
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Heuristic Layout Optimization of Central Receiver
Systems

Heuristische Layout Optimierung von
Solarturm-Kraftwerken

Masterarbeit
Informatik

Dezember 2022

Vorgelegt von Florian Hövelmann
Presented by Matrikelnummer: 369069

florian.hoevelmann@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. rer. nat. Thomas Noll
Second examiner Lehr- und Forschungsgebiet: Software Modellierung und Verifikation

RWTH Aachen University

Betreuer Dr. rer. nat. Pascal Richter
Supervisor Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Contents

1 Introduction 1
1.1 State of the art . 2

1.1.1 Modeling . 2
1.1.2 Optimization . 3

1.2 Contribution . 4
1.3 Outline . 4

2 Modeling solar central receiver systems 5
2.1 Optical model . 5

2.1.1 Monte Carlo ray tracer . 11
2.1.2 Analytic ray tracer . 13
2.1.3 GPU Acceleration . 20

2.2 Thermal model . 21
2.3 Storage model . 22
2.4 Electrical model . 23
2.5 Economical model . 24
2.6 Annual integration . 27

3 Heliostat field layout optimization 28
3.1 Pattern based approaches . 28

3.1.1 North-South staggered . 28
3.1.2 Radial staggered . 29
3.1.3 Rose . 31
3.1.4 Hexagon . 32
3.1.5 Spiral . 33
3.1.6 Optimizer . 34

3.2 Graph based field growth . 39
3.2.1 Independent ray tracer . 41
3.2.2 Shading and blocking graph . 43
3.2.3 Complete graph based field growth algorithm 45
3.2.4 Practical difficulties . 48
3.2.5 Suboptimization . 50
3.2.6 Representative field growth . 51
3.2.7 Validation . 52

3.3 Local search . 53

4 Case Studies 54
4.1 Modeling . 54

4.1.1 Validation of SunFlower . 54
4.1.2 Accuracy of convolution method 55
4.1.3 Comparison of convolution methods on GPU and CPU 57
4.1.4 Efficiency Accuracies . 58

II

4.1.5 Runtime Comparison . 59
4.1.6 Approximating Sun Shapes . 61

4.2 Optimization . 62
4.2.1 Pattern-based . 62
4.2.2 Graph based field growth . 64

4.3 Discussion of results . 68

5 Conclusion 69
5.1 Outlook . 69

References 71

III

1 Introduction

Since the climate change is starting to show its drastic consequences, renewable energies
are more important than ever. In Germany the 34.9% of the electrical energy comes
from renewable sources which should increase to 40 to 45% by 2025 [26]. But there
are of course a lot of challenges to overcome. One criticism is the unreliable energy
production of most renewable energies. However, central receiver systems (CRS) offer
the opportunity to store thermal energy and thus generate electricity even if no sun is
shining. CRS consist of mirrors on heliostats reflecting the sunlight onto a receiver. An
image of the Gemasolar [11] in Spain with 2650 heliostats is shown in Figure 1. The
radiation heats up a liquid that then boils water to generate electricity at a turbine.
The thermal energy of the liquid itself can be stored in tanks and used later.

Figure 1: Image of the Gemasolar in Spain consisting of 2650 heliostats [11].

Desining and building a CRS is complex and expensive. Many aspects can signifi-
cantly affect the efficiency of the plant. Therefore, it is crucial to estimate and optimize
the energy production beforehand. An optimization of a new CRS is very cheap com-
pared to the actual costs of the CRS. However, it requires an accurate model of the
involved physics. Since many variants of the CRS are tested during optimization, the
models also need to be fast. A lot of improvements have been made to the model as
well as the optimization.

1

1.1 State of the art

Since the CRS modeling and the optimization is investigated in this thesis, the current
state of the art of both is given in the following.

1.1.1 Modeling

The main differences between CRS simulation software concern the optical aspects of
the plant. They include everything from the sunlight hitting the heliostat mirror, to the
receiver collecting the radiation. The incoming radiation at the receiver is commonly
computed by ray tracers. The ray tracing methods for central receiver systems can be
divided into two categories, the non-deterministic Monte Carlo based ray tracers and
the deterministic analytical ray tracers.

There exist several Monte Carlo ray tracers which mainly vary in the way how they
generate solar rays. Tonatiuh [9], MIRVAL [36] and SolTrace [64] utilize a forward
Monte Carlo ray tracing approach, where the rays are traced in forward direction from
the sun to the heliostat onto the receiver. In general, the rays are generated on a
plane above the heliostat. Improvements to this have been made by STRAL [1] and
TieSol [30] which use the bidirection path tracing (BDPT) approach [45] where rays are
generated on the heliostat surface. Due to the advantages of the bidirectional approach
SunFlower [53] also implements two versions of such a ray tracer with different pseudo-
random number generators.

Since Monte Carlo ray tracers rely on simulating a vast number of rays, they tend to
have a long runtime. Analytical ray tracers, however, only use a few rays per heliostat
and try to estimate the result based on a reflected flux. The fraction of flux hitting the
receiver is computed by integration. HELIOS [8] can handle multiple flux functions.
In contrast, HFLCAL [60] directly describes the flux on the receiver by a circular
Gaussian distribution and evaluates it with a midpoint quadrature rule. UNIZAR [56]
relies on the same integration method but describes the flux with the error function.
DELSOL [34] uses a truncated expansion into Hermite polynomials as flux function.
In one dimension the integral is evaluated analytically, while in the other dimension it
is approximated with a 16-point Gaussian quadrature rule. The convolution ray tracer
of SunFlower [53] uses a bivariate Gaussian distribution which is projected onto the
image plane with a perspective projection. However, the integration method is what
sets it apart from existing ray tracers. Here, a direct integration over the polygonal
region representing the receiver is used which does not require a quadrature making it
extremely fast [51]. In extend to this, the integrated convolution ray tracer improves
the accuracy of the ray tracer without computational overhead.

A major improvement to the runtime of all ray tracers have been made by utilizing
the GPU. Tools like TieSol [30], QMCRT [20] and sbpRAY [27] showed the benefits
of parallelizing the ray tracers on the GPU. Likewise, for all ray tracers of SunFlower
a GPU based version has been developed in [2].

2

1.1.2 Optimization

Since a CRS consists of many components, there are several optimization objectives.
Most of them regard optical parts, as they are responsible for about 40% of the total
losses [40]. Asselineau et al. [4] applied stochastic optimization and machine learning
to find an optimal external receiver geometry. Similar methods have been applied to
cavity receivers [3]. Another popular optimization technique in that area is particle
swarm optimization [21] where particles represent sets of parameters. The particles
share information and move according to specific rules in order to find an optimum
of the objective function [40]. Genetic algorithms [57] also use parameter sets as
candidates but optimize by mutation and selection. These optimization methods also
have been applied to other optical aspects. For example, Wang et al. [62] used genetic
algorithms to optimize the heliostat aiming strategy.

The heliostat field layout is another crucial aspect of the overall efficiency of a CRS.
There are three main categories of heliostat field layout optimization methods. Pattern
based methods, that place heliostats on a predefined pattern. They are described by a
set of parameters which are then optimized. The patterns include simple cornfields [37],
radial staggered arrangements [14], biomimetic spirals [43] and more. Optimization
strategies like genetic algorithms [61], Nelder-Mead algorithm [47], or simple combi-
natorial searches [43] have been used to find the best set of parameters. However,
the patterns typically generate more possible positions than needed. Thus, another
optimization is required to find the best subset. Noone et al. [43] used the intuitive ap-
proach of simulating all heliostats and selecting the one with the highest efficiency. A
more involved method has recently been proposed where a polygon defines the subset
and each vertex is optimized with an evolutionary algorithm.

Free variable methods, on the other hand, directly optimize the heliostat positions
and thus do not restrict them to a predefined pattern. As the search space is much
larger than for pattern based methods, heuristics are used. The methods are based on
genetic algorithms [35], particle swarm methods [22], evolutionary algorithm [52], and
more. Other free variable algorithm use an initial solution and further optimize it by
individually replacing the heliostats [10].

The last category includes field growth methods. As the name implies, they sequen-
tially add heliostats to the field until the desired number is reached. The heliostats
that maximize the overall efficiency are chosen at each step. Sánchez et al. [55] used a
simplified model to calculate the efficiency at every position on a predefined grid and
update the efficiencies to account for shading and blocking. To avoid placing heliostats
in front of existing ones, the blocking effects are mirrored. Carrizosa et al. [12] avoid
restricting the positions to a predefined grid by using a random set of positions to
choose from at each step. However, it considers a much smaller set of possible posi-
tions at each step than in the grid based solution. Both of these methods approximate
the efficiency at each position which might lead to a non optimal layout.

3

1.2 Contribution

In this thesis, the accuracy of all existing ray tracers is further enhanced and the
analytical ray tracer accelerated with the help of extensive case studies. Additionally,
all ray tracers are extended to incorporate more realistic sun shapes. It will be shown
that the new sun shapes can accurately be approximated with Gaussians making it
possible to use them in analytical ray tracer.

For the heliostat field layout optimization, the existing pattern optimization is tested
on the GPU and further accelerated. Moreover, a new graph based field growth method
has been developed. It is based on a new kind of ray tracing that has been implemented
to all existing ray tracer of SunFlower. The new field growth method not only exactly
evaluates the efficiency at each position, but also the efficiency loss introduced by
placing a new heliostat. In combination, this leads to an optimal placement in the
sense that replacing a single heliostat will never result in a more efficient layout. The
exact algorithm is extended to more approximative methods to increase the number of
possible positions. Furthermore, the proposed methods can also use patterns for the
positions instead of a regular grid.

1.3 Outline

The thesis is structured as follows. Section 2 describes the components of a CRS
and how they are modeled. A detailed description of the optical model is given in
Section 2.1, as it is a crucial component for layout optimization. Section 3 describes
the different optimization methods in SunFlower with the pattern-based approaches
in Section 3.1 and the new graph based field growth method in Section 3.2. Compre-
hensive case studies investigating different aspects of the model and the optimization,
are discussed in Section 4. A conclusion is drawn in Section 5.

4

2 Modeling solar central receiver systems

An accurate model of a central receiver system (CRS) is required to determine and
later optimize its output. The CRS consists of different parts working together to
generate electricity from collected solar radiation. These are considered by smaller
individual models that will be discussed in the following. As shown in Figure 2, the
optical model is the starting point and determines the amount of solar radiation hitting
the receiver. A heat transfer fluid carries the thermal power to storage tanks which
are described in the thermal and storage model. The thermal power is then converted
into electricity, as depicted by the electrical model. The economical model captures all
financial aspects of the CRS. Finally, a yearly operation of the CRS including different
weather conditions is modeled by an annual integration.

Optical Model
Thermal

Model

Storage

Model
Electrical Model

Economic

Model

Figure 2: All components involved in modeling a CRS, taken from [25].

2.1 Optical model

The optical model is by far the computationally most expensive part when simulat-
ing central receiver systems. It includes every relevant aspect necessary to calculate
the solar power reflected onto the receiver. However, the optical models used in the
literature vary largely in terms of what type of systems can be represented as well
as how the model is evaluated [36, 9, 64, 56]. Therefore, SunFlower aims to include
various aspects present in current central receiver systems while offering a fast and ac-
curate evaluation of the model. The presented model has been introduced by Richter
et al. [50, 53] and extended in [25] and [29]. Further improvements and extensions have
been made.

5

Environment The apparent movement of the sun is influenced by the geographical
location of the CRS and thus needs to be specified. Additionally, the site boundaries
as well as restricted areas can be given by a set of geographical coordinates that define
a polygon. Topographical information about the site can automatically be generated
from the Space Shuttle Radar Topography Mission [23]. All other positions and direc-
tions are defined in a Cartesian coordinate system where the x, y and z coordinates
point toward east, north, and the sky, respectively.

From the suns azimuth γsolar and altitude θsolar, the solar vector ~τsolar can be com-
puted as shown in Equation (1). Another important aspect of the sun is the direct
normal irradiation IDNI which describes the incoming radiation. It can either directly
be defined or calculated using the Meteorological Radiation Model [32].

~τsolar =

sin (−γsolar) · − cos (θsolar)
cos (−γsolar) · cos (θsolar)

sin (θsolar)

 (1)

Heliostat Heliostats reflect the sunlight onto the receiver by tracking the sun and
aligning their mirrors accordingly. In our model, two types of heliostat shapes can
be represented. Rectangular heliostats and heliostats shaped like regular polygons.
The later is becoming more important in recent power plants [7]. Both types consist of
smaller facets that have either a rectangular or a triangular shape. For the alignment of
the facet onto the scaffold, on-axis or off-axis canting is used [25]. Heliostats typically
aim at a central point of the receiver. However, more involved aiming strategies trying
to maximize the heat transfer to the receiver are also possible [33]. Since the vector of
the incoming sun ~τsolar as well as the desired reflection vector ~r is known, the required
normal ~n of the heliostat is given by

~n =
~r + ~τsolar

|~r + ~τsolar|
(2)

Receiver After the solar radiation is reflected by the heliostats, it is collected at the
receiver and turned into heat. To minimize blocking and shading effects, the receiver is
mounted onto a tower at a certain height. Three types of receivers can be represented
in our model, see Figure 3. A flat tilted receiver has a tilted rectangular area which
is a simplification of the receiver Planta Solar 10 (PS10) [44]. A cylindrical cavity
receiver consisting of multiple small rectangular receiver panels that are horizontally
aligned according to parts of a regular polygon. The cavity receiver is a more accurate
representation of the receiver at the PS10. Lastly, the cylindrical external receiver,
as used in the power plant Gemasolar [11], has the shape of a regular polygon that is
situated on the outside of the tower.

Optical losses Some solar radiation hitting the heliostats is lost by the time it reaches
the receiver. The different types of losses will be discussed in the following.

6

x
y

z

(a) Flat tilted cavity receiver

x
y

z

(b) Cylindric cavity receiver

x
y

z

(c) Cylindric external receiver

Figure 3: All three receiver types included in the optical model. The Figure is derived
from Richter [50, p. 11].

The cosine effect accounts for the tilted alignment of the heliostat to the incoming
radiation and leads to the biggest loss. As stated at the beginning of this section,
the radiation of the sun is described by the direct normal irradiation which gives the
solar radiation received by an area perpendicular to the incoming sunlight. Since
the heliostat is tilted, its area perpendicular to the sunlight is reduced by the cosine
efficiency

ηcos = 〈~τsolar, ~n〉, (3)

where 〈·, ·〉 is the scalar product of two vectors.

Another effect having a major impact on the overall efficiency is called blocking
and shading. There are different aspects responsible for the blocking and shading of
solar rays. Heliostats casting a shadow on other heliostats or blocking their reflected
rays have the biggest impact on the blocking and shading efficiency ηs&b. However, the
tower can also cast a shadow onto the heliostats and for a cavity receiver, some solar
rays are blocked by the receiver opening window, see Figure 3b.

7

Heliostat reflectivity ηref accounts for the absorption of the solar rays as well as
the diffuse reflection that will not hit the receiver. In the literature, this effect is typi-
cally modeled by a constant value [48].

When the sunlight travels through the atmosphere it interacts with the molecules
and thus losses parts of its power. The atmospheric attenuation efficiency ηaa

models the remaining solar power using a formula derived by Schmitz et al. [58]

ηaa =

{
0.99321− 1.176 · 10−4d+ 1.97 · 10−8d2 , d ≤ 1000 m

exp(−1.106 · 10−4d) , d > 1000 m
, (4)

with d as the distance of the heliostat to the receiver.

The optical errors of the ideal reflected ray are the most difficult part to account
for as they involve uncertainties. Since optical errors determine the direction of an
actual solar ray, they influence the blocking efficiency as well as the intercept efficiency
ηint. The latter describes which portion of the reflected solar power will hit the receiver.
Three errors influence the direction of an actual solar ray, see Figure 4. The tracking
error models the deviation of the heliostat alignment to the desired alignment. As
there are typically two tracking axis, we consider a vertical and a horizontal track-
ing error which are both modeled by Gaussian distributions with standard deviations
σver

tracking, σhor
tracking, respectively. Another error influencing the normal of the heliostat

is the roughness of its mirrors. The resulting slope error can deviate based on the
position on the mirror. It is modeled using Gaussian distributions for the vertical and
horizontal direction with standard deviations σver

slope(x, y) and σhor
slope(x, y). Lastly, the

shape of the sun has to be taken into account which is often done using a circular
Gaussian distribution with standard deviation σsun [49]. But other sun shapes are also
possible and will be discussed later in this section.

~n

~n hor

s

Tracking and
Slope error

~τsolar

~τ hor
solar

Sun error

~r

~r hor

Convoluted
error

Figure 4: Horizontal disturbances of a reflected solar ray (yellow and red) on the surface
of a heliostat (blue) [29].

All of these errors can be convoluted into a single error as stated in [58]. However,

8

slight differences were observed when using the convoluted error compared to modeling
all errors individually. As a reason, we found that the influence of the normal pertur-
bations onto the reflected ray depends on the incident angle of the incoming ray which
is not included in [58]. Consider a solar ray hitting the mirror at a certain incident
angle as shown by the orange vector in Figure 5a. As proven in the following, a per-
turbation of the normal in horizontal direction ~nhor will keep the distance to the plane
spanned by ~nhor and ~n constant, see Figure 5b. Without loss of generality, assume
~n = (0, 0, 1)T , ~nhor = (1, 0, 0)T and the incoming ray ~τsolar = (τx, τy, τz)

T . From the law
of reflection the unperturbed reflected ray ~r can be calculated to

~r = ~τsolar − 2(~τsolar~n)~n = ~τsolar − 2(0, 0, τz)
T . (5)

While a perturbation of the normal vector in horizontal direction by a factor of α
results in

~npert =
~n+ α~nhor

‖~n+ α~nhor‖ = (~n+ α~nhor)β

~rpert = ~τsolar − 2(~τsolar(~n+ α~nhor)β)(~n+ α~nhor)β

= ~τsolar − 2β2(~τsolar~n~n+ ~τsolar~nα~n
hor + ~τsolarα~n

hor~n+ ~τsolarα~n
horα~nhor)

= ~τsolar − 2β2(ατz + α2τx, 0, τz + ατx)
T ,

(6)

with β = ‖~n+ α~nhor‖−1 as the normalization factor.

