
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

COMPOSITIONAL MODELING OF STOCHASTIC

HYBRID SYSTEMS

Carolina Gerlach

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Additional Advisor:
Sasan Vakili Aachen, July 26, 2022

Abstract

The behavior of a hybrid system can be described by continuous flows in-
terleaved with discrete changes. Hybrid systems are often affected by uncer-
tainties, which can be modeled via stochastic hybrid systems. In this thesis,
we propose a modeling language for stochastic hybrid systems and discuss our
design choices. We define stochastic hybrid automata that extend hybrid au-
tomata by spontaneous jumps. Additionally, the jumps are assigned weights to
make a probabilistic choice between several jumps that can be taken at the same
time. We expect our model to be extensible with other sources of stochasticity
regarding, e.g., resets, initial states, or continuous dynamics.

Our modeling language is designed with respect to two goals that we found
to be missing from existing approaches for stochastic hybrid automata, while
additionally trying to keep the model as expressive as possible. Firstly, we aim
to define a compositional model allowing for communication between different
components via shared variables. Secondly, we intend to enable easy model-
ing of competing stochastic events, in particular of stochastically independent
competing events. To this end, we associate each stochastic event with a set
of jumps. Each stochastic event has a state-dependent probability distribution
determining when some associated jump should be taken.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche ge-
kennzeichnet.

Carolina Gerlach
Aachen, den 26. Juli 2022

vi

Contents

1 Introduction 9

2 Hybrid Automata 15
2.1 Syntax of Hybrid Automata . 16
2.2 Semantics of Hybrid Automata . 23
2.3 Composition of Hybrid Automata . 28

3 Stochastic Hybrid Automata 37
3.1 Syntax of Stochastic Hybrid Automata 37
3.2 Semantics of Stochastic Hybrid Automata 41
3.3 Composition of Stochastic Hybrid Automata 53
3.4 Comparison to Other Approaches . 55

4 Language Extensions 57
4.1 Other Sources of Stochasticity . 57
4.2 Forced Jumps . 57
4.3 Jump Synchronization . 58
4.4 Shared Variable Concurrency . 59

5 Conclusion 61
5.1 Future Work . 61

Bibliography 63

viii Contents

Chapter 1

Introduction

Hybrid systems combine discrete and continuous behavior. Alur et al. [ACH+95] pro-
posed to model them as hybrid automata, which can be viewed as discrete transition
systems extended by continuous dynamics. The behavior of a hybrid automaton is
governed by instantaneous jumps between discrete control locations and continuous
evolution of real-valued variables while control stays in some location. For example,
a thermostat can be modeled by a continuous variable representing the temperature
and transitions between discrete locations representing the heater being on or off
[ACH+95]. If the heater is on (off), the temperature increases (decreases), and once
a certain threshold is reached, the heater is switched off (on).

Hybrid systems are often affected by uncertainty, for example, with regard to when
control transitions from one location to another (jump times) and which jump is taken
or how variables are affected by a jump (resets). Similarly, the continuous evolution of
variables in the locations may also be affected by uncertainty. In real-life applications,
these choices often follow certain probability distributions. For example, the heater
from the example above might break with a certain probability, which increases over
time. Hence, determining the point in time when control transitions to some “broken”
location via an appropriate probability distribution yields a more accurate model
than a non-deterministic choice. For example, determining the probability of some
undesirable or unsafe outcome would be more useful than only knowing whether it
could happen.

Stochastic hybrid systems extend hybrid systems by stochastic behavior. Overviews
of continuous-time models of stochastic hybrid systems, including, for example, piece-
wise-deterministic Markov processes, switching diffusion processes, and stochastic hy-
brid automata, are provided in [CL07, TSS14, PBLD03]. We focus on continuous-time
models here and refer to [LSAZ21] for discrete-time models. Models for stochastic hy-
brid systems differ with respect to whether they offer stochastic continuous dynamics,
stochastic discrete dynamics, or a combination of both, and how this stochasticity is
offered. Figure 1.1 provides an overview of features offered by different formalisms,
which we elaborate on later in this chapter.

In this thesis, we focus on stochastic hybrid automata, which are sometimes also
called stochastic hybrid systems. This term is used to refer to several different model-
ing languages extending hybrid automata with stochastic behavior in different ways.
We propose a modeling language targeting two aspects regarding compositional mod-
eling and the modeling of stochastic events, which we found to be missing from previ-

10 Introduction

[BL04] [BSA04] [HLS00] [Hes07] [AHS13] This
work

SDE ✓ ✓ ✓ ✓ ✗ ✗
Spontaneous jumps ✓ ✗ ✗ ✓ ✓ ✓
Forced jumps ✓ ✓ ✓ ✗ ✗ ✗
Stoch. variable resets ✓ ✓ ✓ ✗ ✗ ✗
Stoch. jump choice ✓ ✓ ✓ ✗ ✗ ✓
Stoch. initial states ✓ ✓ ✗ ✗ ✗ ✗

Figure 1.1: Overview of features offered by several different stochastic hybrid system
modeling formalisms.

ous models. Additionally, we aim for our model to be as expressive as possible. Our
modeling language is based on previous Bachelor’s theses by Scherer [Sch22], Hua
[Hua21], and Appenzeller [App21]. In the following, we elaborate on our modeling
goals and give an overview of existing modeling languages for each aspect.

Expressivity Firstly, we intend to design a model that is as expressive as possible.
Models for stochastic hybrid systems differ vastly in terms of the offered stochasticity,
as can be seen in Figure 1.1.

For the continuous dynamics, [HLS00, BSA04, GAM97] offer stochastic differen-
tial equations (SDEs), while [FHH+11] only allows differential equations and [AHS13]
even restricts this to linear differential equations. Other approaches like [Hes14,
NHR21] specify ordinary differential equations (ODEs) via (locally) Lipschitz contin-
uous functions, which implies the existence of a unique maximal (but not necessarily
global) solution of the corresponding ODE for each initial value problem [Mar04].

The discrete dynamics can be extended by stochastic behavior in different ways.
Some models offer forced jumps, which are taken if the boundary of the location
invariant is hit [Dav84, HLS00]. In contrast, the jump times of spontaneous jumps
are determined by probability distributions, which may depend on the location and the
jump [AHS13, Hes14], on the state - consisting of the location and the current values of
the variables - [BBR+20], or on the state and jump [Hes07]. We discuss these different
possibilities in more detail when elaborating on how to model stochastic events later
in this chapter. Spontaneous jumps also include the special case of urgent jumps,
which have to be taken as soon as they are enabled, as, for example, in [HHHK13].

Some models offer stochastic choices over jumps (sometimes simply in the form of
a stochastic choice of the next location) and resets of continuous variables after jumps
[FHH+11], others only over resets [HLS00], or neither [Hes07].

Initial locations and initial variable valuations are also sometimes chosen stochas-
tically [BL04, BSA04].

Some models impose restrictions on the predicates describing when jumps can
be taken (guards) or under which conditions time can pass in locations (location
invariants). For example, [HLS00] requests invariants to be open sets and [Gbu18]
defines stochastic rectangular hybrid systems that only allow convex guards, and only
convex flows as well.

In this thesis, we support ODE-based flow specifications and guarded spontaneous
jumps. More specifically, we introduce stochasticity with respect to the jump times
and the choice between jumps. We also discuss possible extensions with other sources

11

of stochasticity, which should mostly be rather straightforward (see Chapter 4). In
order to define a meaningful compositional modeling language, we restrict how com-
ponents can influence each other by imposing some constraints on variable resets,
location invariants, and initial states.

Compositionality Modeling a (stochastic) hybrid system as a single (stochastic)
hybrid automaton becomes more difficult with increasing complexity and size. In-
stead, it is more convenient to model such systems by several components, which
might communicate via shared variables or jump synchronization, such that their
composition describes the behavior of the complete system. In the following, we give
a short overview of different compositional modeling languages.

Bouyer et al. [BBCM16] define the parallel composition of a subclass of stochastic
timed automata 1. Their proposed stochastic timed automata include state-dependent
stochastic choices over edges and jump times. The composition operator corresponds
to the interleaving of stochastic timed automata and allows neither jump synchro-
nization nor shared variables. The authors argue that only a subclass of stochastic
timed automata can be safely composed such that their composition reflects a race
between the components with respect to which component may take a jump next.
This illustrates that the composition of stochastic hybrid systems is not necessarily
trivial.

Communication via jump synchronization is offered, for example, by the models
defined in [DDL+12], [CL07, Chapter 3] and [HHHK13].

David et al. [DDL+12] give stochastic semantics for networks of hybrid automata,
whose jumps are labeled with input and output actions. Stochasticity is included in
the form of state-dependent stochastic choices over jump times, outputs, and states
reached by performing an action. The component sampling the smallest jump time
broadcasts a sampled output action while all other components synchronize by per-
forming a corresponding input action. David et al. ensure that such synchronization
is always possible by only considering input-enabled hybrid automata, i.e., it must be
possible to take each input action at each state.

Strubbe and van der Schaft [CL07, Chapter 3] propose communicating piecewise-
deterministic Markov processes as a compositional modeling framework for stochastic
hybrid systems, which includes stochastic as well as non-stochastic jumps. At each
location, the outgoing stochastic jumps are in a race with each other with respect to
which one will be taken, but they are not allowed to synchronize with other stochastic
or non-stochastic jumps. Components can, however, synchronize on specified non-
stochastic jumps in different ways: Active jumps can either be required to synchronize
with other active jumps, or trigger the execution of passive jumps.

HModest [HHHK13] is a compositional modeling framework for stochastic hybrid
systems. The symbolic semantics of a HModest process is given via stochastic hybrid
automata, where the locations correspond to process behaviors and the edges are
defined by inference rules. HModest allows for process synchronization via patient
and impatient actions, similar to the distinction between passive and active jumps
in [CL07, Chapter 3]. Additionally, processes may communicate via global variables.
We emphasize that although the HModest framework is compositional, this work
does not define compositional stochastic hybrid automata.

1In a timed automaton, all variables must evolve linearly (i.e., with derivative 1) and may only
be reset to 0. They are called clocks.

12 Introduction

We found only very few modeling languages for stochastic hybrid systems that
allow communication via shared variables and therefore chose this as one of our design
goals in order to fill this niche. Two approaches for compositional modeling using
shared variables are presented in [TEF11] and [BSA04].

For discrete time, Teige et al. [TEF11] define concurrent probabilistic hybrid au-
tomata allowing for probabilistic branching. Each component distinguishes between
local variables and global variables controlled by other components. A component
may write non-local variables in resets and guards may refer to global variables and
the current locations of other components. In addition to communication via the
variables, components synchronize on transitions by trying to find compatible local
transitions. If the variable resets proposed by different components are inconsistent,
the system deadlocks. Teige et al. explicitly prefer this to avoiding such conflicts by
restricting the use of (global) variables.

For continuous time, Bernadsky et al. [BSA04] propose a modeling language for
concurrent stochastic hybrid systems, which allows agents (similar to hybrid au-
tomata) to communicate via shared variables, with more fine-grained read/write ac-
cesses. Each agent controls private and observable variables and can additionally
read external variables, which correspond to variables declared observable by other
agents. This model offers specification of continuous dynamics via SDE and forced
jumps with stochastic choices over target locations and variable resets. We are not
aware of any other modeling language for continuous-time stochastic hybrid systems
that allows for communication via shared variables.

Since the influence of external variables can cause instantaneous violation of loca-
tion invariants, Bernadsky et al. allow to leave a location exactly when the invariant
is violated. We prefer not to weaken the meaning of invariants in this way and there-
fore propose a different modeling approach for shared variables, which restricts the
influence of external/non-controlled variables. We discuss differences between their
model and our model in more detail in Section 3.4.

In summary, this thesis focuses on communication between components via shared
variables, distinguishing between variables controlled by a component itself and other
components. In Chapter 4, we discuss how our model could be extended with jump
synchronization.

Modeling Stochastic Events We want to design our model in such a way that
it is easy to model “competing” stochastic events. For example, the thermostat from
the introductory example might break/fail due to various reasons, like the wear of
different components or a power outage. So in a sense, there are different stochastic
events that compete with regard to which one will happen first. For example, the
probability of one event might increase over time, while the probability distribution
associated with another event might assign the same probability to all possible points
in time. There are several possibilities how these stochastic events can be modeled.

Many approaches associate one stochastic event with each location, such that one
“global” jump time is determined per location and the decision about which jump
is taken only happens at jump time [BBB+14, BBR+20, DDL+12]. This approach
is advantageous for verification, but impractical for our goal of modeling stochastic
events that compete at each location, since the modeler then has to “merge” several
stochastic events into one event for each location.

It would be more natural to associate the stochastic events with the jumps instead
of the locations. Then, at each location, the outgoing jumps are in a race with each

13

ea ∥ eb =

ea

e′beb

e′a

Figure 1.2: Illustration of the composition of two stochastic hybrid automata.

other with respect to which will be triggered first. This approach is, for example,
taken by Hespanha in [Hes07], where the jump times are determined by probability
distributions depending on the jump and state.

However, if each stochastic event is only allowed to be associated with one jump,
then the modeling of stochastically independent events becomes problematic. Con-
sider, for example, the composition of two stochastic hybrid automata as illustrated
in Figure 1.2. Both components have a single jump associated with stochastic events
a and b, respectively, which we assume to be stochastically independent. If ea is trig-
gered in the composition before eb is triggered, then after taking ea, we need a copy e′b
of eb to model the continuation of stochastic event b. However, if each stochastic event
may only be associated with a single jump, then we cannot assign b to e′b. Hence,
we would have to sample a new jump time instead of continuing with the jump time
sampled for eb. As a result, we could only model the continuation of memoryless
stochastic events this way. In the case of continuous probability distributions, this
would mainly allow the exponential distribution [Fel91].

In this thesis, we allow several jumps to be associated with the same stochastic
event. A similar mechanism could be implemented using the singular automata with
random clocks defined by Pilch et al. [PKRA20]. We compare the approaches in
further detail in Section 3.4. We are not aware of any other modeling formalism for
stochastic hybrid systems allowing to bind together several jumps to model the same
stochastic event.

In summary, the main contributions of this thesis are the following:

1. We present a modeling language for stochastic hybrid systems in the form of
stochastic hybrid automata with spontaneous jumps and stochastic choice be-
tween jumps, which should be easily extensible to other sources of stochasticity.

2. Our modeling language is compositional in the sense that components can com-
municate via shared variables.

3. Our language allows to model competing stochastically independent events.

4. We discuss our design choices regarding all mentioned aspects.

This thesis is structured as follows. We start by adapting the hybrid automata
defined by Alur et al. [ACH+95] to our needs in Chapter 2 and defining the syntac-
tic parallel composition of hybrid automata. In Chapter 3, we then extend hybrid
automata by stochastic behavior, define the syntactic parallel composition of these
stochastic hybrid automata, and compare our modeling language to other approaches.
In Chapter 4, we discuss possible extensions of our model to include, for example,

14 Introduction

other sources of stochastic behavior, forced jumps, or jump synchronization. Lastly,
we summarize our model and outline possible future work in Chapter 5.

Notation We use R, R≥0, N and N>0 to denote the sets of all real numbers and non-
negative real numbers, as well as the natural numbers with and without 0, respectively.
For sets A and B with a ∈ A, b ∈ B, and a function f : A → B, we use f [a 7→ b] to
denote g : A → B with g(a) = b and g(a′) = f(a′) for all a′ ∈ A \ {a}. Furthermore,
for A′ ⊆ A we define f |A′ : A′ → B with f |A′(a) = f(a) for all a ∈ A′. For sets A, B
and C, we use C = A ∪· B to state that A ∩B = ∅ and C = A ∪B.

Chapter 2

Hybrid Automata

Hybrid automata extend discrete transition systems by continuous dynamics. We refer
to the discrete states and transitions of the transition system as locations and jumps,
respectively. The continuous behavior is modeled by real-valued variables that evolve
over time. The values of the variables in some variable set V are specified by functions
ν : V → R, which we call valuations. Valuations are sometimes also interpreted as
vectors in Rn, given a fixed order of the variables V with |V | = n. We often denote
a valuation ν : {x1, . . . , xn} → R by a tuple (x1 7→ ν(x1), . . . , xn 7→ ν(xn)). The set
of all valuations for V is denoted by VV , or simply V if the variable set is clear from
the context. The evolution of variables over time is described by activities, which are
continuous functions f : R≥0 → VV . The set of all activities for V is denoted by FV ,
or simply F .

The combined discrete-continuous behavior of a hybrid automaton is governed by
instantaneous jumps between the locations and continuous evolution of the variables
while control stays in some location. The jumps are guarded by conditions on the
values of the variables and may reset variables to other values. Each location is
associated with a set of activities, defining how the variables may evolve while control
is in this location. Control may only stay in a location as long as the location’s
invariant is satisfied, which imposes restrictions on the variable values. Each location
l is additionally assigned a set of initial valuations, which acts as an initial condition
on the variable values if l is chosen as the initial location.

Our goal is to define a compositional modeling language for (stochastic) hybrid
automata that allows communication between different components via shared vari-
ables. To avoid conflict between components, we allow each variable to be controlled
by exactly one component, which means that only this component can determine the
evolution of the variable’s values and reset its values via jumps. In turn, each com-
ponent models the behavior of its environment non-deterministically and thus has
to allow for all possible evolution of the non-controlled variables. The behavior of
a component may be influenced by variables it does not control. For example, the
evolution of a controlled variable might depend on the evolution of a non-controlled
variable, or a jump might be guarded by a condition on some non-controlled variable.

The seminal model by Alur et al. [ACH+95] also defined the notion of controlled
variables, but per location instead of per component. Associating variables with com-
ponents can be considered a special case of associating them with locations. Two
hybrid automata can be composed if they never try to control the same variable. If

16 Hybrid Automata

the variables are controlled by the components, this can be easily decided by checking
whether the intersection of their variable sets is empty. If the variables are controlled
by the locations, we could also simply check whether the set of variables controlled
by any location of one component is disjoint from the corresponding set for the other
component. However, we are actually interested in whether, during the parallel exe-
cution of the two hybrid automata, we ever reach a point where the current locations
of both components want to control the same variable. This is a reachability prob-
lem, which is in general undecidable for hybrid automata [HKPV98]. Since our goal is
to model communication between components, we choose to associate variables with
components here, but allowing a more fine-grained control by associating them with
locations might also be possible.

