
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

REACHABILITY ANALYSIS OF HYBRID SYSTEMS

WITH LABEL SYNCHRONIZATION

Haiyan Saadi

Communicated by
Prof. Dr. Erika Ábrahám

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
József Kovács

Aachen, July 10, 2024

Abstract

In this work we extend a forward reachability analysis method for rectan-
gular automata to a concurrent synchronized analysis of multiple automata.
Successor states of rectangular automata can be exactly represented by a set of
polyhedra, avoiding the need for over-approximation. We introduce a synchro-
nization technique based on projecting the local states on the time dimension
and �nding a common time interval for every synchronizing jump, then comput-
ing successor state sets only within this interval. The synchronization context
of each state set is saved in the search trees of the individual automata, which
eliminates the need for computation and comparison of paths in order to en-
sure correct synchronization. Our method shows great prospect in dealing with
high-dimensional models and is extendable to multiple state set representations
and automata types.

iv

Contents

Notation 9

1 Introduction 11

2 Preliminaries 13

2.1 Hybrid Systems . 13
2.2 State Set Representations . 17
2.3 Reachability Analysis . 19
2.4 Flowpipe Construction . 19
2.5 Variable Set Separation . 23

3 Synchronized Reachability Analysis of Rectangular Automata 25

3.1 Global Time and Synchronization Labels 25
3.2 Label Synchronization . 29

4 Experimental Results 35

4.1 Implementation . 35
4.2 Benchmarks . 37

5 Conclusion 43

5.1 Summary . 43
5.2 Discussion and Future Work . 43

Bibliography 45

vi Contents

Notation

Throughout this work, we will use the following notational conventions.

Notation (Variables). We will use small-case letters x, y, z, . . . to describe real-
valued variables of hybrid automata. For a variable x ∈ R of a hybrid automaton

� ẋ denotes the �rst time derivative of x.

� x′ denotes the value of x after a discrete transition.

We extend this notation to sets of variables, e.g., if X = {x1, . . . ,xn} is a set of vari-
ables then Ẋ = {ẋ1, . . . ,ẋn} is the set of �rst time derivatives and X ′ = {x′1, . . . ,x′n}
is the set of variable values after a discrete transition.

Notation (Variable Valuations). Small-case letters v, u, . . . are used to describe vari-
able valuation, i.e., v ∈ Rd is a real-valued vector of length d.

Notation (Search Tree Nodes). We also use small-case letters like m, n, p, s, . . .
to refer to nodes of the search tree (see De�nition 3.1.1), r usually refers to the root
node of a tree.

Notation (Set Cardinality). For a set X, we denote its cardinality by |X|.

Notation (Power Set). For a set X, we denote its power set by 2X = {A | A ⊆ X}.

Notation (d-dimensional Space). For a set X we denote the d-dimensional space of
X by Xd = X × · · · ×X︸ ︷︷ ︸

d times

. If not stated otherwise we assume d ∈ N>0.

Notation (Logical Formluas). We use small-case Greek letters φ, ψ, . . . to describe
logical formulas.

Notation (Predicates). For a set of variables X we use the notation PredX to de-
scribe all predicates over X, which are quanti�er-free arithmetic formulas with vari-
ables from X.

Notation (Intervals). For S ∈ {N, Z, Q, R}, and a,b ∈ S we use the following
interval notation.

� [a,b] := {s ∈ S | a ≤ s ≤ b}

� [a,b) := {s ∈ S | a ≤ s < b}

� (a,b] := {s ∈ S | a < s ≤ b}

� (a,b) := {s ∈ S | a < s < b}

We use the notation I for the set of all real-valued intervals.

10 Contents

Chapter 1

Introduction

Hybrid systems are characterized by a combination of discrete state changes and
continuous evolution. They are deployed in many applications ranging from heating
control units and autopilot systems in automotive and aviation to production plants
and medical devices. Many of these applications are safety-critical, and ensuring the
correct behaviour of these systems is essential and has been the focus of much research
in the past years. Formal methods have been investigated and developed to verify and
validate the safety of hybrid systems, some of which are based on theorem proving
[PQ08] and others on satis�ability checking [FHT+07].

One prominent safety veri�cation approach is based on iterative forward reachabil-
ity analysis, which veri�es safety properties by computing the set of reachable states
and checking them against a set of �bad� or undesired states. In forward reachability
analysis hybrid systems are usually modelled as hybrid automata, and the set of bad
states can be described by a logical formula over the automaton's variables.

Since the reachability problem is undecidable for general hybrid automata, many tools
use approximative methods to compute the reachable set, e.g., �owpipe-construction-
based methods like SpaceEx [FLGD+11] and CORA [Alt15] and many more. De-
spite the advancement of such reachability analysis methods, scalability remains a
major challenge. System models with high dimension experience complex behaviour
and require improved analysis techniques to ensure their safety. Decomposition of
large complex systems has been applied to some �owpipe-construction-based meth-
ods, where the system is split into multiple lower-dimensional subsystems with limited
dependencies, allowing the analysis of each subsystem separately [CS16, BFF+18].

Methods that use decomposition like Variable Set Separation [SNÁ17] introduce im-
precision to the computed reachable set because they ignore the dependencies between
the variables, the most important of which is time. Running the analysis on the sub-
systems individually assumes a di�erent time evolution for each subsystem, whereas
in the original global system time evolves unitarily over all system variables. One way
of including the notion of global time into the analysis of multiple hybrid systems is
by synchronizing the evolution of the subsystems. Traditionally this can be achieved
by the construction of a product automaton, which is the parallel composition of the
input automata. However, this approach just yields back the original automaton be-
fore decomposition.

12 Introduction

Therefore, di�erent �synchronization� methods have been proposed to compute the
reachable set of multiple hybrid automata without the need to build the product au-
tomaton. e.g., shallow synchronization [BCL+10] explores the local time evolution of
every automaton in a network of hybrid automata until they perform a synchroniz-
ing transition, in which case they realign their times. The tool Bach 2 [BLW+10]
uses a path-oriented technique to compute the bounded reachable set of linear hybrid
automata (LHA) compositions. Paths are encoded to a set of linear constraints and
special constraints are added for synchronization control.

In this thesis, we introduce a synchronization approach for forward reachability analy-
sis of multiple rectangular automata based on synchronizing transitions with common
labels. The algorithm distinguishes between two types of transitions, ones that allow
an automaton to evolve locally, and others that force the system to synchronize jump
successor computation.

We begin by presenting the fundamental concepts and de�nitions in Chapter 2. Specif-
ically Section 2.4 describes �owpipe construction for linear hybrid automata, as well
as the exact computation of jump and time successors of rectangular automata. In
Chapter 3 we introduce our synchronized forward reachability analysis approach. Sec-
tion 3.1 explains the new data structures and their functional objectives in our ap-
proach. We rede�ne the search tree of the forward reachability analysis and extend it
with vital synchronization information. We then present our method in Section 3.2,
which involves a general forward reachability analysis algorithm in Section 3.2.1, the
computation of successor states in Section 3.2.2 and the search algorithm for �nd-
ing synchronizing states in Section 3.2.3. In Chapter 4 we present and evaluate our
implementation in the tool HyPro. We use three well-known benchmarks to assess
runtimes, memory-usage and the complexity of our proposed approach. Finally, we
conclude in Chapter 5 by summarizing our �ndings, discussing the contribution and
limitations and giving an outlook into potential future research directions.

Chapter 2

Preliminaries

2.1 Hybrid Systems

Hybrid systems are systems that combine discrete and continuous behaviours. A
discrete component exhibits instantaneous state changes, like the change in direction
when a free-falling ball bounces o� the ground, or a sensor signal reporting a certain
binary value (e.g., on/o� or alarm/no alarm). Whereas a continuous component
evolves according to some dynamical law in a real-valued state space, like time or
speed in a physical system. This combination of continuous and discrete aspects
leads to complex system behaviours and poses the challenge of formal reasoning and
analysis of such systems. An example of a hybrid system, to which we have already
hinted, is a ball bouncing o� the ground from a certain altitude, the speed of the ball
is changing continuously with time according to the gravitational acceleration, and a
bounce o� the ground prompt an instantaneous change in direction. Another exam-
ple is a heating unit controlled by a digital controller. The heating unit is turned on
when the temperature falls below a certain lower threshold and turned o� when the
temperature rises above an upper threshold, in each of the two states the temperature
evolves continuously.

Hybrid Automata. In order to verify properties of hybrid systems, a formal mod-
elling language was introduced that accurately describes the system and its behaviour.
A hybrid automaton encodes all the relevant properties of a hybrid system as well as
describes its evolution. Each variable of the hybrid automaton represents a property
of the system that evolves continuously through time. For a variable x, ẋ denotes
the �rst derivative of x during continuous change and x′ denotes the value of x af-
ter a discrete change, i.e., applying a reset function to the variable x. Furthermore,
PredVar denotes the set of all predicates over the set Var .

De�nition 2.1.1 (Hybrid Automaton [Sch19]). A hybrid automaton is a tuple H =
(Loc,Var ,Lab,Flow , Inv ,Edge, Init) where

� Loc is a �nite set of locations or control modes;

� Var = {x0, x1, . . . , xd−1} is an ordered �nite set of real-valued variables, where
d is the dimension of H;

� Lab is a �nite set of synchronization labels containing the stutter label τ ∈ Lab;

14 Preliminaries

� Flow : Loc → PredVar ∪ ˙Var de�nes the �ow or dynamics of each location;

� Inv : Loc → PredVar de�nes an invariant for each location;

� Edge ⊆ Loc×Lab×PredVar ×PredVar ∪Var ′ ×Loc is a �nite set of discrete
transitions or jumps, where a jump (l1,a,g,r,l2) ∈ Edge is de�ned by its source
location l1, synchronization label a, guard g, reset function r and target location
l2;

� Init : Loc → PredVar de�nes an initial predicate for each location.

Valuation of the variables of the hybrid automaton are represented as vectors
v ∈ Rd. An invariant φ of a location l is a predicate that restricts the possible vari-
able valuation in l to those that satisfy φ. Invariants force a discrete state change
of the system before the invariant is violated. Discrete state changes are achieved
through transitions or jumps. A jump e ∈ Edge can be taken when the current vari-
able valuation v satis�es the guard g and the valuation v′ after applying the reset r
satis�es the invariant of the target location l2

Hybrid automata can be classi�ed into subclasses based on their expressiveness. These
subclasses are usually de�ned by syntactical restrictions on the type of predicates de-
scribing the automaton's �ows, invariants, guards, and resets. A relatively simple
subclass is timed automata [AD94], where every variable x ∈ Var has the derivative
ẋ = 1. A more expressive one is linear hybrid automata [ACH+95], where the �ows,
invariants and transition relations of the system can be de�ned by linear expressions
over the set of variables Var . The reachability problem is decidable for timed au-
tomata but undecidable for linear hybrid automata.

