, we can also see a clear tendency towards the mid-
dle line in b). Thus, the number of terms does not change much for those instances.
As we saw before in Fig. 5.6, most newly solved instance are solved by SimplifyIncr
itself, meaning that the output terms are zero. For these, the number of input terms
can be much higher. Generally, the number of terms is reduced.
In c) it is noticeable that most instances have a lower maximum number of constraints
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(a) Degree (b) Terms

(c) Constraints

Figure 5.8: Comparison of complexity characteristics of constraints given for inpro-
cessing and created for the theory solver with logarithmic scale. Newly solved in-
stances marked in red.

in the input than in the output. That strikes as surprising, as usually multiple con-
straints are used to imply one given constraint. It may be the case that mostly the
highest input constraints were created in an iteration where SimplifyIncr found UN-
SAT, and the maximum output constraints are smaller in all other iterations. Another
idea would be that the given constraints are interdependent enough to be implied by
the same simpler constraints. Opposed to a) and b), the newly solved instances are
more scattered and primarily occur for a higher number of input constraints.

When is SimplifyIncr especially helpful? Apparently, the newly solved instances
mostly have a relatively low degree and a limited number of constraints. It seems
like SimplifyIncr is especially helpful for a high number of terms.

5.2.5 Standard Preprocessing

By default, SMT-RAT uses a preprocessing module called "FPPModule". This calls
various preprocessing modules in succession, which are intended to simplify the con-
straints before the SAT solver as much as possible [fpp]. In this context, the last
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question of this section is whether this module improves performance further or even
makes Simplify redundant.
We consider SimplifyIncr and CompareIncr both in a preprocessed version and refer
to the corresponding solvers as SimplifyPrep and ComparePrep.

CompareIncr SimplifyIncr SimplifyPrep ComparePrep
sat 4919 4939 5062 5057
unsat 4777 5011 4892 4862
unknown 163 134 86 85
timeout 1367 1475 1337 1045
memout 874 536 715 1033
segfault 34 39 42 52
solved 9696 9950 9954 9919

Table 5.2: Result comparison for SMT-RAT with Simplify and without Simplify
(Compare) each with and without preprocessing

Table 5.2 again shows the answer given by SimplifyIncr, CompareIncr, SimplifyPrep
and ComparePrep. Note that all considered solvers are incremental. ComparePrep
is highly improved opposed to CompareIncr. Nevertheless, SimplifyIncr still outper-
forms ComparePrep. SimplifyPrep is a slight improvement for SimplifyIncr, visible
in the number of solved instances. Also, the number of timeouts notably decreased
after preprocessing, but the number of memouts increased.

(a) All (b) Middle segment

Figure 5.9: Performance profile of SimplifyIncr, SimplifyPrep, CompareIncr and Com-
parePrep with logarithmic scale.

Fig. 5.9 again plots the cumulated runtime of the solved instances for SimplifyIncr,
SimplifyPrep, CompareIncr and ComparePrep. All of these solvers have similar run-
time behaviour, but the steep runtime increase happens later for solvers with pre-
processing. It is again visualized that the number of solved instances are similar for
SimplifyIncr, SimplifyPrep and ComparePrep and much higher than for CompareIncr.
In b) we can see that solvers show a similar curve depending on whether preprocessing
is used or not. In these two pairs, Simplify is the slower one in this segment, before
being surpassed by Compare.
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5.3 SimplifyIncr vs. Simplify

In this section, we investigate how much the adaptions of Chapter 4 improved the
solver. In this regard, we take a look at the runtime comparison, both in general and
with a focus on the different algorithms. Moreover, as in Section 5.2, we will also
evaluate the transitions of the answers in Table 5.1 and the sizes of the UNSAT cores.
Lastly we will take a look at the sizes of the why maps, before investigating if a limit
on the iterations of the algorithms improves the results and if so which limit should
be used. For all initial investigations, we consider a limit of 3 iterations.

5.3.1 Memory

Table 5.1 shows a shift from timeouts to memouts from Simplify to SimplifyIncr. This
makes sense, as the incrementality is dependent on a lot of saved information. This
includes the strictness of variables, the matrices, O1 and O2, the mapping between
factors and variables for Blackbox, α for Whitebox and sub, reason for SimpleSubsti-
tution to name a few. For Simplify, we generate these in each iteration and algorithm
application again.