Both ~r and ~rpert have the same y-coordinate and thus an equal distance to the xz-
plane spanned by ~nhor and ~n. So the angle ωhor = ω, shown in Figure 5b, between
the reflected ray and its projection onto the xz-plane also remains unchanged. A
normal perturbation in horizontal direction can hence be viewed as a rotation of the
reflected vector around the perpendicular axis ~nver, as illustrated. This causes the
reflected ray to move around a circle, see Figure 5a. Smaller circle radii lead to less
distance traversed by the reflected ray. From the geometry of the problem, it follows
that the angle between the reflected ray and the plane of the circle is also given by
ωhor. Therefore, the radius of the circle is cosωhor. As the perturbed normal vector
rotates around a circle of radius one, the distance traversed by the reflected vector is
reduced by a factor of cosωhor. A similar argument applies for the vertical deviation.
Additionally, a perturbation of the normal has twice as much impact on the reflected
ray as an equivalent perturbation of the incoming sun ray, leading to a convoluted
error of

9

σhor =

√
(σsun)2 + (2 cosωhorσhor~n)

2

=
√

(σsun)2 + (2 cosωhor)2((σhor
tracking)

2
+ (σhor

slope(x, y))
2
),

σver =

√
(σsun)2 + (2 cosωverσver~n)2

=
√

(σsun)2 + (2 cosωver)2((σver
tracking)2 + (σver

slope(x, y))2),

(7)

with σhor~n =
√

(σhor
tracking)

2
+ (σhor

slope(x, y))
2

as the convoluted normal perturbation in

horizontal direction and σver~n =
√

(σver
tracking)2 + (σver

slope(x, y))2 for the vertical direction.

~n

~n hor

ω

(a) The circle that the reflected ray is
rotating around when being per-
turbed in horizontal direction.

~n

~n hor

ω
ω

(b) The constant angle ω = ωhor

when perturbing the normal vec-
tor in horizontal direction.

Figure 5: Illustrations for the derivation of Equation (7). The mirror surface is shown
in blue, the incoming sun ray in orange, the reflected ray in red, and the
plane spanned by ~n and ~nhor in gray.

Finally, the direction of the convoluted ray perturbation has to be calculated. So far
the horizontal and vertical disturbances were given in terms of the normal vector. To
obtain the corresponding directions for the reflected ray, the perturbation directions of
the normal has to be rotated as illustrated in Figure 6. The rotation is defined by the
angle β and the axis ~a being perpendicular to the normal and ray.

Sun shapes As stated earlier, other distributions that more accurately represent
the sun shape than a circular Gaussian can also be modeled. Three new types of
distributions were introduced for this purpose, all of which are circular symmetric.
Namely, the Buie [63], Pillbox [63], and custom distributions. For the Buie sunshape
the following probability density function was used.

10

~a

~n

~n hor

~n
ver

~r

~rh
or

~r
ve
r

β

~τsolar

Figure 6: Illustration on how to compute the perturbation direction of the reflected
ray from the perturbation of the normal [29].

buie(α, csr) =

{
cos 0.326·α
cos 0.308·α , α ≤ 4.65

αγ exp (κ) , otherwise
, (8)

γ = 2.2 ln (0.52 · csr)csr0.43 − 0.1, κ = 0.9 ln (13.5 · csr)csr−0.3 (9)

with alpha as the angle in milliradians and csr as the circumsolar ratio [63]. The
probability density function of the Pillbox distribution is much simpler and given by

pillbox(α, sw) =

{
1 , α ≤ sw

0 , otherwise
, (10)

with sw as the sun width in milliradians. Lastly, the custom sun shape is defined as a
stepwise linear probability density function which gets normalized afterwards.

All optical aspects described so far need to be evaluated using a ray tracer. Sun-
Flower contains different types of ray tracers as described in the following.

2.1.1 Monte Carlo ray tracer

The task of a ray tracer is to calculate the total intercept power Pint at the receiver
for a given direct normal irradiation IDNI and sun position. To do so, the ray tracing
techniques presented in the following generate representative rays on the surface of the
mirror in a bidirectional ray tracing manner. Shading and blocking computations are
sped up by precomputing a simplified version of the ray-heliostat interaction. As a
result each heliostat has a set of potential blocking and shading heliostats [29]. The
facet of a heliostat is evenly discretized into cells each with an intercept power of

11

Pint,cell = IDNI Acell ηcos ηref ηaa︸ ︷︷ ︸
=:Preflected

ηsb ηint. (11)

with Acell as the area of the heliostat cell and Preflected as the total power reflected by
the cell.

For the computation of the total intercept power, there are three main challenges

• one ray is used to represent photon interactions of a certain cell,

• evaluation of the ray disturbance,

• computation of shading and blocking effects.

In the following the bidirectional Monte Carlo ray tracer of SunFlower is introduced [29]
and extended to the new sun shapes. The Monte Carlo-based ray tracers are straight-
forward techniques to compute the concentrated solar power at the receiver. They are
suitable for complex receiver geometries where most analytical methods are not appli-
cable anymore [39]. But since they rely on the law of large numbers, a vast number
of rays need to be simulated to achieve accuracy and reduce fluctuations. Therefore,
Monte Carlo ray tracers tend to have a long processing time when an accurate result
is needed.

A bidirectional-Monte Carlo ray tracer simulates a perturbed version of the ideal
reflected ray, see Figure 7. For this, random numbers are generated from normal
distributions with standard deviations as in Equation (7).

Figure 7: Illustration of the bidirectional-Monte Carlo ray tracing principle. The he-
liostat is shown in blue, the receiver in green, the Gaussian disturbance in
black, and the generated ray in red [29].

The perturbed ray is now checked or shading and blocking. Therefore, it is traced
in forward and backward direction. If the ray hits another heliostat, then ηsb for this

12

ray is set to 0, otherwise to 1. If the ray hits the receiver surface, then ηint is set to 1,
otherwise to 0. Thus, only If the perturbed ray is not blocked nor shaded and it hits
the receiver, its representative power Preflected from (11) is added to the total intercept
power at the receiver.

Random generator for sun shapes As discussed in Section 2.1, our ray tracer should
also be able to represent sun shapes other than a Gaussian. For an accurate repre-
sentation first, the sun vector is perturbed, as specified by the new sun shapes, and
then the reflected ray to account for tracking and slope errors. Therefore, a method
to perturb a vector based on the new sun shapes, which are defined by their profile is
needed. A two dimensional perturbation is calculated using polar coordinates. Since
the sun shapes are circular, the angle ϕ is drawn from the uniform distribution [0, 2π].
As described in [63], the original sun shape profile then needs to be modified as follows

L(θ) =
L̂(θ) sin θ cos θ∫ π/2

0
L̂(θ) sin θ cos θdθ

, (12)

with L̂ as the sun shape profile. Samples can then be drawn from the distribution by
approximating it with a piecewise linear distribution. The three dimensional perturbed
vector then is given by (tan θ cosϕ, tan θ sinϕ, 1)T which gets converted into the local
coordinate system of the sun ray to obtain the desired disturbed sun ray.

2.1.2 Analytic ray tracer

In contrast to the Monte Carlo methods, an analytical ray tracer calculates the inter-
cept efficiency ηint in a deterministic manner. The ray tracers presented in the following
are expanding on the works in [29]. Instead of generating several perturbed rays from a
given distribution, the aim is to integrate the distribution around the perfect reflected
ray. With this, an exact evaluation of the ray disturbance can be obtained which elimi-
nates a central error source of the ray tracer. Thus far fewer rays are needed to achieve
accurate results. Moreover, due to the deterministic nature of an analytical ray tracer
there are no fluctuations in the results.

The distribution of a ray reflection is commonly represented by a two dimensional
probability density function on a plane orthogonal to the ideal ray direction called
the image plane. As described in (7) we model the errors perturbing the ray using
two independent Gaussian distributions. Therefore, our two dimensional probability
density function is given by

f(x, y) =
1

2πσhor
spanσ

ver
span

· exp

(
−1

2

((
x

σhor
span

)2

+

(
y

σver
span

)2
))

, (13)

with σhor
span = δ ·tan

(
σhor

)
, σver

span = δ ·tan (σver) and δ as the distance of the ray origin to
the image plane. Integrating over an area representing the receiver gives the probability

13

of hitting the receiver. In the following, two analytical ray tracers will be described
that mostly differ in the function used to describe the ray disturbance. They have
been introduced in [29] and are here generalized for the new sun shapes and refined to
better account for shading and blocking effects.

Convolution method To compute the intercept efficiency ηint, the receiver is pro-
jected onto the image plane Ω using a perspective projection of each point of the
receiver shape, see Figure 8a. Every projection requires only one matrix multiplication
and gives the projected point in local coordinates of the image plane, see Figure 8b.
Here, each corner ci gets projected onto the plane resulting in c

′
i whose coordinate sys-

tem is defined by ~r ver, ~r ver and the origin mray. The base vectors match those of the
disturbances to the ideal ray which intersects the plane at mray. The resulting polygon
D represents the region where each intersecting ray also hits the receiver surface. Note
that the image plane can be set at an arbitrary distance since for all distances a valid
representative region of the receiver exists. Thus the intercept efficiency ηint that the
ray will hit the receiver is given by

ηint =
x

D

f(x, y) dΩ. (14)

(a) Perspective projection of a receiver
shown in green that is required for the
convolution method.

c′3
c′4

c′1

c′2

~r ver

~r hor

mray

(b) Illustration of the local coordinate sys-
tem on the image plane defined by ~r ver,
~r ver and the origin mray.

Figure 8: Illustration on how to calculate the projected receiver area on the image
plane where the two dimensional Gaussian is defined [29].

In Figure 9 the principle of the convolution ray tracer is demonstrated.
The basic idea to evaluate the integral in (14) is to integrate over the outer region

of the polygon by dividing it into so called angular regions. With the extension in [18]
arbitrary polygons can be handled. The integration over an angular region is partly
not analytically possible. Therefore, a minmax polynomial fit to the non-integrable
part of the original function is used [19]. The degree of the underlying polynomial
directly effects the accuracy and the run-time. Further details can be found in [51].

14

Figure 9: Illustration of our convolution ray tracer. The heliostat is shown in blue and
the receiver in green. The shaded red cone illustrates an exact evaluation of
the perturbation of the ideal reflected ray [29].

Commonly, analytical ray tracers like HFLCAL solve the integral in (14) with some
kind of quadrature rule by discretizing the receiver into smaller pieces. The advantage
of our approach is that it does not require any further discretization of the receiver
since it directly integrates over the polygon. In such a way the overall run-time can be
reduced significantly. Due to the gained speedup, our convolution ray tracer i
s capable of simulating multiple rays for each facet to improve accuracy.

For the shading and blocking efficiency ηsb, the convolution ray tracer uses the ideal
non-perturbed ray and tests against neighboring heliostats. Furthermore, for cavity
receivers partial blocking from the tower itself needs to be considered. To exclude these
blocked regions, polygon D has to be cut into its truly visible parts. This can be done
efficiently on the image plane itself using two cutting lines which also offer a fast way
to test whether any cut is required.

As shown in [51], the convolution method is more accurate the more cells per facet
are used. But increasing the number of rays effectively increases the computational
costs. In the following, we present the integrated convolution ray tracer, which aims
on integrating over several error cones, such that the accuracy increases without using
more facet cells.

Integrated convolution method By deeper investigating the effect of evaluating mul-
tiple rays one can see that the simulation of an infinite amount of rays can be modeled
by simply using a different probability density function. Consider a two dimensional
example of the ray tracing problem as shown in Figure 10. When simulating two
rays instead of one the original intercept efficiency ηint is split and the total power
contribution to the receiver is given by

ηint =
1

2
ηint,1 +

1

2
ηint,2 =

1

2

∫ b

a

(f(x− µ1) + f(x− µ2)) dx, (15)

15

s

~r

a b

µ1 µ2µmin µmax

∆µ

Figure 10: Simplified example of the power contribution of two heliostat cells shown
in blue to the receiver spanning from a to b shown in green. µ1 and µ2 are
the origins of the ideal reflected rays [29].

with f as the Gaussian distribution describing the disturbance, µ1 and µ2 as the ori-
gin of the two rays and ηint,1 and ηint,2 as the probability that they will hit the receiver.
Here, a and b are coordinates of the projected receiver.

Extending the idea to an infinite amount of rays comes down to integrating over the
cell length ` leading to∫ b

a

lim
n→∞

1

n

n∑
i=1

f(x− µi) dx =

∫ b

a

1

`

∫ `/2

−`/2
f(µ− x)dµ dx =

∫ b

a

F (x) dx

=

∫ b

a

1

2`

(
erf

(
`/2− x√

2σ

)
− erf

(−`/2− x√
2σ

))
dx,

(16)

with F as the new probability density function, see Figure 11. Here, µi are the new
midpoints of the heliostat cells which are given by

µi = µmin +
∆µ

2
+ ∆µ(i− 1), ∆µ =

µmax − µmin

n
. (17)

Likewise a two dimensional version of the function F for our general ray tracing
problem can be formulated. Given a cell of length ` and width w the new probability
density function is given by

F (x, y) =
1

4`w

(
erf

(
w/2− x√

2σhor
span

)
− erf

(
−w/2− x√

2σhor
span

))
(

erf

(
`/2− y√

2σver
span

)
− erf

(
−`/2− y√

2σver
span

))
.

(18)

16

Figure 11: Illustration of our integrated convolution ray tracer [29].

Note that the function assumes the cell to be aligned with the axis of derivation.
When this is not the case, a simplified version of the cell is used which is reduced to
its effective reflected area and correctly aligned.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

Gaussian Approximation
Integrated Gaussian

Figure 12: Approximation of the integrated Gaussian of a cell of length l = 1 m and
standard deviation σbeam = 3 mrad at a distance of 100 m [29].

But since an integral of the new probability density function over a polygon is hard to
evaluate, an approximation is needed. To achieve an accurate approximation, we made
use of the fact that with an increased distance to the image plane the function converges
to a bivariate Gaussian function as in Equation (13). Here, the integrated version of
the Gaussian distribution from each perturbation axis is approximated individually.
An example from a cell of length l = 1 m and standard deviation σbeam = 3 mrad
with its approximation is shown in Figure 12. Therefore, given the length of the cell `
and standard derivation σ, a function that calculates the standard derivation σappr of
the new Gaussian distribution approximating the integrated Gaussian distribution is

17

needed. Such a function is given in the following

σappr = σ · g(δ
σ

3`
), with g(x) = max (a · exp

(
b

x+ c

)
+ d, 1). (19)

Coefficient Value
a 6.0654123395858638·10−3

b 1.0168091727137571·103

c 1.3522384735784115·102

d 9.8897960843463073·10−1

Table 1: Coefficients of the sigma multiplier function gapprox from Equation (19).

Table 1 shows the values of the used constants in g. The derivation of g can be
found here [29]. Note that g converges to one with the distance leaving the original
standard derivation unchanged. A comparison between the integrated Gaussian distri-
bution and an optimal Gaussian approximation as well as between an approximation
using Equation (19) showed differences of less than 1.5% [29].

By approximating the integrated Gaussian distribution of each perturbation axis we
can carry out the ray tracing the same way as in our Gaussian convolution method.
However, since the rays are not originating from a single point anymore the use of a
perspective projection to obtain the representative region of the receiver introduces
some errors. But the error can be minimized by placing the image plane at the mid-
point of the receiver.

A study done in [13] backs up the approximation method of our integrated con-
volution technique. They fitted the slope error in HFLCAL such that the solar flux
matches the actual measured data. The resulting standard derivations increased for
larger cell areas and decreased with the distance which corresponds to the behavior of
our approximation.

To conclude, our integrated convolution ray tracer models the simulation of multiple
rays using a simple adaptation of the bivariate Gaussian distribution.

Shading & Blocking So far, the integrated convolution ray tracer introduced in [29]
addresses a fast and accurate computation of the intercept efficiency. However, shading
and blocking efficiency calculations also have a large impact on the overall accuracy
of the result. All other efficiencies are already accurately represented with only a
single ray per heliostat facet, more details in Section 4.1.4. Therefore, additional

18

computational effort should only be spent on blocking and shading computations.
Instead of evaluating only one ideal reflected ray for shading and blocking effects,
our analytical ray tracer can handle multiple shading and blocking samples. A more
exact evaluation would be to orthographically project shading and blocking heliostats
onto the surface of the current heliostat cell and subtract overlapping areas. However,
it is questionable whether this approach would be more performant.

Sun shape approximation Since our analytical ray tracers are formulated for a bi-
variate Gaussian distribution, other sun shapes can not be represented directly. An
exact evaluation would require two new methods. First, a way to convolute the new
sun shape with the bivariate gaussian for the tracking and slope error. Second, an effi-
cient method to integrate the resulting two dimensional distribution over a polygonal
region. Considering how much effort went into the development of a method to inte-
grate a bivariate gaussian over a polygon, the second requirement is out of the scope
of this thesis. But the same idea of the integrated convolution can be applied here.
Instead of using the exact distribution directly, one can approximate the convoluted
distribution with a bivariate Gaussian.

A straightforward approach to this problem is to simply approximate the sunshape
before the convolution. Then the convolution can be carried out as before. However,
as a simplified test case has shown, the resulting convoluted Gaussian has a different
standard deviation than the flux profile obtained by separately perturbing the sun
vector and heliostat normal. The test case consists of a rectangular 1 m2 receiver
discretized into 49x49 pieces and one ray with 100.000 samples originating 50 m away
from the receiver. As a sun shape, the pillbox distribution with a sun width of 4.35
mrad was used combined with a tracking and slope error of 2 mrad. Since the standard
deviation of the pillbox distribution is around 2.512 mrad, the simple approximation
would result in a convoluted standard deviation of

√
2.5122 + (2 · 2)2 ≈ 4.72 mrad.

However, the standard deviation obtained from the experimental data is 4.59 mrad
which is a difference of around 2.8%.