Rectangular automata is another subclass of hybrid automata that is less expressive
than linear hybrid automata but more expressive than timed automata. Variables of a
rectangular automaton are pairwise independent in their time evolution, i.e., the �ow
and reset values of a variable x1 is not in�uenced by the value of another variable x2.
Speci�cally, the �rst derivative of each variable in a rectangular automaton is given
from an interval [a,b], where a and b are constants. The same goes for the reset func-
tion values; when a jump is taken, the value of each variable is either left unchanged
or reset non-deterministically to a value from a speci�c interval. This property of
rectangular automata results in decoupled behaviours of the variables, because the
ranges of possible values and derivative values for one variable cannot depend on the
value or derivative value of another variable.

To introduce the formal de�nition of rectangular automata, �rst we need to de�ne
rectangular sets.

De�nition 2.1.2 (Rectangular Set [Ábr17]). A set R ⊂ Rn is rectangular if it is a
Cartesian product of (possibly unbounded) intervals, all of whose �nite endpoints are
rational. The set of all rectangular sets in Rn is denoted Rn.
We use the notation Ri for the projection of R onto the i-th coordinate axis, so that
R = R1 × · · · ×Rn.

A rectangular automaton is a hybrid automaton whose �ows, invariants and tran-
sition relations are de�ned by rectangular sets.

Hybrid Systems 15

De�nition 2.1.3 (Rectangular Automaton [Ábr17]). A rectangular automaton is a
tuple H = (Loc,Var ,Lab,Flow , Inv ,Edge, Init) where

� Loc is a �nite set of locations or control modes;

� Var = {x0, x1, . . . , xd−1} is an ordered �nite set of real-valued variables, where
d is the dimension of H;

� Lab is a �nite set of synchronization labels;

� Flow : Loc → Rd de�nes the �ow or dynamics of each location;

� Inv : Loc → Rd de�nes an invariant for each location;

� Edge ⊆ Loc×Lab×Rd×Rd×2{1,...,d}×Loc is a �nite set of discrete transitions
or jumps;

� Init : Loc → Rd de�nes an initial rectangular set for each location.

For the jumps, an edge e = (l, a, g, r, jump, l′) ∈ Edge may move control from
location l to location l′ starting from a valuation in Inv(l) ∩ g, changing the value
of each variable xi ∈ jump non-deterministically to a value from ri (the projection
of r to the i-th dimension), and leaving the values of the other variables unchanged.
The combination of a location l ∈ Loc and a variable valuation v ∈ Rd describe the
state of the hybrid automaton σ = (l,v). The state space of a hybrid automaton H is
denoted by Σ = Loc× Rd.

Since our main focus in this work is rectangular automata we will now present their
operational semantics. Rectangular automata have two types of semantics that govern
their behaviour (see De�nition 2.1.4). A time step, described by the rule Ruleflow,
de�nes how a state of the hybrid automaton can evolve with time in a certain loca-
tion l, while a jump or a discrete step, described by the rule Rulejump, de�nes the
instantaneous change of state from one source location to a target location, under the
condition that the predecessor state satis�es the guard of the jump, and the successor
state satis�es the invariant of the target location.

De�nition 2.1.4 (Operational Semantics of Rectangular Automata [DSÁR23]). The
one-step semantics of rectangular automaton H = (Loc,Var ,Lab,Flow , Inv ,Edge,
Init) is de�ned by the following rules:

l ∈ Loc v ∈ Rd t ∈ R≥0 rate ∈ Flow(l)
v′ = v + rate ·t v′ ∈ Inv(l)

(l,v)
t→ (l,v′)

RULE FLOW

e = (l,a,g,r, jump ,l′) ∈ Edge v ∈ g v ∈ Inv(l)
v′ ∈ r ∀i /∈ jump ·v′i = vi v′ ∈ Inv(l′)

(l,v)
e→ (l′, v′)

RULE JUMP

a step (discrete or time step) according to those semantics is called an execution
step

→ =
t→ ∪ e→

16 Preliminaries

A path (or run or execution) π of H is a sequence σ0 → σ1 → σ2 → . . . such that
v0 ∈ Inv(l0) and σi → σi+1 for all i ≥ 0.

As hybrid automata model real-life systems, and many systems are constructed from
multiple subsystems, it is important to describe the combination of multiple automata
running in parallel. The parallel composition of two hybrid automata H1 and H2

describes the concurrent execution of the two systems described by the automata.
Time evolves simultaneously in H1 and H2, and the two automata must synchronize
on common labels, i.e., transitions with a synchronization label a ∈ Lab1 ∪Lab2 must
be taken synchronously in both automata.

De�nition 2.1.5 (Parallel Composition [Sch19]). The product automaton of two
hybrid automata H1 = (Loc1,Var1,Lab1,Flow1, Inv1,Edge1, Init1) and H2 = (Loc2 ,
Var2,Lab2,Flow2, Inv2,Edge2, Init2) with Var1 = Var2 is the hybrid automaton

H1 ∥ H2 = (Loc,Var ,Lab,Flow , Inv ,Edge, Init)

where

� Loc = Loc1 ×Loc2

� Var = Var1 = Var2

� Lab = Lab1 ∪Lab2

� Flow((l1,l2)) = Flow1(l1) ∧ Flow2(l2) for all (l1,l2) ∈ Loc

� Inv((l1,l2)) = Inv1(l1) ∧ Inv2(l2) for all (l1,l2) ∈ Loc

� Init((l1,l2)) = Init1(l1) ∧ Init2(l2) for all (l1,l2) ∈ Loc

� Edge is the smallest set that contains for each (l1,a1,g1,r1,l
′
1) ∈ Edge1 and

(l2,a2,g2,r2,l
′
2) ∈ Edge2 the edge ((l1,l2),a,g1 ∧ g2,r1 ∧ r2,(l′1,l′2)) if:

� either a = a1 = a2

� or a1 /∈ Lab2 and a2 = τ

� or a2 /∈ Lab1 and a1 = τ

The parallel composition of two hybrid automata H1 and H2 describes the syn-
chronized system which consists of H1 and H2. Analysing the synchronization of
multiple automata is essential for the veri�cation of complex systems, as it allows us
to reason about the behaviour of the system as a whole. However, even if we overlook
the fact that constructing the product automaton is a costly operation, the analysis
of the compound automaton is still challenging, as we always risk the state-space
explosion problem.

In the following we present a model of the water tank system from [Lyg04], with
slight modi�cation to the �ows such that the model of the system is a rectangular
automaton.

Example 2.1.1 (Water Tank System). Assume two identical water tanks, each with
a valve to control the �ow of water out of the tank, and a hose that re�lls (with water
�ow w) exactly one of the tanks at each point in time. We denote the water level in

State Set Representations 17

l0
ẋ1 ∈ [w − v1, w]
ẋ2 ∈ [−v2, 0]
x2 ≥ r2

x1 > r1
∧ x2 > r2

l1
ẋ1 ∈ [−v1, 0]

ẋ2 ∈ [w − v2, w]
x1 ≥ r1

x1 > r1
∧ x2 > r2

a : x2 ≤ r2

b : x1 ≤ r1

Figure 2.1: Rectangular automaton model of the water tank system.

each of the tanks by x1 and x2, respectively. The valve of the �rst tank could be closed,
no water �ows out of the tank, or completely open, leading to maximum water out�ow
and a water level decrease of v1, or anywhere in between. Similarly, for the second
tank, the state of the valve controls the water out�ow between 0 and v2. The hose �lls
one of the tanks causing an increase of w ∈ R>0 in water level. The derivative of the
water level in the �rst tank is therefore in the interval [w− v1,w] if it's getting re�lled
and in the interval [−v1,0] otherwise. The same applies for the second tank, with the
derivative in the interval [w − v2,w] if it's getting re�lled and in the interval [−v2,0]
otherwise. When re�lling the �rst tank, the hose switches to the second tank when its
water level x2 reaches a given lower threshold r2 ∈ R>0. The switch from the second
tank to the �rst one works analogously when x1 reaches some r1 ∈ R>0.

The water tank system is modelled by the rectangular automaton in Figure 2.1. The
automaton has two locations l0 and l1, where l0 represents the state where the �rst
tank is being re�lled and the second tank is not, and l1 represents the state where
the second tank is being re�lled and the �rst tank is not. The �ow condition of each
location describes the rate of change of the water level in each tank, and the invariant
of each location forces the control to take the transition to the other location when the
water level in the other tank reaches a certain threshold. The guards of the transitions
make sure that each of the tanks get re�lled until the water level in the other tank
reaches the lower threshold.

2.2 State Set Representations

A state σ ∈ Σ = (Loc×Rd) of a hybrid system is tuple (l,v) of a location l ∈ Loc
and a variable valuation v ∈ Rd. Sets of valuations N which agree on the same
location form a symbolic state (l,N) = {(l,v) | v ∈ N} or a state set. To analyse
hybrid systems we need to represent the state sets in a way that allows us to perform
set operations like intersection, union, Minkowski sum, or emptiness test e�ciently.
Boxes, polytopes, zonotopes and other geometric state set representations usually
o�er a low computational e�ort for set operations, but they often introduce large
over-approximations of the real state sets.

De�nition 2.2.1 (Box [Sch19]). A box representation is a vector AB of d real-valued
intervals AB = (A0, . . . ,Ad−1) ⊆ Id represent a d-dimensional box.

A =

{
x

∣∣∣∣∣
d−1∧
i=0

xi ∈ Ai

}

18 Preliminaries

where the d-dimensional set is spanned by the Cartesian product of the given intervals
such that Set(AB) = A0 × · · · ×Ad−1.

De�nition 2.2.2 (Zonotope [Sch19]). A d-dimensional zonotope representation is a
tuple AZ = (c, g0, . . . , gn−1) with a centre c ∈ Rd and a (possibly empty) sequence
g0, . . . , gn−1 of vectors from Rd called generators. AZ represents the set

AZ =

{
c+

n−1∑
i=0

λi · gi

∣∣∣∣∣ λi ∈ [−1,1] ⊆ Rd

}
,

and we use |AZ | to denote the number of generators in AZ .

On the other hand, symbolic representations (e.g., support functions [BNO03]
and Taylor models [Neu03]) can provide more precise results compared to geometric
representations, but the computational e�ort for set operations can be high.