5.3.2 Runtimes

Fig. 5.10 shows a runtime comparison between Simplify and SimplifyIncr. Note that
the results are also impacted by the fact that Simplify uses a non-incremental version
of Covering, opposed to the incremental Covering of SimplifyIncr.

Figure 5.10: Runtime comparison between SimplifyIncr and Simplify with logarithmic
scaling

Opposed to Fig. 5.2 we can clearly see a tendency towards a worse runtime for Sim-
plify. Both solvers are sometimes better or worse for very easily solved instances.
Yet, there are clear deviations along the middle line, indicating faster solving for Sim-
plifyIncr. Additionally, similar to Fig. 5.2, while SimplifyIncr only has timeouts or
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memouts for instances for which Simplify also needed a bit of time, Simplify produced
timeouts/memouts for instances which were easily solved by SimplifyIncr.

Now, even though we identified SimplifyIncr to be faster than Simplify, we do not
know the impact of the runtime of the inprocessing itself or the theory solver.

SAT Solver Inprocessing Theory Solver
[s] % [s] % [s] %

A Simplify 0.36 8.24 2.50 57.21 1.51 34.55
SimplifyIncr 0.37 19.37 0.41 21.47 1.13 59.16

B Simplify 0.28 5.51 2.99 58.86 1.81 35.63
SimplifyIncr 0.31 13.72 0.52 23.01 1.43 63.27

Table 5.3: Mean runtime for the different solver parts of Simplify and SimplifyIncr.
A stands for all instances solved by both solvers, while B is the subset of instances,
for which the backend was actually called.

Table 5.3 shows the runtime influence of the SAT Solver, inprocessing and the theory
solver, where A was created on all data, while B was created on those instances, for
which the theory solver was actually used. We can see that the SAT solver only varies
slightly between Simplify and SimplifyIncr. As SimplifyIncr is significantly faster than
Simplify, the percentage of the SAT solver is of course higher for SimplifyIncr. Inpro-
cessing takes much longer in Simplify, while the theory solver is only slightly faster in
SimplifyIncr. This might be influenced by the incrementality of the theory solver in
SimplifyIncr. From A to B only the runtime of the SAT Solver decreases, while the
runtime for inprocessing and the theory solver slightly rises.

As Table 5.3 is based on the mean of the runtimes, it introduces a bias. There-
fore, we also consider the runtime of inprocessing and the theory solver per instance
(Fig. 5.11).

(a) Inprocessing (b) Theory Solver

Figure 5.11: Runtime comparison between Simplify and SimplifyIncr for inprocessing
and the theory solver.

a) shows the runtime for inprocessing. It can be established that in general Sim-
plifyIncr is much faster than Simplify. There are only few outliers where Simplify
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outperforms SimplifyIncr. Opposed to this, the performance of Covering appears to
be more similar for both solvers. b) shows that the instances mostly align on the
middle line, while SimplifyIncr seems to have an advantage for faster instances. This
may be due to the fact that SimplifyIncr also has an incremental backend.

Now it is of interest which parts of Simplify were slower compared to SimplifyIncr.
For the following analysis, first there are a few important details about SMT-RAT.
All constraints are saved in the form

∑
i aix

di
i σ0. To be able to work with Blackbox,

we need to factorize those constraints. This may take a lot of time in some cases,
but once it was calculated for the first time, the factors are stored for future use.
Covering also uses factorization, thus this runtime influence is also valid for Compare
and CompareIncr, even though likely in a lesser form. Additionally, the constraints
are returned to their standard form after Blackbox, which means that the factors are
multiplied, which can also take a significant amount of time.

SMT-RAT modules provide three main functionalities called CheckCore, AddCore
and RemoveCore. AddCore adds a new constraint and some initial steps may be
performed. Here, the constraints are added to the matrix for Blackbox, we check for
a new SubstitutionMapping and α may be updated. CheckCore performs all main
algorithms, while in RemoveCore all backtracking steps are executed. As a first step,
we take a look at the runtime influence of CheckCore, AddCore and RemoveCore for
SimplifyIncr.

Figure 5.12: Percentage of CheckCore, AddCore and RemoveCore on the runtime.