Thus, calculating the convolution and taking its standard deviation might lead to
more accurate approximations. Since we already represent the profile of the new
sun shapes as piecewise linear distributions, it seems reasonable to use a convolution
method for one dimensional piecewise linear distributions. But even though the con-
volution of two bivariate Gaussians can be reduced to the convolution of the respective
one dimensional Gaussian, the same does not hold for other circular distributions. For
example, convoluting two one dimensional profiles of pillbox distributions results in a
triangular shaped distribution. But, in the same test case as above with two pillbox
distributions a different flux profile is obtained, see Figure 13. To verify the expected
and actual result, the horizontal profile of a random generator for the 2D sun shape
and one for the 1D pillbox profile are also shown. The same holds for the convolution
of a pillbox with a bivariate Gaussian. Therefore, the convolution computation actu-

19

ally needs to consider the two dimensional distributions. Since no efficient analytical
method has been found, a numerical calculation of the convolution is carried out.

−0.4 −0.2 0 0.2 0.4

0.0

1.0

2.0

Receiver horizontal position [m]

Experimental

2D Random Generator

1D Convolution

1D Random Generator

Figure 13: Convolution of two pillbox distribution with a rectangular 1 m2 receiver
discretized into 49x49 pieces and one ray with 100.000 samples originating
50m apart from the receiver. The convolution of the 1D pillbox profile is
expected to have a triangular shape as confirmed by a random generator,
shown in blue. But from the test case as well as a random generator for the
actual 2D sun shape, a different profile is obtained shown in orange.

First, the two dimensional vector (0, 0) gets individually perturbed by the specified
distributions similar to the three dimensional case in the Monte Carlo methods, see
Section 2.1.1. For each sample vector its length is calculated and the reverse operation
of Equation (12) has to be applied to get the correct profile resulting in a standard
deviation of

σ =

√∑n
i=0 (si − s̄)2

n− 1
, si =

1

sin li cos li
(20)

with li as the length in mrad of the i-th sample and s̄ =
∑n

i=0 si/n as the mean.
To reduce memory usage, the samples are grouped in buckets instead of saving each

of them for the calculation of the mean.

2.1.3 GPU Acceleration

Since each ray is evaluated independently, the ray tracers are highly concurrent. There-
fore, they are very well suited to run on hardware specialized for parallelism like the

20

GPU. A summary on the how the CPU version of SunFlower was parallelized on the
GPU is given in the following. The presented work done by Aldenhoff [2] has been
refined and extended to include newly added features to the ray tracer.

A CPU consists of a small number of independent cores with large individual caches.
In contrast, a GPU has a lot more cores sharing the control logic and caches. Mem-
ory consumption and transfer are typically the limiting factors for GPU programs.
Therefore, a lightweight version of SunFlower was implemented in CUDA. Only data
essential for the calculations is transferred from the CPU to the GPU. Because the
GPU executes threads in so called warps sharing one program counter, any execu-
tion divergence results in synchronization and thus loss of parallelism. Branches were
very common in the ray-heliostat and ray-receiver intersection calculation. Specifically,
when traversing the bounding volume hierarchy. For better performance, an iterative
synchronous traversal was implemented. Another frequently executed part of the code
causing execution divergence is the bivariate polygon integration. The algorithm de-
veloped in [19] includes a variety of branches for the angular cases. Since the actual
computation is mostly the same, a branchless version was implemented.

Now that all components of the most complex submodel of the CRS are fully de-
scribed, the remaining models will be shortly discussed in the following sections.

2.2 Thermal model

The incident solar radiation Q̇inc calculated by the optical model is transferred into
thermal power at the receiver. It consists of panels containing tubes through which
a heat transfer fluid (HTF) is flowing. As a HTF molten salt is often used and thus
considered in our model. It is based on the works of Heiming [28] and Franke [25].
However, some of the incoming solar radiation is lost due to different types of effects.
First, only a part of the radiation is absorbed by the receiver since some gets reflected
Q̇ref. Additionally, the HTF losses thermal power to the surrounding air by convection
Q̇conv. It is caused by the fluid flow as well as by gravity and thermal buoyancy. Since
the convection loss depends on the receiver being used, each receiver type has its own
model for the convection loss, see [15]. Lastly, the receiver panels radiate heat into
the environment Q̇rad. Because the environment also radiates heat onto the receiver
the actual loss depends on the temperature between the environment and the receiver.
Therefore, our model differentiates between radiation loss to the ground and radiation
loss to the sky [15]. In total the remaining thermal power of the HTF Q̇htf is given by

Q̇htf = Q̇inc − (Q̇ref + Q̇rad + Q̇conv). (21)

The second part of the thermal model is to predict the required mass flow rate of the
HTF to obtain the desired temperature at the receiver outlet. The resulting equation
for the mass flow rate has an implicit nature and is therefore solved iteratively. More
details on the model can be found in [28].

21

2.3 Storage model

receiver power block
P rec
th (t) P rec→pb

th (t) P pb
th (t)

storage block

P rec→sb
th (t) P sb→pb

th (t)

excess energy

P ex
th (t)

Figure 14: Possible power flows of the storage system, derived from [15]. The thermal
power of the receiver can be stored, directly pumped into the power block,
or discarded.

Instead of directly feeding the HTF to the power block, it can also be transported
into a storage system. This approach has two benefits. First, electricity generation can
be adjusted to the demand, and second excess power surpassing the capacity of the
power block P pb max

th can be stored P sb
th instead of being wasted. The heated molten salt

is stored in a hot storage tank and after its power is converted, it is transferred to a
cold tank. As shown in Figure 14, the thermal power can flow from the receiver P rec

th to
the storage block P rec→sb

th , to the power block P rec→pb
th or be discarded as excess energy

P ex
th . Stored power in the storage block can then flow to the power block P sb→pb

th . A
buffer strategy derived from Coumbassa [15] is considered which maximizes the power
input. Depending on the amount of thermal power at the receiver, two operation
modes are used. First, the generate mode, where the thermal power at the receiver
is less than the maximum input power of the power block (P rec

th ≤ P pb max
th). Then all

thermal power can be transferred to the power block and thus nothing needs to be
stored. Additionally, power in the storage tank can also be processed leading to

P rec→sb
th = P ex

th = 0,

P rec→pb
th = P rec

th ,

P sb→pb
th = P pb max

th − P rec→pb
th .

(22)

However, there is also a minimum input power required by the power block to pro-
duce electricity. If this requirement is not met, the thermal power is fed into the storage
tank.

22

P rec→pb
th = P sb→pb

th = 0,

P rec→sb
th = min (P rec

th , P
sb max
th),

P ex
th = P rec

th − P rec→sb
th ,

(23)

with P sb max
th as the capacity of the storage block.

On the other hand, the surplus mode considers the case that more thermal power is
generated by the receiver than the power block is capable of handling (P rec

th > P pb max
th).

The hot tank then stores as much power as possible and the residual power is discarded.

P rec→pb
th = P pb max

th ,

P rec→sb
th = min (P rec

th − P rec→pb
th , P sb max

th),

P sb→pb
th = 0,

P ex
th = P rec

th − P rec→pb
th − P rec→sb

th

(24)

By applying the buffer strategy for each time step ∆t, the thermal energy Qsb
th(t)

stored in the hot tank at time t can be computed.

Qsb
th(t+ ∆t) = Qsb

th(t) + (ηinP
rec→sb
th (t)− η−1

outP
sb→pb
th (t)− ηlossQ

sb
th(t)) ·∆t, (25)

with ηin, ηout as the charging and discharging efficiency of the storage block, and ηloss

as the heat loss factor.

Similarly, the thermal power at the power block is given by an iterative applica-
tion of the buffer strategy while considering different losses, see [15] for more details.
Therefore, the thermal power at the power block is given by

P pb
th (t) = P rec→pb

th (t) + P sb→pb
th (t). (26)

2.4 Electrical model

The thermal power calculated in the storage model is then converted into electrical
power as described by the following electrical model [25]. It models the power block
consisting of a heat exchanger, a steam turbine, a generator, a condensator, and a
cooling tower. Since molten salt has a temperature far above 100◦C, it evaporates
water in the heat exchanger which then drives the turbine to generate electricity. A
condensator in combination with a cooling tower cools the steam down to a liquid.
To simplify the calculation of the power block efficiency ηpb, measurements from an
actual 100MW power block provided by TSK Flagsol are used. These depend on the

23

turbine load as well as the ambient temperature. After testing the efficiency at different
loads and temperatures, the results were bilinear interpolated to estimate efficiencies
for intermediate values. Figure 15 shows the resulting efficiencies. Therefore, the
efficiency ηpb is directly obtained from the bilinear interpolation, and the electrical
power is given by

P pb
el (t) = ηpb(Tamb, l) · P pb

th (t). (27)

20 40 60 80 100

10

20

30

40

Load [%]

A
m

b
ie

n
t

te
m

p
er

at
u
re

[°C
]

36

38

40

42

P
ow

er
B

lo
ck

E
ffi

ci
en

cy
[%

]
Figure 15: Interpolated efficiencies of a 100 MW power block for various ambient tem-

peratures and loads taken from [25].

2.5 Economical model

In the last part of CRS model, its economical aspects are evaluated. Since the generated
electricity of the plant is known from the electrical model, the income can be calculated
given the hourly tariff of electricity πToE(t) to

Cincome =
365∑
d=1

∫ 24

0

P pb
el (d, t)πToE(t)dt ≈ Eel · πToE, (28)

with Eel as the annual electrical energy production.

The modulation of the costs is the most complex part of the economical model. Most
of the presented model is based on the works of [28] with a few simplifications [24].
Two types of costs are considered, the investment costs Cinvest as well as the operation
and maintenance costs COM.

24

Investment To estimate the investment costs, the cost of each component of the
plant is summed up to

Cinvest = Cland + Chel + Ctower + Crec + Csb + Cpb. (29)

Originally, two effects influencing each component costs were taken into account [28].
First, the scaling effect describing the scaling of all costs that are based on a reference
project of different scale. Furthermore, the volume effect described the decreasing
costs when larger quantities are bought. However, the required parameters are hard to
estimate correctly and the volume effect is often the same since larger quantities are
brought anyway. Therefore, these effects are not considered in the following simplified
model

• The land costs Cland consist of terrain costs as well as costs for terrain improve-
ment.

• According to [28] heliostat costs Cheli were put into two main categories. Direct
costs for the foundation, manufacturing, wiring, communication, optical improve-
ment of the mirrors as well as the installation of each heliostat. On the other
hand, indirect costs for the engineering, facilities and tooling, and equipment
lease. Considering our simplification, most of these costs can be combined to

Chel = chel ·Nhel + Chel,ind, (30)

with chel as the combined direct cost factor for each of the Nhel and Chel,ind as
the total indirect heliostat cost.

• Ctower are the total costs of the tower.

• Similarly, Crec consists of all costs for the receiver.

• Since the costs of the storage system Csb depends on the maximum storage
capacity Qsb max

th , they are given by

Csb = csb ·Qsb max
th , (31)

with cst as the costs per thermal power.

• Lastly the cost of the power block Cpb depends on its maximum output capacity

P pb max out
el as follows

Cpb = cpb · P pb max out
el , (32)

with cpb as the costs per electric power.

25

The operation and maintenance costs COM consists of staff, water, spare parts, and
insurance costs which largely depend on the size of the plant. Since the investment
costs also depend on the plants size, operation and maintenance costs are modeled as
a fraction of Cinvest

COM = fOM · Cinvest. (33)

From the costs of the plant and its generated income, different economical perfor-
mance measures can be calculated.

Levelized cost of electricity (LCOE) The levelized cost of electricity describes the
running production costs of electricity. Thus, it does not directly consider the one-time
investment costs. Due to its simplicity, it is commonly used to compare different power
plants [28] and calculated as follows:

LCOE =
Annual costs

Annual energy production
=
Cinvest · fannuity + COM

Ea

, (34)

with the annuity factor containing the nominal rate of interest r of the loan and the
number of years Ny for the loan repayment which is assumed to be the whole project
life time

fannuity =
1∑Ny

y=1
1

(1+r)y

=
(1 + r)Ny · r
(1 + r)Ny − 1

. (35)

In simple terms, the annuity factor is used to determine the annual amount of money
that has to be paid to compensate for the investment loan while taking time into
account. It is calculated from the present value, i.e. how much the annual payments
would be worth at the beginning of the loan. Therefore, it includes the fact that having
some amount of money now is worth more than having the same amount of money in a
few years. More specifically, the bank could use the money for other loans. Therefore,
the present value PVy of each of the annual loan repayments Ly decreases per year y
due to the compounded interest (PVy · (1 + r)y = Ly). To have a profitable deal for
the bank, the summed present value should match the investment costs. Thus, the
required annual payments can be calculated as a fraction of the investment cost as
shown in Equations (34) and (35).

Net present value (NPV) To estimate the overall profit of the power plant, the net
present value is used. As the name suggests, it measures how much the whole project
including its annual revenue and investment costs, would be worth at the beginning
of the project. The present value of the annual income and costs can be calculated as
stated above by using the annuity factor. Since the present value is now of interest

26

and not the required annual loan repayment, the inverse of the annuity factor has to
be used. When subtracting the investment costs we get

NPV =

Ny∑
y=1

(PVincome,y − PVcosts,y)− Investment costs

=

Ny∑
y=1

Cincome − COM

(1 + r)y
− Cinvest =

Cincome − COM

fannuity

− Cinvest,

(36)

Internal rate of return (IRR) The internal rate of return calculates the required
nominal interest rate r of Equation (36) to have an NPV of zero. Therefore, giving a
measure at which interest rate the project would be profitable.

Paybakc Period (PP) Similarly, the number of years NPP until the project generates
profit can be calculated by setting Equation (36) to zero and solving for Ny resulting
in

NPP =
log (Cincome−COM

Cincome−COM−r·Cinvest
)

log (1 + r)
. (37)

2.6 Annual integration

So far the optical model considered the static case of having a particular date and time
for which the solar power should be calculated. But as discussed in the last sections
the annual received energy is often of interest which is given by:

Erec =
365∑
d=1

∫ 24

0

P (d, t) dt =
365∑
d=1

∫ 24

0

AheliosIDNI(d, t)η(d, t)dt (38)

with P (d, t), Ahelios, IDNI(d, t) and η(d, t) as in Equation (11) and Erec as the annual
solar energy hitting the receiver. Even when approximating the integral over the day
by a sum over the hours, the optical model has to be evaluated 8760 times for one an-
nual simulation. Considering that an optimization of the heliostat field requires a lot
of annual simulations, this approach is infeasible. Therefore, instead of computing the
optical power for each hour of the year, specific dates and times are simulated and the
remaining ones are obtained via interpolation. First, the temporal domain in Equa-
tion (38) is transformed into either an ecliptic or equatorial coordinate systems [54].
These are then transformed into a unit square which can be sampled by a regular or a
non-regular grid. When using a regular grid, the computed sample efficiencies can be
interpolated by a variety of different methods.

1. Nearest-neighbor interpolation which uses the closest neighboring sample.

27

2. Bilinear interpolation of the four surrounding points.

3. A spherical linear interpolation (SLERP) based method, that applies SLERP in
both directions but uses efficiencies instead of quaternions.

4. Bicubic interpolation using cubic splines to achieve smoother interpolation sur-
face [54].

For non-regular grids, Legendre polynomials are utilized. More details on the annual
integration method can be found in [54].

3 Heliostat field layout optimization

Optical losses are responsible for about 40% of the total losses within a CRS [40]. The
heliostat field layout has a crucial impact on optical losses. Therefore, optimizing the
layout can significantly improve overall efficiency. As discussed at the beginning of this
thesis, there are a variety of different approaches to optimization. In the following,
three different optimization strategies will be discussed. Section 3.1 describes the
pattern based optimization which places heliostat in a parameterized pattern and thus
reduces the search space to a few parameters. The goal of pattern optimization is to
find the best parameters and select the highest scoring subset of heliostat positions.
One downside of pattern optimization is that an optimal field layout is most likely not
within the pattern.

Therefore, pattern-free optimizations like field growth methods consider a far larger
set of possible positions. They sequentially add the best performing heliostat to the
field to obtain an optimal layout. Section 3.2 introduces our new graph based field
growth method in detail.

Finally, in Section 3.3 local search optimization is discussed which further improves
a given heliostat field by repositioning each heliostat individually.

3.1 Pattern based approaches

The pattern optimization discussed in the following is extending on the work of Richter
et. al. [50, 24]. All original patterns and their improved versions are described by a
few parameters. These are then optimized with our combinatorial or downhill simplex
search methods, as described in Section 3.1.6.

3.1.1 North-South staggered

The north-south staggered pattern was developed as an improvement to the cornfield
pattern by reducing empty space between the heliostats [37]. Instead of having equal
rows as in typical cornfields, each row in the North-South staggered pattern is staggered
to its neighbors offering a more dense packing. As indicated by its name, the pattern
is aligned with the north-south direction due to its horizontal and vertical symmetry

28

as well as the sun’s movement. Moreover, the distances drow
i between rows and dcol

i

columns of the pattern linearly increase with the distance to the center

drow
i = arow · i+ browD, dcol

i = acol · i+ bcolD, (39)

where D is the heliostat diameter and arow, brow, acol, and bcol are the linear and
constant factors for the row and column distance, respectively. The linear factors are
extensions to the original North-South staggered pattern.

Figure 16 illustrates the north-south staggered pattern and the parameter for opti-
mization can be found in Table 2.

Parameter Description
arow constant factor of the row distance
brow linear factor of the row distance
acol constant factor of the column distance
bcol linear factor of the column distance

Table 2: Parameters of the North-South staggered pattern, with parameters that are
not existing in the original pattern shown in bold.

drowdcol

(a) Original

drow1

drow2

dcol1dcol2

(b) Improved

Figure 16: Illustration of the original and extended North-South staggered pattern,
with drow

i and dcol
i as the i-th row and column distance, respectively.

3.1.2 Radial staggered

The radial staggered pattern also places heliostats in a staggered fashion for closer
packing [14]. However, they are now positioned on concentric rings, see Figure 17a.
The pattern can be found in a lot of commercial CRS like the Gemasolar [11]. The re-
quirements of the original pattern are simple. The radial distance between consecutive
rows should be constant while heliostats are placed as dense as possible. Therefore, a
staggered arrangement is needed, which mostly requires the same amount of heliostats

29

between each row. The only exception is when twice as many heliostats can be placed
as on the row before. Rows having the same amount of heliostats are grouped into one
zone. Finally, the first row is set to contain 35 heliostats.