In this work, we are interested with the reachability analysis of rectangular automata,
and a very important characteristic of rectangular automata is that the time successor
of a state set under rectangular dynamics is always a (convex) polyhedron. Therefore,
since polytopes are bounded polyhedra, we use polytopes to represent the state sets
in our reachability analysis. Furthermore, polytopes are closed under most operation
required for the analysis. Only the union of two convex polytopes A and B required
the additional e�ort of computing the convex hull of the union A∪B. This allows our
analysis to e�ciently apply operations on the state sets without having the downside
of over-approximation.

De�nition 2.2.3 (Polytope [Sch19]). A d-dimensional convex polytope PH in H-
representation is a pair (N,c) with N ∈ Rm×d and c ∈ Rm which de�nes a convex
set

PH =

m−1⋂
i=0

hi

as the intersection of �nitely many half-spaces {h0, h1, . . . , hm−1} with hi = {x ∈ Rd |
ni,_ · x ≤ ci}, where ni,_ is the i-th row of N .
The same polytope can also be represented in V-representation as the convex hull of
a �nite set PV = {v0, . . . ,vm−1} of vertices vi ∈ Rd:

PV =

{
x

∣∣∣∣∣ x =

m−1∑
i=0

λivi ∧
m−1∑
i=0

λi = 1 ∧ λi ∈ [0,1]

}

We note that di�erent polytope representations lead to di�erent computational
complexities for set operations. The H-representation is more e�cient for set opera-
tions like intersection or intersecting with a hyperplane, while the V-representation is
more e�cient for set operations like Minkowski sum or testing for emptiness [Sch19].
During reachability analysis, conversion method between the two representations are
usually applied when the operation is too expensive or impossible in the original
representation. We will see the e�ect of choosing the polytope representation on
synchronized reachability analysis in Chapter 4.

Reachability Analysis 19

2.3 Reachability Analysis

The importance of safe behaviour of hybrid systems e.g., autopilot systems, or pace-
maker devices for the human heart highlights the need for formal veri�cation, because
faulty behaviour of such systems can have detrimental e�ects. Reachability analysis
of hybrid systems is concerned with determining whether a system is able to reach
a set of bad states Pbad, representing undesired or risky system behaviours. Model
checking approaches to reachability analysis rely on state set exploration, where the
reachable state space is explored in order to �nd a path from an initial state to a bad
state, in other words we check if ReachH ∩ Pbad = ∅, where ReachH denotes the set
of reachable states of automaton H. In contrast to deductive veri�cation approaches,
for example, where proofs are used to verify a system instead of state set exploration.

Iterative reachability analysis methods prove safety by iteratively computing a suc-
cessor (or predecessor) state from the current state. Forward reachability analysis
tries to iteratively determine the successor states of all initial states, and checks if the
system could reach a bad state [ACH+95]. Whereas backward reachability analysis
iteratively determines the predecessor states of all bad state, and checks if the system
could reach an initial state [MBT05].

Since the reachability problem for general hybrid automata is undecidable [HKPV98],
we compute an over-approximation of the reachable state space. This means that we
can only prove that a system is safe if we �nd an over-approximation of the reachable
state space that does not intersect with the set of bad states. i.e., if Reach′H∩Pbad = ∅
where Reach′H ⊇ ReachH denotes an over-approximation of the reachable states of the
automaton H. On the other hand to prove unsafety, we need an under-approximation
of the reachable state space to ensure that the bad state we have found is also reachable
in the actual system and was not only found due to our over-approximation. These
types of analysis face certain challenges, for example, computing the unbounded-time
reachable set is not always possible in �nite time. Therefore, it is common to resort
to computing the reachable set within a speci�ed time horizon T , which represents
the maximum duration of uninterrupted time evolution in a certain location of the
hybrid automaton. Another problem that arises is Zeno execution; an in�nite number
of discrete transitions in a �nite amount of time. To deal with this problem we could
introduce a bound J on the number of jumps. In unbounded reachability analysis
we compute the reachable state until no new states are reached, i.e., a �xed point is
reached.

2.4 Flowpipe Construction

The idea of �owpipe-construction-based reachability analysis is to perform forward
reachability analysis by computing the successor states of the initial states by dis-
cretizing the time horizon T into N time steps (δ = T

N) and over-approximating the
reachable state set for each time step. In other words, the �owpipe of a reachable state
of the hybrid automaton is a set of segments, that each over-approximates the actual
reachable state set by time evolution for a time interval of length δ. All �owpipe
segments in a location l must satisfy the invariant of l. After computing the �owpipe,
we can compute jump successors by intersecting the �owpipe segments with the guard
and applying the reset function on those segments that satisfy the guard, and if the

20 Preliminaries

invariant of the target location is satis�ed after applying the reset, we continue with
the �owpipe construction in the target location and so on.

For LHA II each control mode speci�es a dynamic system by a system of linear
di�erential equations

ẋ = Ax (2.1)

over the variables x = (x0, . . . ,xd−1)
T of the given hybrid automaton H, with A ∈

Rd×d a being a coe�cient matrix. The solution of 2.1 is given by

x(t) = etA︸︷︷︸
Φ

· x(0) (2.2)

and it describes the states that are reached at time point t when starting form initial
state x(0) at time point t = 0 and following the �ow speci�ed by the matrix A. This
linear transformation of initial variable valuation x0 = x(0) can directly be extended
to sets of variable valuations N such that for a set N0 of initial variable valuations

Nt = Φ ·N0.

With this computation we can compute the reachable state set at any time point
t but still does not give us the reachable state set within a time interval. Several
methods overcome this problem by over-approximating the reachable state set for a
time interval [0,δ] [LG09, LG10, Dan00]. The idea is to over-approximate the error
α between the over-approximation Ω of the reachable state set for time interval [0,δ]
and the actual reachable state set

Reach[0,δ] =
{
(l,v)

∣∣ v = etA · x0, t ∈ [0,δ], x0 ∈ N0

}
We do this by considering the union of line segments between the initial state and
the state reached after time δ for each initial state x0 ∈ N0, which de�nes the convex
hull of N0 and Nδ = eδA · x(0). For an initial state x ∈ N0 and the state r = eδA · x
that is reached from x at time point δ the connecting line segment between x and r
is de�ned as {

sx(t) = x+
t

δ
(r − x)

∣∣∣∣ t ∈ [0,δ]

}
now, the error between the line segment sx(t) and the actual trajectory ζx(t) = etAx
can be quanti�ed as

∥ζx(t)− sx(t)∥ =

∥∥∥∥etAx− x− t

δ
(eδA − I)x

∥∥∥∥
In [Gir05] this error was approximated using Taylor's theorem∥∥∥∥etAx− x− t

δ
(eδA − I)x

∥∥∥∥ ≤ (eδ∥A∥ − 1− δ∥A∥)∥x∥︸ ︷︷ ︸
α

this result allows us to bloat the convex hull with a ball Bα of radius α and safely
over-approximate the reachable state set for time interval [0,δ]

Ω = (N0 ∪Nδ)⊕ Bα

where the operator ⊕ denotes the Minkowski-sum of two sets.

Flowpipe Construction 21

De�nition 2.4.1 (Minkowski-sum [Sch19]). The Minkowski-sum of two sets A, B ⊆
Rd is de�ned as

A⊕B = {a+ b | a ∈ A ∧ b ∈ B}

This computes the �rst �owpipe segment Ω0 for the time interval [0,δ], allowing
us via linear transformation to compute further �owpipe segments Ωi for all time
intervals [iδ,(i+ 1)δ] until we reach the time horizon T .

Ωi = Φ · Ωi−1

With this method, starting from a de�ned set of initial states (l,N0) we can compute
the �owpipe segments Ωi, i = 0, . . . ,N − 1 for a given dynamics A and time horizon
T using a �xed time step δ = T

N . All �owpipe segments must satisfy the invariant of
location l, therefore we check for each computed segment Ωi whether the invariant is
violated, and we stop the computation of further �owpipe segments Ωi+1,Ωi+2, . . . if
Ni∩Inv(l) = ∅. Now remains the computation of discrete successors from our current
location during the analysis.

For each transition e = (l,a,g,r,l′) ∈ Edge and for each �owpipe segment Ωi = (l,Ni),
we check whether the �owpipe segment enables the transition, i.e., whether the jump
can be taken from any state in the segment, or in mathematical terms, whether

N ′
i = Ni ∩ g ̸= ∅

if the intersection N ′
i is not empty then the transition e is enabled and the reset

function r can update the variable valuations of every non-empty segment, which
intersects the guard g, we obtain

Ω′′
i = (l,N ′′

i) = (l,r(N ′
i))

�nally we check whether any valuation from N ′′
i satisfy the invariant of the target

location l′, i.e., whether
N ′′′

i = N ′′
i ∩ Inv(l′) = ∅

and then we continue with computing the �owpipe in l′ for all non-empty segments
Ω′′′

i = (l′,N ′′′).

In case of Rectangular Automata the previous approach introduces unnecessary
e�ort, since rectangular automata have constant derivatives. The �owpipe construc-
tion approach uses segmentation, with the aim of reducing the over-approximation
error between the linear over-approximation and non-linear evolution during the �ow-
pipe construction. Because the evolution for rectangular automata is linear, the whole
�owpipe is a linear set, and we can replace the �owpipe construction by a much simpler
approach. In rectangular automata all assertion predicates encode rectangular sets,
i.e., each predicate is a conjunction of constraints comparing variables to constants.
Therefore, a state of a rectangular automaton can be described by a location and a
conjunction of linear real-arithmetic constraints over the variables of the automaton.
Consider rectangular automaton H = (Loc,Var ,Lab,Flow , Inv ,Edge, Init) and let us
represent the initial state set of H symbolically by (l,φ), where l is a location of H and
φ is a conjunction of constraints. Now the set of reachable states from (l,φ) can be
described by a union of similar symbolic states. We can compute the �ow successors

22 Preliminaries

of state (l,φ) by de�ning another state T+((l,φ)), to which we introduce quanti�ed
variables t, xpre representing time and time predecessor states respectively

∃t. ∃xpre. t ≥ 0 ∧ φ[xpre/x] ∧ Flow(l)[xpre,x/x,ẋ] ∧ Inv(l)

then we eliminate the quanti�ed variables t and xpre using variable elimination tech-
niques, e.g., Gaussian elimination and Fourier-Motzkin variable elimination to get
a description of the time successor states. For calculating jump successors we can
take a similar approach and de�ne a quanti�ed variable to describe the state before
the jump, with the help of which we can de�ne a new state J+((l,φ)) for each jump
e = (l,a,g,r, jump ,l′) ∈ Edge, where g is the guard and r is the reset function of the
jump. We represent the guard g and the reset r as a conjunction of constraints.

∃xpre. φ[xpre/x] ∧ g[xpre/x] ∧ r[x/x′] ∧ Inv(l′) ∧ Inv(l)[xpre/x]

and again we eliminate the quanti�ed variable xpre to get a description of the jump
successor states. Note that there is no need for time variable when computing the
jump successors, since the jump takes no time to commit.