Fig. 5.12 shows the percentages CheckCore, AddCore and RemoveCore contribute to
the runtime. Even though in CheckCore the theory solver is executed as well, the
corresponding runtime was subtracted for this plot. We can see that the portion of
the overall runtime spent on backtracking is very low. CheckCore has the majority,
but AddCore also has a significant influence on the runtime of the inprocessing. This
is probably due to the fact that all initial factorizations take place in AddCore. In
comparison to Simplify, it should be noted that apart from incrementality all steps of
AddCore also take place in Simplify in some form. The only real change not occur-
ring in Simplify is RemoveCore, which as we can see does not affect the runtime much.
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To investigate which algorithms lead to the runtime improvement, we again consider
the mean runtime contribution of the separate algorithms for Simplify and Simplify-
Incr.

Theory Solver Blackbox Whitebox Rest
[s] % [s] % [s] % [s] %

Simplify 1.69 37.56 0.77 17.11 1.98 44.00 0.06 1.33
SimplifyIncr 1.30 73.03 0.04 2.25 0.43 24.16 0.01 0.56
SimplifyIncr (all) 2.09 35.85 2.86 49.06 0.86 14.75 0.02 0.34

Table 5.4: Runtime contribution to inprocessing from the separate algorithms. The
first two lines only consider instances solved by both Simplify and SimplfyIncr. The
last line also includes instances not solved by Simplify.

Table 5.4 shows the runtime impacts of the separate algorithms, measured through
mean. SimplifyIncr has a slightly faster backend, likely due to its incrementality.
But as SimplifyIncr is faster than Simplify, the theory solver still makes up the high
majority in regard to the percentage of runtime. Both Blackbox and Whitebox take
more time in Simplify than in SimplifyIncr. In both solvers, Whitebox takes longer
than Blackbox. Why is that?

The loops of Whitebox were not changed for SimplifyIncr. Only the sets for which
these loops are executed were adapted. For Simplify, the first loop is executed for
each existing factor and variable and the second loop for each combination of those.
SimplifyIncr only executes the first loop on new factors or factors impacted by a
variable change. The second loop is executed for each combination of this set and
for each combination of this set with any factor or variable not included in this set.
Let P be the set for Simplify with |P | = n and P1, P2 be the sets for SimplifyIncr
with |P1| = n1, |P2| = n2. Then the second loop of Simplify is executed n ∗ (n − 1)
times and the first loop n times. Thus, there are n2 loop executions for Simplify. The
first loop of SimplifyIncr is also executed n1 times, while the second loop is executed
n1 ∗ (n1 − 1 + n2) times, leading to n1 ∗ (n1 + n2) loop executions.

Example 5.3.1 (Loop executions). Let n = n1 + n2 and n = 100, n1 = 10, n2 = 90
and each loop have a runtime of l = 0.0003s. Then the runtime of Simplify’s Whitebox
is r1 = n2 ∗ l = 1002 ∗ 0.0003s = 30s. The runtime of SimplifyIncr’s Whitebox is
r2 = n1 ∗ (n1 + n2) ∗ l = 10 ∗ 100 ∗ 0.0003s = 0.3s. Thus, r1 is 100 times higher than
r2.

Thus, we can determine that the incremental adaptions of Whitebox strongly im-
proved its runtime.
The measure mean used in Table 5.4 introduces a bias, because very few instances
with very high runtimes may influence the results significantly. To counter this bias,
we also consider Fig. 5.13, which shows the runtimes per instance. Fig. 5.13 a) again
highlights the runtime differences of Whitebox and shows that SimplifyIncr is faster
in the majority of instances. There are only few cases in which Simplify is faster in
Whitebox.
b) shows that Blackbox is very much faster for SimplifyIncr. Apart from the fact
that almost all instances are on the left side of the middle line, the upper runtime for
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(a) Whitebox (b) Blackbox

Figure 5.13: Runtime comparison for Blackbox and Whitebox for instances solved by
Simplify and SimplifyIncr.

Simplify is more than 350 opposed to a value around 8 in SimplifyIncr. This is likely
due to the repetition of Blackbox operations in each loop, as in Simplify there is no
incrementality in the matrices at all.

Table 5.4 shows that for instances newly solved by SimplifyIncr, the percentage of
time spent in Blackbox highly increases. The performance of Blackbox is likely influ-
enced by the factorization and multiplication (map back).