From the requirements and some basic geometry, the following specifications were
derived [14]. The minimal distance h between neighboring heliostats is given by h =
D+a, with D as the heliostat diameter and a as a safety distance parameter. Therefore,
the minimum radial increment ∆r and the radius r1,1 of the first row of zone one can
be computed to

∆r = h

√
3

2
= (D + a)

√
3

2
, r1,1 =

h ·N1

2π
, (40)

with N1 = 35 as the number of heliostats in the first zone.

Since the heliostats are evenly spaced on each ring, the angular distance ∆aj between
two consecutive heliostats on the j-th Zone is ∆aj = 2π/Nj. Each heliostat position is
given in polar coordinates. The angle of the first heliostat of a row is displaced by ∆aj/2
to the previous rows first heliostat, see Figure 17a. Once the distance between two
heliostats on a row is larger than 2h, another zone starts with Nj = 2Nj−1 heliostats.

SunFlower also includes an improved version of the original radial staggered pat-
tern, see Figure 17b. Here, the radial increment is multiplied by a growth factor g.
Additionally, blocking effects are mostly avoided by requiring a minimum radial incre-
ment as done in [14]. This minimal increment is based on a simplified blocking model.
From the intercept theorem, the radial increment ∆ri,j of the i-th row of zone j can
be calculated to

∆ri,j = gmax

(
h

√
3

2
,

ri,jhhel

htower − hhel

)
, (41)

with ri,j as the radius of the current row, hhel as the height of the heliostat, and htower

as the height of the tower.
A more general formula for the number of heliostats in the j-th zone which is based

on the radius ri,j of the zone is

Ni =

⌊
π

arcsin (h
2r1,j

)

⌋
. (42)

The equation above allows using different numbers of heliostats in the first and the
following zones. Lastly, the whole pattern can be scaled in direction of an axis passing
through the origin. The axis is defined by the angle β to the x-axis and s determines
the scaling factor, see Figure 17b. For a given point p, the scaled version p′ can be
calculated by coordinate transformations. First, the scaling axis is aligned with the
x-axis by rotating with an angle β in clockwise direction. Then the x-coordinates are
scaled using s and the rotation is reversed leading to

30

(
p′x
p′y

)
=

(
cos (β) − sin (β)
sin (β) cos (β)

)(
s 0
0 1

)(
cos (−β) − sin (−β)
sin (−β) cos (−β)

)(
px
py

)
. (43)

It should be noted that β only ranges from 0◦ to 180◦ since the scaling axis is
symmetric at the origin. An illustration of the new scaled pattern can be found in
Figure 17b and its parameters in Table 3.

∆r

∆r

h

h

r1,1
Z1 Z2

(a) Original

∆r1,1

∆r1,2

h

h

Z1
Z2β

(b) Improved

Figure 17: Illustration of the original and the improved radial staggered pattern. Two
zones Z1 and Z2 are shown where each heliostat has a distance of h to the
next heliostat on the same row and the radial increment is given by ∆r. The
improved version uses varying radial increment and can be scaled along an
axis defined by β.

3.1.3 Rose

One disadvantage of the radial staggered pattern for some heliostat fields is its radial
symmetry. Depending on the geographical location of the field, the optical efficiencies
can vary in north-south direction as well as east-west direction. To better account for
these differences, the rose pattern segments the field into six sectors as illustrated in
Figure 18. Sector six is the mirrored version of sector two, likewise for sectors five
and three. Within each sector, heliostats are placed according to the radial staggered
pattern. Safety distances between two sectors were added to avoid collisions. In the

31

Parameter Description
a constant safety distance
g linear radius growth factor
β angle of the scaling axis to the x-axis
s scaling factor

Table 3: Parameters of the improved radial staggered pattern, with parameters that
are not existing in the original pattern shown in bold.

original paper, each radial increment of each sector was optimized individually leading
to a total of 172 parameters [17]. To simplify the optimization, our version of the rose
pattern uses the parameters of the radial staggered pattern within each sector except
the scaling parameters. Table 4 shows the parameters of the pattern.

S1

S2S6

S5

S4

S3

Figure 18: Illustration of the rose pattern, with Si as the i-th sector. Within each
sector the radial staggered pattern is used. Sector five and six are mirrored
version of sectors three and two, respectively.

3.1.4 Hexagon

The original patent of the hexagon pattern [46] placed heliostats along concentric
hexagons. The smallest distance di between the hexagons increases linearly, while each
edge of a hexagon contains one more heliostat than the edge of the previous hexagon.
This results in a staggered arrangement. The heliostats are evenly spaced on each edge
with a distance of hi between two heliostats and hi/2 between a heliostat and a corner.
On the edge of the first hexagon, only one heliostat is placed.

32

Parameter Description
ai constant safety distance of sector i ∈ [0, .., 4]
gi linear radius growth factor of sector i ∈ [0, .., 4]

Table 4: Parameters of the rose pattern, with parameters that are not existing in the
original pattern shown in bold. Sectors two and six as well as three and five
share the same parameter.

From the description above, a formula can be derived to obtain the heliostats po-
sition. An illustration of the hexagon pattern can be found in Figure 19a. The inner
radius ri of the hexagons determines the edge length ki and the distance between he-
liostats hi. From the increasing distance di between consecutive hexagons these values
can be calculated to

di = a · i+ b, ri =

j=i∑
j=0

dj, ki =
2√
3
ri, hi =

ki
i+ 1

. (44)

To obtain the heliostats coordinates, first the corner positions ~ci,j with j ∈ [0, .., 5]
are computed

~ci,j =

(
ki cos (j π

3
)

ki sin (j π
3
)

)
. (45)

Starting at corner ~ci,j, the first heliostat is placed at a distance of hi/2 in the direc-
tion of the next corner and the next i heliostats at a distance of hi to one another.

Further adjustments to the original layout have been made [24]. Heliostats are now
also placed at the corner to ensure an equal distance between them throughout each
hexagon. Similar to the modified radial staggered pattern, the distance di between two
hexagons is increased to be at least the blocking distance leading to

di = max

(
a · i+ b,

rihhel

htower − hhel

)
. (46)

Finally, the pattern can be scaled at an arbitrary axis as defined in Equation 43.
Figure 19b illustrates the modified hexagon pattern and Table 5 lists the parameters
for optimization.

3.1.5 Spiral

As demonstrated in different areas of science, it can be beneficial to apply strategies
that are inspired by nature. Sunflower seeds for example, are optimized for two ob-
jectives that are also relevant for CRS. One is to minimize shading of other seeds and
the other is to maximize the number of seeds per area [5]. A sunflower achieves both
by having a dense packing close to the center of the flower which decreases outwards.
Furthermore, the seeds are arranged in a staggered way. Both properties arise when

33

h1

k1
d1

~c1,0

~c1,1~c1,2

~c1,3

(a) Original

h1

k1
d1

~c1,0

~c1,1
~c1,2

~c1,3

β

(b) Improved

Figure 19: Illustration of the Hexagon pattern and the improved version. The corners
on the i-th hexagon are given by ~ci,j, the distance between hexagons by di,
the hexagon side length by ki and the scaling axis is defined by β.

Parameter Description
a constant factor of the hexagon distance
b linear factor of the hexagon distance
β angle of the scaling axis to the x-axis
s scaling factor

Table 5: Parameters of the improved hexagon pattern, with parameters that are not
existing in the original pattern shown in bold.

the seeds are placed in a spiral which is formed by gradually increasing the distance
to the center and always placing a seed after a certain angle. The angle of interest is
the golden ratio for angles, i.e. the ratio between the angle to the rest of a circle is
the same as the rest to a full circle [5]. Noone et al. [43] first proposed to apply this
pattern to heliostat fields.

Based on the formulation of the pattern, it is easiest to describe the positions of the
k-th heliostat in polar coordinates (αk, rk)

T . To control the distribution of the pattern,
the radius incorporates two parameters a and b leading to

rk = a · kb, αk = 2πk

(
1 +
√

5

2

)−2

. (47)

Similar to the modified radial staggered and hexagon pattern, the spiral pattern can
also be scaled as described in Equation (43). Figure 20 illustrates both the original
pattern and the scaled one. The parameters of this pattern are given in Table 6.

3.1.6 Optimizer

Now that the different patterns have been specified, their parameters need to be opti-
mized according to an objective function. A variety of different optimizers have been

34

α1

r1

(a) Original

β

(b) Improved

Figure 20: Structure of the spiral pattern and the improved version. Here, α1 is the
golden ratio for angles, rk the radius of the k-th heliostats polar coordinate,
and β defines the scaling axis.

Parameter Description
a linear factor of the radius
b exponential factor of the radius
β angle of the scaling axis to the x-axis
s scaling factor

Table 6: Parameters of the improved spiral pattern, with parameters that are not ex-
isting in the original pattern shown in bold.

used in the literature like simple combinatorial searches [43], genetic algorithms [6],
neural networks [47]. The overall goal is not only to find the parameters maximizing
the objective function but also to select the best subset of positions from the pattern.
The latter is required as the patterns typically generate much more positions than
needed. Therefore, there are two optimization stages. For a pattern with n param-
eters and a parameter combination ~p = (p1, ..., pn)T , find the subset that maximizes
the objective function while containing the desired amount of heliostats. This stage is
called parameter evaluation. In the second stage called pattern evaluation, the overall
best parameter combination ~popt is determined. Thus, each evaluation in the second
stage requires a new optimization of the first. Both optimization steps are described
in the following.

35

Parameter evaluation There are different approaches to this task. A rather complex
method has been proposed in [59]. Here, any heliostat inside a polygon is considered
to be part of the solution. The polygon vertices are equiangular arranged to limit the
search space. Then an evolutionary algorithm optimizes the shape of the polygon.

The downside of this approach is its run-time of several minutes as reported by
the authors. During a full pattern optimization, the parameter evaluation is executed
a lot of times. Therefore, a faster method is needed. Noone et al. [43] applied the
intuitive approach of simulating all valid heliostats and selecting the most efficient
ones. Afterward, another simulation is carried out with the selected ones to obtain the
value of the objective function.

Combinatorial search A straight-forward solution to the pattern evaluation is to
generate any combination of parameters and evaluate each of them. This combinatorial
search has been used in [43]. Since the possible values for a single parameter are already
infinite, only a certain range of values is considered that is then evenly discretized.

The set of possible combinations grows exponentially with the number of parameters.
Therefore, this approach is quite inefficient. Another issue is the discretization of the
values that might not contain the optimal values. Therefore, a smarter more flexible
method is needed.

Downhill simplex search A more sophisticated and widely used optimization algo-
rithm is the downhill simplex search algorithm by Nelder and Mead [41]. It is capable
of optimizing multidimensional non-linear optimization problems without the need for
gradients. Therefore, the simplex search is applicable for pattern optimization as also
demonstrated in [47]. A summary of its basic principles is given in the following, more
details can be found in [24].

The algorithm operates on a simplex, which is the simplest possible polytope in the
search space. For example, the simplex of a pattern with 2 parameters would be a
triangle and for 3 parameters a tetrahedron. Therefore, a simplex for a pattern of
n parameters consists of n + 1 points ~p1, ..., ~pn+1 ∈ Rn each representing a possible
combination of parameters. The idea of the downhill simplex search is to enclose an
optimum within the simplex by expansion and reflection and then contract and shrink
the simplex to obtain the optimum. The initial simplex start with one random point
~p1, while the others only differ in one dimension each. An exemplary simplex which
is also used to illustrate each step can be found in Figure 21a. It then performs the
following actions on the simplex:

1. Order the points according to the objective function f , f(~p1) ≥ f(~p2) ≥ ... ≥
f(~pn+1). Calculate the centroid pm of all points except the worst, ~pm =

∑n
i=1 ~pi

and go to the next step.

2. Reflect the worst point on the centroid using the reflection coefficient ρ > 0,
~pr = ~pm +ρ(~pm− ~pn+1), as illustrated in Figure 21b. If this is the new best point

36

f(~pr) > f(~p1) go to the next step. If it performs better than the second worst
point f(~p1) ≥ f(~pr) ≥ f(~pn) go to step six. Otherwise, go to step four.

3. Expand the reflection point using the expansion coefficient γ > 1, ~pe = ~pm +
γ(~pr−~pm), see Figure 21c. Replace the worst point by the reflection point or the
expansion point depending on which performs better and go to step six.

4. Contract the reflected point if it perform better than the worst, leading to ~pc =
~pm + τ(~pr − ~pm), with 0 < τ < 1 as the contraction coefficient, see Figure 21d.
Otherwise, contract the worst point ~pc = ~pm + τ(~pn+1 − ~pm), see Figure 21e.
Replace the worst point with the contracted point if it performs at least as good
and go to step six. Otherwise, go to the next step.

5. Shrink the entire simplex in the direction of the best point ~p1, resulting in ~pi =
~p1 +σ(~pi− ~p1), with 0 < σ < 1 as the shrinking coefficient. Figure 21f illustrates
a shrinked simplex.

6. Terminate if the maximum number of iterations is reached. If the standard devi-
ation of the simplex points performance or the standard deviation in each dimen-
sion of the points is below a certain threshold, restart the algorithm. Otherwise,
go to step 1.

The optimal values for each coefficient of the downhill simplex search method were
found empirically in [24]. Additionally, the result of the downhill simplex method was
verified by comparing it with an extensive combinatorial search.

Acceleration After adapting the optimizers to operate on the GPU ray tracer, their
runtime decreased massively. The simulation part of the optimization then only took
a third of the total runtime, revealing further potential for improvement. Two areas
for further acceleration have been identified. The annual integration of the heliostat
efficiencies and the collision detection of the generated heliostat positions. Within an
annual integration, each heliostat efficiencies are individually integrated. Since each
heliostat has a variety of different efficiencies and the annual integration estimates a
value for each hour of the year, a lot of computation is required. However, after all effi-
ciencies of a heliostat have been generated, their average, weighted by the IDNI, is used
to estimate the overall efficiency of the heliostat. Thus, the hourly efficiencies are not
directly of interest. Instead of interpolating the efficiencies and taking their weighted
average, a much less compute intensive approach is to calculate annual weights for each
simulation point, which determine their contribution to the weighted average. For an
annual integration of n simulation points, the annual weights ~w = (w0, .., wn−1)T ∈ Rn

are given by

~w =

∑
~p∈fan(~q0,..,~qn−1) ~p · IDNI(~p)∑
~p∈fan(~q0,..,~qn−1) IDNI(~p)

(48)

37

x3

x2

x1

(a) Initial Configuration

x3

x2

x1

xm

xr

(b) Reflection

x3

x2

x1

xm

xe

(c) Expansion

x3

x2

x1

xm

xc

(d) Contraction

x3

x2

x1

xm

xr

xc

(e) Reflected contraction

x3

x2

x1x3

x2

(f) Shrinking

Figure 21: Illustration of the different steps within the downhill simplex search method,
taken from [24].

with ~q0 = (1, 0, ..., 0)T ∈ Rn,..., ~qn−1 = (0, ..., 0, 1)T ∈ Rn, fan as their annual inte-
gration based on the simulation points and IDNI(~p) as the direct normal irradiation at ~p.

To obtain the desired annual weighted average ~η of the efficiencies ~η0, .., ~ηn+1, they
are multiplied with the annual weights leading to

~η = (~η0, .., ~ηn+1)T ~w. (49)

Lastly, the collision detection that has been implemented so far, relied on testing the
bounding sphere of each heliostat against the bounding sphere of all other heliostats.
Even though the collision detection between two bounding spheres is simple to com-
pute, the approach still required O(n2) such operation. By utilizing the spatial data
structure cell grid, far less collision detections are required [42]. The idea of a cell
grid is to separate 2D space into evenly spaced cells and store references to objects
contained in it. A cell grid is defined by its starting point (cxmin, cymin)T , ending point
(cxmax, cymax)T , and the number of cells it contains d2. For an object at (x, y)T , the cell
indices i, j are given by

i =

⌊
x− cxmin

cxmax − cxmin

d

⌋
, j =

⌊
y − cymin

cymax − cymin

d

⌋
. (50)

38

In our case, the number of cells is chosen to be D2, with D as the heliostat diameter.
As a result, each cell can contain at most one heliostat, and the collision test only
needs to be done with the direct neighbor cells, see Figure 22.

Figure 22: Illustration of the cell grid data structure to accelerate collision detection
between placed heliostats. The relevant neighboring cells are shown in
lightgray, the current heliostat in black, an overlapping heliostat in red,
and a non-overlapping one in green.

Another approach to optimize heliostat field layout is to sequentially add more he-
liostats to the field, which will be discussed in the following section.

3.2 Graph based field growth

The straightforward idea of field growth or heliostats growth methods is to sequentially
add heliostats to the field by picking the next best spot. There are different imple-
mentations of the idea. A study done in [55] first generates an efficiency map of an
empty field and then updates the map for each new heliostat to account for shading
and blocking (S&B) effects. The map itself is a regular grid containing an estimate of
the total heliostat efficiency at each spot. Another method [12] avoids having a finite
grid by generating a set of random points at each step of the optimization. The best
position is taken from the set and a new one is generated. Before describing our newly
developed graph based field growth method, the optimization problem is viewed in
more detail.

Consider a simplified version of the problem where only a single heliostat needs to
be placed. Since the possible positions are continuous, even this simple problem is
likely to be unsolvable. But if the positions are discretized, then each position can
be evaluated and the best one chosen. Solving the same problem for two heliostats
is, however, a more diffucult task. Intuitively, one could recompute the efficiencies at

39

each position after placing the first heliostat and again take the best, as done in [12].
Although this approach includes the influence of the first heliostat on other potential
heliostats, it misses the fact that the second heliostat might shade or block the first
one. Incorporating the latter appears to be far too compute intensive to be feasible.
Given the current simulation model, the only option would be to simulate each pos-
sible combination of the first heliostat with any other heliostat. However, by further
investigating and extending the simulation model, the influence that any potential sec-
ond heliostat would have on the first one can be computed in just a single simulation.
Therefore, each position not only has an efficiency gain obtained by the potential he-
liostat but also an efficiency loss on other existing heliostats. To incorporate both, a
score is calculated by subtracting the loss from the gain. Figure 23a illustrates the effi-
ciency map after placing the first heliostat and Figure 23b the corresponding score map.