Example 2.4.1 (Rectangular Reachability). Consider a rectangular automaton with
one location l0 and one transition e as depicted in Figure 2.2. We write all rectangular
sets as a conjunction of constraints over the variables of the automaton. The �ow in
location l0 is de�ned by 1 ≤ ẋ ≤ 2 and the invariant is x ≤ 5, the guard of the
transition e is x ≥ 1 and the reset function is x′ := 0. Now if we start in initial state
(l0, x = 0) we can describe the time successors of the state as follows

∃t. ∃xpre. t ≥ 0 ∧ xpre = 0︸ ︷︷ ︸
φ[x

pre
/x]

∧ xpre + t ≤ x ≤ xpre + 2t︸ ︷︷ ︸
Flow(l)[x

pre,x/x,ẋ]

∧ x ≤ 5︸ ︷︷ ︸
Inv(l0)

using Gaussian variable elimination to eliminate xpre and Fourier-Motzkin to elimi-
nate t we get

∃t. ∃xpre. t ≥ 0 ∧ xpre = 0 ∧ xpre + t ≤ x ≤ xpre + 2t ∧ x ≤ 5

⇔ ∃t. t ≥ 0 ∧ t ≤ x ≤ 4t ∧ x ≤ 5

⇔ 0 ≤ x ≤ 5

that means that after time t the system would be in a state (l0,0 ≤ x ≤ 5). From this
state we can compute the jump successors, which we describe as follows

∃xpre. 0 ≤ xpre ≤ 5︸ ︷︷ ︸
φ[x

pre
/x]

∧ 1 ≤ xpre︸ ︷︷ ︸
g[x

pre
/x]

∧ x = 0︸ ︷︷ ︸
r[x/x′]

∧ x ≤ 5︸ ︷︷ ︸
Inv(l′)

∧ xpre ≤ 5︸ ︷︷ ︸
Inv(l)[x

pre
/x]

and if we eliminate xpre using Fourier-Motzkin variable elimination we get

∃xpre. 0 ≤ xpre ≤ 5 ∧ 1 ≤ xpre ∧ x = 0 ∧ x ≤ 5 ∧ xpre ≤ 5

⇔ x = 0

Variable Set Separation 23

l0
ẋ ∈ [1,2]
x ≤ 5

x = 0
e : x ≥ 1
x′ ∈ [0,0]

Figure 2.2: Rectangular automaton with one location and one self loop.

2.5 Variable Set Separation

A challenging aspect of reachability analysis in general, and �owpipe-construction-
based approaches in particular, remains the ability to analyse large models with com-
plex behaviours. The variable set separation [SNÁ17] method has approached this
problem for PLC-controller plants by studying the characteristics of the variables of
such models. Speci�cally, the method leverages the dependencies within groups of
variables in the hybrid system to divide the variable set into multiple syntactically
independent subsets. This allows for the analysis to be performed in the subspaces
de�ned by the variable subsets, instead of the global space, reducing the computa-
tional e�ort needed to compute the reachable set.

Syntactical independence of the variable subsets means that the evolution of the vari-
ables of a subset does not directly in�uence the variables in other subsets. Formally, it
means that all predicates φ ∈ PredVar (as well as jump resets φ ∈ PredVar ∪Var ′ and
�ows φ ∈ PredVar ∪ ˙Var) in the hybrid automaton de�nition must be decomposable to
a conjunction φ = φ1∧· · ·∧φn of predicates φi ∈ PredVari

over the respective variable
subsets. Each global state set (l,v) ⊆ Loc×Rd can be represented by its projection
v↓Vari

= vi ∈ R|Vari| to the subspace. This representation, called (l,v1, . . . ,vn) the
projective representation of (l,v), drops the connection between subspaces, therefore
over approximates the global states.

Although we are able to split global states into syntactically independent projections,
the semantics of the variables in di�erent subspaces might still be connected in some
sense. One obvious connection between the variables in di�erent subspaces is the
passage of time. In rectangular automata, time is the only dependency between the
subspaces, because the variables of a rectangular automaton are already pairwise in-
dependent. In Chapter 3, we will see how we can bridge this gap for rectangular
automata and eliminate the over-approximation introduced by computing in multiple
subspaces.

24 Preliminaries

Chapter 3

Synchronized Reachability

Analysis of Rectangular

Automata

In variable set separation the reachable set of a hybrid system is computed after
dividing the system into multiple independent subspaces. Each subspace represent-
ing an independent hybrid system of its own. But since the method drops the de-
pendencies between the subspaces, it over-approximates the reachable set. In this
chapter we present an algorithm to compute the reachable set of multiple hybrid
systems synchronously, yet avoiding the state space explosion problem, that arises
when constructing the parallel composition. The algorithm leverages global time and
synchronization labels in order to synchronize jump successor computation. Every
subspace is represented in our analysis by a hybrid automaton. Every automaton can
evolve locally and compute the reachable sets that do not require synchronization.
However, if a synchronization label is shared between two or more components, the
algorithm takes into account all the automata that share the synchronization label
when computing their jump successors, ensuring that synchronizing transition in dif-
ferent subspaces has been taken within the same global time interval. Therefore, the
computation of the reachable set using synchronized reachability analysis simulates
the reachability analysis of the parallel composition of the input automata, but with-
out the e�ort of actually constructing the product automaton.

This approach is implemented as an extension to the rectangular reachability analysis
using HyPro [Sch19]. We restricted our implementation to rectangular automata and
polyhedral representation of state sets, so that we can perform exact computations of
the reachable sets. In Section 3.1 we introduce the concepts and data structures that
are needed to perform the synchronized reachability analysis, and in Section 3.2 we
present and explain the algorithm.

3.1 Global Time and Synchronization Labels

In order to perform reachability analysis that synchronizes the evolution of multiple
hybrid automata, we have introduced new data structures and extensions to exist-

26 Synchronized Reachability Analysis of Rectangular Automata

I

g

[l,u]

reset

Figure 3.1: Global time: The global time interval [l,u] is intersected with the state
set before applying the reset function when taking a synchronizing jump.

ing data structures to track the dependencies between the automata. These data
structures are crucial for ensuring proper synchronization during the analysis. The
following concepts are de�ned for a set of hybrid automata H = {H1, . . . ,Hn}.

Global Time. To compute the jump successors of multiple jumps synchronously we
have to consider the global time that have passed throughout the evolution of the sys-
tem, and check whether a time interval exists, within which all synchronizing jumps
that are involved in a synchronization step are enabled. To achieve this each automa-
ton is extended with a time variable ti that is initialized with 0 and has a constant
�ow ṫi = 1 in every location of the automaton Hi. The computation of a synchroniz-
ing jump successor required that all input automata take the jump at the same time.
Consequently, all local time intervals ti ∈ [li,ui] that enable the synchronizing jump
are intersected to create a global time interval [l,u], where synchronization is possible.

This global time interval is then intersected with each state set that enables the jump,
resulting a �reduced� state set, i.e., the part of the state set bounded by the global
time interval, on which the reset function is applied. This way we ensure that only
jumps that are enabled in all the automata are taken during the analysis. Figure 3.1
shows the intersection of the interval [l,u] with the �owpipe of state set I and the
guard g before applying the reset function.

Synchronization Dictionary. The synchronization of the automata is done ac-
cording to the synchronization labels, therefore it is not necessarily the case that
all the automata need to synchronize on each jump. The synchronization dictio-
nary is a data structure that saves for each label the set of automata that need to
synchronize on that label. Given a set of hybrid automata H = {H1, . . . ,Hn} with
Hi = (Loci,Var i,Labi,Flow i, Inv i,Edgei, Init i), we can formally de�ne the synchro-
nization dictionary by the following function

syncDict : Lab → 2H

Global Time and Synchronization Labels 27

where Lab = Lab1 ∪ · · · ∪ Labn and for each label a ∈ Lab we have the function value
syncDict(a) = {Hi | a ∈ Labi , 1 ≤ i ≤ n}. This way we already know at the
beginning of the analysis for each label which automata are required to synchronize
when taking a jump.

Search Tree Extension. During the analysis, discrete jumps can be taken non-
deterministically because one location of the hybrid automaton can have multiple
jumps enabled at the same time. Therefore, a search tree is generated by the analysis
for each of the input automata. Nodes of the search tree represent the passage of time
and the parent-child relation between nodes in the tree represent discrete jumps.

De�nition 3.1.1 (Search Tree [Sch19]). For a hybrid automaton H = (Loc,Var ,
Lab,Flow , Inv ,Edge, Init) with a dimension d = |Var |, a state set Σ, a time horizon
T ∈ R≥0, a search tree is a tuple

S = (Nodes,Root ,Succ,Trace,State,Completed)

with the following components:

� a �nite set Nodes of nodes and a root node Root ∈ Nodes;

� a set Succ ⊆ Nodes ×Nodes of edges such that (Nodes ,Root ,Succ) is a tree;

� a function State : Nodes → (Loc, 2R
d

) that assigns to each node a symbolic state
of H as data;

� a function Trace : Succ → (I × Edge) assigning to each edge of the search tree
an interval and a jump of H;

� a function Completed : Nodes → {0, 1}, we say that a node s is completed if
Completed(s) = 1;

� for each node s ∈ Nodes, either Completed(s) = 0 and s has no successors (i.e.,
∀(s′,s′′) ∈ Succ, s′ ̸= s), or Completed(s) = 1 and for each (s,s′) ∈ Succ with
Trace((s,s′)) = (I,e) we have that

FP (State(s)) = {State(s′) | (s,s′) ∈ Succ}

a search tree is called complete for a jump depth J ∈ N≥0 if each node s ∈ Nodes with
depth less than J is completed.

We use depth(s) for s ∈ Nodes to denote the depth of node s in the tree, i.e., the
number of edges from Root to s.

In the context of synchronized reachability analysis, we have to deal with n search
trees, and we need to keep track of some information that is helpful for the synchro-
nization, e.g., if a tree node is the result of taking a synchronizing jump in automaton
Hi, we need to know which nodes from the trees of the other automata has taken
the same synchronizing jump. For this purpose, we extend the search trees with a
mapping Sync that keeps track of exactly this information. It assigns to each node
an n-tuple of nodes (p1, . . . ,pn) that contains the last synchronization partners from
automata H1, . . . ,Hn respectively. We de�ne a search forest as n di�erent search trees
with a mapping that encodes the synchronization information between the automata.