Figure 5.14: Mean runtime impact of factorization and final multiplication with for
Simplify and SimplifyIncr, where (all) stands for all instances, including those not
solved by Simplify.
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Fig. 5.14 shows the runtime influence of the factorization of the constraints and the
return to the standard structure through multiplication of factors. It is clear that
these influence Simplify only marginally. For instances solved by both solvers, Black-
box obviously takes longer for Simplify than for SimplifyIncr. But for newly solved
instances, the factorization and mapping to the original form takes up the grand ma-
jority of the runtime of Blackbox. Not only that, but due to this, the runtime of
Blackbox is also about 3 times as high as for Simplify. This shows that constraints
with a complex factor structure are harder to solve in Simplify and SimplifyIncr.

5.3.3 Answer Transitioning
In addition to the runtime, we are interested in the origin of the newly solved in-
stances. For this reason, we created Fig. 5.15 the same way as Fig. 5.5.

Figure 5.15: Transition of Simplify (y-axis) to SimplifyIncr (x-axis) normalized with
colour scheme as percentage normalized to 100% per row

We can see that quite a few new UNSAT instances were found from the set of not
successfully solved instances. Another interesting aspect is that for memouts and
segfaults more new SAT than UNSAT results were found. Opposed to Fig. 5.5 the
turnover between memouts and timeouts is less significant. Again, the transition from
successfully solved instances to unsolved instances is neglectable.

We again want to consider how many new UNSAT instances were identified at which
point of the solvers.
Fig. 5.16 shows the number and percentage of instances solved with the help of Sim-
plify, the backend or both. We only consider instances for which both solvers returned
UNSAT. For both, the majority of instances is solved using the theory solver, but the
percentage and number of instances solved using the inprocessing is higher in Sim-
plifyIncr, while the value for the Backend is lower. This shows that the inprocessing
algorithm identifies more instances in SimplifyIncr.
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Figure 5.16: Box plot of number of instances solved by inprocessing, the theory solver
or both.

5.3.4 UNSAT Cores

In this part of the analysis, we are interested in the differences of the UNSAT cores.

Figure 5.17: Comparison of size of UNSAT cores of SimplifyIncr and Simplify

Fig. 5.17 visualizes the sizes of UNSAT cores of Simplify against SimplifyIncr. Inter-
estingly, not only is there a clear trend towards bigger UNSAT cores for SimplifyIncr
compared to Simplify, but the highest size for SimplifyIncr is also 2.6 times higher
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than for Simplify with 38 vs 17. Note that we only considered instances which were
solved by both Simplify and SimplifyIncr. This might be explainable by the way the
UNSAT cores are generated. In Simplify, the entries of why are filled in the order
the constraints are created. Thus, the first implication is usually the fastest way to
get to the given constraints. Since implications are deleted in SimplifyIncr, this is not
necessarily the case for SimplifyIncr. We select the path to the givens dependent on
the size of the newest implication. Thus, it might provide useful to develop a proper
heuristic for this path selection for SimplifyIncr in the future.

5.3.5 Complexity Reduction
As the runtime and answers of SimplifyIncr are better than for Simplify, one could
wonder how the complexity of the constraints given to the theory solver changes.

Fig. 5.18 shows information about the maximum degree, number of constraints and
number of terms selected by Simplify and SimplifyIncr within one instance. Newly
solved instances are marked in red. This means that for the plots of Simplify, the
red marks are instances not solved by SimplifyIncr. The degree (visible in a) and b)
of Fig. 5.18) are quite similar. Both have either a similar output and input degree,
visible as the instances on the middle line, or reduce the complexity in the area below
20. The newly solved instances are also in a similar region, meaning that the degree
does not seem to be the main factor in which SimplifyIncr is better. Simplify seems
to have higher values for outliers in which the output degree is higher than the input
degree.
In c) and d) a lot of instances are again on the middle line. The behaviour in the area
before 102 is similar as well. On the other hand, the instances solved by SimplifyIncr
itself are not visible which can reach much higher numbers of terms than Simplify.
This is probably, because of the time spent on factorization. Simplify also has a few
outliers with way more output terms than input terms. How can that happen?