180 190 200 210 220

350

360

370

380

390

400

410

420

430

0.30

0.35

0.39

0.44

0.48

0.53

0.58

0.62

0.67

T
otal

E
ffi

cien
cy

(a) Efficiency map

180 190 200 210 220

350

360

370

380

390

400

410

420

430

0.30

0.35

0.39

0.44

0.48

0.53

0.58

0.62

0.67

S
core

(b) Score map

Figure 23: Comparison between the efficiency map and the score map of a single helio-
stat marked by the black cross. Both maps were obtained from a simplified
test case, based on the PS10.

As shown, the score map looks almost like a mirrored image of the efficiency map,
which has been utilized in [55]. Although a useful approximation, they still differ by
up to ten percent, see Figure 24. Considering that most heliostat field optimizations of
plants like the PS10 achieve less than 1% improvement [43, 10, 38], more precise values
are necessary. Our graph based field growth algorithm aims to compute a fully accurate
score map without introducing significant computational overhead. In the following
sections, the necessary extension to the simulation model to efficiently calculate and
update the score map are given.

40

180 190 200 210 220

350

360

370

380

390

400

410

420

430

0.00

1.11

2.22

3.33

4.44

5.56

6.67

7.78

8.89

10.00

D
iff

eren
ce

(%
)

Figure 24: Difference between a mirrored efficiency map as used in [55] and the real
score map from our graph based field growth algorithm.

3.2.1 Independent ray tracer

The only way that heliostats influence each other is through shading and blocking.
Thus, a further look into the computation is needed. As explained in Section 2.1.1,
each ray is evaluated individually for S&B with a precomputed set of potential S&B
heliostats. Algorithm 1 shows a pseudo code implementation of the evaluation, with s
as the ray source, ~r as the reflected ray direction, ~τsolar as the incoming sun direction,
and H as the current heliostat.

Algorithm 1 Shading and Blocking calculation between heliostats

1: function checkShadingBlocking(s, ~r, ~τsolar, H)
2: for each potential shading heliostat HS of H do
3: if intersects(s, ~τsolar, HS) then
4: return True
5: for each potential blocking heliostat HB of H do
6: if intersects(s, ~r, HB) then
7: return True
8: return False

For the computation of an efficiency map, two types of heliostats need to be dif-
ferentiated. Active heliostats () which have already been placed and inactive ones
() representing the possible next heliostats. The ray tracer should include S&B from

active heliostats to any other heliostat (
sb−→ ,

sb−→) but not any influence of inactive

heliostats (6sb−→ , 6sb−→). Both of these are given by simply limiting the potential
S&B heliostat calculation to only include active heliostats.

To compute the desired score map, the efficiency reduction that any inactive he-

liostat would cause on active ones (
sb−→) must be calculated without changing the

41

current efficiency of active heliostats. Therefore, each inactive heliostat needs a list of
efficiencies that the influenced active heliostats would have if the heliostat would be-
come active (

sb−→ ⇒ sb−→). The total efficiency loss is then given by the sum of the
efficiencies of the influenced active heliostats minus the sum of the stored efficiencies.
For example, if there is only one active heliostat, then each inactive heliostat stores
their efficiency and the efficiency of the active heliostat, for the case that both are
considered active. Then the score of the inactive heliostat is given by their efficiency
subtracted by the efficiency loss onto the active heliostat.

The efficiency reduction list is not calculated during the simulation of the inactive
heliostat but rather when simulating the active one. Hence, the simulation of an active
heliostat results in a list of efficiencies that the active heliostat would have if one or
none of the inactive ones would exist. Including inactive on active (

sb−→) interactions,
requires adding inactive heliostats to the potential S&B computation of the active
heliostats. However, instead of discarding a ray from an active heliostat intersecting an
inactive one, it is further evaluated but marked as intersecting for the inactive heliostat.
Thus, the S&B computation of the new independent ray tracer returns a list of boolean
values stating whether the ray intersects certain inactive heliostats. Additionally, S&B
between active heliostats is evaluated as usual. Algorithm 2 illustrates the independent
S&B calculation, with n as the number of inactive heliostats potentially intersecting
the current heliostat. Note that the last entry of the list SB is used to store whether
the ray is blocked by any active heliostats.

Algorithm 2 Independent Shading and Blocking calculation between heliostats.

1: function checkIndependentShadingBlocking(s, ~r, ~τsolar, H)
2: if checkShadingBlocking(s, ~r, ~τsolar, H) then
3: SB [0, .., n]← {true, ..., true}
4: return Effind

5: SB [0, .., n]← {false, ..., false}
6: for each potential shading heliostat HS of H do
7: if HS is inactive and intersects(s, ~τsolar, HS) then
8: SB [getId(HS)]← true

9: for each potential blocking heliostat HB of H do
10: if HB is inactive and intersects(s, ~r, HB) then
11: SB [getId(HB)]← true

12: return SB

The remaining evaluation within the ray tracer also needs to be adjusted accordingly
to calculate the efficiency that the heliostat H would have if one or none of the inactive
heliostats would exist. Finally, the calculated heliostat efficiencies Eff as well as the
efficiency reduction lists Effind are returned.

For further acceleration, the independent ray tracer should be capable of only con-
sidering certain efficiency reductions. An unordered set of inactive heliostat ids can
be passed to each active heliostat to implement this efficiently. Within the indepen-

42

dent S&B calculation, the Effind list is reduced to the size of the unordered set. Each
inactive potential S&B heliostat is checked whether it is included in the unordered
set. Even though not specified in the definition of the independent ray tracer, it can

also compute S&B interactions of type
sb−→ . These are later used to determine all

possible S&B interactions. Additionally, the ray tracer should be able to simulate a
specified subset of the heliostats while the rest is only considered for their shading and
blocking interactions onto the simulated ones.

Which heliostats need to be simulated when updating the score map, will be de-
scribed in the next sections.

3.2.2 Shading and blocking graph

Before discussing the details on how to determine the heliostats that need to be sim-
ulated, a formal definition of the necessary variables is given. All of these variables
are stored in a shading and blocking graph (S&B graph) which is a partially weighted
directed graph. It should contain the efficiencies of active and inactive heliostats as

well as any type of S&B interaction { , } sb−→{ , }. However, for performance reasons

only interactions of type
sb−→ as well as the efficiencies are continuously updated.

They contain all the necessary information to calculate the score of inactive heliostats.
Let V be the set of all possible heliostats, HF⊆ V the set of active heliostats, then

• The S&B graph is given by G = (V,E) and for all Hi, Hj ∈ V with Hi
sb−→Hj

there exists an edge (Hi, Hj) ∈ E

• Eff (Hi) is the total efficiency of a node Hi ∈ V in the current heliostat field HF

• Effred(Hi, Hj) for (Hi, Hj) ∈ E with Hi ∈ HF , Hj ∈ HF (
sb−→) is the efficiency

of Hj if Hi would become active

• Ch(Hi) for Hi ∈ V is a set containing all children Hj ∈ V of Hi in G

• Pa(Hi) for Hi ∈ V is a set containing all parents Hk ∈ V of Hi in G

• Loss(Hi) =
∑

Hj∈Ch(Hi)∩HF (Eff (Hj)− Effred(Hi, Hj)) for Hi ∈ HF is the effi-
ciency loss introduced by Hi

• Score(Hi) = Eff (Hi)− Loss(Hi) for Hi ∈ HF is the score of Hi

Note that even if not explicitly specified, all variables depend on the heliostat field HF.
For an efficient implementation of the S&B graph, a few requirements must be met.

The data structure should only store references in the form of indices to the actual he-
liostat objects. Fast access to the node of a heliostat as well as its parents and children
must be provided. In addition, a quick iteration over a nodes parents and children is
needed, as it will be used extensively. Other variables like the efficiency of a node and
the weight of an edge also require fast access. To fulfill all the requirements, the data

43

structure for an S&B graph is as follows. The graph consists of a dynamic list of nodes
where the node of each heliostat Hi is stored at the i-th entry. Each node contains the
heliostat’s current efficiency, a dynamic list of edges to its parents, and a dynamic list
of edges to its children. An edge consists of the index to the other heliostat and the
efficiency reduction.

There are also some very interesting theoretical aspects of a more general form of
the S&B graph. It is possible to adjust the independent ray tracer to calculate what

efficiency Hi would have if any combination of heliostats Hk with a potential Hk
sb−→Hi

interaction would be active. Doing so for each heliostat contains all information needed
to calculate the heliostat field efficiency of any possible combination of heliostats.
Consider for example the PS10 in Spain [44]. The field could contain roughly 2300
heliostats of the type that was used in the plant. 624 heliostats were used. Suppose
the overall efficiency of any possible heliostat field with 624 out of 2300 heliostats should
be calculated. The naive approach of directly simulating each combination results in(

2300
624

)
≈ 1.47 · 10582 full simulations which is an inconceivably large number, far more

than there are atoms in the observable universe (∼1080) [16]. However, with a general
S&B graph, it would only take a single simulation generating about 2300 · 220 = 2.419

efficiency values. Here, the factor 220 comes from the fact that there are on average
about 20 heliostats that shade or block a heliostat. After that simulation, it is only
a matter of a few additions to compute the overall efficiency of any possible heliostat
field, not just the ones consisting of 624 heliostats. The downside of this approach is
of course its memory consumption of at least 20GB of data. Especially for dense fields
with a lot more data this is impractical.

How the S&B graph is initialized and updated will be discussed in the following
section.

44

3.2.3 Complete graph based field growth algorithm

Figure 25: Illustration of the principle behind the field growth method. The score at
each position does not only take the effects of the field onto the heliostat

into account (
sb−→) but also the heliostats influence onto the field (

sb−→).

An illustration of the field growth method idea is shown in Figure 25. For the ini-
tialization of the S&B graph, all heliostats are considered inactive (HF = ∅). Their
efficiencies and the S&B edges are computed by the independent ray tracer and the
S&B graph is updated accordingly. Since all heliostats are inactive, their loss is zero
and their score is given by their efficiencies (Loss(Hi) = 0, Score(Hi) = Eff (Hi) for
Hi ∈ HF). The resulting S&B graph contains an edge for any possible shading and
blocking interaction. So when adding new heliostats to the heliostat field HF, no new
S&B edge is created. At most, existing edges might be modified or not be valid any-
more.

After placing a new heliostat, its influence on the S&B graph must be considered,

and the efficiencies as well as
sb−→ interactions updated. All heliostats that overlap

the newly placed one are removed from the graph. Neighboring heliostats can efficiently
be calculated by a cell grid as introduced in Section 3.1.6. Now let Hi be the newly
added heliostat, then there are three types of influences from Hi to the rest of the
heliostats. First, the efficiencies of the children of Hi are reduced which is partially
given in Effred(Hi, Hj). Second, a new weight Effred(Hk, Hi) for the edge from the
inactive parents Hk ∈ Pa(Hi) ∩ HF to Hi is added. Finally, the weight Effred(Hl, Hj)
of the active children’s Hj ∈ Ch(Hi) ∩ HF inactive parents Hl ∈ Pa(Hj) ∩ HF of Hi

might be influenced since the interaction Hi
sb−→Hj can reduce the potential S&B of Hl

to Hj. Figure 26 illustrates the different types of influences from Hi. Only interactions

of type
sb−→ can possibly be removed, the rest are not changed. This ensures that

any S&B interaction are contained in the graph.

45

Eff (Hj)

*

**

Eff
red (H

k , H
i)

Eff
red (H

l , H
j)

Figure 26: Influence of a new heliostat Hi () on the S&B graph, with Hj as the
children of Hi, Hk as the parents, and Hl as the childrens parents. Values
that need to be computed when updating the graph are written down. Only
heliostats marked with a star need to be simulated, the rest is just considered
for their S&B effects.

As shown, the influence of Hi closely resembles a Markov blanket within a bayesian
network. Possible reasons and similarities are discussed in the following. As a re-
minder, the Markov blanket of a target node consists of all nodes that make the target
conditionally independent of the rest [31]. Or in other words, the smallest set of nodes
that must be observed such that the probability of the target node is fully determined.
There is no direct correspondence from probability to any measure in the S&B graph.
However, there are some similarities between probability and the score of a node which
causes the resemblance to a Markov blanket. Calculating the score of a S&B node
requires its efficiency and efficiency reduction on other active nodes. Therefore, the
node’s active parents, its active children, and active children’s parents must be con-
sidered which corresponds to its Markov blanket, see Figure 27. When updating the
S&B graph after adding Hi, its score is of course already known. However, the score of
other inactive nodes is changing, each requiring their own Markov blanket to be fully
determined, see Figure 28. But, in combination with the existing information in the
S&B graph, only the nodes shown in Figure 26 are necessary. Due to the connection
to a Markov blanket, we call the nodes of Figure 26 the S&B blanket of Hi.

To update the variables in the S&B graph, not all of those nodes need to be simu-
lated. Only Hi and its children Ch(Hi) have to be simulated. The rest will be used
to determine their S&B influence on the simulated ones. Furthermore, all active sim-
ulated heliostats must independently evaluate their inactive parents. A pseudo code
implementation is given in Algorithm 3.

In addition to the classical regular grid positions, the possible heliostats in V can also
be taken from one of the patterns of Section 3.1. Since they generate non-overlapping
heliostats, the heliostat diameter used to generate the pattern is scaled by an additional
parameter.

Another extension to the general field growth algorithm is a relaxed score. Due to
the greedy nature of the algorithm, it will result in fields that are spread out and not

46

Figure 27: All heliostats necessary to calculate the score of an inactive heliostat ().
This corresponds to the Markov blanket of a node in a Bayesian network.

Figure 28: Full influence of a newly activated heliostat () onto the score of other
inactive heliostats (). The required nodes to calculate the score of the node
itself, its inactive parents, inactive children and inactive childrens parents
are shown in black, blue, red, and green, respectively. Given the existing
knowledge in the S&B graph these reduce to the nodes shown in Figure 26.

take into account the loss of possibly efficient positions. Therefore, it can be beneficial
to favor a dense packing. Thus, a density factor is added to the score computation
given by

Density(Hi) =

{
min (dis(Hi, Hc)/dmax), 1) |HF |/N < nheli

0 else
(51)

with dis(◦, ◦) as the distance between two heliostats, Hc as the closest heliostat to Hi,
dmax as the maximum distance to consider, N as the number of heliostats to place, and
nheli as the fraction of heliostats where the density loss should be applied.

Before continuing with some practical difficulties and how to overcome them, some
theoretical aspects of our graph based field growth method are briefly viewed. Given
a heliostat field HF and a set of possible positions V , the field growth method will

47

Algorithm 3 Field growth method on a given set V of possible positions.

1: function fieldGrowth(V)
2: toSim ← V
3: active[0, .., n− 1]← {false, ...false}
4: Eff , Effind ← independentRaytrace(V, toSim, active)
5: G← buildSBGraph(Eff , Effind)
6: while len(G.HF) < desiredHeliostats do
7: Hi ← G.getHighestScoringHeliostat()
8: G.removeIntersectingHeliostats(Hi)
9: MB ← ∅

10: toSim ← {Hi}
11: MB .insert(G.getParents(Hi))
12: for each children Hj in G.getChildren(Hi) do
13: MB .insert(Hj)
14: toSim.insert(Hj)
15: for each parent Hl in G.getParents(Hj) do
16: if Hj is active or Hj is active then
17: MB ← MB ∪ {Hl}
18: active← G.determineIfActive(MB)
19: Eff , Effind ← independentRaytrace(MB , toSim, active)
20: G.updateEfficiencies(Eff)
21: G.updateEdgeWeight(Eff)
22: G.recalculateScores()

find the heliostat Hi in V that, when added to HF, results in the highest overall field
efficiency. However, this does not mean that the heliostat field HF∪{Hi} is the optimal
heliostat field from V of that length. It rather is the best heliostat field possible when
viewing HF as static and extending it by one heliostat. Since adding a new heliostat
will lead to more and not less S&B, the next best score is always less or equal to
the current best score. Therefore, the resulting heliostat field of the graph based field
growth algorithm is locally optimal in the sense that replacing a single heliostat to any
other position will never result in higher overall efficiency.

3.2.4 Practical difficulties

There are some practical difficulties arising with larger heliostat fields or in general with
a huge number of possible heliostats. The independent ray tracer generates a lot of
variables, especially at the initialization of the S&B graph. For an annual result, all of
these variables need an hourly integration and their mean taken afterward. However,
as discussed in Section 3.1.6, weights can be calculated for each simulated moment
which drastically decreases the runtime and memory consumption. Furthermore, the
calculated heliostat efficiencies need to be accurate and stable. Otherwise, the field
growth method is not able to choose the next best heliostat. Monte Carlo based ray

48

tracers are not well suited for that purpose, as they require a lot of rays to reduce
fluctuations within the total result. For a whole heliostat field, the effect is not as
severe, since the total number of rays is large. However, for a single heliostat, only
a few rays are simulated causing large fluctuations within the result. Analytical ray
tracers do not rely on the law of large numbers and are therefore better suited.

The memory consumption of the independent ray tracer is much larger than the
traditional ray tracer. Therefore, the GPU implementation of the independent ray
tracer can differentiate between active and inactive heliostats as well as simulate a
specified subset of the given heliostats. However, it lacks the possibility to calculate
the independent efficiency list Effind as a GPU typically does not offer the necessary
memory. As shown later, there are specific use cases for the GPU version of the
independent ray tracer.

Even on the CPU, the memory needs of the independent ray tracer might become
higher than what is offered by RAM. To reduce memory consumption without los-
ing relevant information, two adjustments to the field growth method have been made.
During the initialization, only relevant neighbors are considered for S&B effects shrink-
ing the data used by the independent ray tracer. Furthermore, a minimum efficiency
reduction can be specified. Any S&B below that is simply ignored. For that purpose
the edge weight Effred is extended to contain a value for all possible edges. For inter-

actions other than
sb−→ , the efficiency reductions from the initialization are taken.

They are not updated, but offer an upper limit as the actual efficiency reduction can
not increase by placing more heliostats. Not only the memory consumption is reduced,
but also the runtime as fewer heliostats need to be simulated when updating the S&B
graph.