A hybrid automaton synchronizes with its environment by taking a matching en-
vironmental step whenever another component takes a jump updating the variables.
Alur et al. [ACH+95] defined these environmental steps as syntactical τ -jumps that
only allow changes of the non-controlled variables, thus restricting the write access
to the controlled variables for each location. Since adding these τ -jumps for all pos-
sible changes of the environment is quite laborious for the modeler, we instead add
such environmental steps semantically, which may only change variables controlled
by other components. Note that, in contrast to Alur et al., we do not allow jumps
to synchronize via labels. Our goal is to model stochastic hybrid systems and we will
see in Section 4.3 that synchronization of spontaneous jumps is not straightforward.

Even though the behavior of a hybrid automaton may depend on variables con-
trolled by other components, we will see that these dependencies should not be allowed
everywhere. We say that a valuation set is closed with respect to the non-controlled
variables if it is not influenced by them. In the following definition we formally intro-
duce the concept of valuation sets being closed with respect to some set of variables.
To ease notation throughout this thesis, we also first define an equivalence relation
expressing that two valuations agree on a set of variables.

Definition 2.0.1 (Valuation Set Closure w.r.t. a Variable Set). Let V +, V − be two
disjoint variable sets and V = V − ∪· V +.

For all ν,ν′ ∈ VV we define ν ≈V + ν′ iff ν|V + = ν′|V + .
A set S ⊆ VV is V −-closed iff S = {ν′ ∈ VV | ∃ν ∈ S. ν ≈V + ν′}.

For some set of variables V = V − ∪· V +, a set of valuations S ⊆ VV is V −-closed
if all valuations agreeing on V + with some valuation in S are also contained in S. In
other words, V − may not influence S. We will see a few examples illustrating what
it means for a valuation set to be closed with respect to the non-controlled variables
when we give examples for hybrid automata (see, e.g., Examples 2.1.1 to 2.1.3). In
the following, we discuss the syntax and semantics of hybrid automata and define
their syntactic parallel composition.

2.1 Syntax of Hybrid Automata

Following [ACH+95], we choose a more semantic approach for defining hybrid au-
tomata and specify activities and conditions on valuations as functions and sets,
respectively, instead of adopting a more syntactic style using ordinary differential
equations (ODEs) and predicates. However, we do specify the activity sets as solu-
tion sets of ODE systems because ODEs allow for nicer modeling of dependencies

Syntax of Hybrid Automata 17

between the evolution of different variables while guaranteeing desirable properties
like time-invariance. In particular, we only consider linear first-order ODE systems
in order to be able to guarantee the existence of a unique global solution [Zil12].
For convenience, we often use predicates to specify guards and invariants in text and
graphical representations. We will discuss our design choices in more detail after
having given the syntax of hybrid automata.

Our modeling language is based on a previous Bachelor’s thesis on compositional
modeling of stochastic hybrid systems [Sch22]. It adapts the original framework for
hybrid systems proposed by Alur et al. [ACH+95] to communication between compo-
nents via shared variables.

Definition 2.1.1 (Syntax of Hybrid Automata). A hybrid automaton H is a tuple
(Loc, (Con,NCon), Inv, Init,Edge,Act), where

• Loc is a non-empty finite set of locations;

• Con and NCon are two disjoint sets of controlled and non-controlled variables,
respectively; we set V = Con∪· NCon, and write V and F to denote VV and FV ,
respectively;

• Inv : Loc → 2V assigns an invariant Inv(l) ⊆ V to each location l ∈ Loc such
that Inv(l) is NCon-closed;

• Init : Loc → 2V assigns a set of initial valuations Init(l) ⊆ V to each location
l ∈ Loc such that Init(l) is NCon-closed and Init(l) ⊆ Inv(l);

• Edge ⊆ N×Loc×2V
2 ×Loc is a finite set of jumps such that for all (id, l, µ, l′) ∈

Edge and all (ν,ν′) ∈ µ it holds that ν ≈NCon ν′ and ν′ ∈ Inv(l′);

• Act : Loc → 2F assigns an activity set Act(l) to each location l ∈ Loc, consisting
of all f ∈ Act(l) that satisfy a first-order system of linear ordinary differential
equations of the form ẋCon = AlxCon +BlxNCon + cl, where

– xCon,xNCon are vectors of the controlled and non-controlled variables, re-
spectively, and ẋCon represents the first derivative of the evolution of the
controlled variables,

– Al, Bl are real-valued matrices of suitable dimensions,

– cl is a vector of real-valued constants.

Let in the following H = (Loc, (Con,NCon), Inv, Init,Edge,Act) be a hybrid au-
tomaton. A state σ of H consists of a discrete location l and a valuation ν of the
continuous variables. We use Σ = Loc × VV to denote the set of all states. We call
(l, ν) ∈ Σ an initial state if ν ∈ Init(l). We now elaborate on the different parts of
hybrid automata and the imposed conditions, before illustrating the definition with
examples.

Inv If an invariant in some component depends on a variable x controlled by an-
other component, the invariant might become violated if that component changes the
value of x. Since the location invariants have to be satisfied at all times, the former
component would block this variable update and would thus effectively influence the
evolution of a variable that it is not supposed to control. To avoid this, we require

18 Hybrid Automata

that invariants should be NCon-closed. Nevertheless, the environmental behavior can
indirectly lead to the invariant being violated, since the evolution of controlled vari-
ables may depend on non-controlled variables. The environment can however not
cause an instantaneous violation of the invariant anymore, in contrast to the case
where the invariant depends directly on a non-controlled variable.

Instead of requiring the invariants to be NCon-closed, we could weaken the mean-
ing of invariants such that invariants are allowed to be violated at jump time, and only
then, i.e., time may not pass while the invariant is violated. This approach is chosen
in [BSA04], but we find it undesirable. Another possibility would be to explicitly add
τ -jumps for all possible environmental changes, allowing a component to synchronize
with any environmental updates. However, this is quite cumbersome since we have
to add a jump for all states and all possible changes. Therefore, we require invariants
to be NCon-closed.

Init Initial valuations should satisfy the location’s invariant. Initial valuation sets
are also required to be NCon-closed for technical reasons, to allow us to focus on the
most crucial aspects. This does not reduce expressivity because any initial condition
on a non-controlled variable can be modeled by adding it as an initial condition to
the component controlling the concerned variable.

Edge The set of all jumps is called Edge for historical reasons, but we use the term
‘jump’ for elements of Edge to reflect the contrast between continuous evolution and
instantaneous jumps.

A jump e = (id, l,µ, l′) ∈ Edge is called enabled in a state σ ∈ Σ if the current
valuation satisfies the jump’s guard.

Definition 2.1.2 (Guard, Enabled). Let H = (Loc, (Con,NCon), Inv, Init,Edge,Act)
be a hybrid automaton and e = (id, l,µ, l′) ∈ Edge some jump.

The guard of e is defined as ge = {ν ∈ VV | ∃ν′ ∈ VV . (ν, ν
′) ∈ µ}.

We call e enabled in state (l, ν) ∈ Σ if ν ∈ ge.

For each ν ∈ ge, there may exist several ν′ ∈ VV such that (ν, ν′) ∈ µ. However, we
require that resets may only change controlled variables since the value of a variable
should only be determined by the component controlling the variable. Note that it is
possible to reset a controlled variable to the current value of a non-controlled variable
and that guards may depend on non-controlled variables. Hence, the environment
can influence when which jump can be taken.

Note that, per definition, we also require the new valuation to satisfy the location
invariant of the target location. If the jumps were specified in a more syntactic style, it
would make more sense to impose this requirement only in the semantics. Otherwise,
it would be quite cumbersome for the modeler to assure that the target invariant will
be satisfied after a controlled variable has been reset to a non-controlled variable.

Each jump has a jump identifier id ∈ N, which must not necessarily be unique.
The jump identifiers essentially enable us to define multisets, i.e., to have several
jumps with different jump identifiers but the same guard, reset, source location, and
target location. This is needed for the composition of stochastic hybrid automata, as
we elaborate in Section 3.3. In order to improve readability, we often omit the jump
identifiers when they are not relevant.

Syntax of Hybrid Automata 19

Act Since the activities are defined as solutions of ordinary differential equations,
the controlled variables must evolve continuously in closed systems. For non-closed
systems, we assume that the non-controlled variables are controlled by other hybrid
automata and thus also evolve continuously, which implies that the controlled vari-
ables must evolve continuously as well. Hence, we assume that all variables evolve
continuously on R≥0.

As mentioned above, a hybrid automaton should not restrict the continuous evo-
lution of the non-controlled variables. A hybrid automaton may only specify the
evolution of its controlled variables, which may be influenced by the non-controlled
variables. This property is inherently captured in our ODE systems of the form
ẋCon = AlxCon +BlxNCon + cl (with the same meaning as in Definition 2.1.1).

We chose to restrict the ODE systems to linear first-order systems here, because
they guarantee the existence of a unique global solution for every initial value problem
[Zil12]. However, this solution cannot always be computed explicitly. It might be
possible to extend our model to more general ODE systems. For example, ODEs
specified by Lipschitz continuous functions must have unique maximal solutions, but
not necessarily global ones [Mar04].

In our setting, for each state (l,ν) ∈ Σ and each fixed environmental evolution
fN ∈ FNCon with fN (0) = ν|NCon, the linear ODE system associated with location l
has a unique solution fC ∈ FCon of the initial value problem fC(0) = ν|Con induced
by ν [Zil12]. Only if the ODE does not depend on non-controlled variables, the
evolution of the controlled variables is uniquely determined at each state. Otherwise,
the solution of the ODE depends on the evolution of the environment, which we cannot
determine or predict. In general, we only know the direction of the next infinitesimally
small continuous update at each state. For example, consider the simple ODE ẋ = y
with x ∈ Con, y ∈ NCon. The unique solution f ∈ F satisfying the initial value
problem f(0)(x) = x0 is given by f(t)(x) =

∫ t

r=0
f(r)(y)dr + x0. However, at time

0, we do not know the activity f(r)(y) describing how y will evolve until time t, and
thus we cannot compute the integral. Hence, the evolution of the controlled variables
is not necessarily uniquely determined in each state, i.e., for each (l,ν) there may be
several f ∈ Act(l) such that f(0) = ν.

The continuous dynamics should also be memoryless, i.e., the evolution of the
variables should only depend on the current state. Thus, in the state (l, ν) the same
evolution of the variables should be possible independently of when location l was
entered. This means that all activity sets Act(l) should be time-invariant, i.e., f ∈
Act(l) should imply (f + t) ∈ Act(l) for all t ∈ R≥0, where (f + t)(t′) = f(t+ t′) for all
t′ ∈ R≥0. Since the activity sets in our model are determined by ODEs of the form
ẋCon = f(V), they are time-invariant by nature. Note that, if we allowed ODEs of
the form ẋCon = f(t, V), the activities would not necessarily be time-invariant.

The hybrid automata introduced in the following two examples serve as running
examples that are reused and extended throughout this thesis.

Example 2.1.1. Figure 2.1 presents a graphical representation of the hybrid automa-
ton H1 = (Loc1, (Con1,NCon1), Inv1, Init1,Edge1,Act1) with the following formal def-
inition:

• Loc1 = {l0, l1};

• V1 = {x},Con1 = {x},NCon1 = ∅, V1 = {ν : V1 → R};

20 Hybrid Automata

l0
ẋ = 1
x ≤ 5

H1 :
l1

ẋ = 2
true

x ≤ 5 → x:=0

ea

eb

x ≥ 3 → x:=3

x = 0

Figure 2.1: Depiction of the hybrid automaton H1 without non-controlled variables
defined in Example 2.1.1.

• Inv1(l0) = {ν ∈ V1 | ν(x) ≤ 5},
Inv1(l1) = V1;

• Init1(l0) = {(x 7→ 0)},
Init1(l1) = ∅;

• Edge1 = {ea = (l0,{(ν, ν′) ∈ V1 × V1 | ν(x) ≤ 5 ∧ ν′(x) = 0},l1),
eb = (l0,{(ν, ν′) ∈ V1 × V1 | ν(x) ≥ 3 ∧ ν′(x) = 3},l1)};

• Act1(l0) contains all solutions to the linear ODE ẋ = 1, i.e.,
Act1(l0) = {f : R≥0 → V1, t 7→ (x 7→ t+ c) | c ∈ R},
Act1(l1) contains all solutions to the linear ODE ẋ = 2, i.e.,
Act1(l1) = {f : R≥0 → V1, t 7→ (x 7→ 2t+ c) | c ∈ R}.

It can easily be verified that H1 satisfies the stipulated conditions.

Example 2.1.2. Figure 2.2 depicts the hybrid automaton H2 = (Loc2, (Con2,NCon2),
Inv2, Init2,Edge2,Act2) with the following formal definition:

• Loc2 = {l2, l3};

• V2 = {x, y}, Con2 = {y}, NCon2 = {x}, V2 = {ν : V2 → R};

• Inv2(l2) = V2,
Inv2(l3) = V2;

• Init2(l2) = {(x 7→ c, y 7→ 0) | c ∈ R},
Init2(l3) = ∅;

• Edge2 = {(l2, {(ν, ν′) ∈ V2 × V2 | ν(x) > 2 ∧ ν = ν′},l3)};

• Act2(l2) = {f : R≥0 → V2 | df(t)(y)
dt = f(t)(x)},

Act2(l3) = {f : R≥0 → V2, t 7→ (x 7→ fx(t), y 7→ t+ c) | c ∈ R, fx : R≥0 → R}.

For H2 it can again be easily seen that it satisfies the required conditions.

The following examples present slight variations of the hybrid automaton H2

from Example 2.1.2 which would lead to invariants or initial valuation sets not being
NCon2-closed anymore, or the conditions on jumps not being met.

Example 2.1.3. Consider the following variations of H2 from Example 2.1.2. If
the invariant of l2 was changed to ‘x < 20’, then Inv2(l2) would depend on a non-
controlled variable and would thus not be NCon2-closed anymore. NCon2-closure for
the set of initial valuations of location l2 could for example be violated by choosing the
initial valuation set {(x 7→ c, y 7→ 0) | c ∈ R, c < 5}.

Syntax of Hybrid Automata 21

l2
ẏ = x
true

H2 :
l3

ẏ = 1
true

ec
x > 2y = 0

Figure 2.2: Hybrid automaton H2 with dependencies on a non-controlled variable, as
defined in Example 2.1.2.

l2
ẏ = x
true

H′
2 :

l3
ẏ = 1
true

ec
x > 2 → y:=x

ed
y < 4 → y:=0y = 0

Figure 2.3: Hybrid automaton H′
2 with indirect dependencies on the environment, as

defined in Example 2.1.6.

Example 2.1.4. If the reset of jump ec in H2 was ‘x := 6’, then the first requirement
on Edge2 would not be satisfied. We would have µc = {(ν, ν′) ∈ V2 × V2 | ν(x) >
2 ∧ ν′(x) = 6 ∧ ν′(y) = ν(y)}. Thus, for ν = (x 7→ 4, y 7→ 0) and ν′ = (x 7→ 6, y 7→ 0)
we have (ν, ν′) ∈ µc but ν ̸≈NCon2

ν′.
The second requirement on Edge2 must be satisfied since both jumps have l1 as

target location, whose invariant is ‘true’. If the location invariant was ‘x > 1’ instead,
then resetting x to 0 by taking jump ea would violate this condition.

Note that, if H2 was composed with another hybrid automaton controlling x, re-
setting x when taking ec could potentially violate the invariant of the other hybrid
automaton’s current location. For example, H1 controls x and its initial location has
the invariant ‘x ≤ 5’, which would clearly become violated if H2 took the above reset.

Guards allow comparing different variables, in particular also comparing the values
of controlled to the values of non-controlled variables.

Example 2.1.5. If the guard of ec in H2 was ‘x > y’, the hybrid automaton would
still be valid. However, without knowing how x evolves, we cannot know whether ec
will ever become enabled or for how long.

The following example illustrates that there may exist implicit dependencies on
the environment in addition to the explicit ones.

Example 2.1.6. The hybrid automaton H′
2 presented in Figure 2.3 extends H2 from

Example 2.1.2 by a self-loop ed on l3. Additionally, the reset of ec is changed to
‘y := x’. Even though the guard of ed and the invariant and activity set of l3 do not
depend on the non-controlled variable x, the enabledness of ed in l3 indirectly depends
on the environment, because we reset y to the value of x when transitioning from l2
to l3.

We conclude this section by defining notions of determinism with regard to the
component itself and its environment, which we will need when we extend hybrid
automata to stochastic hybrid automata in Chapter 3.

22 Hybrid Automata

2.1.1 Deterministic Hybrid Automata
When we extend hybrid automata by stochastic behavior regarding the jump times
in Chapter 3, all other non-determinism regarding the behavior of this component
needs to be resolved. Here, we choose to do so by requiring the hybrid automaton to
be init-, reset-, and activity-deterministic.

Definition 2.1.3 (Init-, Reset-, Activity-deterministic Hybrid Automata). A hybrid
automaton H = (Loc, (Con,NCon), Inv, Init,Edge,Act) is called

• init-deterministic if there exists a unique l0 ∈ Loc such that for all l ∈ Loc we
have Init(l) ̸= ∅ iff l = l0, and for all ν, ν′ ∈ Init(l0) we have ν ≈Con ν′,

• reset-deterministic if for each (id, l,µ,l′) ∈ Edge and ν ∈ V there is at most one
ν′ ∈ V such that (ν, ν′) ∈ µ, and

• activity-deterministic if for each l ∈ Loc and ν ∈ V and for each fixed evolution
of the environment fN ∈ FNCon with fN (0) = ν|NCon, there exists a unique
f ∈ Act(l) such that f ≈NCon fN and f(0) = ν.

A hybrid automaton is init-deterministic if there exists exactly one location with
a non-empty initial valuation set and all valuations in this set agree on the controlled
variables. In other words, there is a unique initial state with respect to the controlled
variables.