Example 5.3.2 (Term increase). Let the following table be the initial strict matrix:[
1 1 1 0 0 0
0 0 1 1 1 1

]
Then the resulting matrix would be [

1 1 0 1 1 1
0 0 1 1 1 1

]
Thus the number of terms very likely increased.

These instances could belong to the instances solved by inprocessing in SimplifyIncr.

e) and f) show the interesting fact that the number of constraints actually seem
to be reduced in most cases. This is surprising because the idea was to use several
simpler constraints to imply a complex constraint. This shows that the constraints
are interdependent enough to be implied by the same set of constraints. For Simplify,
the newly solved instances are mainly at the middle line, while in SimplifyIncr the
number of constraints for the newly solved instances is more spread. Nevertheless,
SimplifyIncr also has more instances with a higher number of output constraints.
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This may be due to the changed selection process. For both solvers, the newly solved
instances tend to have a high number of constraints.

Our main takeaway is that the incrementality appears to be most helpful for con-
straints with a high number of terms.

(a) Degree Simplify (b) Degree SimplifyIncr

(c) Terms Simplify (d) Terms SimplifyIncr

(e) Constraints Simplify (f) Constraints SimplifyIncr

Figure 5.18: Comparison of complexity reduction for Simplify and SimplifyIncr with
logarithmic scale.
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5.3.6 WHY
How is the size of why affected by incrementality? Considering the fact that the
incremental version has to imply O1, both types of normalization have to be implied
during preprocessing and StrictBlackbox (Algorithm 8) uses two types of implications,
it makes sense to assume that the size of why increases.

(a) Entries (b) Implications

Figure 5.19: Comparison of maximum number of why entries and the longest con-
junction in why .

Fig. 5.19 visualizes the statistics of why for SimplifyIncr and Simplify. Here, a) vi-
sualized the highest number of why entries occurring for an instance, while b) shows
the longest conjunction of constraints implying another constraint in why . Surpris-
ingly, SimplifyIncr does not appear to have much more why entries. a) shows that
the number of entries are very similar, but most deviations show more entries for
Simplify. On the other hand, there are a very few outliers with much more entries for
SimplifyIncr, beating the highest number of entries appearing in Simplify.
The highest number of conjunctions in why appears to stray more from the mid-
dle line. Fig. 5.19 b) shows that even though the instances appear to divert quite
symmetrically, there are clearly longer conjunctions in Simplify than SimplifyIncr.

5.3.7 Loop Executions
So far, we used an upper limit of 3 executions for each described algorithm. Thus,
Blackbox, Whitebox and SimpleSubstitution are executed until either the limit of 3
is up or there is nothing new to be found. Now we want to evaluate if it is beneficial
to use this limit or iterate as long as we find new results.
Table 5.5 summarizes the answers provided by Simplify and SimplifyIncr, each with
a limit of 3 and unlimited. Both solvers are not impacted much. There are slight
interchanges between the unsolved instances. Setting no limit seems to be beneficial
for SAT instances but not for UNSAT instances, as the number of SAT increases,
while UNSAT decreases for SimplifyIncr. To see if there is a higher impact on the
runtime behaviour, Fig. 5.20 shows the performance profile for these solvers.
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SimplifyIncr Simplify
Unlimited 3 3 Unlimited

sat 4940 4939 4900 4899
unsat 5009 5011 4778 4778
unknown 134 134 140 139
timeout 1484 1475 1887 1896
memout 529 536 403 397
segfault 38 39 26 25
solved 9949 9950 9678 9677

Table 5.5: Result comparison for Simplify and SimplifyIncr, each with a limit of 3
iterations or unlimited.

(a) All

(b) Middle segment (c) End segment

Figure 5.20: Performance profile of SimplifyIncr and Simplify, each with a loop limit
of 3 and unlimited with logarithmic scale. To discern overlapping lines, b) and c)
zoom into more interesting segments.

Again, the runtime behaviour of these solvers is very similar. To ensure the overlap-
ping lines in the final section, c) zooms into the area between 7400 and 8200. We can
see that Simplify is slower than SimplifyIncr in both versions and the final cumulated
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runtime is almost 100% overlapping within each solver. b) shows the segment between
4000 and 6000 solved instances. It is clear that the unlimited SimplifyIncr appears
to solve more instances with a lower runtime.
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Chapter 6

Conclusion

Finally, we will give a conclusion to this thesis. This includes a short summary and
discussion, before briefly addressing possible future work.