However, the memory consumption for very dense heliostat fields can still be too
large. Further improvements have been made with two subvariants of the graph based
field growth method. One utilizes an additional sub optimization and the other some
representative heliostats to account for S&B of the new heliostat to the existing field.

49

3.2.5 Suboptimization

Figure 29: Illustration of the field growth suboptimization. After choosing the best
scoring position, subpositions are generated and their scores computed. The
best scoring subpostion is chosen.

The sub optimization version of the field growth algorithm allows to consider a lot of
heliostat positions without keeping all the necessary information in memory. It is based
on the assumption that the score map is smooth i.e., there are no drastic differences
between the score of neighboring heliostats for a fine grid of possible positions. Thus,
the best position of a fine grid is likely to be near the best position of a coarse grid.
The sub optimization therefore first determines the highest scoring position of a coarse
grid like the field growth method but with an additional sub optimization afterward.
Here, the grid position of the best heliostat Hi is further discretized and the scores
of the generated positions Vsub are determined, as illustrated in Figure 29. However,
the newly generated positions are not contained in the S&B graph so their score need
to be calculated individually. As discussed in the last section, when just the score of
a node is of interest, only active heliostats of the S&B blanket are required, see Fig-
ure 27. But, no S&B interactions between existing heliostats (V) and newly generated
ones (Vsub) are known. To accurately approximate them, the S&B interactions of all
heliostats in V within a given distance to Hi are considered. So any child or parent
of a helisotat within that radius is regarded as a child or parent of the heliostats in
Vsub, respectively. Again, only the children as well as the heliostats in Vsub need to be
simulated. The result of the independent ray tracer contains the efficiencies of all he-
liostats in Vsub in the heliostat field HF and their efficiency reduction onto the existing
heliostats. Thus, the loss of the new heliostats and also their score can be computed.
Afterward, the position of Hi is changed to the highest scoring sub position. Finally,
the updating procedure of the field growth method is executed to maintain a valid
S&B graph. So the field growth sub optimization requires two simulations for placing
a heliostat, where one only contains a few heliostats to simulate.

50

Since a valid S&B graph is ensured after each heliostat placement, the local optimum
property of the field growth algorithm is also given in the sub optimization version.
The downside of this approach, however, is that the overall best sub position might
not be at the best position in the S&B graph. To increase the chance of picking the
best sub position, the following field growth version always maintains some information
about the sub heliostats.

3.2.6 Representative field growth

Figure 30: Principle behind the representative field growth method. The score of non-
representative heliostats, marked by the small circle, contains an exact effi-
ciency evaluation but approximates its influence onto the field by a neigh-
boring representative heliostat, marked by the larger circle.

Similar to the sub optimization, the representative field growth method differentiates
between a fine grid of positions and a coarse one. While the S&B interactions are
also mostly considered between heliostats of the coarse grid V , the S&B graph G =
(V ∪ Vsub, E) now contains all heliostats. The idea is to calculate efficiencies for all
heliostats but the S&B of newly added heliostats onto existing ones is approximated
by representative heliostats, see Figure 30. Any heliostat that is in the coarse grid V
is regarded as a representative heliostat.

During the initialization, the potential efficiency reduction between the representa-
tive heliostats is needed. For non-representative heliostats (Vsub) only their efficiency
must be determined. As stated in Section 2.1.3, these can quickly be calculated by the
GPU version of the independent ray tracer. The loss of non-representative heliostat
is approximated by the loss of the nearest representative heliostat. Again the best
scoring heliostat is taken and its influence on the S&B graph is determined. S&B
interaction of non-representative heliostats are only taken into account when they be-
come active. They are first approximated using neighboring representative heliostats

51

and then determined by the independent ray tracer. When updating the S&B graph,
all representative or active heliostats of the S&B blanket are simulated on the CPU to
obtain the efficiency reductions. Furthermore, all non-representative heliostats within
a certain distance of the evaluated representative heliostats are simulated on the GPU
for acceleration.

Besides the benefits of incorporating a lot of possible heliostat positions, there is
also a drawback to the representative field growth method. Since the loss for non-
representative heliostats is approximated, their score might not be correct. Therefore,
the local optimum property is not given anymore. However, it can be approached again
by replacing heliostats. It is enough to always replace the worst heliostat, because if
there is no better position for that heliostat then there is no better position for any
other heliostat. To remove a heliostat Hi, it is regarded as inactive, all its neighboring
positions only overlapping Hi are added again, and the S&B graph is updated to
account for the changes. Then the usual procedure of adding the highest scoring
heliostat follows.

3.2.7 Validation

The independent ray tracers are validated as follows. A set of 20 closely packed in-
active heliostats were simulated by the independent ray tracer. Then their efficiencies
on an empty field was computed using the traditional ray tracer and compared to the
corresponding result from the independent ray tracer. Furthermore, any combination
of two from the 20 heliostats was simulated by the traditional ray tracer. Again, the
results were compared to the efficiency reduction of the independent ray tracer. By
using the convolution based ray tracer for the validation, an exact comparison was
made possible. The results of the independent ray tracer exactly match the ones from
the traditional ray tracer.

A full validation of the graph based field growth algorithm was done by validating
the relevant variables in the S&B graph after each step. For this, a new S&B graph
was computed by simulating every heliostat as well as the efficiency reduction from

inactive heliostats to active ones (
sb−→). These are all the information to determine

the score of each heliostat. The computed values are then compared to the values
stored in the S&B graph of the field growth method. All settings of the CRS for the
validation were based on the PS10 and the independent convolution ray tracer was
used. No differences between the validated and the actual S&B graph were observed
at any step of the field growth method.

Similarly, the sub optimization based field growth algorithm was validated. Since the
S&B interactions of the sub heliostats were approximated, the validation result depend
on how many neighboring heliostats were used. However, when including heliostats
within a radius of two times the heliostat diameter almost no differences were observed.
Likewise, the representative field growth method showed almost no differences to the
validation when such a radius was used.

52

3.3 Local search

The local search optimization further improves the heliostat field generated by any
optimization method. It is based on the works of Buck [10] with some adjustments
done in [24]. The idea is to optimize each given heliostat individually, by replacing
them within a region around their initial position. Instead of using a regular grid of
possible new positions as done in [10], the local search algorithm generates a circular
grid as shown in Figure 31. Exact details of the grid structure can be found in [24].
As before, the S&B effects from the field on the new positions, as well as from the
new positions onto the field need to be considered. Therefore, a subgroup of heliostats
within a certain distance is included. A parameter study was carried out to determine
at which distance heliostats should be within the subgroup. However, one downside of
this approach is the individual evaluation of each possible position. Since 16 possible
new positions were typically considered, optimizing a single heliostat required 16 annual
simulations of the subgroup. But with the new independent ray tracer, one heliostat
can be optimized with a single annual simulation. Therefore, reducing the total number
of simulations by a factor of 16. Similar to the field growth method, the score of each
possible new position is calculated by computing its efficiency within the subgroup and
subtracting its efficiency loss due to S&B of the subgroup. The highest scoring position
is chosen and the next heliostat optimized. The local search algorithm terminates either
if the improvement is below a certain threshold or a specified number of iterations is
reached.

Figure 31: Circular grid of the possible positions when optimizing a heliostat with the
local search algorithm, taken from [24].

53

4 Case Studies

In the following, various aspects of the ray tracing methods are investigated. First, our
optical model is validated against the Monte Carlo based ray tracing tool SolTrace in a
large case study based on the PS10 and Gemasolar. Then, our new convolution of the
sun slope and tracking error is compared against a separate perturbation of the sun
and normal vector as well as the convolution equations from HFLCAL and UNIZAR.
Afterward, the accuracies of all ray tracers as well as their CPU and GPU implemen-
tation are compared. An investigation of the solar plant efficiencies then gives deeper
insights into our analytical ray tracer before getting to a direct run time comparison
of all ray tracers. The final two studies examine the newly implemented sun shapes
and how well they can be approximated in the convolution methods.

The used test cases are predicated on the solar plant Planta Solar 10 (PS10) in
Spain [44] which utilizes 624 heliostats of the type Sanlúcar 120 as well as the Gemasolar
in Spain having 2650 heliostats of type HE35 [11]. Figure 32 displays the positioning
of the heliostats. Each heliostat of the PS10 consists of 28 facets with a total mirror
area of about 120 m2 [44]. The HE35 heliostat has 35 facets and a total mirror area
of about 116m2 [11]. For the validation, two receiver types, namely the cylindrical
cavity receiver and the flat receiver were used in the PS10 test cases. For each plant
and receiver type, three different sun positions as shown in Table 8 were evaluated
during the validation in order to account for various shading and blocking effects. All
other case studies use the cavity receiver in the PS10 test case and both the PS10
and Gemasolar were annually simulated using actual weather data from the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The
annual integration method as described in [54], was set such that the limit of the
Monte Carlo ray tracer achieved an accuracy of 99.95% compared to simulating each
hour of the year individually. Table 7 shows the general setup for the test cases and
Table 9 the annual settings.

4.1 Modeling

4.1.1 Validation of SunFlower

Since our definition of the cavity receiver is not included in SolTrace, we constructed
it out of rectangular receivers. However, SolTrace does not model the effect of tower
blocking and thus it had to be turned off in SunFlower during the tests. SunFlower
and SolTrace simulated each test case ten times with roughly one million rays. Here,
the bidirectional Monte Carlo ray tracer of SunFlower was used. The resulting total
optical power was then normalized by the average power of SunFlower simulating ten
million rays ten times. Figure 33 shows the minimal, maximal, and average results of
both tools for all test cases. As presented, the average result as well as the minimum
and maximum of SunFlower is always in between the minimal and maximal results
of SolTrace. Moreover, the highest deviation of the average results from both tools

54

−600 −200 200 600

−400

0

400

800

(a) PS10

−600 −200 200 600

−400

0

400

800

(b) Gemasolar

Figure 32: Heliostat field layout of the tested solar plants.

is less than 0.09 % and the maximal fluctuation of the results of SolTrace is about
0.55 %, whereas for SunFlower it is only 0.18 %. SunFlower achieves higher precision
since rays are generated on the heliostat surface. Therefore, no rays are wasted due to
ground impacts as in the forward Monte Carlo ray tracer of SolTrace.

1 2 3

0.996

0.998

1.000

1.002

1.004

Test Case

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er

SolTrace
SunFlower

(a) PS10 with flat receiver

1 2 3

0.996

0.998

1.000

1.002

1.004

Test Case

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er

SolTrace
SunFlower

(b) PS10 with cavity re-
ceiver

1 2 3

0.996

0.998

1.000

1.002

1.004

Test Case

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er

SolTrace
SunFlower

(c) Gemasolar

Figure 33: Validation of SunFlower against SolTrace for test cases with various sun
positions and solar plants. They are based on the test cases defined in
Table 8 and Table 7. The average power of the bidirectional Monte Carlo
ray tracer simulating ten million rays ten times was used as normalization.

4.1.2 Accuracy of convolution method

As described in Section 2.1, three types of errors influencing the actual reflection di-
rection of an incoming solar ray are considered. The sun error describing a deviation
of the incoming ray and the slope and tracking error for the deviation of the mirror
normal. From the results, the deviated reflected ray can be computed. However, we
convolute the perturbations and describe them in terms of the reflected ray. Therefore,

55

Parameter PS10 flat PS10 cavity Gemasolar
Latitude 37.26◦ 37.26◦ 37.56◦

Longitude -6.14◦ -6.14◦ -5.33◦

Sun Error 2.35 mrad 2.35 mrad 2.35 mrad
Global slope error vertical 1.4 mrad 1.4 mrad 1.4 mrad
Global slope error horizontal 1.4 mrad 1.4 mrad 1.4 mrad
Tracking error horizontal 1 mrad 1 mrad 1 mrad
Tracking error vertical 1 mrad 1 mrad 1 mrad
Heliostat type Sanlúcar 120 Sanlúcar 120 HE35
Number of heliostats 624 624 2650
Heliostat reflectivity 88 % 88 % 88 %
Heliostat facet type Flat Flat Flat
Canting On axis On axis On axis
Tower type Rectangular Rectangular Circular
Tower height 120 m 120 m 140 m
Tower length 18 m 18 m -
Tower width 8 m 8 m -
Tower diameter - - 8 m
Receiver type Rectangular Cavity External
Number of receiver panels 1 4 18
Receiver panel width 13.78 m 3.445 m 1.476 m
Receiver panel height 12 m 12 m 10.5 m
Receiver raise height - 2.5 m -
Receiver tilt angle 11.5◦ - -

Table 7: Basic setup for the validation test cases. The settings are inspired by the
PS10 plant and the Gemasolar plant.

a comparison to a separate perturbation is needed to evaluate the accuracy of the con-
volution. For this, Gemasolar and PS10 were simulated annually with different slope
errors while keeping the sun error at 2.35 mrad and the tracking error at 0 mrad. The
Monte Carlo ray tracer simulated each setting ten times with over ten million rays.
First the sun and normal vector were perturbed separately and used as normalization.
Besides the new convolution equation of SunFlower, the one from HFLCAL as well as
the equation from UNIZAR were tested whose relevant parts are defined as follows [13]

σHFLCAL =

√
(σsun)2 + (σtracking)2 + (2σslope)

2,

σUNIZAR =

√
(σsun)2 + (σtracking)2 + 2(1 + cosω2)(σslope)

2,

(52)

where ω is the incident angle of the incoming solar ray. Note that HFLCAL and
UNIZAR defines the tracking error in terms of the reflected ray and not in terms of
the normal as done in SunFlower.

56

Test Azimuth Altitude DNI
1 80◦ 30◦ 710 W/m2

2 110◦ 60◦ 820 W/m2

3 180◦ 70◦ 850 W/m2

Table 8: Sun configuration for the validation
test cases.

Method Hours/day Days/year
Bicubic 20 11

Table 9: Annual integration
settings.

Figure 34 shows the normalized result of each equation for an annual simulation
of the PS10 and Gemasolar. Clearly, the HFLCAL convolution leads to the largest
differences to a separate perturbation of sun and normal vector with a maximum
difference of 4.5%. UNIZAR performs much better but still has a maximum error of
0.4%. Moreover, for both equations, the error increases with the tracking and slope
error. SunFlower however performs much better with a maximum difference of 0.01%
making it up to 400 times more accurate than HFLCAL and 40 times more accurate
than UNIZAR.

1 1.5 2 2.5 3

0.960

0.980

1.000

Slope Error [mrad]

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

HFLCAL

UNIZAR

SunFlower

(a) Gemasolar

1 1.5 2 2.5 3

0.980

0.990

1.000

Slope Error [mrad]

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

HFLCAL

UNIZAR

SunFlower

(b) PS10

Figure 34: Comparison of different functions to convolute the sun, slope, and tracking
error. All results are normalized by a separate perturbation of the sun and
normal vector.

4.1.3 Comparison of convolution methods on GPU and CPU

Now that the Monte Carlo ray tracer of SunFlower has been validated against SolTrace
as well as a separate perturbation of the sun and normal vector, a comparison against
our convolution and integrated convolution ray tracer is given. All ray tracers have been
implemented on the CPU as well as the GPU. It is of course crucial that both versions
give similar results in the limit. To validate this, the annual PS10 and Gemasolar test
case with different amounts of rays per sun position were simulated. The fluctuations
of the Monte Carlo ray tracer were accounted for by simulating each setting ten times
and taking the average result. Every result got normalized by the average of the CPU
Monte Carlo ray tracer simulating over ten million rays ten times. Figure 35 shows
the results of each ray tracer. First, all ray tracers approach the same limit within an

57

error of less than 0.05%. Not only do all ray tracers implementations have the same
limit, but the GPU and CPU versions also give almost identical results for each setting
with a maximum deviation of around 0.02%. Additionally, the convolution ray tracer
and the Monte Carlo ray tracer give very similar results for each setting on the PS10
test case. The reason is that the convolution ray tracer is very similar to the limit, in
terms of samples per ray, of the multi Monte Carlo ray tracer.

It should be noted that an annual simulation is an ideal setting for the Monte
Carlo ray tracer with the reason being the law of large numbers. For example, the
Gemasolar features 2650 heliostats each consisting of 5x7 facets which is simulated
with 210 different sun positions. Thus, even when simulating only one ray per facet,
over 18 million rays are used for the annual simulation. Therefore, fluctuations within
the computations quickly cancel out eliminating the need to more accurately evaluate
each ray, as done in the convolution ray tracer. Lastly, the integrated convolution
ray tracer achieved much more accurate results than all other ray tracers. Even when
taking only one ray per heliostat facet, the accuracy is very close to 99.95% on both
test cases. Compared to the convolution ray tracer, the results are up to eleven and
nine times more accurate for the PS10 and Gemasolar, respectively. In the following,
we evaluate why exactly the integrated convolution ray tracer performs much better
and increase its accuracy even further.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

·106

1.000

1.002

1.004

1.006

1.008

±0.05%

Number of Rays per Moment

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

CPU Convolution

GPU Convolution

CPU Integrated Convolution

GPU Integrated Convolution

CPU Classical-Monte Carlo

GPU Classical-Monte Carlo

(a) PS10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

1.000

1.002

1.004

1.006

1.008

±0.05%

Number of Rays per Moment

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

CPU Convolution

GPU Convolution

CPU Integrated Convolution

GPU Integrated Convolution

CPU Classical-Monte Carlo

GPU Classical-Monte Carlo

(b) Gemasolar

Figure 35: Comparison of different ray tracer versions for various number of rays on
annual PS10 and Gemasolar simulations.

4.1.4 Efficiency Accuracies

To get a deeper understanding of the results of our analytical ray tracers, their efficien-
cies are investigated in the following. Each efficiency got normalized by corresponding
average efficiency of the Monte Carlo ray tracer simulating over ten million rays ten
times.