28 Synchronized Reachability Analysis of Rectangular Automata

De�nition 3.1.2 (Search Forest). For a set of hybrid automata H = {H1, . . . ,Hn}
with Hi = (Loci,Var i,Labi,Flow i, Inv i,Edgei, Init i), a search forest is a set of n
search trees S = {S1, . . . ,Sn}, where

Si = (Nodesi,Root i,Succi,Tracei,Statei,Completed i),

and a mapping
Sync : Nodes → (Nodes1 , . . . ,Nodesn),

where Nodes =
⋃n

i=1 Nodesi and for each node s ∈ Nodesi we have that Sync(s) =
(p1, . . . ,pn) with pj ∈ Nodesj for all 1 ≤ j ≤ n and pi = s.

The storage of this information in the search forest reduces the e�ort needed to
�nd new jump successors whenever a jump with a synchronization label is taken. It
also avoids redundant computations since we do not need to search the entire search
tree of an automaton to �nd nodes that can synchronously take a jump. Instead, we
only need to search the subtree whose root is the stored node. Note that this de�nition
of a search forest is only applicable in the context of label synchronization between
multiple automata, where the value of n is known before initializing the search forest.
After each computation of jump successors, a new element is added to the mapping
Sync, which allows us to access these newly created synchronization nodes in the
other automata. We use the notation Synci(s) to refer to the element of Sync(s) at
index i.

In the following we will explain how we maintain the correct information in Sync
when computing new jump successors and adding them to the search forest. Initially,
The mapping Sync contains only the root nodes of the search trees, i.e., Sync(ri) =
(r1, . . . ,rn) for all 1 ≤ i ≤ n, where ri is the root node of search tree Si.

For every jump successor computation (l,v)
e→ (l′,v′) a node s′ is created in the

search forest for state set (l′,v′), which requires the addition of a new mapping for
s′ in Sync. Let us consider nodes s and s′ in search tree Si, which represent states
(l,v) and (l′,v′) respectively with (l′,v′) being the jump successor of (l,v) according
to jump e. Further, let Sync(s) = (p1, . . . ,pn).

If jump e is local, the successor node s′ can inherit the values of its mapping from its
parent node s with the single modi�cation of pi = s′

Sync(s′) = (p1, . . . , s
′︸︷︷︸

pos i

, . . . ,pn)

If e is a synchronizing jump with label a, we need to consider the mappings of all the
nodes that are involved in the synchronization. We de�ne the set

syncInd(a) = {k ∈ {1, . . . ,n} | Hk ∈ syncDict(a)}

as the set of indices of all the automata (or search trees) that are involved in the
synchronization of transitions with label a. Then we de�ne the mapping Sync(s′) =
(p′1, . . . ,p

′
n) as follows

� ∀k ∈ syncInd(a) we de�ne p′k as the successor of node pk according to jump e,

� ∀j /∈ syncInd(a) we de�ne p′j = deep({Syncj(pk) | k ∈ syncInd(a)}),

Label Synchronization 29

where deep({p1, . . . ,pn}) = pi such that depth(pi) ≥ depth(pj) ∀1 ≤ j ≤ n.

Since jump e has synchronized all automata in SyncDict(a), a new node has been
added to each of the search trees of these automata, namely the e-jump successor of
pk for k ∈ syncInd(a). This is exactly the information that we save in the mapping
Sync(s′) such that all future synchronizations from s′ consider re-synchronizing the
system from the last synchronized state. Moreover, The function deep returns the
node with the maximum depth from a set of nodes in a search tree, and by assigning
deep({Syncj(pk) | k ∈ syncInd(a)}) to p′j we make sure that the global state of the
system after synchronization is consistent with all previous synchronizations.

3.2 Label Synchronization

The goal of reachability analysis is to determine whether a given state in a system
can be reached from a set of initial states. In view of label synchronization of rect-
angular automata, reachability analysis becomes more challenging due to the need
to synchronize the evolution of multiple automata. Traditional approaches involve
constructing the product automaton, which can be computationally expensive and
memory-intensive, especially for large-scale systems. To address this challenge, we
propose an algorithm that avoids the construction of the product automaton while
still accurately computing the reachable set. Our algorithm considers the synchro-
nization labels of the jumps and the global time evolution to selectively compute only
the relevant jump successors. By saving information about the dependencies between
the input automata, we can signi�cantly reduce the search space of synchronization
nodes and improve the e�ciency of the reachability analysis. In the following sections,
we will provide a detailed explanation of our algorithm and its implementation. We
will discuss how the presented data structures and extensions ensure proper synchro-
nization in our approach.

3.2.1 Forward Reachability Analysis of n Automata

We present an extended general �owpipe-construction-based forward reachability al-
gorithm that accommodates the parallel processing of n input automata. The al-
gorithm, presented in Algorithm 1, utilizes a �rst-in-�rst-out working queue Q to
manage the nodes that require processing. The queue is initialized with the initial
states of the input automata. It is important to note that the �rst-in-�rst-out property
of the working queue is essential for ensuring a breadth-�rst exploration of the search
forest. This parallel exploration allows for the simultaneous evolution of individual
search trees, thereby minimizing redundant computations in the search for synchro-
nization partners. Implementing a �rst-in-last-out queue would not only mean that
the individual search trees are explored depth-�rst, but also that the �rst search tree
would have to be fully explored before the next search tree is considered. This would
lead to a lot of redundant computations. Each element in the working queue is a pair
(node, i) ∈ Nodesi × {1, . . . ,n}, where node is a node in the search tree of the i-th
automaton. In line 6, a synchronization dictionary is initialized, mapping each label
a ∈ Lab to a set of hybrid automata {H1, . . . ,Hm} with m ≤ n, such that a ∈ LabHi

for each 1 ≤ i ≤ m. In Section 3.2.3 we explain how the synchronization dictionary
is used to search for the correct synchronization partners. Then in lines 7-13, the
algorithm processes the nodes in the working queue until either the queue is empty

30 Synchronized Reachability Analysis of Rectangular Automata

or an unsafe state is reached. The processing of a node includes the computation
of the time successors and the jump successors, as well as the addition of the jump
successors to the working queue.

Algorithm 1 Synchronized forward reachability analysis

Input: set of rectangular automata H1, . . . ,Hn

Output: safe/unsafe
1: Q = ∅
2: for all Hi do

3: Ri = {(l, Init i(l)) | l ∈ Loci}
4: Q = Q ∪ {(node, i) | node ∈ Ri}
5: end for

6: syncDict = initializeSyncDictionary(H1, . . . ,Hn)
7: while Q ̸= ∅ do
8: (node, i) = getElement(Q)
9: result = processNode(node,Hi, Q)

10: if result ̸= safe then
11: return unsafe
12: end if

13: end while

14: return safe

3.2.2 Successor Computation

The reachability analysis presented in Algorithm 1 requires the iterative computation
of one-step time successors and jump successors of states of the hybrid automaton.
For rectangular automata the exact computation of a bounded time successor can
be e�ciently achieved via symbolic computation based on �nite linear constraints
[CÁF11]. The computation of jump successors is also straightforward in the case of
one rectangular automaton, but since we have to consider n input automata with label
synchronization, the computation becomes a little more challenging. We can catego-
rize jumps into two types: local jumps and synchronizing jumps. Local jumps are
jumps with labels that are unique to a single automaton, and they can be computed
locally. On the other hand, synchronizing jumps can only be taken in combination
with jumps from other input automata that have the same synchronization label and
within the same global time interval. In Algorithm 2, we describe how to process a
node from the working queue Q. The parameter Hi is the input automaton to which
the node belongs.

The processing of a node from the queue is split into two parts. First the time suc-
cessor computation (see Section 2.4), and second that of all jump successors, which
is also twofold. For local jumps we compute the jump successor (line 8) by applying
the reset function on the state set and intersecting the result with the invariant of
the target location, without any interaction with the other automata. Then we cre-
ate a new node in search tree Si for the jump successor, and we add the new node
to the working queue. We can identify the local jumps by taking advantage of the
synchronization dictionary that we have initialized in Algorithm 1. Note that the
synchronization dictionary only considers labelled jumps, unlabelled jumps are con-

Label Synchronization 31

n0

n1

a

m0

m1

a

p0

p1

a

p2

a

(a) Before synchronization.

n0

n1

n′1

a

n′′1

a

m0

m1

m′
1

a

m′′
1

a

p0

p1

p′1

a

p2

p′2

a

(b) After synchronization.

Figure 3.2: Search tree synchronization: n1 and m1 can synchronize with both p1 and
p2.

sidered local jumps by giving them a label unique to their automaton. Assuming that
we are processing node s from search tree Si, for each jump e = (l,a,g,r, jump ,l′) it
holds

syncDict(a) = {Hi} ⇔ jump e is local

For a synchronizing jump, i.e., e = (l,a,g,r, jump ,l′) with |syncDict(a)| > 1, we
have to check the other automata for possible synchronization. This requires search
functions that traverse the search trees of the other automata to �nd all possible
synchronization nodes. We will look at the search method in detail in Section 3.2.3.
After the successor computation of every synchronizing jump we have to update our
search forest (line 18), this includes adding the successor nodes to all the search
trees that are involved in the synchronization, as well as updating the mapping Sync
with the new nodes mapped to their synchronization partners. It is possible that
one synchronizing jump has multiple synchronization possibilities, i.e., more than one
node in (at least) one of the search trees involved in the synchronization ful�l all the
requirements to take the jump synchronously (possibly in di�erent time intervals). In
this case all synchronization possibilities need to be explored individually. We create
a successor node in the search tree for each synchronization possibility that we �nd,
and the successor state is computed with respect to the common time interval of the
synchronizing states. Figure 3.2 shows an example of three search trees before and
after a synchronizing jump with label a. Red edges represent enabled jumps before
computing their successors, and we omit the labels of local jumps. In Figure 3.2a
we have nodes n1 and m1, who are compatible for synchronization, and they can
synchronize with two nodes p1 and p2 from the third search tree. Therefore, we need
to create two successors of n1 and the same for m1 and update the mappings of the
nodes Sync(n′1) and Sync(n

′′
1) accordingly. Speci�cally, after the synchronization, in

Figure 3.2b, we will have Sync(n′1) = (n′1,m
′
1,p

′
1) and Sync(n

′′
1) = (n′′1 ,m

′′
1 ,p

′
2).