6.1 Summary

This thesis was based on [BVE20] and the idea to reduce the complexity of con-
straints before the theory solver. The deductions and their implications are saved in
a so-called why-map. The algorithms introduced by Brown et al. were mainly based
on Blackbox, Whitebox and SimpleSubstitution.

Blackbox considers the factors making up a constraint as blackboxes and focuses solely
on derivations based on the factor structures. After normalizing the constraints and
converting them to a matrix form, multiple derivations based on the strictness of the
constraints and variables are possible using Gaussian elimination.

Whitebox on the other hand makes use of the polynomial structure of the factors
itself. Using the knowledge about variable signs and also signs of other polynomials,
new signs for factors and variables are derived.
SimpleSubstitution uses simple equations to replace variables by constants or other
variables.

The main contribution of this thesis was, to adapt the algorithms by Brown et al. to
enable incrementality and backtracking. For Whitebox this mainly included changing
for which factors the algorithm is executed. We had to figure out how to derive a new
substitution mapping for SimpleSubstitution when a constraint in reason is back-
tracked. Blackbox was the most complex to adapt. The normalization introduced
by Brown et al. lead to information loss. Changes in strictness had to be implied
by something. For backtracking, we needed to track the impact of the backtracked
constraint and return the impacted constraints to their original form.

To evaluate the impact of these algorithms, we analysed a multitude of experiments.
This included comparing the incremental version of Simplify (SimplifyIncr) with in-
cremental Covering (CompareIncr) and Simplify.
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6.2 Discussion
In Chapter 5 we found out that SimplifyIncr solves by far the most instances. Espe-
cially the number of UNSAT instances increases, due to instances identified as such
in inprocessing. In ∼ 90% of solved instances, inprocessing was involved in finding
UNSAT partial solutions. Additional preprocessing before the SAT solver increases
the performance again, but does not make inprocessing redundant.

The incrementality adaptions did not only increase the number of successfully solved
instances, but also reduced the runtime. The largest runtime impact is on Whitebox.
Whitebox impacts the runtime of inprocessing significantly less using the adapted
algorithms. As SimplifyIncr solves additional instances which Simplify cannot solve
in time the mean runtime of Blackbox increases.

The complexity for instances solved by both solvers was very similar. Nevertheless,
it was again shown that SimplifyIncr has a big advantage for constraints with a high
number of terms.

Limiting the number of loop executions does not impact the result much. There
is one more solved instance and in the intermediate region there is a slightly higher
lower for unlimited SimplifyIncr.

All in all, SimplifyIncr appears to be most helpful for constraints with many terms
and a complicated factorization. At the same time, it highly depends on the runtime
of the factorization which is likely also valid for Covering.

6.3 Future Work
Currently, we use two types of implications for Blackbox. For future work, one might
analyse whether both constraints are necessary and otherwise explore which implica-
tion should best be used.

Moreover, it might be interesting to develop an efficient way to select the UNSAT
Core. As a multitude of constraints may imply another constraint, there is also a
high number of paths to original constraints. Thus, it may make a difference which
one is selected.

As Covering also uses factors at some point, it might improve the runtime if instead
of returning to the original structure, the constraints are given to Covering in their
factor structure, which means that we do not need to multiply out the derived con-
straints. Also, the compatibility to other solvers may be tested. It might be especially
interesting to see how SimplifyIncr performs for a Backend not using factorization at
all. There are solvers, like the default of SMT-RAT, using the Model-Constructing
Satisfiability (MCSAT) calculus [DMJ13], which is not strictly structured in SAT
Solver and theory solver. In future work, one might adapt Simplify further to be of
use for solvers using MCSAT.
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Appendix A

Whitebox Algorithms

Algorithm 12 PolynomialSign from [BS10]

Input: Polynomial p = a1M1 + ...+ akMk, where the Mi are power products over
x1,...,xn, α1,...,αn ∈ S+

op

Output: β ∈ Srelop such that
∧n

i=1 xiαi0 ⇒ pβ0
1: β := EQOP
2: for i ∈ {1,...,k} do
3: β := sgn(ai)·MonomialSign(Mi, (α1,...,αn))+β
4: return β

Algorithm 13 MonomialSign from [BS10]