Reset-determinism means that for each valuation satisfying the guard of some
jump, it is uniquely defined how the (controlled) variables should be reset after taking
the jump. Recall that resets may only affect controlled variables and hence the reset
of the non-controlled variables must always be uniquely determined anyways.

A hybrid automaton is activity-deterministic if in each state the evolution of con-
trolled variables is uniquely determined for each fixed evolution of the non-controlled
variables. Recall that this must hold for all hybrid automata by definition, since there
is a unique solution to the initial value problem for linear ODEs.

Example 2.1.7. The hybrid automata H1 and H2 from Examples 2.1.1 and 2.1.2
are init-, reset-, and activity-deterministic.

2.1.2 Closed Hybrid Automata
Since we model the environmental behavior non-deterministically, we can only prop-
erly analyze closed hybrid automata, which are not affected by the environment. In
particular, we can only define a probability space over paths of stochastic hybrid
automata if the underlying hybrid automaton is closed.

Definition 2.1.4 (Closed Hybrid Automaton). A hybrid automaton H = (Loc, (Con,
NCon), Inv, Init,Edge,Act) is called closed if NCon = ∅.

If a hybrid automaton is closed, then for each state (l,ν) ∈ Σ there exists a unique
f ∈ Act(l) such that f(0) = ν.

We could alternatively also define a weaker notion of closedness, which allows the
presence of non-controlled variables if they do not influence the hybrid automaton’s
behavior in any way. If no guard, reset, or activity set depends on any non-controlled
variable, removing the non-controlled variables from the hybrid automaton would not
affect its behavior. Closing the hybrid automaton in this manner would then enable

Semantics of Hybrid Automata 23

us to analyze its behavior. For simplicity, we nevertheless choose a stricter definition
of closedness here.

Example 2.1.8. The hybrid automaton H1 defined in Example 2.1.1 is closed. Even
if the set of non-controlled variables was non-empty, but everything else remained
unchanged, we could still consider this hybrid automaton to be closed in the weaker
sense discussed above: The behavior of H1 does not depend on its environment.

H2 defined in Example 2.1.2 is clearly not closed.

2.2 Semantics of Hybrid Automata
For the definition of the semantics, we again follow Alur et al. [ACH+95]. A hybrid
automaton can take an execution step from a state σ by letting time pass or taking a
discrete jump. It additionally synchronizes with its environment by taking environ-
mental steps that match discrete steps taken by other components. Note again that
our model currently does not offer jump synchronization via labels, but components
can instead communicate using shared variables. The behavior of a hybrid automaton
can be described by paths consisting of consecutive execution steps.

Definition 2.2.1 (Semantics of Hybrid Automata). The semantics of a hybrid au-
tomaton H = (Loc, (Con,NCon), Inv, Init,Edge,Act) is given by an operational se-
mantics consisting of three rules:

f ∈ Act(l) t > 0 f(0) = ν ∀t′ ∈ [0,t]. f(t′) ∈ Inv(l)

(l,ν)
t,f−−→ (l, f(t))

Ruletime

e = (id, l, µ, l′) ∈ Edge (ν,ν′) ∈ µ

(l,ν)
e−→ (l′,ν′)

Rulediscrete

ν ≈Con ν′ ν′ ∈ Inv(l)

(l,ν)
τ−→ (l,ν′)

Ruleenvironment

An execution step

→=

 ⋃
t∈R≥0,f∈F

t,f−−→

 ∪

 ⋃
e∈Edge

e−→

∪ τ−→

of H is either a time step or a discrete step or an environmental step. Instead of
writing (σ, σ′) ∈→, we use the infix notation σ → σ′, and analogously write σ ̸→ σ′

for (σ, σ′) ̸∈→.
A path π of H is a (finite or infinite) sequence of states connected by execution

steps σ0 → σ1 → σ2 → . . . such that ν0 ∈ Inv(l0).
A state σ of H is called reachable iff there exists a path of H leading to σ which

starts in an initial state.

In order to be able to make a time step (l,ν)
t,f−−→ (l, ν′), the location’s invariant

needs to hold during the complete interval [0,t]. We keep track of the activity f
used to evolve from ν to ν′ since there might be several different activities in Act(l)
with f(0) = ν and f(t) = ν′, because we model the environmental behavior non-
deterministically.

24 Hybrid Automata

For a discrete step (l,ν)
e−→ (l′,ν′), the valuations ν and ν′ need to satisfy the

jump’s guard and reset. We already ensured syntactically that ν′ must satisfy the
target location’s invariant.

We allow the environment to take arbitrary jumps changing (some of) our non-
controlled variables, as long as the location invariants still hold. Since we require
location invariants to only depend on controlled variables, they can, in fact, not be
directly violated by the environment. As mentioned above, Alur et al. [ACH+95] de-
fined such environmental steps syntactically. Since adding these jumps for all possible
changes of the environment is quite laborious for the modeler, we choose to include
them semantically instead.

Recall that initial valuations have to satisfy the location invariants. Since no
execution step can violate a location invariant, the location invariants must be satisfied
in each state along each reachable path.

Let us briefly illustrate the concepts of execution steps and paths with our running
examples.

Example 2.2.1. Consider again the hybrid automata H1 and H2 defined in Exam-
ples 2.1.1 and 2.1.2. In H1, all infinite paths from the unique initial state (l0, (x 7→ 0))
must transition to l1 before ‘x > 5’, using either ea or eb, and finally stay in l1 forever.
For example, the finite path

π = (l0, (x 7→ 0))
4,f0−−→ (l0, (x 7→ 4))

eb−→ (l1, (x 7→ 3))
1,f1−−→ (l1, (x 7→ 5))

of H1 with f0(t)(x) = t, f1(t)(x) = 2t+3 can be extended to an infinite path π′ of H1

by adding infinitely many time steps that follow the prescribed evolution of x.
Since H1 is closed, we cannot make any environmental steps in H1. However, H2

does contain a non-controlled variable x and hence, for example, the environmental
step (l2, (y 7→ 0, x 7→ 0))

τ−→ (l2, (y 7→ 0, x 7→ 3)) is possible.

2.2.1 Zenoness, Timelock, and Deadlock
Not all behavior that can be described by the semantics is realistic. For example,
the semantics allows to define infinite paths that only take finite time, called time-
convergent paths [BK08]. Analogously, infinite paths of infinite duration are called
time-divergent.

Definition 2.2.2 (Time-Convergence). For a hybrid automaton H = (Loc, (Con,
NCon), Inv, Init,Edge,Act), we define the time duration of an execution step α by the
function ExecT ime : (Edge ∪ (R≥0 × F) ∪ {τ}) → R≥0 with

ExecT ime(α) =

{
t if α = (t,f) ∈ (R≥0 × F)

0 otherwise.

The time duration of an infinite path π = σ0
α0−→ σ1

α1−→ σ2
α2−→ . . . of H is given by

the overloaded function

ExecT ime(π) =

∞∑
i=0

ExecT ime(αi).

An infinite path π of H is called time-divergent if ExecT ime(π) = ∞ and time-
convergent otherwise.

Semantics of Hybrid Automata 25

l0
ẋ = 1
true

Hz :
true
ez

x = 0

Figure 2.4: Hybrid automaton Hz containing a Zeno path, as defined in Example 2.2.3.

In the following, we first explore a special kind of time-convergent paths called
Zeno paths and then discuss states from which no, or no realistic, paths can be taken,
which is captured by the notions of deadlock and timelock.

Zenoness

The semantics allows to define so-called Zeno paths, which are infinite paths of finite
duration that include infinitely many discrete steps. A hybrid automaton is called non-
Zeno if no path from an initial state is Zeno, i.e., no Zeno path is reachable. We start
by defining Zeno paths for closed hybrid automata based on [AL94, LTS99, BK08].

Definition 2.2.3 (Zeno Path). Let H = (Loc, (Con,NCon), Inv, Init,Edge,Act) be
a closed hybrid automaton. An infinite path π of H is called a Zeno path if it is
time-convergent and infinitely many discrete steps are taken within π. The hybrid
automaton H is non-Zeno if no Zeno path of H is starting from an initial state.

After illustrating this definition with two examples, we will discuss whether and
how it could be extended to non-closed systems.

Example 2.2.2. The hybrid automaton H1 from Example 2.1.1 is non-Zeno since
every infinite path of H1 contains at most one discrete step, either jump ea or eb.

Example 2.2.3. Consider the closed hybrid automaton Hz presented in Figure 2.4,
which controls a variable x and has a single location whose only outgoing jump ez
leads back to that location. Consider an infinite path of Hz with progressively smaller
time steps in between jumps, e.g.,

π = (l0, (x 7→ 0))
t0,f0−−−→ (l0, (x 7→ t0))

ez−→

(l0, (x 7→ t0))
t1,f1−−−→ (l0, (x 7→ t0 + t1))

ez−→

(l0, (x 7→ t0 + t1))
t2,f2−−−→ (l0, (x 7→ t0 + t1 + t2))

ez−→
. . .

with ti =
1
2i and fi(t)(x) = t+

∑i−1
k=0 tk for i ∈ N, t ∈ R≥0. π is time-convergent since

ExecT ime(π) =
∑∞

i=0 ti = 2, but takes ez infinitely often. Hence, π is a Zeno path.

If we want to analyze the Zeno behavior of non-closed hybrid automata, we should
also consider paths that contain infinitely many environmental steps as Zeno paths,
since an environmental step corresponds to a discrete step taken by another compo-
nent.

A Zeno path containing infinitely many environmental steps but finitely many
discrete steps is not the “fault” of this hybrid automaton, since another component
takes infinitely many discrete steps. In fact, paths with infinitely many environmental

26 Hybrid Automata

steps are unavoidable since, in particular, environmental steps that do not change the
values of the variables are always possible 1.

Zeno paths containing infinitely many discrete steps could be considered “locally”
Zeno paths for non-closed systems, expressing that the Zenoness is caused by the com-
ponent itself. These would also be considered Zeno if we simply applied the standard
definition to non-closed hybrid automata. A locally Zeno path might only be possible
under certain environmental behavior, for example, it might contain environmental
steps or discrete steps taking jumps whose guards depend on non-controlled variables.

The following example illustrates our considerations.

Example 2.2.4. Recall the hybrid automaton H′
2 from Example 2.1.6 (Figure 2.3),

where the guard of the jump ec depends on the environment and the enabledness of
the jump ed also depends on the environment, but only implicitly. A time-convergent
path taking ec and then infinitely often ed with progressively smaller time steps is a
locally Zeno path. For example, consider the following infinite path

(l2, (y 7→ 0, x 7→ 0))
τ−→ (l2, (y 7→ 0, x 7→ 5))

ec−→ (l3, (y 7→ 5, x 7→ 5))
ed−→ (l3, (y 7→ 0, x 7→ 3))

ed−→ (l3, (y 7→ 0, x 7→ 3))
ed−→ . . .

continuing to loop in l3 using ed, which has time duration 0.
Further, we can build Zeno paths, which are not necessarily locally Zeno, from any

initial state by taking infinitely many environmental steps, for example,

(l2, (y 7→ 0, x 7→ 0))
τ−→ (l2, (y 7→ 0, x 7→ 1))

τ−→ (l2, (y 7→ 0, x 7→ 2))
τ−→ . . .

which does not let time pass at all.

We could alternatively consider defining a locally Zeno path as a Zeno path that is
possible under all possible environmental behavior. However, we deem this definition
to be too strict since it only considers paths to be locally Zeno if they do not have any
dependencies on non-controlled variables in guards or activities. Thus, this definition
would likely only detect Zeno paths in systems that are only influenced by non-
controlled variables in a very restricted way.

In summary, we do not see any possibility to define Zenoness for non-closed hy-
brid automata in a way that captures the desired notion sufficiently and allows a
meaningful analysis.

Timelock and Deadlock

A hybrid automaton might contain states from which only time-convergent paths are
possible. We say that such a state has a timelock. A deadlock is a special kind of
timelock where neither time-divergent nor time-convergent paths are possible.

To determine whether a state has a deadlock or timelock, we need to consider
the future behavior of the system. If the system is not closed, it might depend
on the future behavior of the environment whether a (time-divergent) path exists.
We start by defining timelocks and deadlocks for closed hybrid automata based on
[BK08, Tri99, Bow01]2. Afterwards, we discuss how these notions could be extended
to non-closed hybrid automata.

1Note that it would not make sense to exclude such steps in the semantics since this might block
certain jumps where the variables are either reset to the same values as before or not reset at all.

2Note that our terminology differs from Bowman’s terminology.

Semantics of Hybrid Automata 27

l0
ẋ = 1
x ≤ 0

Hd :
l1

ẋ = 0
true

y = 0x = 0

Figure 2.5: Non-closed hybrid automaton Hd that can be forced to deadlock by the
environment, as defined in Example 2.2.6.

Definition 2.2.4 (Timelock, Deadlock). Let H = (Loc, (Con,NCon), Inv, Init,Edge,
Act) be a closed hybrid automaton.

A state σ ∈ Σ has a timelock if there does not exist any time-divergent path of H
starting at σ. The hybrid automaton is said to be timelock-free if none of its reachable
states have a timelock.

A state σ ∈ Σ has a deadlock if there does not exist any infinite path of H starting
from σ. The hybrid automaton is said to be deadlock-free if none of its reachable states
have a deadlock.

A very simple, but quite restrictive, way to avoid timelocks (and thus also dead-
locks) is to allow only the invariant ‘true’, because then time can always diverge by
staying in the current location. The following example illustrates the concepts of
timelock and deadlock.

Example 2.2.5. The hybrid automaton H1 is timelock-free because no reachable state
has a timelock. A state of the form (l0, ν) is only reachable if ν(x) ≤ 5, which means
that at least jump ea can be taken from that state. From states of the form (l1, ν) it
is always possible to take a time-divergent path by letting time elapse in location l1
forever.

If the invariant of l1 in H1 was ‘x ≤ 10’ instead of ‘true’, then H1 would not
be timelock-free, since there would not exist any time-divergent paths from any state
(l1, ν). Hence, there would not exist any time-divergent path from any state (l0, ν)
either and thus all reachable states would have a timelock. In particular, the state
(l1, (x 7→ 10)) would be deadlocked.

For non-closed hybrid automata, there are at least two possibilities for the defi-
nition of timelocks, and analogously for deadlocks. Firstly, we could consider a state
to have a timelock if all paths are time-convergent, as for closed hybrid automata.
However, this would only capture timelocks that occur independently of the environ-
mental behavior. Alternatively, we could consider a state to be timelocked if there
exists some environmental behavior such that all paths are time-convergent. This
condition, however, seems too strong since we can envision many cases where a guard
or ODE depends on the environment in such a way that there always exists some en-
vironmental behavior that forces the component into time-convergent behavior. The
following example illustrates these conditions for deadlocks.

Example 2.2.6. Consider the hybrid automaton Hd presented in Figure 2.5, which
has a controlled variable x and its only jump depends on the non-controlled variable
y. From any initial state (l0, ν) with ν(x) = 0, taking any time step would violate
the location’s invariant. Hence, we must immediately leave the location via the only
jump.

If ν(y) ̸= 0, leaving the location is only possible if we assume that an environmental
step is taken first, which resets y such that the jump’s guard is satisfied. Thus, we

28 Hybrid Automata

can always construct a (time-divergent) path from any initial state and we could argue
that no initial state has a deadlock, following the first considered possibility to define
a timelock.

Conversely, from any initial state there exists some environmental behavior such
that no time-divergent path can be taken, namely if we assume that the environment
initially takes some jump which resets y to a value other than 0. Thus, we could also
argue that each initial state does have a deadlock, following the second alternative for
the definition of timelocks.

In summary, both considered definitions of timelock and deadlock for non-closed
systems seem insufficient. We currently do not see any way to formulate a meaningful
definition of timelock and deadlock for non-closed hybrid automata, because the actual
behavior of a hybrid automaton depends on the environment.

Excluding Unrealistic Behavior

Time-convergent paths and timelocks clearly do not describe realistic behavior and
Zeno paths in particular are often excluded from analysis in other works (e.g. [Hes05,
PKRA20, LLA+21]). However, we have seen that Zeno paths containing infinitely
many environmental steps are unavoidable in the compositional context. In fact,
timelocks and Zeno paths often occur in models of real systems in general [ZJLS01].
For example, the modeling of a bouncing ball usually contains a timelock and a Zeno
path [JELS99]. Furthermore, if one is interested in proving that a system is, e.g.,
deadlock-free, it is of course not sensible to require systems to be deadlock-free in the
first place. In this thesis, we always explicitly mention when we exclude any of the
described behavior.

2.3 Composition of Hybrid Automata
In this section, we define the syntactic parallel composition of hybrid automata. When
two hybrid automata are executed in parallel, they either both take consistent time
steps or one of them takes a discrete jump while the other one takes a matching
environmental step. As mentioned before, several components may communicate via
shared variables. Our model does not offer jump synchronization or concurrent writing
of shared variables, but we discuss in Chapter 4 how these features could be included
in our language. Currently, we only allow each variable to be written by exactly
one component. Consequently, we consider two hybrid automata composable if their
sets of controlled variables are disjoint. Additionally, we require that jumps from
different components have different identifiers, which is necessary for the composition
of stochastic hybrid automata with stochastic jumps and is explained in more detail
in Section 3.3.

Definition 2.3.1 (Composability of Hybrid Automata). Two hybrid automata H1

and H2 are composable if Con1 ∩ Con2 = ∅ and for all (id1, l1, µ1, l
′
1) ∈ Edge1,

(id2, l2, µ2, l
′
2) ∈ Edge2 we have id1 ̸= id2.

In order to keep the definition of the composition focused on the most relevant
parts, we first define the extension of a hybrid automaton by a set of variables. More
specifically, we want to extend its set of non-controlled variables by some variables
controlled by other hybrid automata. This will allow us to define the composition of
hybrid automata with different variable sets more easily.

Composition of Hybrid Automata 29

2.3.1 Extension of Hybrid Automata
When we extend a hybrid automaton by adding new variables to the set of non-
controlled variables, we need to extend all jumps, activity sets, invariants, and initial
valuation sets such that all possible behavior of the added variables is allowed. In
particular, all valuation sets should be closed with respect to the added variables.