Figure 36 shows the relevant efficiencies for an annual simulation of the PS10. Since
the total efficiency is calculated from the product of the decoupled individual efficien-
cies, it is potentially different than the actual computed power. However, as shown
the difference is very small with at most 0.02%, indicating that the accuracies of the

58

individual efficiencies can be used to estimate the accuracy of the overall power. For
simplicity, the receiver spillage and tower blocking efficiencies are combined into one.
As shown on the left of Figure 36 it is exactly this efficiency that is not accurately rep-
resented by few rays. From the formulation of the integrated convolution ray tracer,
one would expect these efficiencies to be more accurate when using few rays which is
also what is observed on the right of Figure 36.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

·106

0.998

1.000

1.002

1.004

1.006

1.008

±0.05%

Number of Rays per Moment

N
o
rm

a
li

ze
d

O
p
ti

ca
l

P
o
w

er

Power

Receiver Spillage & Tower Blocking

Total Efficiency

Others

(a) Convolution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

·106

0.998

1.000

1.002

1.004

1.006

1.008

±0.05%

Number of Rays per Moment

N
o
rm

a
li

ze
d

O
p
ti

ca
l

P
o
w

er

Power

Receiver Spillage & Tower Blocking

Total Efficiency

Others

(b) Integrated Convolution

Figure 36: Accuracy of different efficiencies as well as the overall solar power of both
analytical ray tracers for an annual simulation of the PS10. For better
readability, only the relevant efficiencies are shown which are normalized
by the corresponding efficiency of the Monte Carlo ray tracer with over a
million rays.

In the Gemasolar test case, different efficiencies are relevant for the accuracy of
the total power, see Figure 37a. Here, the blocking efficiency is not accurate when
simulating few rays. Since the integrated convolution ray tracer does not improve
shading and blocking efficiencies compared to the convolution ray tracer, the blocking
efficiency is expected to remain inaccurate for few rays, see Figure 37b. For some
number of rays the integrated convolution ray tracer even gives less accurate power
results than the convolution ray tracer, as the receiver spillage and blocking efficiency
partly cancel out. Therefore, additional computational effort of the integrated convo-
lution ray tracer should be spent only on the shading and blocking efficiencies rather
than evaluating more rays completely. As discussed in Section 2.1.2, the convolution
ray tracers offer the opportunity to take multiple shading and blocking samples per
ray. Using four shading and blocking samples per ray almost completely eliminates
the blocking inaccuracies, illustrating that one ray per facet can already be enough to
achieve results with more than 99.95% accuracy.

4.1.5 Runtime Comparison

Now that various aspects of our ray tracers have been discussed and optimized, their
runtime can be compared. Our goal is to achieve an accuracy of 99.95% in the shortest
time possible for the PS10 and Gemasolar test case. Each setting was simulated ten
times on each ray tracer and the average runtime and optical power were taken. Fig-
ure 38 shows the results of the case study. First, the convolution ray tracer performs

59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

0.998

1.000

1.002

1.004

1.006

±0.05%

Number of Rays per Moment

N
o
rm

a
li
ze
d
V
a
lu
es

Power

Receiver Spillage

Blocking

(a) Convolution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

0.998

1.000

1.002

1.004

1.006

±0.05%

Number of Rays per Moment

N
o
rm

a
li
ze
d
V
a
lu
es

Power

Receiver Spillage

Blocking

(b) Integrated Convolution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

0.998

1.000

1.002

1.004

1.006

±0.05%

Number of Rays per Moment

N
o
rm

a
li
ze
d
V
a
lu
es

Power

Receiver Spillage

Blocking

(c) Integrated Convolution using four
Shading and Blocking samples

Figure 37: Accuracy of different efficiencies as well as the overall solar power of both
analytical ray tracers for an annual simulation of the Gemasolar. For better
readability, only the relevant efficiencies are shown which are normalized
by the corresponding efficiency of the Monte Carlo ray tracer with over a
million rays.

worse than the other two in all test cases. The results are similar to average of the
classical Monte Carlo ray tracer while the computational overhead is larger.

However, with the extension to the integrated convolution ray tracer as well as the
ability to use multiple shading and blocking samples per ray, far better results can be
achieved. As shown, it achieved an accuracy of 99.95% faster than any other ray tracer
on all test cases except for the Gemasolar test case on the CPU. Another interesting
aspect is that the Monte Carlo ray tracer is slower on the GPU than the analytical
ray tracers for the same amount of rays. A possible explanation is the initialization
of the random number generator which is not needed in the convolution ray tracer.
However, the Monte Carlo method scales much better for more rays on both CPU and
GPU than the other ray tracers.

The GPU version of the integrated convolution ray tracer improved the runtime by
a factor of more than 40 for the PS10 and 50 for the Gemasolar in the highest setting
of rays tested. When achieving 99.95% accuracy the GPU version is more than 25 and
35 times faster for the PS10 and Gemasolar, respectively. Therefore, the PS10 and
Gemasolar annual simulation took only around 0.7 and 1.8 seconds while achieving an
accuracy of more than 99.95% compared to the limit of the Monte Carlo ray tracer.

60

10 20 30 40 50 60
0.998

1.000

1.002

1.004

1.006

1.008

±0.05%

Runtime [s]

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

CPU Convolution

CPU Integrated Convolution

CPU Classical-Monte Carlo

(a) CPU PS10

50 100 150 200 250 300
0.998

1.000

1.002

1.004

1.006

1.008

±0.05%

Runtime [s]

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

CPU Convolution

CPU Integrated Convolution 4 Samples

CPU Classical-Monte Carlo

(b) CPU Gemasolar

0.6 0.8 1 1.2 1.4
0.998

1.000

1.002

1.004

1.006

1.008

±0.05%

Runtime [s]

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

GPU Convolution

GPU Integrated Convolution

GPU Classical-Monte Carlo

(c) GPU PS10

1.5 2 2.5 3 3.5 4 4.5
0.998

1.000

1.002

1.004

1.006

1.008

±0.05%

Runtime [s]
N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

GPU Convolution

GPU Integrated Convolution 4 Samples

GPU Classical-Monte Carlo

(d) GPU Gemasolar

Figure 38: Runtime comparison of different ray tracer implementations on an annual
simulation of the PS10 and Gemasolar. The results got normalized by a
Monte Carlo ray tracer simulating over ten million rays.

4.1.6 Approximating Sun Shapes

As discussed in Section 2.1.2, our analytical ray tracers rely on a bivariate Gaussian to
represent the reflected ray disturbances. For sun shapes other than Gaussians, the con-
voluted two dimensional probability density function describing the ray perturbation
is numerically calculated and its standard deviation used to accurately approximate
it with a bivariate Gaussian. To validate the approximation procedure, the PS10 and
Gemasolar annual test cases with a Pillbox and Buie sun shape were simulated. The
sun width of the pillbox shape was set to 4.35 mrad and the csr of the Buie shape
to 0.03. Since the accuracy of the approximation depends on the number of sam-
ples, different sample sizes were used. Figure 39 shows the result of the different test
cases which got normalized by the Monte Carlo ray tracer simulating over ten million
rays. The shaded orange area indicates the fluctuations of the integrated convolution
ray tracer caused by the numerical approximation of the optimal bivariate Gaussian.
Since we are interested in the limit result of the integrated convolution, over 1.5 million
rays with 16 shading and blocking samples were used in each simulation. In all test
cases an accuracy of more than 99.98% was achieved showing that other sun shapes can
very well be approximated with a Gaussian without loosing noteworthy accuracy. For
comparison, when simply approximating the pillbox and buie before the convolution,
the difference between the integrated convolution and Monte Carlo ray tracer rises to

61

0.7% and 1.3%, respectively.

0.2 0.4 0.6 0.8 1

·106

0.9990

0.9995

1.0000

1.0005

1.0010

±0.02%

Sunshape Approximation Samples

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Integrated Convolution

(a) Pillbox PS10

0.2 0.4 0.6 0.8 1

·106

0.9990

0.9995

1.0000

1.0005

1.0010

±0.02%

Sunshape Approximation Samples

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Integrated Convolution

(b) Pillbox Gemasolar

0.2 0.4 0.6 0.8 1

·106

0.9990

0.9995

1.0000

1.0005

1.0010

±0.02%

Sunshape Approximation Samples

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Integrated Convolution

(c) Buie PS10

0.2 0.4 0.6 0.8 1

·106

0.9990

0.9995

1.0000

1.0005

1.0010

±0.02%

Sunshape Approximation Samples

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Integrated Convolution

(d) Buie Gemasolar

Figure 39: Results of the sun shape approximation from the integrated convolution
ray tracer for an annual simulation of the PS10 and Gemasolar. Different
amount of samples in the numerical sun shape approximations are used
and the results normalized by the Monte Carlo results simulating over ten
million rays.

4.2 Optimization

To compare the various heliostat field layout optimization methods, the PS10 and
Gemasolar test cases from the last section were used.

4.2.1 Pattern-based

Before evaluating the different pattern optimizations, the runtime improvements to
the optimizer are viewed. The PS10 test case was used with about 300.000 rays per
moment. As shown in Figure 40, the GPU acceleration [2] of the ray tracers greatly
reduced the overall runtime. However, by accelerating the annual integration method
as well as heliostat collision detection, the runtime was further reduced by a factor of
two.

In the PS10 test case, most pattern alone performed not as good as the original
layout. Except the radial staggered pattern, which achieved an improvement of about
0.6%. This is not a surprise, as the original layout of the plant uses a radial staggered

62

GPU GPU+ImprovementsCPU

0

5,000

10,000

R
u
n
ti
m
e
[s
]

Figure 40: Runtime improvements to the pattern optimization. On the CPU the opti-
mization took about 3 and a half hours, on the GPU 42 minutes, and with
further acceleration 21 minutes.

arrangement [44]. Figure 41 shows the achieved annual optical power of all patterns
as well as a subsequent local search. The annual optical power of the original plant is
illustrated by the dashed line. For patterns with a scaling along an arbitrary axis as
introduced in [24], their result with and without scaling is also given. The best result
with an improvement of around 1.29%, was obtained by the scaled radial staggered
pattern in combination with a local search, see Figure 43a.

hexagon radial staggered rose spiralcornfield

82.00

84.00

86.00
86.18 86.33

86.05 86.0785.84

A
n
n
u
al

O
p
ti

ca
l

P
ow

er
[G

W
]

Pattern Scaled Pattern Pattern+Local Search

Figure 41: Optimization results of the different patterns for the PS10. The annual
optical power of the original layout is shown by the dashed line. The best
layout achieved an improvement of 1.29%.

The Gemasolar pattern optimization achieved higher improvements compared to
the original layout, see Figure 42. The rose, spiral, and radial staggered pattern alone
surpassed the original annual optical power shown by the dashed line. Again, the
scaled patterns achieved slight improvements over the unscaled patterns. Like in the
PS10 test case, the most efficient layout was obtained by a combination of the scaled
radial staggered pattern and a local search. It results in about 5.5% more optical power
than the original layout, see Figure 43b.

63

hexagon radial staggered rosecornfield spiral
270

280

290

300

294.13

300.33

294.01

283.86

298.76

A
n
n
u
al

O
p
ti

ca
l

P
ow

er
[G

W
]

Pattern Scaled Pattern Pattern+Local Search

Figure 42: Optimization results of the different patterns for the PS10. The annual
optical power of the original layout is shown by the dashed line. The best
layout achieved an improvement of 5.5%.

−400 −200 0 200 400
0

200

400

600

800

(a) PS10

−800 −400 0 800400

−400

0

800

400

(b) Gemasolar

Figure 43: Best performing PS10 and Gemasolar layouts generated by the radial stag-
gered pattern optimization with local search.

4.2.2 Graph based field growth

In the following, different aspects of the new graph based field growth algorithm and
its variants are discussed. As stated in Section 3.2, the methods rely on very accurate
and precise heliostat efficiencies. Following the findings from the simulation test cases,
the best ray tracer to achieve both is the integrated convolution ray tracer. Therefore,
the independent ray tracing extension of the integrated convolution ray tracer is used
for all test cases.

A parameter study based on the PS10 has been carried out to find the optimal setting
for the relaxed score calculation of our field growth method. The highest overall field
efficiency was obtained by applying the relaxed score to the first half of the heliostats
nheli = 0.5, while using a maximal distance of dmax = 100 m, see Figure 44. More
details on the relaxed score can be found in Section 3.2.

64

75
.0

87
.5

10
0.

0

11
2.

5

12
5.

0

13
7.

5

15
0.

0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

maximal distance dmax

fr
a
ct

io
n

o
f

h
el

io
st

at
s
n
h
e
li

0.628

0.630

0.632

0.634

0.636

A
n

n
u

al
E

ffi
ci

en
cy

Figure 44: Parameter study for the relaxed score computation of the graph based field
growth method.

The new field growth method also offers the possibility to only include heliostats
with certain S&B weights, therefore reducing the simulated heliostats to the most
important ones. Figure 45 compares the runtime of the algorithm on the PS10 for
different minimum S&B weights. Additionally, the average efficiency difference of all
heliostats to their actual value is given. As shown, the difference linearly increases
with the minimum S&B weight. However, the runtime decreases only slightly after a
S&B weight of 0.00015. Therefore, this weight is chosen in the following.

0.0 1.0 2.0 3.0 4.0 5.0

·10−3

0.0

1.0

2.0

3.0

·10−3

Minimum S&B Weight

A
v
er

a
g
e

E
ffi

ci
en

cy
D

iff
er

en
ce

150.0

160.0

170.0

180.0

R
u

n
ti

m
e

[s
]

Runtime

Difference

Figure 45: The effect of the minimum S&B weight on the runtime and average efficiency
difference for the PS10. A field density of one was used.

Field density Another crucial parameter of our field growth method is the field den-
sity of the underlying grid. A field density of one means that the heliostat positions
are packed as densely as possible without overlapping. For a field density of three

65

there are three times as many heliostats in both horizontal and vertical direction,
thus nine times as many heliostats. For the PS10, this results in a total of 22344
heliostats. Both the annual efficiencies and runtime for different field densities are
shown in Figure 46. Again, the dashed line is the result of the original layout. The
runtime increases quadratically with the field density, due to the quadratically growing
number of heliostats. A dense grid also leads to more heliostats being simulated at
each step. However, even with a field density of 3.5, the algorithm only takes about
300 seconds more than the improved GPU pattern optimizer. It achieved an annual
efficiency improvement of about 1.75% which is 0.4% higher than the best pattern with
local search, see Figure 48a.

1.0 1.5 2.0 2.5 3.0 3.5

0.635

0.640

0.645

Field density

A
n

n
u
a
l

E
ffi

ci
en

cy

500

1,000

1,500

R
u

n
ti

m
e

[s
]

Runtime

Efficiency

Figure 46: Runtime and annual efficiency of the field growth method for the PS10 at
different field densities. The efficiency of the original layout is shown by the
dashed line. The best layout achieved an improvement of 1.75%.

Similar results were obtained for the Gemasolar, see Figure 47. However, since the
field is much larger than the one of the PS10, more heliostats are considered which
influences the runtime. The layout optimization achieved an improvement of about
6.3%, 0.8% better than the best pattern optimization with local search. Figure 48b
shows the generated layout.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.520

0.530

0.540

0.550

0.560

Field density

A
n

n
u
a
l

E
ffi

ci
en

cy

0

5,000

10,000

R
u

n
ti

m
e

[s
]

Runtime

Efficiency

Figure 47: Runtime and annual efficiency of the field growth method for the Gemasolar
at different field densities. The efficiency of the original layout is shown by
the dashed line. The best layout achieved an improvement of 6.3%.

66

−400 −200 0 200 400
0

200

400

600

800

(a) PS10

−800 −400 0 800400

−400

0

800

400

(b) Gemasolar

Figure 48: Best performing PS10 and Gemasolar layouts generated by the graph based
field growth method.

Field growth suboptimization Besides increasing the density of the underlying grid,
the number of possible heliostat positions can also be increased by suboptimization.
Figure 49 shows the achieved annual efficiency on the PS10 for different numbers of
sub heliostats. The field density was chosen to be one and the dashed line indicates the
achieved efficiency without suboptimization. As shown, the suboptimization first leads
to a less efficient layout. However, after 20 sub heliostats, the field efficiency exceeds
the one without suboptimization. Thus, the field growth suboptimization effectively
increases the number of heliostat positions without additional memory consumption.

0 20 40 60 80 100

0.634

0.636

0.638

0.640

Number of Sub Heliostats per Position

A
n

n
u
a
l

E
ffi

ci
en

cy

Figure 49: Annual efficiencies of the field growth suboptimization on the PS10. A field
density of one was used and the dashed line indicates the efficiency from
the field growth method.

Representative field growth Another approach to allow for more heliostat positions,
is the representative field growth algorithm. To evaluate the method, the same PS10
test case was used with varying number of heliostats per representative heliostat. Each

67

heliostat of the densest non overlapping grid was considered a representative heliostat.
The local optima property, as discussed in Section 3.2, was regained by replacing the
worst heliostat up to 100 times. Figure 50 shows the achieved annual efficiency with
the dashed line indicating the efficiency of the field growth method at a density of one.
In the beginning, the resulting field efficiency increases significantly but then declines.
A possible explanation is the score approximation in the representative field growth
method. With increasing number of non-representative heliostats, more heliostats with
inaccurate scores exist. Therefore, the algorithm is more likely to choose a non optimal
heliostat resulting in less efficient layouts.

0 10 20 30 40 50

0.634

0.636

0.638

0.640

Number of Heliostats per Representative Heliostat

A
n

n
u
a
l

E
ffi

ci
en

cy

Figure 50: Annual efficiencies obtained by the representative field growth method on
the PS10. The field density was set to one for the representative heliostats.
The dashed line indicates the efficiency of the field growth method.

4.3 Discussion of results

The results of the simulation test cases show that the extension of the integrated con-
volution ray tracer improved the accuracies for a variety of test cases. Futhermore, the
new equation to convolute sun, slope, and tracking errors now perfectly matches the
results obtained by a separate perturbation of the sun and normal vector. In contrast
to the equations used by HFLCAL and UNIZAR leading to a difference of up to 4.5%
and 0.4%, SunFlower differed only 0.01% to a separate perturbation. Additionally,
sun shapes like Buie and Pillbox can accurately be represented by a Gaussian making
it possible to use them in analytical ray tracers. Therefore, the improved integrated
convolution ray tracer is the recommended ray tracing method.