Input: Power product M = xe11 · ... · xenn , α1,...,αn ∈ S+
op

Output: β: strongest element of Srelop , such that
∧n

i=1 xiαi0 ⇒Mβ0
1: β := GTOP
2: for i ∈ {1,...,n} do
3: if ei even then
4: β := αi · αi · β
5: else
6: β := αi · β
7: return β
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Algorithm 14 PolynomialSignProof from [BVE20]

Input: Polynomial p = a1M1 + ...+ akMk, where the Mi are power products over
x1,...,xn, α1,...,αn ∈ S+

op, β ∈ Srelop

Output: FAIL or α′. If wb(α,p,β), return maximally weak α′, so that α strengthens
α′ and wb(α′,p,β) α′ encodes the deduction

∧n
i=1 xiα

′
i0 ⇒ pβ0. Else return

FAIL
1: α′ := [ALOP,...,ALOP ]
2: if β ∈ {LTOP,GTOP} then
3: N := ∅
4: for i ∈ {1,...,k} do
5: γ := MonomialSignProof(α,Mi, op(ai) · β)
6: σ := MonomialSignProof(α,Mi, op(ai) · (β ∨ EQOP ))
7: if γ = FAIL then
8: if σ = FAIL then
9: return FAIL

10: else
11: N := N ∪ {(i,γ)}
12: if N = ∅ then return Fail
13: (i,γ) := choose element of N , so that there is no (i′,γ′) ∈ N for which the

variables in Mi′ are a subset of the variables in Mi

14: return α′ := γ∧PolynomialSignProof(p,α,β ∨ EQOP )
15: else if β = NEOP then
16: if k = 1 then return MonomialSignProof(α,Mi, NEOP )
17: α′ := PolynomialSignProof(p,α,GTOP )
18: if α′ ̸= FAIL then return α′

19: return α′ := PolynomialSignProof(p,α,LTOP )
20: else if β = EQOP then
21: T =

⋃
i s.t. Mi non-constant{{j ∈ {1,...,n} | degxj

(Mi) > 0 ∧ αi = EQOP}}
22: if ∅ ∈ T then return FAIL
23: H := minimal hitting set for T
24: α′

i := EQOP ∀i ∈ H
25: return α′

26: else if β ∈ {LEOP,GEOP} then
27: see Algorithm 15
28: return α′
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Algorithm 15 Case β ∈ {LEOP,GEOP} from PolynomialSignProof14 from
[BVE20]

1: X := {xi | αi ̸= EQOP}
2: Y := {xi | αi = EQOP}
3: Z := ∅
4: γ := n-vector, where γi = ALOP if xi ∈ Y , γi = αi ∧NEOP if xi ∈ X
5: σ := n-vector, where σi = ALOP if xi ∈ Y , σi = EQOP if xi ∈ X
6: p′ := restriction(p,X)
7: π := [NEOP,...,NEOP ]
8: if p′ ̸= 0 then
9: π :=

∧
terms biNi in p′ MonomialSignProof(Ni,γ,op(bi)(β ∧NEOP ))

10: if NOOP appears in π then
11: return FAIL
12: for xi ∈ Y do
13: p′new := restriction(p,X ∪ {xi})
14: t+, t− := TRUE
15: π+, π− := π, but with π+

i := GTOP, π−
i := LTOP

16: for terms bjNj in p′new − p′ do
17: if MonomialSignProof(Nj , π

+, op(bj) · (β ∧NEOP ))= FAIL then
18: t+ := FALSE
19: if MonomialSignProof(Nj , π

−, op(bj) · (β ∧NEOP ))= FAIL then
20: t− := FALSE
21: if t+ ∧ t− then X := X ∪ {xi}, πi := NEOP
22: if t+ ∧ ¬t− then X := X ∪ {xi}, πi := GTOP
23: if ¬t+ ∧ t− then X := X ∪ {xi}, πi := LTOP
24: if ¬t+ ∧ ¬t− then Z := Z ∪ {xi}, πi := EQOP
25: Y := Y − {xi}, σi := EQOP, p′ := p′new
26: α′ := π ∨ σ
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Algorithm 16 MonomialSignProof as given in [BVE20]

Input: M : power product xe11 · ... · xenn , α, n-vector over S+
op , β ∈ Srelop

Output: FAIL or α′. If
∧n

i=1 xiαi0 ⇒ Mβ0 return α′, such that α strengthens the
maximally weak α′ and

∧n
i=1 xiα

′
i0 ⇒Mβ0. Otherwise, FAIL is returned.