Definition 2.3.2 (Extension of Hybrid Automata). Let H = (Loc, (Con,NCon), Inv,
Init,Edge,Act) be a hybrid automaton and V ′ be some set of real-valued variables such
that Con ∩ V ′ = ∅. The extension of H by V ′ is the hybrid automaton

H+ = (Loc+, (Con+,NCon+), Inv+, Init+,Edge+,Act+)

with

• Loc+ = Loc;

• Con+ = Con, NCon+ = NCon ∪ V ′ and V + = Con+ ∪ NCon+; we write V+

and F+ to denote VV + and FV + , respectively;

• Inv+(l) = {ν+ ∈ V+ | ∃ν ∈ Inv(l). ν = ν+|V } for all l ∈ Loc+;

• Init+(l) = {ν+ ∈ V+ | ∃ν ∈ Init(l). ν = ν+|V } for all l ∈ Loc+;

• (id, l, µ+, l′) ∈ Edge+ iff there exists some (id, l, µ, l′) ∈ Edge such that

µ+ =

{
(ν+1 , ν+2) ∈ V+ × V+

∣∣∣∣∣ ∃(ν1, ν2) ∈ µ. ν1 = ν+1 |V ∧ ν2 = ν+2 |V
∧ ν+1 ≈NCon+ ν+2

}
;

for each e ∈ Edge we denote the unique corresponding jump in Edge+ by e+;

• Act+(l) consists of all f ∈ FV + satisfying ẋCon = AlxCon +B+
l xNCon+ + cl for

all l ∈ Loc+, where

– ẋCon = AlxCon +BlxNCon + cl is the ODE associated with l in H,
– xNCon+ is a vector of the extended non-controlled variables, and
– B+

l is a suitable real-valued matrix such that BlxNCon+0xV ′ = B+
l xNCon+ ,

where xV ′ is a vector of the added variables.

Loc, Con, NCon We require the set of new variables to be disjoint from the set of
controlled variables in order to avoid conflict between two hybrid automata wanting
to control the same variable. When extending a hybrid automaton by some variable
set, the locations, and controlled variables remain unchanged. The new variables are
added to the set of non-controlled variables, since we assume them to be controlled
by some other component. Valuations in the new extended automaton now also need
to include values for the newly added variables.

Inv, Init The invariant and the initial valuation set of each location should not
impose any restrictions on the added variables either, i.e., they should be closed with
respect to the added variables. In other words, we allow all possible values of the
added variables in those valuation sets. Since they are closed with respect to the
original non-controlled variables and with respect to the added variables, they are
closed with respect to the extended set of non-controlled variables, as required. It is
easy to see that the extension preserves the inclusion of the initial valuation set in
the invariant for each location.

30 Hybrid Automata

Edge Each jump needs to be extended such that its guard allows all possible values
for the new variables and such that the new variables are not reset, while the behav-
ior on the original variables is unaffected. In particular, the invariant of the target
location must still be satisfied.

Act For each location l ∈ Loc+, the set of activities needs to be extended such that
it allows for all possible evolution of the added variables. Hence, Act+(l) contains
all f ∈ FV + for which there exists some f ∈ Act(l) such that f(t) = f+(t)|V for all
t ∈ R≥0.

The following examples illustrate the extension of hybrid automata using our run-
ning examples.

Example 2.3.1. Recall the hybrid automaton H1 from Example 2.1.1 with variable
set V1 = Con1 = {x}. Extending H1 by another variable y yields the hybrid automaton
H+

1 = (Loc+1 , (Con+
1 ,NCon+

1), Inv+1 , Init+1 ,Edge+1 ,Act+1) with

• Loc+1 = {l0, l1};

• V +
1 = {x,y},Con+

1 = {x},NCon+
1 = {y}, V+

1 = {ν : V +
1 → R};

• Inv+1 (l0) = {ν ∈ V+
1 | ν(x) ≤ 5},

Inv+1 (l1) = V+
1 ;

• Init+1 (l0) = {(x 7→ 0, y 7→ c) | c ∈ R},
Init+1 (l1) = ∅;

• Edge+1 = {(l0, µ+
a , l1), (l0, µ

+
b , l1)} with

– µ+
a = {(ν, ν′) ∈ V+

1 × V+
1 | ν(x) ≤ 5 ∧ ν′(x) = 0 ∧ ν(y) = ν′(y)},

– µ+
b = {(ν, ν′) ∈ V+

1 × V+
1 | ν(x) ≥ 3 ∧ ν′(x) = 3 ∧ ν(y) = ν′(y)};

• Act+1 (l0) = {f : R≥0 → V+
1 , t 7→ (x 7→ t+ c, y 7→ fy(t)) | c ∈ R, fy : R≥0 → R},

Act+1 (l1) = {f : R≥0 → V+
1 , t 7→ (x 7→ 2t+ c, y 7→ fy(t)) | c ∈ R, fy : R≥0 → R}.

It can be easily verified that H+
1 again satisfies the conditions imposed on hybrid

automata.

Example 2.3.2. Consider the hybrid automaton H2 from Example 2.1.2. The exten-
sion of H2 with {x} yields H2 again, since x is already contained in the non-controlled
variables NCon2.

The latter example illustrates that hybrid automata are invariant under extension
by their own non-controlled variables.

2.3.2 Syntactic Parallel Composition of Hybrid Automata
Using the extension, we can now construct the syntactic parallel composition of two
hybrid automata. Composing hybrid automata restricts their possible behavior, since
(some of) the non-determinism regarding the behavior of the environment is resolved.
A location of the composed hybrid automaton comprises one location of each compo-
nent. A variable is considered to be controlled by the composition if it is controlled by

Composition of Hybrid Automata 31

either component. All other variables are considered to be non-controlled. Valuations
of the joined variable set combine valuations from the components that agree on the
values of the shared variables. Equivalently, they can be viewed as valuations of the
variables of both extended components. States of the composed hybrid automaton
thus consist of a location from each component and a valuation of their combined
variables.

When two hybrid automata are executed in parallel, they either both take match-
ing time steps or one of them takes a discrete jump while the other one synchronizes
via a matching environmental step. We can take a jump in the composition if and
only if we can take a corresponding jump in one of the extended components. The
evolution of the variables in some combined location is defined by those activities
that are possible in both corresponding locations in the extended components. Simi-
larly, the invariants and initial valuation sets consist of all valuations allowed in both
components.

Definition 2.3.3 (Syntactic Parallel Composition of Hybrid Automata). Let H1,H2

be two hybrid automata that are composable. Let

H+
1 = (Loc+1 , (Con+

1 ,NCon+
1), Inv+1 , Init+1 ,Edge+1 ,Act+1),

H+
2 = (Loc+2 , (Con+

2 ,NCon+
2), Inv+2 , Init+2 ,Edge+2 ,Act+2)

be the extensions of H1,H2 by V2\Con1 and V1\Con2, respectively. The parallel com-
position H1 ∥ H2 = (Loc, (Con,NCon), Inv, Init,Edge,Act) is the hybrid automaton
with

• Loc = Loc+1 × Loc+2 ;

• Con = Con+
1 ∪ Con+

2 and NCon = (NCon+
1 ∪ NCon+

2) \ (Con+
1 ∪ Con+

2);

• Inv(l1,l2) = Inv+1 (l1) ∩ Inv+2 (l2) for all (l1,l2) ∈ Loc;

• Init(l1,l2) = Init+1 (l1) ∩ Init+2 (l2) for all (l1,l2) ∈ Loc;

• (id, (l1,l2), µ, (l′1,l′2)) ∈ Edge iff

– l2 = l′2 and there exists (id, l1, µ, l′1) ∈ Edge+1 , or
– l1 = l′1 and there exists (id, l2, µ, l′2) ∈ Edge+2 ;

• Act(l1, l2) = Act+1 (l1) ∩ Act+2 (l2) for all (l1,l2) ∈ Loc.

In the following, let H1,H2 be two hybrid automata that are composable. The
parallel composition again defines a valid hybrid automaton since we defined the
extensions in such a way that they are not restricted by the respective new non-
controlled variables.

Inv The invariant of each combined location consists of all valuations satisfying the
corresponding invariants in both components. Since these do not restrict their non-
controlled variables, any variable that is not controlled by either component must still
be allowed to take on any value. Hence, the invariants are NCon-closed.

Since the invariants of the components have to be closed with respect to their
non-controlled variables, it must follow that any invariant of a combined location
(l1, l2) may only be empty if the invariant of either location l1 or l2 is empty. Each
component may only impose conditions on its own controlled variables and thus the
invariants of two hybrid automata cannot come into conflict.

32 Hybrid Automata

Init It can be easily seen that all possible initial valuations of a location in the
composition must satisfy the location’s invariant. The initial valuation set of each
combined location is NCon-closed again with the same reasoning as for the invariants.
As the intersection of two NCon-closed initial valuation sets from composable hybrid
automata, it is empty if and only if either set is.

Edge Each jump in the composed hybrid automaton corresponds to a jump in one of
the components, and thus also to a jump in the extension of that component. Hence,
by construction, a jump may only reset the variables controlled by its component, and
thus only variables controlled by the composed hybrid automaton. Together with the
fact that the location invariants of both hybrid automata must be closed with respect
to their respective non-controlled variables, this implies that a jump in one component
cannot violate any location invariant of the other component. Thus, the invariant of
the combined location in the composed hybrid automaton must always hold after a
jump was taken.

Act The activities of a combined location (l1,l2) ∈ Loc must satisfy the ODEs
associated with both corresponding locations in the respective extended components.
Since a hybrid automaton only specifies ODEs for the evolution of its controlled
variables and does not restrict the evolution of the non-controlled variables, the ODE
systems of composable hybrid automata can again be combined into a first-order
linear ODE system with one equation per controlled variable.

In particular, the set of activities satisfying the combined ODE system can only be
empty if one of the activity sets associated with l1 and l2 in the respective extended
hybrid automaton is empty, since both components allow all possible environmental
behavior.

In the following example, we construct the composition of our two running examples
for hybrid automata.

Example 2.3.3. Consider the hybrid automata H1 and H2 defined in Example 2.1.1
and Example 2.1.2, respectively. Figure 2.6 depicts H1 and H2 as well as their parallel
composition H1 ∥ H2, which we will now construct.

In Example 2.3.1, we defined the extension H+
1 of H1 by the set of variables

V2 \ Con1 = {y} \ {x} = {y}. In Example 2.3.2, we have seen that the extension
of H2 by V1 \Con2 = {x, y}\{y} = {x} again yields H2. Using these extended hybrid
automata, we define H1 ∥ H2 = (Loc, (Con,NCon), Inv, Init,Edge,Act) as follows:

• Loc = {(l0, l2), (l1, l2), (l0, l3), (l1, l3)};

• V = {x, y} = Con, NCon = ∅, V = {ν : {x,y} → R};

• Inv(l0, l2) = Inv(l0, l3) = {ν ∈ V | ν(x) ≤ 5},
Inv(l1, l2) = Inv(l1, l3) = V;

• Init(l0, l2) = {(x 7→ 0, y 7→ 0)},
Init(l) = ∅ for all other l ∈ Loc;

• Edge =


((l0,l2), µa, (l1,l2)), ((l0,l3), µa, (l1,l3)),

((l0,l2), µb, (l1,l2)), ((l0,l3), µb, (l1,l3)),

((l0,l2), µc, (l1,l3)), ((l1,l2), µc, (l1,l3))

 with

Composition of Hybrid Automata 33

l0
ẋ = 1
x ≤ 5

l1
ẋ = 2
true

x ≤ 5 → x:=0

ea

eb

x ≥ 3 → x:=3

H1 : x = 0

l2
ẏ = x
true

l3
ẏ = 1
true

ec
x > 2

H2 : y = 0

(l0,l2)
ẋ = 1, ẏ = x

x ≤ 5

(l1,l2)
ẋ = 2, ẏ = x

true

(l0,l3)
ẋ = 1, ẏ = 1

x ≤ 5

(l1,l3)
ẋ = 2, ẏ = 1

true

x ≤ 5 → x:=0

e1a

e1b

x ≥ 3 → x:=3

x ≤ 5 → x:=0

e2a

e2b

x ≥ 3 → x:=3

e1c x > 2 e2cx > 2

H1 ∥ H2 :
x = 0
y = 0

Figure 2.6: Hybrid automata H1 and H2 and their composition H1 ∥ H2, as defined in
Example 2.3.3. The jump names in the composition consist of the original jump name
annotated with an upper index indicating whether it is the first or second “copy”.

– µa = {(ν, ν′) ∈ V2 | ν(x) ≤ 5 ∧ ν′(x) = 0 ∧ ν(y) = ν′(y)},
– µb = {(ν, ν′) ∈ V2 | ν(x) ≥ 3 ∧ ν′(x) = 3 ∧ ν(y) = ν′(y)},
– µc = {(ν, ν′) ∈ V2 | ν(x) > 2 ∧ ν = ν′};

• Act(l0, l2) contains all solutions to the linear ODE system ẋ = 1, ẏ = x, i.e.,
Act(l0, l2) = {f : R≥0 → V, t 7→ (x 7→ t+ c, y 7→ 1

2 t
2 + ct+ d) | c, d ∈ R},

and similarly for the other locations:
Act(l1, l2) = {f : R≥0 → V, t 7→ (x 7→ 2t+ c, y 7→ t2 + ct+ d) | c,d ∈ R},
Act(l0, l3) = {f : R≥0 → V, t 7→ (x 7→ t+ c, y 7→ t+ d) | c,d ∈ R},
Act(l1, l3) = {f : R≥0 → V, t 7→ (x 7→ 2t+ c, y 7→ t+ d) | c,d ∈ R}.

Note that this is a valid hybrid automaton, which is timelock-free, non-Zeno, and
closed. All dependencies on the environment are resolved and the evolution of all
variables is uniquely determined for all states.

Even if it is possible to reach a valuation in both components in the same amount
of time, the same in not necessarily possible in their composition. This is shown in
the following example.

34 Hybrid Automata

l3
ẋ = y
true

H3:
x=0

l4
ẏ = x
true

H4:
y=0 (l3, l4)

ẋ = y, ẏ = x
true

H3 ∥ H4:
x=0,
y=0

Figure 2.7: Composition of the hybrid automata with coupled differential equations
defined in Example 2.3.4.

Example 2.3.4. Consider the hybrid automata H3 and H4 presented in Figure 2.7
with the following formal definitions, where V = {x,y}, V = VV , and F = FV :

• Loc3 = {l3};

• Con3 = {x},NCon3 = {y};

• Inv3(l3) = V;

• Init3(l3) = {(x 7→ 0)};

• Edge3 = ∅;

• Act3(l3)={f ∈ F |df(t)(x)dt =f(t)(y)};

• Loc4 = {l4};

• Con4 = {y},NCon4 = {x};

• Inv4(l4) = V;

• Init4(l4) = {(y 7→ 0)};

• Edge4 = ∅;

• Act4(l4)={f ∈ F |df(t)(y)dt =f(t)(x)}.

Since neither hybrid automaton contains any jumps, their behavior is fully deter-
mined by the continuous evolution of the variables. The evolution of the variables
depends on the behavior of the respective other hybrid automaton since the differential
equations specifying the activity sets for l3 and l4 are coupled.

Their syntactic parallel composition H3 ∥ H4, also depicted in Figure 2.7, is then
defined as follows:

• Loc = {(l3, l4)};

• Con = {x,y},NCon = ∅;

• Inv(l3,l4) = V;

• Init(l3,l4) = {(x 7→ 0, y 7→ 0)};

• Edge = ∅;

• Act(l3,l4) = {f ∈ F | df(t)(x)
dt = f(t)(y) ∧ df(t)(y)

dt = f(t)(x)}.

The unique activity satisfying the ODE system ẋ = y, ẏ = x and the initial condi-
tion f(0)(x) = 0, f(0)(y) = 0 is f : R≥0 → V, t 7→ (x 7→ 0, y 7→ 0). Hence, the initial
state ((l3,l4), (x 7→ 0, y 7→ 0)) is the only reachable state. In particular, the valuation
(x 7→ 2, y 7→ 2) is not reachable from the initial state even though it is reachable in
both components by a time step of length 2 via the activities

f3 : R≥0 → V, t 7→ (x 7→ t2, y 7→ 2t),

f4 : R≥0 → V, t 7→ (x 7→ 2t, y 7→ t2).

We see that f3 ∈ Act3(l3), f4 ∈ Act4(l4), and that both activities satisfy the compo-
sition’s initial condition. However, f3, f4 ̸∈ Act(l3,l4). Hence, neither activity can be
used to reach the desired valuation in the composition.

Composition of Hybrid Automata 35

It can be easily verified that init-, reset-, and activity-determinism are preserved
under composition. The composition of two closed hybrid automata again yields
a closed hybrid automaton, though their extensions with the variables of the other
hybrid automaton are of course not closed. If hybrid automata are executed in parallel,
they refer to the same “global” time. Hence, if one component forces the other one
into time-convergent behavior or deadlock, then time cannot diverge for the first
component either.

36 Hybrid Automata

Chapter 3

Stochastic Hybrid Automata

In this chapter, we extend the hybrid automata introduced in the previous chapter by
stochastic behavior. We start with some preliminary notes on probability theory. We
assume familiarity with probability theory, especially with the notion of probability
spaces (see, e.g., [MU05, Fel91, BK08]). For probability distributions, we distinguish
between discrete and continuous distributions as follows.

Definition 3.0.1 (Probability Distribution). Let S ⊆ R be a set and f : S → R≥0 a
function. We define the support of f as support(f) = {s ∈ S | f(s) > 0} and call f

• a discrete probability distribution if it holds that support(f) is countable and∑
s∈S f(s) = 1, and

• a continuous probability distribution if it holds that support(f) is uncountable
and

∫
s∈S

f(s)ds = 1.

We use Distr to denote the set of all probability distributions.

For simplicity, we always follow the notation for uncountable support in the fol-
lowing and use integrals to calculate probabilities. For discrete distributions these
integrals should be replaced by (potentially infinite) sums.