The GPU ray tracer as well as further acceleration decreased the runtime of the
pattern based heliostat field layout optimization from 3 and a half hours to about 21
minutes. The most efficient layouts for the PS10 and Gemasolar improved the optical
power by about 1.29% and 5.5%, respectively. Our new graph based field growth
method achieved an improvement of 1.75% and 6.3%. The runtime for the PS10
optimization was similar to the pattern based with local search. However, the field
growth method took 25 minutes longer on the Gemasolar test case. It should be noted

68

that the field growth algorithm is running on the CPU and not on the GPU like the
pattern optimization and local search. In comparison to the CPU pattern optimization
and local search, the field growth algorithm is at least 5 times faster. This is only made
possible by the independent ray tracing extension. The field growth suboptimization
and representative field growth methods allowed to include more positions, leading
to better layouts. But for dense heliostat grids, both methods result in similar or
even less efficient layouts than the one of our field growth method. This indicates
that the approximative aspects of both methods limit their ability to find the best
layout. Therefore, the exact evaluation of our graph based field growth algorithm
is a crucial aspect and separates it from existing field growth methods. Due to the
layout improvements, our new graph based field growth method should be preferred
over pattern optimization.

5 Conclusion

In this work, the modeling and optimization of CRS were extended and improved.
The accuracy of the integrated convolution ray tracer was enhanced by concentrating
computational effort on the shading and blocking calculation. Additionally, the con-
volution of the bidirectional ray tracer was aligned to perfectly match the result of an
individual accounting of optical errors. Besides more accurate results, the ray tracer
also got extended to incorporate more sun shapes. For analytical ray tracers, a new
approximation method of the sun shapes has been developed.

Within the optimization, the GPU ray tracers were adapted to work with the ex-
isting optimizers. The annual integration method and heliostat collision detection got
accelerated. A new pattern was added to the pattern optimization. Most importantly,
the new graph based field growth optimization method as well as two variants have
been developed. For this, a novel way of ray tracing was implemented for the existing
ray tracers. The graph based field growth method results in the most efficient layouts
for both the PS10 and Gemasolar test case. An essential aspect is the exact compu-
tation of each heliostat’s efficiency contribution, achieved by the algorithm itself and
the underlying independent integrated convolution ray tracer.

5.1 Outlook

Acceleration One criticism of field growth methods in general is their runtime. Al-
though our new graph based field growth method required similar runtime as the
pattern optimization for the PS10, larger fields like the Gemasolar drastically increase
the overall runtime. There are many opportunities to further accelerate the algorithm.
The most promising is an efficient GPU implementation. More specifically, the inde-
pendent GPU ray tracer should be extended to compute the efficiency reduction maps.
Even though the GPU has much smaller memory capacities than the CPU, it is pos-
sible to get around this problem. One way is to not simulate all relevant heliostats

69

at once but only a certain fraction. Later the results are combined to get the desired
computation. However, there are more issues than just the memory capacity for an
efficient GPU implementation. It is also necessary to replace some data structures
used to accelerate the CPU version. Another benefit of a fully GPU based field growth
method is that it probably scales much better for larger fields.

The initialization of the S&B graph is another area for acceleration. Currently,
all heliostats need to be simulated with the independent ray tracer. This offers an
exact determination of which heliostats shade or block another one but is a very time
consuming part of the optimization. A gradual generation of the full S&B graph might
accelerate the initialization. However, then the relevant S&B heliostats need to be
approximated which can increase the runtime or lead to less efficient layouts.

Heliostat selection A crucial aspect of pattern optimization is the selection of a
subset of the generated heliostats. In SunFlower all heliostats are simulated and the
ones with the highest efficiencies are chosen. However, this only partially includes S&B
interactions into account while including ones that are not existing in the subset. A
lightweight version of the field growth method might lead to more efficient subsets. One
approach could be to independently simulate all heliostats and approximate combined
S&B effects. So if two heliostats shade or block another heliostat then the combined
effect is approximated by some function. When updating the graph, no simulation
needs to be done.

Complete S&B Graph As discussed in Section 3.2, the independent ray tracer can
be extended such that for each heliostat a set of efficiencies is computed considering
any possible combination of heliostats. The resulting complete S&B graph contains
all the necessary information to compute the efficiency of any possible layout from the
grid. One problem is of course the immense memory consumption of such a graph.
But with modern memory capacities and maybe some approximations, this can become
manageable. The benefits would be tremendous, the efficiencies of any layout could
be computed with a few additions thus in less than milliseconds. Far more complex
optimization methods would be applicable. Our graph based field growth method, for
example, could use backtracking to avoid local optima. However, for very dense and
large fields a complete S&B graph will probably remain unfeasible. Approximations to
the combined S&B effects could be used in that case.

70

References

[1] N. Ahlbrink, B. Belhomme, R. Flesch, D. Maldonado Quinto, A. Rong, and
P. Schwarzbözl. Stral: Fast ray tracing software with tool coupling capabilities
for high-precision simulations of solar thermal power plants. In Proceedings of the
SolarPACES 2012 conference, 2012.

[2] L. Aldenhoff. Raytracer for central receiver systems using gpu. Master’s thesis,
RWTH Aachen University, 2021.

[3] C. Asselineau, J. Zapata, and J. Pye. Geometrical shape optimization of a cavity
receiver using coupled radiative and hydrodynamic modeling. Energy Procedia,
69:279–288, 2015.

[4] C. Asselineau, J. Zapata, and J. Pye. Integration of monte-carlo ray tracing
with a stochastic optimisation method: application to the design of solar receiver
geometry. Optics Express, 23(11):A437–A443, 2015.

[5] P. Atela, C. Golé, and S. Hotton. A dynamical system for plant pattern formation:
a rigorous analysis. Journal of Nonlinear Science, 12(6):641–676, 2002.

[6] M. Atif and F. Al-Sulaiman. Optimization of heliostat field layout in solar central
receiver systems on annual basis using differential evolution algorithm. Energy
Conversion and Management, 95:1–9, 2015.

[7] M. Balz, V. Göcke, T. Keck, F. von Reeken, G. Weinrebe, and M. Wöhrbach.
Stellio–development, construction and testing of a smart heliostat. In AIP con-
ference proceedings, volume 1734, page 020002. AIP Publishing LLC, 2016.

[8] F. Biggs and C. N. Vittitoe. Helios model for the optical behavior of reflecting
solar concentrators. Technical report, Sandia Labs., Albuquerque, NM (USA),
1979.

[9] M. Blanco. Tonatiuh: An object oriented, distributed computing, monte-carlo
ray tracer for the design and simulation of solar concentrating systems. Technical
report, The University of Texas at Brownsville, 2006.

[10] R. Buck. Heliostat field layout improvement by nonrestricted refinement. Journal
of solar energy engineering, 136(2), 2014.

[11] J. Burgaleta, S. Arias, and D. Ramirez. Gemasolar, the first tower thermosolar
commercial plant with molten salt storage. SolarPACES, Granada, Spain, pages
20–23, 2011.

[12] E. Carrizosa, C. Domı́nguez-Bravo, E. Fernández-Cara, and M. Quero. A heuristic
method for simultaneous tower and pattern-free field optimization on solar power
systems. Computers & Operations Research, 57:109–122, 2015.

71

[13] F. Collado. One-point fitting of the flux density produced by a heliostat. Journal of
the American Statistical Association, page 673–684, 2010. doi: 10.1080/01621459.
1949.10483310.

[14] F. Collado and J. Guallar. Campo: Generation of regular heliostat fields. Renew-
able energy, 46:49–59, 2012.

[15] S. Coumbassa. Optimal storage strategy for hybrid concentrated solar thermal -
photovoltaic plants. Master thesis, RWTH Aachen University, 2019.

[16] P. Davies. The tailor-made universe. Sciences, 18:6–10, 1978.

[17] L. Deng, Y. Wu, S. Guo, L. Zhang, and H. Sun. Rose pattern for heliostat
field optimization with a dynamic speciation-based mutation differential evolution.
International Journal of Energy Research, 44(3):1951–1970, 2020.

[18] A. Di Donato and R. Hageman. Computation of the integral of the bivariate nor-
mal distribution over arbitrary polygons. Technical report, Naval Surface Weapons
Center, 1980.

[19] A. Di Donato, M. Jarnagin, and R. Hageman. Computation of the bivariate nor-
mal distribution over convex polygons. Technical report, Naval Surface Weapons
Center, 1978.

[20] X. Duan, C. He, X. Lin, Y. Zhao, and J. Feng. Quasi-Monte Carlo ray tracing
algorithm for radiative flux distribution simulation. Solar Energy, 211:167–182,
2020. doi: 10.1016/j.solener.2020.09.061.

[21] A. Farahmand, S. Payan, and S. Sarvari. Geometric optimization of radiative
enclosures using pso algorithm. International journal of thermal sciences, 60:
61–69, 2012.

[22] O. Farges, J. Bézian, and M. El Hafi. Global optimization of solar power tower
systems using a monte carlo algorithm: Application to a redesign of the ps10 solar
thermal power plant. Renewable Energy, 119:345–353, 2018.

[23] T. Farr, P. Rosen, E. Caro, R Crippen, R. Duren, S. Hensley, M. Kobrick,
M. Paller, E. Rodriguez, L. Roth, et al. The shuttle radar topography mission.
Reviews of geophysics, 45(2), 2007.

[24] L. Fischer. Multi-step layout-optimization of heliostat fields in central receiver
systems. Master’s thesis, RWTH Aachen University, 2021.

[25] L. Franke. Modelling and optimization of large scale solar tower power plants.
Master’s thesis, RWTH Aachen University, 2018.

[26] Bindesministerium für Wirtschaft und Klimaschutz. Erneuerbare energien.
https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien.html.
Accessed: 2022-12-01.

72

https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien.html

[27] D. Gebreiter, G. Weinrebe, M. Wöhrbach, F. Arbes, F. Gross, and W. Landman.
sbpray–a fast and versatile tool for the simulation of large scale csp plants. In AIP
Conference Proceedings, volume 2126, page 170004. AIP Publishing LLC, 2019.
doi: 10.1063/1.5117674.

[28] G. Heiming. Development of a techno-economic model for solar tower power
plants. Master thesis, MathCCES-RWTH Aachen, 2017.

[29] F. Hövelmann. Accelerated raytracer for solar tower power plants. Bachelor thesis,
RWTH Aachen University, 2019.

[30] M. Izygon, P. Armstrong, C. Nilsson, and N. Vu. Tiesol–a gpu-based suite of
software for central receiver solar power plants. Proceedings of SolarPACES, 2011.

[31] F. Jensen and T. Nielsen. Bayesian networks and decision graphs, volume 2.
Springer, 2007.

[32] H. Kambezidis, B. Psiloglou, D. Karagiannis, U. Dumka, and D. Kaskaoutis.
Meteorological radiation model (mrm v6. 1): Improvements in diffuse radiation
estimates and a new approach for implementation of cloud products. Renewable
and Sustainable Energy Reviews, 74:616–637, 2017.

[33] F. Kepp. Robust optimization of aiming strategies of heliostats in solar tower
power plants, 2018.

[34] B. L. Kistler. A user’s manual for delsol3: a computer code for calculating the
optical performance and optimal system design for solar thermal central receiver
plants. Sandia National Laboratories, Sandia Report No. SAND86-8018, 1986.
doi: 10.2172/7228886.

[35] M. Lazardjani, V. Kronhardt, G. Dikta, and J. Göttsche. Simultaneous optimiza-
tion of micro-heliostat geometry and field layout using a genetic algorithm. In AIP
Conference Proceedings, volume 1734, page 020028. AIP Publishing LLC, 2016.

[36] P. Leary and J. Hankins. User’s guide for MIRVAL: a computer code for comparing
designs of heliostat-receiver optics for central receiver solar power plants. Technical
report, Sandia Laboratories, 1979.

[37] F. Lipps and L. Vant-Hull. A cellwise method for the optimization of large central
receiver systems. Solar Energy, 20(6):505–516, 1978.

[38] S. Lutchman, A. Groenwold, P. Gauché, and S. Bode. On using a gradient-based
method for heliostat field layout optimization. Energy Procedia, 49:1429–1438,
2014.

[39] A. Mecit and F. Miller. Optical analysis of a window for solar receivers using
the monte carlo ray trace method. ASME 2013 7th International Conference on
Energy Sustainability, 2013. doi: 10.1115/ES2013-18186.

73

[40] K. Milidonis, M. Blanco, V. Grigoriev, C. Panagiotou, A. Bonanos, M. Constanti-
nou, J. Pye, and C. Asselineau. Review of application of ai techniques to solar
tower systems. Solar Energy, 224:500–515, 2021.

[41] J. Nelder and R. Mead. A simplex method for function minimization. The com-
puter journal, 7(4):308–313, 1965.

[42] J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design
choices. In Handbook of Computational Geometry, pages 725–764. Elsevier, 2000.

[43] C. Noone, M. Torrilhon, and A. Mitsos. Heliostat field optimization: A new
computationally efficient model and biomimetic layout. Solar Energy, 86(2):792–
803, 2012.

[44] R. Osuna, R. Olavarŕıa, R. Morillo, M. Sánchez, F. Cantero, V. Fernández-Quero,
P. Robles, T. López, S. Esteban, F. Céron, et al. Ps10, construction of a 11mw
solar thermal tower plant in seville, spain. In Proc. 13th IEA SolarPACES Symp.,
pages A4–S3, 2006.

[45] Eric P. and Yves D. Rendering participating media with bidirectional path
tracing. In Eurographics, pages 91–100. Springer Vienna, 1996. doi: 10.1007/
978-3-7091-7484-5 10.

[46] Q. Pham, C. Gregory, M. Slack, B. Gross, D. Reznik, and P. Arbogast. Heliostat
array layouts for multi-tower central receiver solar power plants, 2014. US Patent
8,656,907.

[47] R. Pitz-Paal, N. Botero, and A. Steinfeld. Heliostat field layout optimization for
high-temperature solar thermochemical processing. Solar energy, 85(2):334–343,
2011.

[48] R. Pitz-Paal, N. B. Botero, and A. Steinfeld. Heliostat field layout optimization for
high-temperature solar thermochemical processing. Solar Energy, 85(2):334–343,
2011.

[49] A. Rabl. Active solar collectors and their applications. Oxford University Press,
1985.

[50] P. Richter. Simulation and optimization of solar thermal power plants. Disser-
tation, RWTH Aachen University, Aachen, 2017. URL http://publications.

rwth-aachen.de/record/690762. Veröffentlicht auf dem Publikationsserver der
RWTH Aachen University; Dissertation, RWTH Aachen University, 2017.

[51] P. Richter and F. Hövelmann. Computationally fast analytical ray-tracer for cen-
tral receiver system. In AIP Conference Proceedings, volume 2445. AIP Publishing
LLC, 2021. doi: 10.1063/5.0085714.

74

http://publications.rwth-aachen.de/record/690762
http://publications.rwth-aachen.de/record/690762

[52] P. Richter, D. Laukamp, L. Gerdes, M. Frank, and E. Abrahám. Heliostat field
layout optimization with evolutionary algorithms. In GCAI, pages 240–252, 2016.

[53] P. Richter, G. Heiming, N. Lukas, and M. Frank. Sunflower: A new solar tower
simulation method for use in field layout optimization. AIP Conference Proceed-
ings, 2033(1):210015, 2018. doi: 10.1063/1.5067217.

[54] P. Richter, J. Tinnes, and L. Aldenhoff. Accurate interpolation methods for the
annual simulation of solar central receiver systems using celestial coordinate sys-
tem. Solar Energy, 213:328–338, 2021.

[55] M. Sánchez and M. Romero. Methodology for generation of heliostat field layout
in central receiver systems based on yearly normalized energy surfaces. Solar
energy, 80(7):861–874, 2006.

[56] A. Sánchez-González and D. Santana. Solar flux distribution on central receivers:
A projection method from analytic function. Renewable Energy, 74:576–587, 2015.

[57] S. Sarvari. Optimal geometry design of radiative enclosures using the genetic
algorithm. Numerical Heat Transfer, Part A: Applications, 52(2):127–143, 2007.

[58] M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal. Assessment of the po-
tential improvement due to multiple apertures in central receiver systems with
secondary concentrators. Solar energy, 80(1):111–120, 2006.

[59] P. Schöttl, S. Rohani, E. Leonardi, L. Pisani, I. Les, A. Mutuberria, and P. Nitz.
Solar field heliostat selection based on polygon optimization and boundaries. In
AIP Conference Proceedings, volume 2126, page 030053. AIP Publishing LLC,
2019.

[60] P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz. Visual HFLCAL - a software tool
for layout and optimisation of heliostat fields. In SolarPACES Conference, 2009.

[61] P. Talebizadeh, M. Mehrabian, and H. Rahimzadeh. Optimization of heliostat
layout in central receiver solar power plants. Journal of Energy Engineering, 140
(4):04014005, 2014.

[62] J. Wang, L. Duan, and Y. Yang. An improvement crossover operation method in
genetic algorithm and spatial optimization of heliostat field. Energy, 155:15–28,
2018.

[63] Y. Wang, D. Potter, C. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud,
M. Blanco, J. Kim, and J. Pye. Verification of optical modelling of sunshape
and surface slope error for concentrating solar power systems. Solar Energy, 195:
461–474, 2020. doi: 10.1016/j.solener.2019.11.035.

[64] T. Wendelin. Soltrace: a new optical modeling tool for concentrating solar optics.
In ASME 2003 International Solar Energy Conference, pages 253–260. American
Society of Mechanical Engineers, 2003.

75

	Introduction
	State of the art
	Modeling
	Optimization

	Contribution
	Outline

	Modeling solar central receiver systems
	Optical model
	Monte Carlo ray tracer
	Analytic ray tracer
	GPU Acceleration

	Thermal model
	Storage model
	Electrical model
	Economical model
	Annual integration

	Heliostat field layout optimization
	Pattern based approaches
	North-South staggered
	Radial staggered
	Rose
	Hexagon
	Spiral
	Optimizer

	Graph based field growth
	Independent ray tracer
	Shading and blocking graph
	Complete graph based field growth algorithm
	Practical difficulties
	Suboptimization
	Representative field growth
	Validation

	Local search

	Case Studies
	Modeling
	Validation of SunFlower
	Accuracy of convolution method
	Comparison of convolution methods on GPU and CPU
	Efficiency Accuracies
	Runtime Comparison
	Approximating Sun Shapes

	Optimization
	Pattern-based
	Graph based field growth

	Discussion of results

	Conclusion
	Outlook

	References