1: α′ := [ALOP,...,ALOP ]
2: if β ∈ {LTOP,GTOP} then
3: d := GTOP
4: for i ∈ {1,...,n} with ei ̸= 0 do
5: if αi ∈ {ALOP,LEOP,GEOP,EQOP} or (ei odd ∧αi = NEOP ) then
6: return FAIL
7: if ei even then α′

i := NEOP
8: else
9: α′

i := αi

10: d := d · α′
i

11: if d = β then return α′

12: else return FAIL
13: else if β ∈ {LEOP,GEOP} then
14: d := GEOP
15: T := {i | αi = EQOP, ei ̸= 0}
16: if αi ∈ {NEOP,ALOP} for some odd ei then
17: return MonomialSignProof(M,α,EQOP )
18: for i ∈ {1,...,n} with ei ̸= 0 do
19: if ei odd then
20: if αi ∈ {LTOP,LEOP} then α′

i := LEOP
21: else α′

i := GEOP
22: d := d · α′

i

23: if d = β then return α′

24: else if T ̸= ∅ then
25: return MonomialSignProof(M,α,EQOP )
26: else
27: return FAIL
28: else if β = NEOP then
29: for i ∈ {1,...,n} with ei ̸= 0 do
30: if αi ∈ {ALOP,LEOP,GEOP,EQOP} then
31: return FAIL
32: α′

i := NEOP
33: return α′

34: else if β = EQOP then
35: T := {i | αi = EQOP, ei ̸= 0}
36: if T = ∅ then
37: return FAIL
38: α′

i := EQOP for some heuristically chosen i ∈ T
39: return α′
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Algorithm 17 DeduceSignExplain from [BVE20]

Input: Polynomials p = a1M1 + ...+ akMk and q = b1M1 + ...+ bkMk, where the
Mi are power products over x1,...,xn, α = α1,...,αn ∈ S+

op, κ ∈ S+
op

Output: α′,γ,t,β so that α ⪯ α′ and qκ0 ∧
∧n

i=1 xiα
′0 ⇒ pγ0

1: Q := FindIntervals(p,q,α)
2: Q′ := []
3: for (I,β) ∈ Q do
4: t := midpoint(I)
5: α′ := PolynomialSignProof(p+ tq,α, β)
6: γ = Tded[κ, op(t), β]
7: add (α′, γ, t, β) to Q′

8: choose (α′, γ, t, β) from Q′ so that γ is minimal w.r.t ⪯, breaking ties by preferring
larger α′.

9: return α′, γ, t, β

Algorithm 18 FindIntervals from [BVE20]

Input: Polynomials p = a1M1 + ...+ akMk and q = b1M1 + ...+ bkMk, where the
Mi are power products over x1,...,xn, α = α1,...,αn ∈ S+

op

Output: Q: ordered list of disjoint non-empty-interval / relational operator pairs
such that (I,β) ∈ Q⇒ ∀t ∈ I : [p+ tqβ0]

1: Q := [((−∞,0),EQOP ),((0,∞),EQOP ),]
2: for i ∈ {1,...,k} do
3: m := MonomialSign(Mi,α)
4: if bi = 0 then
5: if ai > 0 then c := GTOP
6: else c := LTOP
7: L := {((−∞,∞),c ·m)}
8: else
9: if bi > 0 then (sl,sr) := (LTOP,GTOP )

10: else(sl,sr) := (GTOP,LTOP )
11: L := [((−∞,− ai

bi
),sl ·m),([−ai

bi
,−ai

bi
], EQOP ),((−ai

bi
,∞),sr ·m)]

12: Q′ := []
13: while Q,L both non-empty do
14: (IQ,βQ) := first element of Q
15: (IL, βL) := first element of L
16: if Iq ∩ IL ̸= ∅ ∧ βQ + βl ̸= ALOP then
17: append (Iq ∩ IL, βQ + βl) to Q′

18: if right endpoint of IQ is less than right endpoint of IL then
19: remove first element of Q
20: else
21: remove first element of L
22: Q = Q′

23: return Q
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