We use U[a,b] to denote the uniform distribution over the interval [a,b] ⊂ R with
a,b ∈ Q and a < b, i.e., U[a,b](t) = 1

b−a if a ≤ t ≤ b and U[a,b](t) = 0 otherwise.
Further, we write c ∼ P to denote that c is sampled according to the probability
distribution P .

Analogous to the previous chapter, we first give the syntax and semantics of
stochastic hybrid automata and then define their syntactic parallel composition.
Lastly, we compare our modeling language to two approaches that are similar to
our language with regard to different aspects.

3.1 Syntax of Stochastic Hybrid Automata
We now extend hybrid automata by stochastic behavior regarding the jump times
and the decision between several jumps that can be taken at the same time. All other
non-determinism regarding the component itself, i.e., concerning the initial states,
continuous evolution of controlled variables, and resets, needs to either be resolved
by a scheduler or the choices must be deterministic. Here, we choose the latter and

38 Stochastic Hybrid Automata

assume the underlying hybrid automaton to be init-, reset-, and activity-deterministic.
These properties only require determinism regarding the controlled variables since we
again do not want to restrict the behavior of the environment.

Stochastic hybrid automata extend hybrid automata by associating the jumps with
stochastic events and weights, which together determine when which jump should be
taken. Several jumps can be bound together to model a stochastic event. We define
probability distributions for all stochastic events, which are used to determine when
a jump should be taken. More specifically, we do not sample a global point in time
for each stochastic event, but a combined enabling duration for the jumps associated
with the same event. These enabling durations are sampled initially for each event
and then each time a jump is taken. In the latter case, we only need to sample a new
enabling duration for the event associated with the jump, based on the state reached
by taking the jump.

At each location, the outgoing jumps are in a race with each other with respect
to which one can be taken first. If several jumps can be taken at the same time, their
associated weights are used to make a probabilistic choice.

Our stochastic hybrid automaton model is again based on [Sch22].

Definition 3.1.1 (Syntax of Stochastic Hybrid Automata). A stochastic hybrid au-
tomaton (SHA) is a tuple A = (H,Lab,Evt,Dur,Wgt), where

• H = (Loc, (Con,NCon), Inv, Init,Edge,Act) is an init-, reset-, and activity-de-
terministic hybrid automaton;

• Lab is a non-empty set of labels specifying stochastic events;

• Evt : Edge → Lab assigns an event to each jump such that all e1, e2 with the
same source location have Evt(e1) ̸= Evt(e2);

• Dur : Lab×Σ → Distr assigns a probability distribution to each pair in Lab×Σ;

• Wgt : Edge → N>0 assigns a positive weight to each jump.

Let in the following A = (H,Lab,Evt,Dur,Wgt) be a stochastic hybrid automaton.
A jump is considered fireable if it is enabled and its enabling duration has run out.
A formal definition follows in Definition 3.2.1.

Lab It should be noted that the elements of Lab are not used for jump synchro-
nization between components, but to allow modeling a stochastic event by several
jumps.

Evt At each location, the events associated with the outgoing edges are in a race
with respect to which will become fireable first. Since a stochastic event cannot be in
a race with itself, we do not allow two edges originating from the same source location
to be associated with the same event. This means that only at most one jump can
be enabled for each event at the same time at each location.

Dur The probability distributions used to determine the enabling durations are al-
lowed to depend on the state. Hence, the sampling of an enabling duration can depend
on the values of the continuous variables and the location. This would, for example,
allow us to express that the probability of a car breaking down depends on the age

Syntax of Stochastic Hybrid Automata 39

l0
ẋ = 1
x ≤ 5

l1
ẋ = 2
true

x ≤ 5 → x:=0

ea a

eb b

x ≥ 3 → x:=3

H1 : x = 0

1 2 3 4 5 6

0.5

1
a

b

t

pr
ob

ab
ili

ty
de

ns
it
y

ea
eb

Figure 3.1: Left: Depiction of the hybrid automaton introduced in Example 2.1.1
with a race between jumps ea and eb. Right: Above, the enabled intervals of both
jumps; below, the probability density functions associated with the jumps, drawn
against global time.

and “history” of the car. This is more expressive than just assigning one distribu-
tion to each stochastic event. In particular, via the dependency on the location, the
probability distributions can even depend on the evolution of the controlled variables.
However, the location and the currently enabled jump associated with some event
might change before the corresponding sampled enabling duration is reached. Thus,
it is not always possible to take all future evolution of the controlled variables into
account for the definition of the probability distribution. On the other hand, a de-
pendency on the state might not always be necessary. These considerations show that
other design choices for the modeling of the stochastic events might also be sensible.

If there does not exist an outgoing jump with event label r in a location l, it does
not matter how to define the probability distribution Dur(r, (l, ν)) for ν ∈ V, because
this distribution will never be used.

Since reachability is undecidable for hybrid automata [HKPV98], it is in general
not possible to determine how long a jump will be enabled or whether a certain
enabling duration will be reached. Hence, we cannot avoid assigning a positive prob-
ability to enabling durations that cannot be reached. As a result, the probability
distributions do not directly give the probabilities of taking a jump after some speci-
fied enabling duration. This is illustrated in the following example.

Example 3.1.1. Consider the race between jumps ea and eb in hybrid automaton H1

from Example 2.1.1. Assume these jumps are associated with stochastic events a and
b and an exponential and a uniform distribution, respectively, which do not depend on
the state. Figure 3.1 displays H1 again, as well as both probability density functions
against global time and the enabled intervals of both jumps. In the intervals [0,3) and
(5,∞], only either jump ea or eb is enabled, while in the interval [3,5] both jumps are
enabled. If an enabling duration ta < 3 is sampled for stochastic event a, clearly jump
ea will be taken. On the other hand, if some ta > 5 is sampled, then ea will never
become fireable and instead with probability 1, jump eb will be taken at some point.
Hence, the probability of taking ea in the interval [5,∞) flows into the probability of
taking jump eb.

In general, the probability of sampling a too high enabling duration for some
jump may flow into the probabilities of taking other jumps or staying in the location
forever. In Example 3.1.1, the latter is not possible: Even if l0’s invariant was ‘true’,
the probability distribution assigned to eb would ensure that a jump is taken before
‘x > 5’. In some cases, it may not be possible to redistribute the probability at all,

40 Stochastic Hybrid Automata

which means that the system will deadlock with that probability 1. We discuss how
to define deadlocks for stochastic hybrid automata in Section 3.2.2.

Note that this redistribution of probabilities does not mean that the probability
distributions are changed, but only that the probabilities are rescaled. This rescaling
is not trivial since, as previously mentioned, the current location and the currently
enabled jump associated with some stochastic event r may change before the enabling
duration sampled for r is reached.

These considerations show that the probability distributions must be chosen care-
fully, in particular to avoid introducing timelocks.

Wgt The weights can be interpreted as probabilistic priorities over a finite set of
choices. If two or more jumps are fireable at the same time, their weights are used
to compute probabilities for each jump to be taken. Since this calculation involves
dividing by a sum of weights, we only allow strictly positive weights in order to avoid
division by 0.

However, the probability of two or more jumps being fireable at the same time
is 0 if the corresponding probability distributions determining the enabling durations
are continuous. Thus, the weights are only relevant for discrete distributions.

Instead of assigning weights to the jumps directly, we could also assign them to
the events, which would in turn induce weights on the jumps.

We now extend the hybrid automata H1 and H2 introduced in Chapter 2 to stochas-
tic hybrid automata.

Example 3.1.2. Extending Example 3.1.1, we define the SHA A1 = (H1,Lab1,Evt1,
Dur1,Wgt1) using the hybrid automaton H1 from Example 2.1.1 and

• Lab1 = {a, b};

• Evt1(ea) = a, Evt1(eb) = b;

• Dur1(a,(l0,ν))(t) = 2e−2t, Dur1(b,(l0,ν)) = U[0,2] for all ν ∈ V;

• Wgt1(ea) = 1, Wgt1(eb) = 3.

Figure 3.2 presents a graphical representation of A1.
Note that the probability distributions are chosen in such a way that with probability

1, one of the jumps must become fireable before the location invariant of l0 is violated.
However, this is not the case for all possible probability distributions. As we will see
in Section 3.2.2, this means that a stochastic hybrid automaton might have a timelock
even though the underlying hybrid automaton is timelock-free.

Example 3.1.3. Figure 3.3 depicts the stochastic hybrid automaton A2 = (H2,Lab2,
Evt2,Dur2,Wgt2) that extends the hybrid automaton H2 from Example 2.1.2 by

• Lab2 = {c};

• Evt2(ec) = c;

• Dur2(c,(l2,ν))(t) = 2e−2t;

• Wgt2(ec) = 1.

Semantics of Stochastic Hybrid Automata 41

l0
ẋ = 1
x ≤ 5

A1 :
l1

ẋ = 2
true

x = 0 ea : ca ∼ 2e−2t

x ≤ 5 → x:=0 1

eb : cb ∼ U[0,2]

x ≥ 3 → x:=3 3

Figure 3.2: Depiction of the stochastic hybrid automaton A1 defined in Example 3.1.2.
Weights are displayed in boxes.

l2
ẏ = x
true

A2 :
l3

ẏ = 1
true

ec : cc ∼ 2e−2t

x > 2 1y = 0

Figure 3.3: Stochastic hybrid automaton A2 with dependencies on the environment,
as defined in Example 3.1.3.

3.2 Semantics of Stochastic Hybrid Automata

When executing stochastic hybrid automata, we need to keep track of the state of
the underlying hybrid automaton and when to take jumps. To this end, we define
VLab = {cr | r ∈ Lab} to be a set of variables associated with the stochastic event
labels Lab. The set of valuations for VLab is denoted by VLab. Each variable cr is
initialized with some sampled enabling duration and runs down linearly as long as a
jump associated with r is enabled and cr is non-negative. Hence, a variable cr can be
interpreted as a clock that runs backwards 1. A jump can only fire when it is enabled
and the clock of the associated stochastic event reached 0.

In the following, we consider states σ̂ of SHA A to be elements of Σ × VLab =
Loc×V ×VLab. We now give the semantics of stochastic hybrid automata by defining
execution steps between these states, which restrict the execution steps possible in
the underlying hybrid automaton. A discrete step can be taken from a state σ̂ if and
only if some jump is fireable.

Definition 3.2.1 (Fireable). Let A = (H,Lab,Evt,Dur,Wgt) be a SHA. For a
jump e = (id, l, µ, l′) ∈ Edge and a state (l, ν, νLab) ∈ Σ × VLab of A, we define
fireable((l, ν, νLab), e) = true iff e is enabled in state (l, ν) of H and νLab(cEvt(e)) = 0.

The semantics for stochastic hybrid automata needs to ensure that no time can
pass between a jump becoming fireable and being taken. Thus, none of the clocks
cr ∈ VLab should become negative during a time step. After a time step, each clock
cr needs to be decreased by the total amount of time that any associated jump was
enabled during the time step. For simplicity, we require that the enabledness of the
jumps may not change during time steps, but only at the endpoints of time steps. We
define a predicate invEn to express that, during some time step, the enabledness of
all jumps stays invariant and all clocks are reset appropriately afterwards.

1We could alternatively also use “normal” clocks whose values increase linearly until the sampled
enabling duration is reached. However, since this would require us to store the sampled enabling
durations separately, backwards running clocks are the more convenient choice here.

42 Stochastic Hybrid Automata

Definition 3.2.2 (invEn). Let A = (H,Lab,Evt,Dur,Wgt) be a SHA. For l ∈ Loc,
ν ∈ V, νLab, ν

′
Lab ∈ VLab, t ∈ R≥0 and f ∈ Act(l) such that f(0) = ν, we define

invEn(l, ν, νLab, ν
′
Lab, t, f) = true iff for all r ∈ Lab it holds that

• either there exists some e = (id, l,µ,l′) ∈ Edge with r = Evt(e) such that

1. ∀t′ ∈ (0,t). ∃ν′, ν′′ ∈ V. (l,ν) t′,f−−→ (l,ν′) ∧ (l,ν′)
e−→ (l′,ν′′), and

2. ν′Lab(cr) = νLab(cr)− t ≥ 0,

• or for all e = (id, l,µ,l′) ∈ Edge with r = Evt(e) it holds that

1. ∀t′ ∈ (0,t). ¬
(
∃ν′, ν′′ ∈ V. (l,ν) t′,f−−→ (l,ν′) ∧ (l,ν′)

e−→ (l′,ν′′)
)
, and

2. ν′Lab(cr) = νLab(cr).

As mentioned above, the predicate invEn expresses two aspects. Firstly, it checks
that all jumps are invariantly en- or disabled in the open time interval (0,t), i.e., for all
jumps e either e can be taken from all states reached by time steps of length t′ ∈ (0,t)
or from none of these states. Recall that at each location all outgoing jumps must be
associated with different stochastic events. Hence, for each stochastic event, at most
one associated jump can be enabled at all times. Note that the interval must be open
in order to allow for changes of enabledness at the endpoints. Secondly, it ensures
that the clocks associated with the stochastic events are handled correctly: If a jump
associated with some event r is enabled in the interval (0,t), the value of clock cr is
decreased accordingly, until 0 is reached. Otherwise, the value remains unchanged.

Using the predicates invEn and fireable, we can now give the semantics of stochas-
tic hybrid automata. As for hybrid automata, we define an operational semantics
consisting of rules for time, discrete, and environmental steps.

Definition 3.2.3 (Semantics of SHA). Let A = (H,Lab,Evt,Dur,Wgt) be a SHA.
The semantics of A is given by an operational semantics consisting of three rules:

(l,ν)
t,f−−→ (l,ν′) invEn(l, ν, νLab, ν

′
Lab, t, f)

(l, ν, νLab)
t,f
==⇒ (l, ν′, ν′Lab)

Ruletime

(l,ν)
e−→ (l′,ν′) fireable((l, ν, νLab), e)

Evt(e) = r u ∈ support(Dur(r,(l′,ν′)))

(l, ν, νLab)
e
=⇒ (l′,ν′, νLab[cr 7→ u])

Rulediscrete

(l,ν)
τ−→ (l,ν′)

(l,ν, νLab)
τ
=⇒ (l,ν′, νLab)

Ruleenvironment

An execution step

⇒=

 ⋃
t∈R≥0,f∈F

t,f
==⇒

 ∪

 ⋃
e∈Edge

e
=⇒

∪ τ
=⇒

of A is either a time step or a discrete step or an environmental step. As for hybrid
automata, we use infix notation for the relation ⇒.

A path π of A is a (finite or infinite) sequence of states of A connected by execution
steps σ̂0 ⇒ σ̂1 ⇒ σ̂2 ⇒ . . . such that ν0 ∈ Inv(l0) for σ̂0 = (l0, ν0, ν0,Lab).

Semantics of Stochastic Hybrid Automata 43

As explained above, we only allow time steps during which the enabledness of
jumps does not change and none of the clocks cr ∈ VLab become negative. We do not
require these time steps to be maximal though, so the enabledness of jumps does not
always have to change between time steps. When we check whether the enabledness
stays invariant during a time step, we need to know which activity was used to make
the corresponding time step in the hybrid automaton, as there does not necessarily
exist a unique activity f ∈ Act(l) with f(0) = ν for each state (l,ν) ∈ Σ. Additionally,
it is advantageous for algorithmic aspects to cut the time steps into intervals during
which the enabledness of all jumps stays invariant.

If we take a discrete step (l, ν, νLab)
e
=⇒ (l′,ν′, νLab[cr 7→ u]), we have to sample

a new enabling duration u for the corresponding event r = Evt(e) according to the
probability distribution Dur(r, (l′, ν′)) and reset cr to this value.

An environmental step is possible if and only if a corresponding step is possible in
the underlying hybrid automaton. The clocks associated with the stochastic events
are not changed since neither time is passing nor some jump associated with these
events is taken.

Example 3.2.1. Consider the stochastic hybrid automaton A1 defined in Exam-
ple 3.1.2. Assume we sampled enabling durations ta = 4 and tb = 1, then the initial
state is σ̂0 = (l0, (x 7→ 0), (ca 7→ 4, cb 7→ 1)). From σ̂0, we can take time steps of
length at most 3, since the enabledness of eb changes at x = 3.

At state (l0, (x 7→ 4), (ca 7→ 0, cb 7→ 0)), both ea and eb are fireable, so we use the
associated weights to make a probabilistic choice: With probability 1

4 , ea is taken and
with probability 3

4 , eb is taken. In A1, no environmental steps are possible since none
are possible in the underlying closed hybrid automaton H1.

Stochastic hybrid automata allow a more fine-grained analysis than simply asking
whether a state is reachable. Instead, we are now interested in how probable it is
to reach a state. To calculate these probabilities, we need to know how probable it
is to take the paths leading to a specific state. However, it does not make sense to
measure the probability of single paths: If a jump is associated with a continuous
probability distribution, the probability of taking this jump after any single enabling
duration is 0. Hence, the probability of taking a single path is 0 in general. Instead of
calculating the probabilities of single paths, we therefore calculate the probability of
certain sets of paths. Using these calculations, we then elaborate on how to calculate
the probability of reaching a certain state, and extend the notions of time-convergence,
Zeno paths, timelock, and deadlock to stochastic hybrid automata.

3.2.1 Path Probabilities
In general, it does not make sense to calculate the probabilities of single paths, but
only of sets of paths, as explained above. Here, we choose to measure the probabilities
of symbolic paths, which correspond to sequences of jumps where the jump times are
not fixed.

Definition 3.2.4 (Symbolic Path). Let A = (H,Lab,Evt,Dur,Wgt) be a SHA. A
finite symbolic path π of A is a tuple ((l,ν), e1 . . . en) with n ≥ 0, (l, ν) ∈ Σ, ei ∈ Edge
for all 1 ≤ i ≤ n and e1 = (id, l, µ, l′) for some µ ⊆ V2, l′ ∈ Loc.

A symbolic path (σ, e1 . . . en) of a stochastic hybrid automaton A corresponds to
the set of all paths starting in σ whose first n jumps are e1,...,en. For n = 0, this is

44 Stochastic Hybrid Automata

simply the set of all paths starting in σ. Note that if there is some i < n such that
the target location of jump ei does not coincide with the source location of jump ei+1,
then the set of paths corresponding to this symbolic path is empty.