32 Synchronized Reachability Analysis of Rectangular Automata

Algorithm 2 processNode(node,Hi, Q)

1: result = computeTimeSuccessor(node)
2: if result ̸= safe then
3: return unsafe
4: end if

5: possibleJumps = getEnabledTransitions(node)
6: for all e = (l,a,g,r, jump ,l′) ∈ possibleJumps do
7: if syncDict(a) = {Hi} then
8: successor = computeJumpSuccessor(node, e)
9: if successor ̸= ∅ then

10: node.addChild(successor)
11: Q.enqueue(successor, i)
12: end if

13: else

14: time = node.getTimeProjection()
15: visitedHA = {Hi}
16: succTimePairs = findSyncSuccessors(i, node, e, a, time, visitedHA)
17: for all (successor, time) ∈ succTimePairs do
18: updateTreeWithSyncNodes(successor, i)
19: for all 1 ≤ j ≤ n do
20: Q.enqueue((Syncj(successor), j))
21: end for

22: end for

23: end if

24: end for

25: return safe

3.2.3 Search for Synchronization Nodes

Now we will explain how the method findSyncSuccessors works. As mentioned before
we have implemented a recursive search method to �nd all the nodes that can synchro-
nize with the node that is being processed. To recognize where to stop our recursion,
we save the set of hybrid automata that we have visited and searched for synchroniz-
ing nodes, and once we have visited all the hybrid automata in syncDict(a) we can
break out of the recursion and return the results. The search method is presented
in Algorithm 3. The �rst two parameters i and node are the index of the search tree
(or hybrid automaton or subspace) in which node exists, and the node for which we
need to �nd synchronization partners, e = (l,a,g,r, jump ,l′) is the jump that needs to
be applied on node in case we have found a synchronization possibility, syncT ime is
the time interval, in which e is enabled and visitedHA is the set of hybrid automata,
in which we have already found synchronization partners.

The function findSyncSuccessors explores the search tree of each hybrid automaton
that is involved in the synchronization. Here we take advantage of the function Sync
and the fact that for two nodes n1 and m1, which are the successors of a synchro-
nizing jump, n1 (or any of its children) can only synchronize with m1 (or any of its
children) and vice versa. When processing node n ∈ Si instead of searching the entire
search tree Sj , i ̸= j for a synchronization partner for n we only need to search the

Label Synchronization 33

n0

n1

a

a

n2

m0

m1

a

a

m2

aË é

Figure 3.3: Search tree synchronization: For search trees S1 (left) and S2 (right), n1
can synchronize with m1 but not with m2.

subtree of Syncj(n), This way we can reduce the search space and avoid redundant
computations. This idea is demonstrated in Figure 3.3, where we have two search
trees S1 and S2 of automata H1 and H2 respectively. H1 and H2 can synchronize on
label a and assuming the nodes n1,m1 and m2 have a common time interval in which
all jumps with label a are enabled, n1 can in this case synchronize with m1 but not
with m2 because they do not share the same synchronization history. Again, we omit
the labels of local jumps in Figure 3.3.

There are multiple conditions that need to be satis�ed for the nodes to be able to
take a jump synchronously. First we have to make sure that the synchronizing jumps
in the di�erent subspaces can be taken at the same global time, i.e., the intersection
of the time intervals that enable the synchronizing jumps cannot be empty. We check
this condition by computing the projection of the state sets onto the time dimension
ti de�ned in Section 3.1, and intersecting these projections (line 16) to get a com-
mon time interval, in which all synchronizing jumps are enabled. Second, we need
to check the compatibility of the mapping Sync. This compatibility check consists of
two conditions that we check for the synchronizing nodes pairwise, the �rst of which
is that the nodes have the same synchronization history. For two nodes n ∈ Si and
m ∈ Sj having the same synchronization history means that the trace of n and the
trace of m in their respective search trees are equal after ignoring all the steps that
are not a synchronizing jump with label in Labi ∩Labj . This condition is ensured by
the way we update our Sync function upon adding a new node to the search forest
and the ful�lment of c1, in line 17 of Algorithm 3. Notice that we only check if
Synci(canNode) is a predecessor of node because Syncj(node) being a predecessor of
canNode is satis�ed by our choice of the candidate node since we only consider can-
didate nodes that are in the subtree of Syncj(node). This is ensured by the method
getCandidateNodes(j, node, label) in line 12, which returns the set of nodes in the
subtree of node ∈ Sj that have a jump with label label.

The second condition has to do with the hybrid automata that are not currently part of
the synchronization. For two nodes n ∈ Si andm ∈ Sj and for all k ∈ {1, . . . ,n}\{i,j},
Synck(n) and Synck(m) cannot be siblings in di�erent branches of the search tree Sk.
This condition is formalized in condition c2 (line 18) and it makes sure that the two
synchronizing nodes n and m have not previously synchronized with di�erent nodes
from automaton Hk in di�erent branches of the search tree Sk.

Once we reach the last function call in the recursion we enter the if-branch in line 1 and

34 Synchronized Reachability Analysis of Rectangular Automata

compute the jump successor of node using computeJumpSuccessors(node, e, syncTime)
(line 2), which �rst reduces the state of node to the state bounded by syncTime before
intersecting with the guard and applying the reset. Since we represent the states of
the automata as polytopes, we can compute the reduced state set by intersecting the
state set with the hyperplanes de�ned by the lower and upper bounds of the time
interval.

Algorithm 3 findSyncSuccessors(i, node, e = (l,a,g,r, jump ,l′), syncTime, visitedHA)

1: if visitedHA = syncDict(a) then
2: jumpSuccessors = computeJumpSuccessors(node, e, syncTime)
3: resultSet = ∅
4: for all newNode ∈ jumpSuccessors do
5: node.addChild(newNode)
6: resultSet .insert((newNode, syncTime))
7: end for

8: return resultSet
9: else

10: Hj = getElementFrom(syncDict(a) \ visitedHA)
11: visitedHA = visitedHA ∪ {Hj}
12: candidateNodes = getCandidateNodes(j, Syncj(node), a)
13: resultSet = ∅
14: for all canNode ∈ candidateNodes do
15: computeTimeSuccessor(canNode)
16: timeIntersection = syncTime ∩ canNode.getTimeProjection()
17: c1 = Synci(canNode).isPredecessorOrEquals(node)
18: c2 =

∧
k∈{1,...,n}\{i,j} Synck(canNode).hasAncestorRelation(Synck(node))

19: if timeIntersection ̸= ∅ ∧ c1 ∧ c2 then
20: nodeTimePairs = findSyncSuccessors(j, canNode,
21: e, timeIntersection, visitedHA)
22: for all (syncNode, time) ∈ nodeTimePairs do
23: jumpSuccessors = computeJumpSuccessors(node, e, time)
24: for all newNode ∈ jumpSuccessors do
25: Syncj(newNode) = syncNode
26: node.addChild((newNode))
27: resultSet .insert((newNode, time))
28: end for

29: end for

30: end if

31: end for

32: return resultSet
33: end if

Chapter 4

Experimental Results

In this chapter, we present the experimental results of our implementation. We begin
by introducing the implementation details and the tool we have extended, HyPro
[SÁMK17], which provides state set representations and performs reachability anal-
ysis on hybrid automata. Our extension adds support for concurrent analysis of
multiple rectangular automata, which involves a modularized approach with multiple
worker processes. We also de�ne the concept of a task in the context of synchro-
nized reachability analysis, and highlight the di�erences in our approach compared to
previous work, such as the inclusion of synchronization possibilities and the use of a
garbage collector to remove unreachable nodes. Finally, we present some benchmark
evaluations and tests that summarize the performance of our method.

4.1 Implementation

We have implemented our method as an extension to the tool HyPro [SÁMK17].
HyPro provides a range of state set representations and performs reachability anal-
ysis on various types of hybrid automata. Our extension adds support for performing
concurrent analysis of multiple hybrid automata and checking for synchronization
whenever a jump successor is computed. The tool is implemented in a modularized
manner. The reachability analysis is broken down into tasks, which are processed by a
worker. A task is a node of the search tree, which contains all the information needed
for the successor computation. We have extended the de�nition of a task from [Sch19]
to include the index of the automaton (i.e., index of the worker) that the task belongs
to. This allows the main process to know which worker instance is responsible for
processing this task.

De�nition 4.1.1 (Task). Assume a search forest generated by synchronized reacha-
bility analysis of a given set of hybrid automata H = {H1, . . . ,Hn}. A task

t = (s,i)

is speci�ed by a node s in the search tree Si for i ∈ {1, . . . ,n} (see De�nition 3.1.2).

The worker process is responsible for computing the time and jump successors of
a task t. Our method implements n workers, one for each input automaton, which
are managed by one main process. Workers are able to communicate with each other

36 Experimental Results

main worker 1

worker 2

worker 3

init

create initial tasks

try: get task

got task?

post process

exit

dispatch worker

task queue
compute local
reachability

got sync? �nd successors

compute local
reachability

got sync? �nd successors

compute local
reachability

got sync? �nd successors

enqueue

dequeue

é

Ë

enqueue enqueue

é Ë

Ë

Ë

é

é

Figure 4.1: Modularized synchronized reachability analysis process.

when synchronization is needed. Any worker which is processing a synchronizing
jump initiates a recursive function call that looks for synchronization possibilities in
each of the other workers and returns those possibilities after having computed a
synchronized jump successor (in the corresponding automaton) and added it to the
search tree and the working queue. As an illustration the structure of the analysis
process for three hybrid automata is shown in Figure 4.1.

Just like in [Sch19], we use a task queue to manage the tasks and the main pro-
cess initializes the task queue and dispatches the workers. The di�erence however, is
that it is also responsible for getting the tasks from the queue and choosing which
worker to start. The worker now computes the local reachability of the task, this
steps includes computing the time successors and the jump successors of local (i.e.,
non-synchronizing) jumps. If the task has a synchronizing jump, the worker starts a
recursive function through all the workers, that are involved in this synchronization.
Upon returning the synchronization possibilities, and adding them to the search tree
and the task queue, the worker gives the control back to the main process to check
again for tasks. In Figure 4.1 we omitted the arrows from the methods �nd succes-
sors and compute local reachability of workers 2 and 3 to task queue for readability.
Also, the main process can start any worker and not necessarily worker 1 as shown
in Figure 4.1, this was also omitted for readability.

During the recursive function call, the global time interval, within which a synchro-
nization is possible can only be determined at the time of popping out of the recursion.
Therefore, a �nd successors method can only determine whether a jump is enabled

Benchmarks 37

and has non-empty successors after all underlying recursions has exited. If at that
point the method determines that synchronization is not possible�because the jump
has empty successors in one of the workers, jump successors in the underlying work-
ers would have already been computed and saved in the search tree. We deploy a
garbage collector at the end of every recursion to remove the nodes that have been
added to the search trees by the �nd successors method but are unreachable because
synchronization was not possible. Furthermore, our implementation can only handle
models with a single initial state, because it assigns one search tree (with a single
root node) to each model. This limitation can be overcome be extending models with
multiple initial states, by adding a new �dummy� initial state that transitions to the
original initial state without any time evolution.