It might alternatively also make sense to define symbolic paths over event labels
instead of jumps, depending on what one is interested in.

Sometimes it might be desirable to restrict the time durations between two consec-
utive jumps by time intervals. This is for example necessary to measure more complex
properties like Zenoness. For stochastic timed automata, Bertrand et al. [BBB+14]
extended their probability measure to constrained symbolic paths. We expect that
their approach can be adapted to our situation.

Using symbolic paths, we can now properly define a probability space (Ω,F , P)
over the paths of a SHA. As sample space Ω we take the set of all paths of the SHA
and as event1 space F the set of all finite symbolic paths and their countable unions
and complements, which corresponds to a set of subsets of Ω. The complement of a
symbolic path (σ, e1 . . . en) of a SHA A consists of all paths starting at σ that do not
follow the jump sequence e1 . . . en. The countable union and complement of symbolic
paths do not necessarily again correspond to symbolic paths, but can be expressed as
the countable union of disjoint sets and the set difference of symbolic paths where one
is a subset of the other, and thus they are measurable. For example, the complement
of a symbolic path (σ, e1 . . . en) of a SHA A can be expressed as the set of all paths
corresponding to (σ,) without all paths captured by (σ, e1 . . . en), or equivalently as
the set of all paths starting at σ and not taking any jump, joined with the set of all
paths taking a jump other than e1 first, joined with the set of all paths not taking e2
after having taken e1, and so on.

The remainder of this section is dedicated to the probability function P measuring
symbolic paths. To calculate the probability of a symbolic path, we integrate over all
possible enabling durations for all stochastic events. For each combination, we take
time steps until we reach a state where a jump becomes fireable. If that jump is the
next jump in the jump sequence of the symbolic path, we recursively calculate the
probability of the remaining path. After the last jump en was taken, we assume that
the probability of the remaining path is 1.

This assumption only holds if at each state, the probability of taking an infinite
path is 1, which is not always the case. Recall that hybrid automata may contain
deadlocked states, from which no path can be taken. Additionally, a stochastic hybrid
automaton has a deadlock if at some state the probability of sampling a too high
enabling duration for some jump can neither be redistributed to some other jump
nor to staying in the location (see Section 3.1). We discuss how to formally define
deadlocks for stochastic hybrid automata in Section 3.2.2.

According to our definition of deadlock, the probability of taking an infinite path is
1 for all states if and only if the probability of reaching a deadlocked state is 0. Thus,
we can only define path probabilities for deadlock-free stochastic hybrid automata.
But to check whether this is the case, we already need to calculate the probabilities
of paths, so we need to ensure the assumption in some other way. Here, we choose to
only consider invariant-free stochastic hybrid automata, which only allow the location
invariant ‘true’. Then, the underlying hybrid automaton is deadlock-free and if we
sample an enabling duration for some jump that will never be reached, we can stay in
the location forever instead (or possibly take some other jump). Hence, invariant-free
stochastic hybrid automata cannot contain deadlocked states.

1Note that “event” does not refer to the stochastic events associated with the jumps here.

Semantics of Stochastic Hybrid Automata 45

Definition 3.2.5 (Invariant-free SHA). A SHA A = (H,Lab,Evt, Dur,Wgt) is called
invariant-free if for all locations l ∈ Loc we have Inv(l) = V.

It would be desirable to find less strict solutions to this problem in future work.
One possibility might be to add a kind of forced jump to each location, which allows to
transition to a sink location if the boundary of the invariant is hit and the direction of
the continuous flow “points out of” the invariant. Thus, the system does not become
deadlocked but instead stays in the sink location forever. We discuss how forced
jumps could be included in our model in Section 4.2.

In order to define the path probabilities, we also need to resolve all non-determinism
regarding the environmental behavior. Hence, we now require SHA to be closed.

Definition 3.2.6 (Closedness). A SHA A = (H,Lab,Evt,Dur,Wgt) is called closed
if H is closed.

Recall that for a closed hybrid automaton, the evolution of all variables is uniquely
determined at each state and that for stochastic hybrid automata, we only allow for
time steps during which the enabledness of jumps stays invariant and the values of
all clocks are non-negative. Hence, for each state σ̂ of a closed stochastic hybrid
automaton, there is a unique maximal (possibly infinite) t such that a time step of
length t can be taken from σ̂. If this maximal time duration t is finite, the unique
state reached by this maximal time step is called the maximal time successor of σ̂.
Note that, in general, we cannot decide whether the maximal time duration is finite,
since reachability is undecidable for hybrid automata [HKPV98].

Definition 3.2.7 (Maximal Time Successor). Let A = (H,Lab,Evt,Dur,Wgt) be
a closed, invariant-free SHA. For a state σ̂ = (l, ν, νLab) and the unique activity
f ∈ Act(l) with f(0) = ν, we define tm(σ̂) = sup{t | ∃σ̂′. σ̂

t,f
==⇒ σ̂′}. If tm(σ̂) < ∞,

the maximal time successor ts(σ̂) of σ̂ is the unique state with σ̂
tm(σ̂),f
=====⇒ ts(σ̂).

When defining the duration of the maximal time step tm(σ̂), we take the supremum
instead of the maximum in order to ensure that tm(σ̂) is defined in cases where the
enabledness of jumps will never change. For example, in location l1 of A1 from
Example 3.1.2 (depicted in Figure 3.2), we can take arbitrarily long time steps without
changing the enabledness of any jump originating from l1 since l1 has no outgoing
jumps.

We claim that the supremum also yields the correct result if the maximal possible
time step is bounded. Assume a time step of length tm(σ̂) = sup{t | ∃σ̂′. σ̂

t,f
==⇒ σ̂′}

is not possible from σ̂, only time steps of length tm(σ̂)− ϵ for arbitrarily small ϵ > 0.
This can only happen if the invariant of the location of σ̂ is an open set (e.g. for
‘x < 2’), making it impossible to stay in the location for the full time tm(σ̂). We
claim that this implies that σ̂ is timelocked. It is not possible to stay in the current
location forever, since the invariant will become violated. But it is also not possible
to take some jump: If some clock cr reached 0 before the end of the time step tm(σ̂),
then the maximal time step would be smaller than tm(σ̂) since we only allow time
steps such that no jump changes its enabledness and no clock runs out. Hence, for
invariant-free (and thus timelock-free) SHA, we can assume that it is always possible
to stay in a location for the full time step of length tm(σ̂) < ∞.

46 Stochastic Hybrid Automata

Using the notion of maximal time successors, we can now calculate the probabil-
ities of symbolic paths for closed, invariant-free SHA. Note again that for discrete
distributions, the integrals should be replaced by sums.

Definition 3.2.8 (Symbolic Path Probabilities for SHA). Let A = (H,Lab,Evt,
Dur,Wgt) be a closed, invariant-free SHA with Lab = {r1, . . . , rk}. Let further π =
((l,ν), e1 . . . en) be a symbolic path of A. The probability of π is 1 for n = 0 and
otherwise

P (π) =

∫ ∞

t1=0

Dur(r1,(l,ν))(t1) · . . . ·
∫ ∞

tk=0

Dur(rk,(l,ν))(tk) ·P ′(σ̂, e1 . . . en) dtk . . . dt1,

where σ̂ = (l,ν, νLab) with νLab(cri) = ti for all i and

P ′(σ̂, e1 . . . en) =


W · Step if fireable(σ̂, e1)
0 if ¬fireable(σ̂, e1) ∧ ∃e ∈ Edge. fireable(σ̂, e)
P ′(ts(σ̂), e1 . . . en) if tm(σ̂) < ∞∧ ∀e ∈ Edge. ¬fireable(σ̂,e)
0 if tm(σ̂) = ∞∧ ∀e ∈ Edge. ¬fireable(σ̂,e),

where W = Wgt(e1)∑
e∈Edge,fireable(σ̂,e) Wgt(e) and

Step =

{
1 if n = 1∫∞
t=0

Dur(r,(l′,ν′))(t) · P ′((l′, ν′,νLab[cr 7→ t]), e2 . . . en) dt if n > 1,

where r = Evt(e1), e1 = (l, µ, l′) and ν′ is the unique valuation such that (ν, ν′) ∈ µ.

By assumption, the probability of taking any path from state σ of SHA A is
1. To compute the probability of a symbolic path π = ((l, ν), e1 . . . en) of A for
n ≥ 1, we first consider all possible enabling durations for the jumps and with which
probability they occur. Each possible combination yields a valuation νLab ∈ VLab and
corresponding state σ̂ = (l, ν, νLab). In state σ̂, we now distinguish four cases:

1. If e1 is already fireable in σ̂, we use the jump weights of all currently fireable
jumps to calculate the probability with which e1 is taken. If e1 is not the last
jump of the symbolic path, we recursively calculate the probability for taking
the remaining jumps e2, . . . , en. For this, we need to reset the enabling duration
for e1 based on the state reached in H by taking e1.

2. If e1 is not fireable but some other jump is, that other jump will be taken. Thus,
the probability of taking e1 is 0. This does not mean that the probability of the
symbolic path π is 0, since it might still be possible to take the specified jump
sequence for another valuation νLab of the random clocks.

3. If currently no jump is fireable but, in finite time, the enabledness of some jump
will change or some jump will become fireable, then we recursively calculate the
probability of taking jumps e1, . . . , en from the maximal time successor of the
current state.

4. If currently no jump is fireable and no jump will ever change enabledness or
become fireable, then the probability of the path π is 0 for the current valuation
νLab of the random clocks.

Semantics of Stochastic Hybrid Automata 47

Let us first illustrate the calculation of the probability of a symbolic path with
an example. Afterwards, we discuss under which conditions the calculation termi-
nates, how the calculation could be refined, and how it can be used to calculate the
probability of reaching a certain state.

Example 3.2.2. We define A′
1 to be the invariant-free version of the SHA A1 defined

in Example 3.1.2 (Figure 3.2), i.e., the only difference between the two SHA is that
all locations of A′

1 have the invariant true. The underlying hybrid automaton H′
1 has

the unique initial state σ0 = (l0, ν0) with ν0(x) = 0. The probability of the symbolic
path (σ0, eb) of A′

1 can be calculated as follows:

P (σ0, eb) =

∫ ∞

ta=0

Dur(a, σ0)(ta) ·
∫ ∞

tb=0

Dur(b, σ0)(tb) · P ′((l0, ν0, νLab), eb) dtbdta,

where νLab = (ca 7→ ta, cb 7→ tb). Let σ̂0 = (l0, ν0, νLab). The depiction of the enabled
intervals of the two jumps in Figure 3.1 might be helpful for the following considera-
tions. The support of Dur(b,σ0)(tb) is only [0,2], so the probability of sampling tb > 2
is 0. Further, we observe that if either ta < 3 or 3 ≤ ta ≤ 5 ∧ tb > ta − 3, then edge
ea will become fireable before jump eb, so the probability of taking edge eb is 0 in these
cases. The probability that both edges become fireable at the same time is 0, since the
associated probability distributions are continuous. We therefore omit this case in the
following considerations.

We now split the integrals at the points where the jumps change enabledness and
apply these observations, so P (σ0, eb) =∫ 3

ta=0

Dur(a, σ0)(ta) ·
∫ 2

tb=0

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta

}
=0

+

∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ 2

tb=0

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta

+

∫ ∞

ta=5

Dur(a, σ0)(ta) ·
∫ 2

tb=0

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta

=

∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ ta−3

tb=0

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta

+

∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ 2

tb=ta−3

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta

}
=0

+

∫ ∞

ta=5

Dur(a, σ0)(ta) ·
∫ 2

tb=0

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta.

Jump ea is only enabled in the interval [0,5] and thus not for the whole support of
Dur(a, σ0). The probability of sampling an enabling duration ta > 5 for ea is therefore
redistributed: If we sample some ta > 5, we take jump eb with probability 1.

Further, if 3 ≤ ta ≤ 5 and 0 ≤ tb < ta − 3, then jump ea will become fireable after
eb. At state σ0, no jump is fireable, so we take the maximal time step, which is of
length 3. If tb = 0 < ta − 3, then jump ea is fireable at state ts(σ0). Since this is
just one discrete point in a continuous probability distribution, this case is negligible.
Otherwise, we take the maximal time step from ts(σ0), which leads us to the state
σ̂′ = ts(ts(σ0)) where ea becomes fireable.

48 Stochastic Hybrid Automata

0 1 2 3 4 5

Figure 3.4: Illustration of the guard ge = {ν ∈ V | ∃n ∈ N. ν(x) ∈ [n, n+ 1
2n]} on the

interval [0,6). Values x satisfying the guard are marked in orange. If this guard was
combined with an activity f with f(t)(x) = t, our probability calculation would not
terminate.

Hence, P (σ0, eb) =∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ ta−3

tb=0

Dur(b, σ0)(tb) · P ′(σ̂0, eb) dtbdta

+

∫ ∞

ta=5

Dur(a, σ0)(ta) dta

=

∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ ta−3

tb=0

Dur(b, σ0)(tb) · P ′(ts(ts(σ0)), eb) dtbdta +
1

e10

=

∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ ta−3

tb=0

Dur(b, σ0)(tb) ·W · Step dtbdta +
1

e10

=

∫ 5

ta=3

Dur(a, σ0)(ta) ·
∫ ta−3

tb=0

0.5 · Wgt(eb)
Wgt(eb)

· 1 dtbdta +
1

e10

≈ 0.000619688 + 0.000045400 = 0.000665088.

Termination Our calculation terminates under the condition that for each reach-
able state σ̂, either the length of the maximal time step tm(σ̂) is unbounded, or after
finitely many time steps we will take a discrete jump. Otherwise, we can have a time-
divergent path where the enabledness of some jump changes infinitely often and the
enabled intervals become progressively smaller, such that the total enabling duration
is finite. For example, assume some location has an outgoing jump e with a guard of
the form ge = {ν ∈ V | ∃n ∈ N. ν(x) ∈ [n, n+ 1

2n]}, which is illustrated in Figure 3.4,
and assume that the variable x evolves linearly. Then the enabledness of this jump
would change infinitely often, but the total enabling duration would be finite since∑∞

n=0 n+ 1
2n − n = 2.

If the sampled enabling duration for such a jump is larger than its total enabling
duration, the associated clock would converge to some finite c ∈ R≥0. The calculation
does not terminate if and only if one of the clocks

Note that such behavior may also be caused by an activity with a variable x evolv-
ing as depicted in Figure 3.5. The displayed function has infinitely many roots in the
interval [0,1] and the distance between those roots progressively decreases. Consider
a location l with the depicted evolution of x, which has only one outgoing jump
guarded by ‘x > 0’. Then, any path π starting at (l, x 7→ 0) with ExecT ime(π) ≥ 1
must contain infinitely many time steps. Hence, our probability calculation would not
terminate if it was possible to sample an enabling duration for the jump that could
only be reached by a path π with ExecT ime(π) ≥ 1. However, we do not expect
combinations of activities and guards as presented in these two examples to appear
in models of real-life hybrid systems.

One might expect that allowing arbitrary time steps instead of invariantly enabled
ones in the semantics would solve the underlying problem here. For arbitrary time

Semantics of Stochastic Hybrid Automata 49

0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0.2

0.4

0.6

0.8

x(t) = (t− 1) sin(1
t−1)

t

x

Figure 3.5: Example for an activity for a variable x, which would prevent the calcu-
lation from terminating if combined with a guard of the form ‘x > 0’.

steps, we would need to keep track of how long each jump was enabled and appro-
priately reset the clocks VLab. In particular, the semantics should still ensure that
time steps are only possible as long as no jump becomes fireable. In the probability
calculation, if no jump is currently fireable, we would then need to find the longest
time step possible that would reach a state where a jump becomes fireable. However,
we do not see how this could be done in such a way that it always terminates in cases
as described above.

Possible Refinement Sometimes we might be interested in the probability of tak-
ing a certain sequence of jumps and then staying in the last location forever, as
opposed to taking at least one more jump. We can refine our probability calculation
by measuring this probability as follows. For some symbolic path π = (σ, e1 . . . en)
of a SHA, the probability of taking another jump after having taken the specified
jumps is given by the sum of the probabilities of all symbolic paths of the form
(σ, e1 . . . enen+1) for en+1 ∈ Edge. Subtracting this probability from the probability
of π consequently yields the probability of staying in the last location forever.

Probability of Reaching a State Our original motivation for defining the proba-
bilities of paths was to determine how probable it is to reach a certain state. Indeed,
the probability of reaching a state (l, ν) can be defined as a countable sum of proba-
bilities of symbolic paths. Reaching the state (l,ν) can be equivalently expressed as
reaching l and then taking an added urgent jump eν leading to some sink location,
which has to be taken immediately if the current valuation is ν. Then, the probability
of reaching (l, ν) is equivalent to the sum of the probabilities of all symbolic paths
(σ̂0, e1 . . . eneν) starting at the initial state σ̂0 and then taking some jump sequence
ending with eν .

3.2.2 Zenoness, Timelock, and Deadlock
Time-convergent and time-divergent paths for stochastic hybrid automata are defined
analogously to hybrid automata (see Section 2.2.1).

50 Stochastic Hybrid Automata

Definition 3.2.9 (Time-Convergence). Let A = (H,Lab,Evt,Dur,Wgt) be a stochas-
tic hybrid automaton. Using the function ExecT ime defined for hybrid automata, the
time duration of an infinite path π = σ̂0

α0==⇒ σ̂1
α1==⇒ σ̂2

α2==⇒ . . . of A is given by the
overloaded function

ExecT ime(π) =

∞∑
i=0

ExecT ime(αi).

We call π time-divergent if ExecT ime(π) = ∞ and time-convergent otherwise.

In the following, we discuss how the notions of Zenoness, timelock, and deadlock
could be extended to stochastic hybrid automata. Instead of talking about the ex-
istence of paths, we now consider with which probability paths exists. Recall that
we have only defined path probabilities for closed, invariant-free stochastic hybrid
automata, which cannot contain deadlocked states. We will show that they may
still contain Zeno paths and timelocks. However, since our probability calculations
currently do not distinguish between time-convergent and time-divergent paths, in
general we cannot calculate the probabilities of Zeno paths, timelocks, or deadlocks.
We will discuss whether and how our probability calculations could be extended to
measure the desired sets of paths. Additionally, we will take a brief look at stochastic
hybrid automata that do contain invariants. Since we only defined the notions of
Zenoness, timelock, and deadlock for closed hybrid automata, we will only consider
closed stochastic hybrid automata here. Our considerations for non-closed hybrid
automata can also be applied to stochastic hybrid automata.

Zeno Paths

Zeno paths can be defined analogously to hybrid automata. We do not need to take
any path probabilities into account for deciding whether a single path is Zeno or not.
Recall that for hybrid automata we only properly defined Zeno behavior for closed
systems.

Definition 3.2.10 (Zeno Path). Let A = (H,Lab,Evt,Dur,Wgt) be a closed stochas-
tic hybrid automaton. An infinite path π of A is called a Zeno path if it is time-
convergent and infinitely many discrete steps are taken within π.

We are now interested in whether a stochastic hybrid automaton is almost-surely
non-Zeno, i.e., whether the probability of taking a Zeno path is 0, instead of asking
whether there exists a Zeno path from an initial state. A stochastic hybrid automaton
A must be almost-surely non-Zeno if its underlying hybrid automaton H is non-Zeno,
since each path of A corresponds to a path of H. If H does contain Zeno paths, it
depends on the probability distributions whether A is almost-surely non-Zeno. This
is illustrated in the following examples.

Example 3.2.3. The closed, invariant-free stochastic hybrid automaton A′
1 defined in

Example 3.2.2 must be almost-surely non-Zeno since the underlying hybrid automaton
is non-Zeno. Similarly, the stochastic hybrid automaton A1, which includes location
invariants other than true, is also almost-surely non-Zeno.

Example 3.2.4. Consider the stochastic hybrid automaton Az presented in Fig-
ure 3.6. The underlying hybrid automaton extends the hybrid automaton from Ex-
ample 2.2.2 by a controlled variable that counts how often a jump has been taken. We

Semantics of Stochastic Hybrid Automata 51

l0
ẋ = 1
ṅ = 0
true

Az :

true → n := n+ 1
ez : cz
1

x = 0

n = 0

Figure 3.6: Stochastic hybrid automaton Az containing a Zeno path and a timelock,
as defined in Example 3.2.4.

choose Labz = {z}, Evtz(ez) = z and Wgtz(ez) = 1. Let ti = 1
2i for i ∈ N. We define

Durz as follows:

Durz(z, (l0, (x 7→ t, n 7→ i))) = U[0,ti] for t ∈ R≥0, i ∈ N.

The path with the longest possible execution time in Az is

π = (l0, (x 7→ 0, n 7→ 0), (cz 7→ t0))
t0,f0
===⇒ (l0, (x 7→ t0, n 7→ 0), (cz 7→ 0))

ez==⇒

(l0, (x 7→ t0, n 7→ 1), (cz 7→ t1))
t1,f1
===⇒ (l0, (x 7→ t0 + t1, n 7→ 1), (cz 7→ 0))

ez==⇒

(l0, (x 7→ t0 + t1, n 7→ 2), (cz 7→ t2))
t2,f2
===⇒ (l0, (x 7→

2∑
k=0

tk, n 7→ 2), (cz 7→ 0))
ez==⇒

. . .

where fi(t) = (x 7→ t+
∑i−1

k=0 ti, n 7→ i) for i ∈ N, t ∈ R≥0. π contains infinitely many
jumps and ExecT ime(π) = 2, so π is a Zeno path. All other possible infinite paths
must also take ez infinitely often, but be of shorter time duration. Hence, all possible
infinite paths of Az are Zeno paths and Az cannot be almost-surely non-Zeno.

It is easy to see that a different choice of probability distributions would not lead
to Zeno behavior, e.g., if the time between two jumps would always have to be 1. For
more complex probability distributions it would however be more difficult to determine
whether Zeno behavior occurs and with which probability.

In order to determine whether a stochastic hybrid automaton is almost-surely non-
Zeno, we need to calculate the probability that any reachable path is Zeno. However,
our probability calculations currently do not allow to measure Zeno paths. Bertrand
et al. [BBB+14] define stochastic timed automata in a similar way to our stochastic
hybrid automata and show that the set of all Zeno paths from a state of a stochastic
timed automaton is measurable, using constrained symbolic paths. We expect that
their approach can be adapted to our situation. Bertrand et al. also showed that
certain classes of stochastic timed automata are almost-surely non-Zeno. It would
be interesting to investigate whether it is possible to identify classes of almost-surely
non-Zeno stochastic hybrid automata in a similar way.

Timelock and Deadlock

We would consider a state σ̂ ∈ Σ× VLab of a stochastic hybrid automaton to have a
timelock or deadlock if the probability of taking a time-divergent path or any path,
respectively, is 0. Note that we can compute probabilities of symbolic paths starting
at a state σ̂ ∈ Σ × VLab, instead of a state σ ∈ Σ, via P ′ defined in Definition 3.2.8.

52 Stochastic Hybrid Automata

However, we currently do not see how these probability calculations could be used to
calculate the desired probabilities of timelocks and deadlocks. In the following, we
discuss this in more detail for both timelocks and deadlocks separately, after having
looked at examples for stochastic hybrid automata which we would consider to contain
timelocked or deadlocked states, respectively. Recall that for hybrid automata we only
defined the notions of timelock and deadlock for closed systems.

Timelock Path probabilities were only defined for (closed and) invariant-free sto-
chastic hybrid automata, because this subclass is deadlock-free (see Section 3.2).
However, invariant-free stochastic hybrid automata may still contain states which we
consider to be timelocked, as illustrated by the following example.

Example 3.2.5. Recall the stochastic hybrid automaton Az defined in Figure 3.6,
where all infinite paths are Zeno. This directly implies that the initial state must
be timelocked. Note that the underlying hybrid automaton is timelock-free, so this
timelock is only caused by a “bad” choice of probability distributions.

Az does not contain a deadlocked state since the probability of taking any path is
1 at each reachable state.

In our example, it is relatively easy to see that a timelock must occur since all
possible paths of the stochastic hybrid automaton are time-convergent. In general,
however, this might be less straightforward if there also exist time-divergent paths
and we need to calculate whether they are taken with a positive probability.

To check whether a state has a timelock, we need to be able to distinguish be-
tween the probabilities of time-convergent and time-divergent paths. One possible
approach for expressing time-convergent paths might be the constrained symbolic
paths proposed by Bertrand et al. [BBB+14], which they use to define the set of all
Zeno paths. However, symbolic paths only take finitely many execution steps into
account, which is not sufficient to detect whether a path with finitely many discrete
steps but infinitely many time steps is time-convergent.

Deadlock Invariant-free (stochastic) hybrid automata must be deadlock-free (see
Section 3.2). Stochastic hybrid automata that do allow arbitrary location invariants
however may also contain deadlocked states, even if the underlying hybrid automaton
is deadlock-free. The following example illustrates that probability distributions must
be chosen carefully in order to avoid introducing deadlocks.

Example 3.2.6. Recall the closed stochastic hybrid automaton A1 from Example 3.1.2.
If the support of the distribution Dur(b, (l0, ν)) was R instead of [0,2], we would con-
sider A1 to contain a deadlocked state (and hence also a timelocked state): If we
sampled enabling durations ta > 5 for ea and tb > 2 for eb, neither jump would be-
come fireable before the invariant of l0 is violated. We would consider all initial states
(l0, (x 7→ 0), (ca 7→ ta, cb 7→ tb)) with ta > 5 and tb > 2 to be timelocked and all states
(l0, (x 7→ 5), (ca 7→ ta, cb 7→ tb)) with ta, tb > 0 to be deadlocked.

By defining the distribution Dur(b, (l0, ν)) such that its support is contained in
[0,2], we can ensure that always some jump will become fireable before the invariant
of l0 is violated.

To check whether a state has a deadlock, we need to calculate the probability of
taking any path. This can be expressed as the sum of the probabilities of taking

Composition of Stochastic Hybrid Automata 53

any outgoing jump plus the probability of taking a path that does not leave the
location. The first part can surely be calculated as the probability of symbolic paths,
but the second part is more difficult. In Section 3.2.1, we discussed how to calculate
the probability of staying in a location as a possible refinement of our probability
calculation. However, this only works under the assumption that the stochastic hybrid
automaton does not contain a deadlocked state, i.e., the probability of taking some
path is 1 at all reachable states. We currently do not see how this could alternatively
be calculated.

3.3 Composition of Stochastic Hybrid Automata

We consider two SHA composable if their underlying hybrid automata are composable
and they have disjoint sets of labels specifying the stochastic events. Otherwise, a
location in the composition of two SHA could have two outgoing jumps associated
with the same event, which is forbidden. Note that merging these jumps is also not
an option, since it is unclear how to merge arbitrary probability distributions in a
meaningful way.

Definition 3.3.1 (Composability of SHA). Two stochastic hybrid automata A1 =
(H1,Lab1,Evt1,Dur1,Wgt1) and A2 = (H2,Lab2,Evt2,Dur2,Wgt2) are considered
composable if H1 and H2 are composable and Lab1 ∩ Lab2 = ∅.

Analogous to the composition of hybrid automata (Section 2.3), we first define
the extension of a SHA by a set of variables before constructing the syntactic parallel
composition of two SHA. We extend a SHA by first extending the underlying hybrid
automaton and then adapting the assignment of events, probability distributions, and
weights such that they refer to the extended jumps and states.

Definition 3.3.2 (Extension of SHA). Let A be a SHA and V ′ a set of real-valued
variables Con ∩ V ′ = ∅. The extension of A by V ′ is the hybrid automaton A+ =
(H+,Lab+,Evt+,Dur+,Wgt+), where

• H+ is the extension of the hybrid automaton H by V ′;

• Lab+ = Lab;

• Evt+(e+) = Evt(e) for the unique e ∈ Edge corresponding to e+ ∈ Edge+;

• Dur+(r,(l,ν+)) = Dur(r,(l,ν+|V)) for all r ∈ Lab+, l ∈ Loc+, ν+ ∈ V+;

• Wgt+(e+) = Wgt(e) for the unique e ∈ Edge corresponding to e+ ∈ Edge+.

We can now define the composition of two SHA based on the composition of their
underlying hybrid automata and the extensions of the SHA by the variables of the
respective other SHA. Each jump in the composition corresponds to an jump in one
of the components and can consequently be assigned the same stochastic event and
weight as the corresponding jump in its respective component. Since the SHA may
not share any event labels, each pair of event label and state can be assigned the same
distribution as the corresponding label-state pair in the component indicated by the
label.

54 Stochastic Hybrid Automata

Definition 3.3.3 (Syntactic Parallel Composition of SHA). Let A1,A2 be two SHA
that are composable. Let

A+
1 = (H+

1 ,Lab+1 ,Evt+1 ,Dur+1 ,Wgt+1),

A+
2 = (H+

2 ,Lab+2 ,Evt+2 ,Dur+2 ,Wgt+2)

be the extensions of A1,A2 by V2\Con1 and V1\Con2, respectively. The parallel
composition A1 ∥ A2 = (H,Lab,Evt,Dur,Wgt) is the SHA with

• H = H1 ∥ H2;

• Lab = Lab1 ∪ Lab2;

• Evt(id, (l1,l2), µ, (l′1, l′2)) =

{
Evt+1 (e1) if e1 = (id, l1, µ, l′1) ∈ Edge+1 ∧ l2 = l′2
Evt+2 (e2) if e2 = (id, l2, µ, l′2) ∈ Edge+2 ∧ l1 = l′1;

• Dur(r,((l1,l2), ν)) =

{
Dur+1 (r, (l1, ν)) if r ∈ Lab1
Dur+2 (r, (l2, ν)) if r ∈ Lab2;

• Wgt(id, (l1,l2), µ, (l′1, l′2)) =

{
Wgt+1 (e1) if e1 = (id, l1, µ, l′1) ∈ Edge+1 ∧ l2 = l′2
Wgt+2 (e2) if e2 = (id, l2, µ, l′2) ∈ Edge+2 ∧ l1 = l′1.

If we did not require the jumps in the two components to have (different) jump
identifiers, there might exist self-loops e1 ∈ Edge+1 and e2 ∈ Edge+2 from locations
l1 ∈ Loc1 and l2 ∈ Loc2, respectively, that have the same guard and the same reset, but
are associated with different stochastic events. Then, we could not distinguish between
e1 and e2 in location (l1,l2) of the composition of the two stochastic hybrid automata
and the jump set of the composition would only contain one of these identical jumps.
For hybrid automata this is not a problem, but for stochastic hybrid automata we
need two distinguishable jumps associated with the two different stochastic events
Evt(e1) and Evt(e2). Hence, we only consider (stochastic) hybrid automata to be
composable if they do not use the same jump identifiers.

The following example illustrates the syntactic parallel composition of SHA using
our running examples. We omit the jump identifiers again since all jumps can already
be distinguished by their guards.

Example 3.3.1. Consider again the SHA A1 and A2 from Examples 3.1.2 and 3.1.3,
as well as the composition H1 ∥ H2 of their underlying hybrid automata defined in
Example 2.3.4. The composition A1 ∥ A2 = (H,Lab,Evt,Dur,Wgt) has the hybrid
automaton H1 ∥ H2 and

• Lab = {a, b, c};

• Evt(eir) = r for r ∈ Lab and i ∈ {1,2};

• Dur(a,((l0,l2),ν))(t) = Dur(a,((l0,l3),ν))(t) = 2e−2t,
Dur(b,((l0, l2),ν)),Dur(b,((l0, l3),ν)) = U[0,2],
Dur(c,((l0,l2),ν))(t) = Dur(c,((l1,l2),ν))(t) = 2e−2t;

• Wgt(e1b) = Wgt(e2b) = 3 and Wgt(e) = 1 for all other edges e.

Revisiting our example from the introduction, we see that it is now indeed possible
to compose the stochastic hybrid automata as intended.

Comparison to Other Approaches 55

(l0,l2)
ẋ = 1, ẏ = x

x ≤ 5

(l1,l2)
ẋ = 2, ẏ = x

true

(l0,l3)
ẋ = 1, ẏ = 1

x ≤ 5

(l1,l3)
ẋ = 2, ẏ = 1

true

x ≤ 5 → x:=0 1

e1a : ea ∼ 2e−2t

e1b : cb ∼ U[0,2]

x ≥ 3 → x:=3 3

x ≤ 5 → x:=0 1

e2a : ea ∼ 2e−2t

e2b : cb ∼ U[0,2]

x ≥ 3 → x:=3 3

e1c : cc ∼ 2e−2t
x > 2

1 e2c : cc ∼ 2e−2t
x > 2

1

A1 ∥ A2 :
x = 0
y = 0

Figure 3.7: Composition of the stochastic hybrid automata A1 and A2, as defined in
Example 3.3.1.

3.4 Comparison to Other Approaches
We now compare our model to two stochastic hybrid automaton formalisms that are
similar to our approach with respect to different aspects. Bernadsky et al. [BSA04]
also offer communication via shared variables for continuous-time stochastic hybrid
automata, while the modeling language proposed by Pilch et al. [PKRA20] is closest
to our approach with regard to the modeling of stochastic events. Both were already
discussed in Chapter 1.

[BSA04]: Shared Variables Bernadsky et al. propose a modeling language for
continuous-time concurrent stochastic hybrid systems, where components can read
variables that other components have marked as observable. This allows a more fine-
grained read/write access than our model, where all controlled variables can be read
by other components. However, adding a distinction between private and observable
controlled variables in our model should be straightforward.

The authors do not want to restrict the influence of external/non-controlled vari-
ables. As discussed in Section 3.1, this might allow the environment to violate loca-
tion invariants instantaneously. This is solved by allowing forced jumps, which can
be taken as soon as the invariant is violated. We prefer not to weaken the invari-
ant semantics and instead do not allow non-controlled variables to influence location
invariants or initial conditions, or to reset non-controlled variables.

Our model offers spontaneous jumps, i.e., to determine the jump times via prob-
ability distributions. In contrast, Bernadsky et al. only allow forced jumps. Their
model however does offer SDE-based flow specifications and stochastic resets, which
our model currently does not include. We discuss how forced jumps, SDE, and
stochastic resets could be included in our model in Section 4.2.

In conclusion, Bernadsky et al. chose a different approach for handling the influ-
ence of non-controlled variables and their offered stochasticity is orthogonal to our
approach.

56 Stochastic Hybrid Automata

[PKRA20]: Modeling Stochastic Events The model defined by Pilch et al. is
the only one we are aware of which also allows to bind together jumps such that their
jump time is determined by the same stochastic event. Pilch et al. extend singular
automata by random clocks syntactically, while we add random clocks only seman-
tically to protect their intended usage. In their model, jumps can reset the random
clocks to random values according to specified continuous probability distributions.
In each location, each clock may either run down linearly or stay constant.

By guarding several jumps with the same condition on the same random clock,
these jumps can effectively be bound together in a similar way to our approach.
However, modeling spontaneous guarded jumps as in our model would take more
effort. We use the random clocks to measure for each stochastic event how long
any associated jump has been enabled in total, which means that it depends on the
enabledness of jumps whether a clock is currently running down or staying constant.
In [PKRA20], however, it depends on the location whether a clock runs down or not.
Hence, one has to introduce auxiliary transitions and locations in order to model the
behavior of our random clocks via these syntactic random clocks.

We argue that our approach is better suited for modeling competing stochastic
events. Additionally, Pilch et al. only extend a very restricted class of hybrid automata
by stochastic behavior.

In conclusion, our model fares well in comparison to the two considered approaches
regarding shared variable communication and modeling of stochastic events, respec-
tively. Additionally, our modeling language has the advantage of combining both
considered aspects.

Chapter 4

Language Extensions

In this section, we discuss possible extensions of our modeling language. We first
consider how other sources of stochasticity regarding the discrete and continuous
dynamics could be included. Secondly, we look further into forced jumps, which
have been mentioned in Section 3.2. Finally, we elaborate on how the communication
between components could be extended to jump synchronization or concurrent writing
of variables.