4.2 Benchmarks

We use three well-known benchmarks to evaluate our proposed method. The Train-
Gate-Controller system (TGC) [Hen00], Fischer's protocol (Fischer) [Lam87] and Nu-
clear Reactor System (NRS) [Wan05]. We ran our tests on a Lenovo Intel Core i7
machine with 4 cores and 16 GB of RAM running Windows Subsystem for Linux.

Fischer's Protocol is a mutual exclusion algorithm, where n processes compete to
enter a critical section. The benchmark has two static variables a and b, that describe
the period of time a process can maximally wait between initiating a request and en-
tering the critical section, and the minimum period of time a process can stay in the
critical section respectively. To test our synchronization method we use the shared
variable automaton from [BLW+10], which is represented in Figure 4.2b.

S1

ẋ ∈ [1.1,2.3]

x = 0

S2

ẋ ∈ [1.1,2.3]
x ≤ a

S3

ẋ ∈ [1.1,2.3]
S4

ẋ ∈ [1.1,2.3]

test_0_i :
x′ = 0

set_i_i :
x′ = 0test_not_i_i :

x > b

test_i_i :
x > b

set_0_i :

(a) Process i

0
k̇ = 0

k = 0

m
k̇ = 0

n
k̇ = 0

test_0_m :

set_0_m : test_0_n :

set_0_n :

set_n_n :

set_m_m :

test_not_m_m :test_n_n :

set_0_n :

set_m_m :

set_n_n :

test_not_n_n : test_m_m :

set_0_m :

(b) Shared Variable

Figure 4.2: Fischer's protocol.

38 Experimental Results

Far
ẋ ∈ [−50, − 40]

x ≥ 1000
x ≤ 5000

Near
ẋ ∈ [−50, − 30]

x ≥ 0

Past
ẋ ∈ [−50, − 30]

x ≥ −100

approach :
x = 1000

pass :
x = 0

exit : x = −100
x′ ∈ [1900,4900]

(a) Train automaton.

idle
ż = 1

z = 0

approaching
ż = 1
z ≤ u

exiting
ż = 1
z ≤ u

approach :
z′ = 0 lower :

approach :

exit :

exit :
z′ = 0

raise :

exit :

approach :

(b) Controller automaton.

Open
ẏ = 0
y = 90

y = 90

Closed
ẏ = 0
y = 0

MoveUp
ẏ = 9
y ≤ 90

MoveDown
ẏ = −9
y ≥ 0

raise : lower :

lower :

raise :

raise :

lower :

y = 90

lower :

raise :

y = 0

(c) Gate automaton.

Figure 4.3: Train-Gate-Controller system.

Each state of the shared variable automaton Figure 4.2b encodes which process is
in the critical section (state 0 means no process is in the critical section), and the
synchronizing transitions force the mutual exclusion property on the precesses.

Train-Gate-Controller is a system consisting of three hybrid automata modelling
a train on a circular railway and an automated gate that closes whenever the train
passes the position of the gate. The train automaton is described in Figure 4.3a,
where variable x denotes the position of the train on the railway. The gate is at
position 0 and the train moves at speed between 40 and 50 when it is not near the
gate, upon approaching the gate it might slow down to 30. The controller, described
in Figure 4.3b, is responsible for sending lower and raise signals to the gate. The con-
troller receives an approach signal from the train automaton when it passes position
1000, to which the controller must react within u time units (u is a symbolic constant
that represents the reaction delay of the controller) by sending a lower signal. And
�nally the gate automaton, in Figure 4.3c, reacts to the lower signal by closing the
gate before the train passes. The gate opens again when the train moves away from
the gate.

Nuclear Reactor System models a nuclear reactor with n rods. Each rod that has

Benchmarks 39

out
ẋ ∈ [0.9,1.1]
x ≤ 10000

x = 0

in
ẋ ∈ [0.9,1.1]
x ≤ 10000

rocover
ẋ = 0

x ≤ 10000

add_i :
x ≥ 1
x′ = 0

remove_i :
x′ = 0

recover_i :

(a) Rod i

rod0
ẋ ∈ [0.9,1.1]
x ≤ 16.1

x = 0

rodm
ẋ ∈ [0.9,1.1]
x ≤ 5.9

rodn
ẋ ∈ [0.9,1.1]
x ≤ 5.9

add_m :
16 ≤ x ≤ 16.1

x′ = 0

add_n :
16 ≤ x ≤ 16.1

x′ = 0

remove_m :
5 ≤ x ≤ 5.9
x′ = 0

remove_n :
5 ≤ x ≤ 5.9
x′ = 0

(b) Controller

Figure 4.4: Nuclear reactor system.

been moved out of the heavy water must stay out of the water for a recovery period
of at least Trec ∈ [16,16.1] time units. Figure 4.4a shows the rod-process for the i-th
rod. Each rod-process synchronizes with the controller shown in Figure 4.4b. The
synchronization between the controller and the rod-processes ensures that each rod
stays out of the water for at least Trec time units before it is moved back in, and that
no two rods are in the heavy water at the same time.

We have run our implementation on the train-gate-controller benchmark with a time
horizon of T = 25 and a jump depth of J = 3. The value of the constant u in our
experiments was set to 2. The reachable state sets of the benchmark are shown in
Figure 4.5. We can see that the system has computed the successors of the �rst syn-
chronizing jump at global time t ∈ [18,25] which is the time interval within which
the train has reached position 1000 and has issued an approach signal. This forces
the controller to change into the state approaching. In Figure 4.5 we can see that the
controller can stay in that state for a maximum of two time units before it must send
a lower signal to the gate, allowing it to start closing at rate 9 degrees per time unit.
The gate then needs 10 time units to move into the state closed at the latest by time
point t = 35 and before the train has reached the gate. After the train passes the gate
it reaches position −100 and can issue an exit signal at time ttrain ∈ [40,50.3], which
must synchronize with the controller's exit transition from the idle state to existing.
Since the idle state evolves only until time point tcontroller = 50 (because of the time
horizon T = 25) the system can execute the exit transition within global time interval
t ∈ [40,50] moving the controller into the exiting state and allowing it to signal to the
gate that it can start opening again.

The controller automaton cannot take the jump approach before the train has reached
position 1000, because the jump is blocked by the guard x = 1000 in the train automa-
ton. The same goes for the jump exit, because of label synchronization the controller
cannot move into the exiting state and allow the gate to start opening before the train
has passed the gate and the jump exit is enabled in the train automaton.

40 Experimental Results

Table 4.1: Runtimes in seconds.

Representation Mean Median Min Max Std

Train Gate Controller

V-Polytope 2.24 1.41 1.56 3.07 0.4

H-Polytope 1.56 1.29 1.2 3.25 0.54

Fischer's Protocol

V-Polytope 2.9 2.67 2.51 4.06 0.49

H-Polytope 4.09 3.84 3.4 5.67 0.64

Nuclear Reactor

V-Polytope 4.64 4.71 3.71 6.29 0.7

H-Polytope 2.21 2.18 2.08 2.59 0.13

Now we proceed to evaluate the computational performance of our proposed method.
To ensure statistical signi�cance, we conducted the analysis 20 times on each bench-
mark. The local time horizon was set to T = 30, and the maximum jump depth was
bounded by J = 10. For the Fischer's protocol benchmark, we used the parameter
values a = 8 and b = 12 for three process-automata and a shared variable automaton.
In the case of the nuclear reactor benchmark, we considered a system with 10 rods
for this evaluation. The resulting runtimes are presented in Table 4.1.

Our algorithm has performed better using the H-Polytope representation in the train-
gate-controller and nuclear reactor benchmarks compared to the calculations using the
V-Polytope representation. This can be attributed to the added intersection opera-
tion with time intervals while checking for synchronization possibilities. For each syn-
chronizing jump e = (l,a,g,r, jump ,l′) the algorithm needs to perform |syncDict(a)|
intersection operations of the time interval (represented as a polytope) with the state
set. The H-Polytope representation is more e�cient in this case because intersecting
H-Polytopes can be done in polynomial time, while intersecting V-Polytopes requires
conversion methods. Furthermore, computing jump successors of a state set in a par-
ticular time interval requires the construction of two halfspaces from the lower and
upper bound of the time interval, and intersecting them with the state set. This
operation is less costly when using H-Polytopes.

The Fischer's protocol benchmark has shown the opposite behaviour, where the V-
Polytope representation performed better than the H-Polytope representation. A
possible explanation for this result is that the number of jumps in the Fischer instance
we used is considerably bigger than the number of jumps in the nuclear reactor model.
This has led to the size of the search forest being more than twice as big in Fischer.
At this size of the search forest, the cost of reducing the H-Polytopes outweighs the
gain we get from the e�cient intersection operation. In the next experiment, we
try to capture the scalability of our method by increasing the number of automata
in the Fischer's protocol and nuclear reactor benchmarks. We have set a local time
horizon T = 20 and a jump bound J = 10, and we have represented the state sets as
V-Polytopes. The results are shown in Table 4.2.

Benchmarks 41

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70

P
os
it
io
n
of

T
ra
in

Train Reachable Sets

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60 70A
ng
le
of

G
at
e
in

de
gr
ee
s

Gate Reachable Sets

0

5

10

15

20

25

0 10 20 30 40 50 60 70

L
oc
al

T
im

e

Global Time

Controller Reachable Sets

Figure 4.5: The reachable state sets of TGC benchmark with H-Polytope represen-
tation, time horizon T = 25 and a jump depth J = 3.

42 Experimental Results

Table 4.2: Scalability metrics of Fischer's protocol and nuclear reactor benchmarks,
timeout (TO) was set to 15 minutes.

#rods/
processes

|Var | time
(sec)

mem
(KB)

Search Forest
size

avg #Sync
Candidates

F
is
ch
er 3 7 2.14 22044 522 1.12

6 13 241.51 136336 36421 1.36

8 17 TO 513156 - -

N
R
S

10 22 2.73 21852 201 1.15

15 32 5.81 23500 301 1.11

20 42 16.18 27840 401 1.08

40 82 192 161048 801 1.04

The results show that our method performed signi�cantly better on the nuclear re-
actor model than on Fischer, where the algorithm timed out after 15 minutes upon
raising the number of process automata to 8. Whereas in the nuclear reactor bench-
mark, the algorithm was able to compute the reachable state set for 40 rods in 3.2
minutes. This can be explained by the blow-up in the search forest size in Fischer's
protocol, which is caused by the higher number of synchronizing jumps.

As expected the memory consumption correlated positively with the number of vari-
ables and the size of the search forest. The overall number of variables did not strongly
a�ect the runtime of the analysis, especially because each automaton (in both bench-
marks) had the dimension 2, where one dimension was reserved for the additional
local time variable, except for the shared variable automaton which only had the lo-
cal time variable.