4.1 Other Sources of Stochasticity

As discussed in the introduction, hybrid systems can be extended by stochastic be-
havior in many different ways. Our model currently includes stochastic choices for
the jump times and the decision between jumps. Other possibilities are stochastic
resets, stochastic choice of initial states, and stochastic continuous dynamics (see,
e.g., [HLS00, BL04]).

Our modeling language is based on the stochastic hybrid automata proposed in
[Sch22], which offer probability distributions over variable resets as well as initial
locations and valuations. This model also distinguishes between controlled and non-
controlled variables, but imposes different conditions on the activities and on the
influence of the non-controlled variables. We expect that this approach for stochastic
resets and initial states can be easily adapted for our model.

Allowing for stochastic continuous dynamics, on the other hand, might be more
challenging. The combination of stochastic differential equations with guarded sponta-
neous jumps and invariants yields very complex dynamics. Many models that include
SDE and location invariants only allow forced jumps [HLS00, BSA04]. Bujorianu
and Lygeros [BL04] proposed a model which additionally also includes spontaneous
jumps, but they are not guarded.

4.2 Forced Jumps

Our model currently offers spontaneous jumps, whose jump times are determined by
probability distributions. Other modeling languages also (or only) allow to leave a
location if the boundary of the location invariant is hit [Dav84, BSA04, BLB06]. In
Section 3.2, we discussed that introducing such forced jumps might enable us to avoid

58 Language Extensions

deadlocks. We see two possibilities of how our model can be extended to include
forced jumps.

Our model requires to leave a location before its invariant is violated. Bernadsky
et al. [BSA04] instead choose a weaker notion of invariants, where time can only evolve
as long as the invariant is satisfied, but as soon as the invariant is violated a jump
has to be taken. If we weakened our invariants analogously, we could model forced
jumps as urgent jumps guarded with the negation of the location invariant. Note that
weakening the invariants would also mean that non-controlled variables causing an
instantaneous violation of the invariant would not be a problem anymore.

Instead of weakening the invariant semantics, we could introduce another type of
jumps. More specifically, we could add non-stochastic jumps that can be taken from
a state (l,ν) if there exists some activity f ∈ Act(l) with f(0) = ν such that the
invariant would become violated in any next time step using f . Hence, the jump can
be taken if there exists an activity f such that no time step using f is possible. Our
probability calculations would need to be adjusted to reflect that a forced jump is
taken with probability 1 if time cannot evolve without violating the invariant.

However, for an open invariant like ‘x < 1’, there always exists some time step
such that x < 1 still holds, and thus we could never take the forced jump. Hence,
this approach only works with closed invariants. In non-closed systems, we model the
influence of the environment non-deterministically. This means that there might exist
different evolutions of the non-controlled variables such that the location invariant is
violated in the next time step for one evolution, but not the other. For example,
consider a state (l, (x 7→ 1, y 7→ 0)) where the location invariant of l is ‘x ≤ 1’ and
the evolution of the controlled variable x depends on the non-controlled variable y via
ẋ = y. We allow all possible evolution of y. If we assume that y increases linearly,
then the location invariant would be violated in any next time step and thus we can
take the forced jump. On the other hand, if we assume that y stays constant or
decreases linearly, then we do not need to leave the location.

4.3 Jump Synchronization

It is often convenient to allow several components to communicate via jump synchro-
nization. To this end, the jumps must be additionally associated with some synchro-
nization labels. Two components should synchronize on these labels in the sense that
jumps from different components with the same synchronization label should always
be executed together. However, it is not immediately clear when they should be
executed.

Recall that we only consider stochastic hybrid automata composable if their sets
of event labels are disjoint (see Section 3.3). Hence, jumps from different stochastic
hybrid automata cannot be associated with the same event label. The probability
that two jumps associated with different event labels become fireable at the same
time is 0 if their jump times are determined by continuous probability distributions.

Therefore, most approaches for compositional modeling of stochastic hybrid sys-
tems only allow to synchronize non-spontaneous jumps [CL07, Chapter 3] or sponta-
neous with non-spontaneous jumps [Buj05, DDL+12]. We are not aware of any model
allowing to synchronize spontaneous jumps with other spontaneous jumps. There ex-
ist different approaches for the synchronization of spontaneous with non-spontaneous
jumps, which are suited for different scenarios.

Shared Variable Concurrency 59

Firstly, we could require that whenever we want to take a stochastic jump, match-
ing non-stochastic jumps have to be enabled in all other components. This condition
could also be restricted such that only a certain set of stochastic jumps is supposed to
be synchronized at all. This approach was chosen by David et al. in [DDL+12], where
the time when a component takes an “output” action is determined stochastically and
all other components have to “passively” synchronize by performing a corresponding
input action. David et al. assure that the latter is always possible by requiring all
components to be input-enabled, i.e., all input actions have to be possible in all states.

Alternatively, we could allow a stochastic jump to be taken on its own unless a non-
stochastic jump with the same synchronization label is currently enabled in another
component, as proposed by Bujorianu [Buj05]. Bujorianu distinguishes between active
and passive jumps. Active jumps can be spontaneous or forced, while passive jumps
may only be executed if and only if an active jumps with the same synchronization
label is executed by another component at the same time. If a component wants to
take an active transition but no corresponding passive transition exists in the other
component, the former component may nevertheless execute its transition. Hence, it
is not assumed that a synchronizing jump exists at all times.

4.4 Shared Variable Concurrency

Our model currently only allows each variable to be written by at most one com-
ponent. In some cases it might however be desirable to have truly shared variables,
which can be written by several components concurrently. Here we only consider how
several components could be allowed to write variables via resets and assume that the
evolution of all variables is determined by a single component or that the components
at least prescribe the same continuous evolution. We see at least three possibilities
to include concurrent writing in our model, each facing different challenges.

Firstly, we could allow concurrent writing directly, i.e., simply allowing to reset
non-controlled variables as, for example, done by Bernadsky [BSA04]. Then, the
invariant of the current location of one component might become violated if another
component changes the value of a shared variable. Bernadsky et al. solved this by
weakening the invariant semantics such that a forced jump is taken as soon as the
location invariant is violated.

Instead of weakening the invariants, we could introduce jump synchronization,
such that a jump changing a shared variable must always be taken together with
matching jumps in the other components. More specifically, we would need to add
non-spontaneous “passive” jumps to all locations, defining where to jump for all pos-
sible changes of the shared variables, and add synchronization labels matching the
jumps. Similar to the assumption of input-enabledness in [DDL+12], we would need
to require that some passive transition exists for every possible change of the shared
variables at all times. Jumps violating the current location invariant could either lead
to a sink location, or, in the spirit of forced jumps with weakened invariants, allow to
transition to a different location to continue the execution.

Another possibility is to implement some handshaking mechanism via additional
variables and locations, which could work roughly as follows. We could introduce a
dedicated component Aw which controls the variables that are supposed to be shared.
Each component needs to be extended by a set of controlled variables that are used to
communicate with Aw. If a component wants to reset a shared variable via some jump,

60 Language Extensions

it signals the desired changes to Aw and transitions to a temporary location while
the variable values are changed. Aw then has to instantaneously change the variable
values and signal the successful reset back, which allows the original component to
transition to the originally desired target location. During this procedure, no time
may pass and hence all jumps have to be urgent. All other components have to
synchronize on the changes, possibly via additional flags or jump synchronization.
Since implementing a handshaking mechanism is rather involved and complicated,
and requires the introduction of many new variables, transitions, and locations, this
approach seems less advantageous from a practical point of view.

Chapter 5

Conclusion

In this thesis, we proposed a modeling language for stochastic hybrid systems which
extends hybrid automata by stochastic behavior regarding the jump times and choice
between jumps. By binding together several jumps to model a stochastic event, we
enable modeling competing stochastically independent events.

We saw that the probability distributions determining the jump times must be
chosen carefully in order to avoid introducing timelocks or deadlocks. For closed,
invariant-free stochastic hybrid automata, we showed how to calculate the prob-
abilities of symbolic paths. A challenge here is that the probability distributions
do not always directly give the probabilities of sampling certain enabling durations,
since they may also assign positive probabilities to enabling durations that are never
reached. These probabilities are redistributed, which introduces implicit stochastic
dependencies. We also discussed how our model could be extended by other sources
of stochasticity or to allow for forced jumps.

Our model is compositional in the sense that components may communicate via
shared variables. Each component models the behavior of the other components
non-deterministically. We argued that the influence of non-controlled variables on
invariants, initial valuation sets, and resets must be restricted in order to avoid conflict
between components. We discussed several possibilities for including shared variable
concurrency, i.e., writing non-controlled variables in resets, or jump synchronization.

5.1 Future Work

Future work could extend our modeling language by other features as described in
Chapter 4, such as other sources of stochasticity, forced jumps, jump synchronization,
or shared variable concurrency.

In Section 3.2 we discussed several possibilities for future research regarding the
path probability calculations. Firstly, it would be desirable to be able to define
path probabilities for a wider class than just closed, invariant-free stochastic hybrid
automata. One possibility might be to avoid deadlocks by introducing forced jumps.
Further, one could investigate how to distinguish between the probabilities of time-
divergent and time-convergent paths and, based on that, determine the probability of
timelocks and Zeno paths. Additionally, it might be worthwhile to identify subclasses
of stochastic hybrid automata that are almost-surely non-Zeno, similar to [BBB+14].

62 Conclusion

Since our modeling language is compositional, it would be beneficial to be able
to formulate some compositional semantics which allows us to describe the behavior
of the composition of two stochastic hybrid automata without having to explicitly
build their syntactic parallel composition. Defining possible execution steps should
be rather straightforward. However, we currently do not see a possibility for calcu-
lating path probabilities for a composed stochastic hybrid automaton based on the
probability calculations of the two components, especially since these calculations are
only defined for closed systems.

Finally, it might also be interesting to investigate whether it would be possible to
define a fully abstract semantics which allows synchronization of components only via
their observable behavior, instead of using all information captured by the paths.

Bibliography

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138(1):3–34, 1995.

[AHS13] Duarte Antunes, Joao P. Hespanha, and Carlos Silvestre. Stochastic hy-
brid systems with renewal transitions: Moment analysis with application
to networked control systems with delays. SIAM Journal on Control and
Optimization, 51(2):1481–1499, 2013.

[AL94] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–
1571, 1994.

[App21] Matthias Appenzeller. Comparing Two Modeling Formalisms for Stochas-
tic Hybrid Systems. Bachelor’s thesis, RWTH Aachen University, 2021.

[BBB+14] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet,
Christel Baier, Marcus Größer, and Marcin Jurdzinski. Stochastic timed
automata. Logical Methods in Computer Science, 10(4), 2014.

[BBCM16] Patricia Bouyer, Thomas Brihaye, Pierre Carlier, and Quentin Menet.
Compositional design of stochastic timed automata. In Alexander S. Ku-
likov and Gerhard J. Woeginger, editors, Computer Science – Theory and
Applications, pages 117–130. Springer, 2016.

[BBR+20] Patricia Bouyer, Thomas Brihaye, Mickael Randour, Cédric Rivière, and
Pierre Vandenhove. Decisiveness of stochastic systems and its application
to hybrid models. volume 326, pages 149–165. Open Publishing Associa-
tion, 2020.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT press, 2008.

[BL04] Manuela L. Bujorianu and John Lygeros. General stochastic hybrid sys-
tems: Modelling and optimal control. In Proceedings of the 43rd IEEE
Conference on Decision Control, volume 2, pages 1872–1877, 2004.

[BLB06] Luminita Manuela Bujorianu, John Lygeros, and Marius C. Bujorianu.
Toward a general theory of stochastic hybrid systems. Lecture Notes in
Control and Information Sciences, 337:3–30, 2006.

64 Bibliography

[Bow01] Howard Bowman. Time and action lock freedom properties for timed
automata. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and
Danhyung Lee, editors, Formal Techniques for Networked and Distributed
Systems, pages 119–134, Boston, MA, 2001. Springer.

[BSA04] Mikhail Bernadsky, Raman Sharykin, and Rajeev Alur. Structured model-
ing of concurrent stochastic hybrid systems. In Yassine Lakhnech and Ser-
gio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pages 309–324. Springer, 2004.

[Buj05] Manuela-Luminita Bujorianu. Stochastic Hybrid System: Modelling and
Verification. Dissertation, University of Stirling, 2005.

[CL07] Christos G. Cassandras and John Lygeros, editors. Stochastic Hybrid
Systems. Control Engineering Series. CRC, 2007.

[Dav84] Mark H.A. Davis. Piecewise-deterministic Markov processes: A general
class of non-diffusion stochastic models. Journal of the Royal Statistical
Society: Series B (Methodological), 46(3):353–376, 1984.

[DDL+12] Alexandre David, Dehui Du, Kim G. Larsen, Axel Legay, Marius Mikuč
ionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statistical model
checking for stochastic hybrid systems. Electronic Proceedings in Theo-
retical Computer Science, 92:122–136, 2012.

[Fel91] William Feller. An Introduction to Probability Theory and Its Applica-
tions, volume 1. John Wiley and Sons, 1991.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick,
and Lijun Zhang. Measurability and safety verification for stochastic hy-
brid systems. In Proceedings of the 14th ACM International Conference
on Hybrid Systems: Computation and Control, pages 43–52. ACM, 2011.

[GAM97] Mrinal K. Ghosh, Aristotle Arapostathis, and Steven I. Marcus. Ergodic
control of switching diffusions. SIAM Journal on Control and Optimiza-
tion, 35(6):1952–1988, 1997.

[Gbu18] Daniel Gburek. Stochastic Transition Tystems: Bisimulation, Logic, and
Composition. Dissertation, TU Dresden, 2018.

[Hes05] Joao Hespanha. A model for stochastic hybrid systems with application
to communication networks. Nonlinear Analysis: Theory, Methods &
Applications, 62:1353–1383, 09 2005.

[Hes07] Joao Hespanha. Modeling and analysis of stochastic hybrid systems. IEE
Proceedings — Control Theory and Applications, Special Issue on Hybrid
Systems, 153:520–535, 01 2007.

[Hes14] Joao Hespanha. Modeling and analysis of networked control systems using
stochastic hybrid systems. Annual Reviews in Control, 38, 10 2014.

[HHHK13] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter
Katoen. A compositional modelling and analysis framework for stochastic
hybrid systems. Formal Methods in System Design, 43(2):191–232, 2013.

Bibliography 65

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and
System Sciences, 57:94–124, 1998.

[HLS00] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of
stochastic hybrid systems. In Nancy Lynch and Bruce H. Krogh, edi-
tors, Hybrid Systems: Computation and Control, pages 160–173. Springer,
2000.

[Hua21] Mengzhe Hua. Approximate Model Checking for Probabilistic Rectangu-
lar Automata with Continuous-Time Probability Distributions on Jumps.
Bachelor’s thesis, RWTH Aachen University, 2021.

[JELS99] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar
Sastry. On the regularization of zeno hybrid automata. Systems and
Control Letters, 38(3):141–150, 1999.

[LLA+21] Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Luca Cardelli, and
Marta Kwiatkowska. Formal and efficient synthesis for continuous-time
linear stochastic hybrid processes. IEEE Transactions on Automatic Con-
trol, 66(1):17–32, 2021.

[LSAZ21] Abolfazl Lavaei, Sadegh Soudjani, Alessandro Abate, and Majid Zamani.
Automated verification and synthesis of stochastic hybrid systems: A
survey. arXiv:2101.07491, 2021.

[LTS99] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for reacha-
bility specifications for hybrid systems. Automatica, 35(3):349–370, 1999.

[Mar04] Nelson G. Markley. Principles of Differential Equations. Pure and Applied
Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley,
2004.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[NHR21] Mathis Niehage, Arnd Hartmanns, and Anne Remke. Learning optimal
decisions for stochastic hybrid systems. In Proceedings of the 19th ACM-
IEEE International Conference on Formal Methods and Models for System
Design, page 44–55. ACM, 2021.

[PBLD03] Giordano Pola, Manuela-Luminita Bujorianu, John Lygeros, and Maria D.
Di Benedetto. Stochastic hybrid models: An overview. Proceedings IFAC
Conference on Analysis and Design of Hybrid Systems, 36(6):45–50, 2003.

[PKRA20] Carina Pilch, Maurice Krause, Anne Remke, and Erika Abraham. A
transformation of hybrid Petri nets with stochastic firings into a subclass
of stochastic hybrid automata. In Proceedings NASA Formal Methods
Symposium, pages 381–400. Springer, 2020.

[Sch22] Nadja Scherer. A Compositional Modeling Language for Stochastic Hybrid
Systems. Bachelor’s thesis, RWTH Aachen University, 2022.

66 Bibliography

[TEF11] Tino Teige, Andreas Eggers, and Martin Fränzle. Constraint-based analy-
sis of concurrent probabilistic hybrid systems: an application to networked
automation systems. Nonlinear Analysis: Hybrid Systems, 5(2):343–366,
2011.

[Tri99] Stavros Tripakis. Verifying progress in timed systems. In Joost-Pieter
Katoen, editor, Formal Methods for Real-Time and Probabilistic Systems,
pages 299–314. Springer, 1999.

[TSS14] Andrew R. Teel, Anantharaman Subbaraman, and Antonino Sferlazza.
Stability analysis for stochastic hybrid systems: A survey. Automatica,
50(10):2435–2456, 2014.

[Zil12] Dennis G Zill. A First Course in Differential Equations with Modeling
Applications. Cengage Learning, 2012.

[ZJLS01] Jun Zhang, Karl Johansson, John Lygeros, and Shankar Sastry. Zeno
hybrid systems. International Journal of Robust and Nonlinear Control,
11:435 – 451, 04 2001.

	Introduction
	Hybrid Automata
	Syntax of Hybrid Automata
	Semantics of Hybrid Automata
	Composition of Hybrid Automata

	Stochastic Hybrid Automata
	Syntax of Stochastic Hybrid Automata
	Semantics of Stochastic Hybrid Automata
	Composition of Stochastic Hybrid Automata
	Comparison to Other Approaches

	Language Extensions
	Other Sources of Stochasticity
	Forced Jumps
	Jump Synchronization
	Shared Variable Concurrency

	Conclusion
	Future Work

	Bibliography