Our extension of the search forest with the Sync function has proven to be a promis-
ing approach in both benchmarks. The function has been able to reduce the number
of candidates for synchronization (i.e., nodes that need to be checked if they're a
viable synchronization partner) to almost only one node per search tree. However,
this extension needs further testing on models that involve more local jumps, which
would lead to bigger subtrees when searching for synchronization partners.

Chapter 5

Conclusion

5.1 Summary

In this work, we have developed a novel synchronization technique for the concurrent
reachability analysis of multiple rectangular automata. Our approach took advantage
of local time variables to realign the evolution of the input automata whenever a syn-
chronizing jump is taken. By extending forward reachability methods that use decom-
position, our method enables e�cient and accurate analysis of large high-dimensional
system models. Our research demonstrates that synchronization on selected jumps is
more e�cient than strict synchronization using parallel composition. We applied a
new approach for saving dependency information between the analysed systems, which
allowed for including time dependencies during the computation of jump successors
with little added e�ort.

5.2 Discussion and Future Work

The proposed method was developed with the goal of addressing the scalability issue
of reachability analysis to high-dimensional hybrid systems. We have shown that our
approach achieved synchronized reachability analysis of rectangular automata with
little memory overhead. A combination of the variable set separation method [SNÁ17]
and our synchronization technique could provide a more accurate successor compu-
tation. Our current implementation requires that the input automata have disjoint
variable sets. Further work might include extending the method to handle shared
variables, which would involve the projection of the state sets on multiple dimensions
(not just the time dimension) and the intersection of state sets to �nd a common state
that satis�es the synchronization requirements. However, our search tree extension is
not e�ected by shared variables and can still be used to reduce the search space for
synchronizing states even if the variable sets are not disjoint.

As mentioned in Section 4.1 our method is limited to single-rooted search trees, i.e.,
models that have a single initial state. This could be bypassed by modifying the
models to have a new single initial state with trivial local transitions to the original
multiple initial states. But, multiple initial states could also be handled by imple-
menting an updated initial step in the analysis that creates the search trees with
multiple roots. One e�ect of such a modi�cation would be that we have to consider

44 Conclusion

synchronization partners for each of the initial states, which might lead to duplicating
some search tree nodes.

Performing the synchronized analysis on rectangular automata with state sets repre-
sented as polytopes has shown promising results. Our method has outperformed the
shallow synchronization method [BCL+10] on benchmarks like Fischer's protocol and
the nuclear reactor system. Moreover, the synchronization method is not dependent
on the state set representation and can be extended to other representations like zono-
topes or ellipsoids. An extension to linear hybrid automata could also be examined
in the future, because the search tree structure in HyPro is the same. However,
the over-approximation of the reachable sets in linear hybrid automata might lead to
�awed synchronization because the projection of the state sets on the time dimension
would not be exact. Further research is needed in that regard

Bibliography

[Ábr17] Ábrahám, Erika: Modeling and analysis of hybrid systems. RWTH
Aachen University, Lecture Notes, 2017.

[ACH+95] Alur, R., C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine: The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3�34, 1995.
https://doi.org/10.1016/0304-3975(94)00202-T.

[AD94] Alur, Rajeev and David L. Dill: A theory of timed automata. Theoreti-
cal Computer Science, 126(2):183�235, 1994. https://doi.org/10.
1016/0304-3975(94)90010-8.

[Alt15] Altho�, Matthias: An introduction to CORA 2015. In ARCH14-15. 1st
and 2nd International Workshop on Applied veRi�cation for Continuous
and Hybrid Systems, volume 34 of EPiC Series in Computing, pages
120�151. EasyChair, 2015. https://doi.org/10.29007/zbkv.

[BCL+10] Bu, Lei, Alessandro Cimatti, Xuandong Li, Sergio Mover, and Stefano
Tonetta:Model checking of hybrid systems using shallow synchronization.
In Formal Techniques for Distributed Systems, pages 155�169. Springer
Berlin Heidelberg, 2010, ISBN 978-3-642-13464-7. https://doi.org/
10.1007/978-3-642-13464-7_13.

[BFF+18] Bogomolov, Sergiy, Marcelo Forets, Goran Frehse, Frédéric Viry, An-
dreas Podelski, and Christian Schilling: Reach set approximation through
decomposition with low-dimensional sets and high-dimensional matrices.
In Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control (Part of CPS Week), HSCC '18, pages 41�
50, New York, NY, USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3178126.3178128.

[BLW+10] Bu, Lei, You Li, Linzhang Wang, Xin Chen, and Xuandong Li: Bach
2: Bounded reachability checker for compositional linear hybrid systems.
In 2010 Design, Automation & Test in Europe Conference & Exhibition,
pages 1512�1517, 2010. https://doi.org/10.1109/DATE.2010.
5457051.

[BNO03] Bertsekas, D., A. Nedic, and A. Ozdaglar: Convex Analysis and Opti-
mization. Athena Scienti�c optimization and computation series. Athena
Scienti�c, 2003. http://www.athenasc.com/convexity.html.

https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.29007/zbkv
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1145/3178126.3178128
https://doi.org/10.1109/DATE.2010.5457051
https://doi.org/10.1109/DATE.2010.5457051
http://www.athenasc.com/convexity.html

46 Bibliography

[CÁF11] Chen, Xin, Erika Ábrahám, and Goran Frehse: E�cient bounded reach-
ability computation for rectangular automata. In Reachability Problems,
pages 139�152. Springer Berlin Heidelberg, 2011. https://doi.org/
10.1007/978-3-642-24288-5_13.

[CS16] Chen, Xin and Sriram Sankaranarayanan: Decomposed reachability anal-
ysis for nonlinear systems. In 2016 IEEE Real-Time Systems Sym-
posium (RTSS), pages 13�24, 2016. https://doi.org/10.1109/
RTSS.2016.011.

[Dan00] Dang, Thi Xuan Thao: Veri�cation and Synthesis of Hybrid Systems.
Theses, Institut National Polytechnique de Grenoble - INPG, October
2000. https://theses.hal.science/tel-00006738.

[DSÁR23] Delicaris, Joanna, Stefan Schupp, Erika Ábrahám, and Anne Remke:
Maximizing reachability probabilities in rectangular automata with ran-
dom clocks. In International Symposium on Theoretical Aspects of Soft-
ware Engineering, pages 164�182. Springer, 2023. https://doi.org/
10.1007/978-3-031-35257-7_10.

[FHT+07] Fränzle, Martin, Christian Herde, Tino Teige, Stefan Ratschan, and To-
bias Schubert: E�cient solving of large non-linear arithmetic constraint
systems with complex boolean structure. JSAT, 1:209�236, May 2007.
https://doi.org/10.3233/SAT190012.

[FLGD+11] Frehse, Goran, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler: SpaceEx: Scalable veri�cation of hybrid systems.
In Computer Aided Veri�cation, pages 379�395. Springer Berlin Heidel-
berg, 2011. https://doi.org/10.1007/978-3-642-22110-1_
30.

[Gir05] Girard, Antoine: Reachability of uncertain linear systems using zono-
topes. In Hybrid Systems: Computation and Control, pages 291�
305. Springer Berlin Heidelberg, 2005. https://doi.org/10.1007/
978-3-540-31954-2_19.

[Hen00] Henzinger, Thomas A.: The Theory of Hybrid Automata. Springer
Berlin Heidelberg, 2000. https://doi.org/10.1007/
978-3-642-59615-5_13.

[HKPV98] Henzinger, Thomas A., Peter W. Kopke, Anuj Puri, and Pravin Varaiya:
What's decidable about hybrid automata? Journal of Computer and
System Sciences, 57(1):94�124, 1998. https://doi.org/10.1006/
jcss.1998.1581.

[Lam87] Lamport, Leslie: A fast mutual exclusion algorithm. ACM Trans. Com-
put. Syst., 5(1):1�11, jan 1987. https://doi.org/10.1145/7351.
7352.

[LG09] Le Guernic, Colas: Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics. Theses, Université Joseph-Fourier - Grenoble I,
October 2009. https://theses.hal.science/tel-00422569.

https://doi.org/10.1007/978-3-642-24288-5_13
https://doi.org/10.1007/978-3-642-24288-5_13
https://doi.org/10.1109/RTSS.2016.011
https://doi.org/10.1109/RTSS.2016.011
https://theses.hal.science/tel-00006738
https://doi.org/10.1007/978-3-031-35257-7_10
https://doi.org/10.1007/978-3-031-35257-7_10
https://doi.org/10.3233/SAT190012
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/7351.7352
https://theses.hal.science/tel-00422569

Bibliography 47

[LG10] Le Guernic, Colas and Antoine Girard: Reachability analysis of linear
systems using support functions. Nonlinear Analysis: Hybrid Systems,
4(2):250�262, 2010. https://doi.org/10.1016/j.nahs.2009.
03.002.

[Lyg04] Lygeros, John: Lecture notes on hybrid systems. In Notes for an
ENSIETA workshop, 2004. https://api.semanticscholar.org/
CorpusID:2793544.

[MBT05] Mitchell, I.M., A.M. Bayen, and C.J. Tomlin: A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games. IEEE Transactions on Automatic Control, 50(7):947�957, 2005.
https://doi.org/10.1109/TAC.2005.851439.

[Neu03] Neumaier, Arnold: Taylor forms�use and limits. Reliable Computing,
9:43�79, 2003. https://doi.org/10.1023/A:1023061927787.

[PQ08] Platzer, André and Jan David Quesel: KeYmaera: A hybrid theorem
prover for hybrid systems (system description). In Automated Reasoning,
pages 171�178. Springer Berlin Heidelberg, 2008. https://doi.org/
10.1007/978-3-540-71070-7_15.

[SÁMK17] Schupp, Stefan, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan
Kowalewski: Hypro: A C++ library of state set representations for hybrid
systems reachability analysis. In NASA Formal Methods, pages 288�
294. Springer International Publishing, 2017. https://doi.org/10.
1007/978-3-319-57288-8_20.

[Sch19] Schupp, Stefan: State Set Representations and their Usage in the
Reachability Analysis of Hybrid Systems. Dissertation, RWTH
Aachen University, Aachen, 2019. https://doi.org/10.18154/
RWTH-2019-08875.

[SNÁ17] Schupp, Stefan, Johanna Nellen, and Erika Ábrahám: Divide and con-
quer: Variable set separation in hybrid systems reachability analysis.
Electronic Proceedings in Theoretical Computer Science, 250:1�14, July
2017. http://dx.doi.org/10.4204/EPTCS.250.1.

[Wan05] Wang, Farn: Symbolic parametric safety analysis of linear hybrid systems
with BDD-like data-structures. IEEE Transactions on Software Engineer-
ing, 31(1):38�51, 2005. https://doi.org/10.1109/TSE.2005.13.

https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1016/j.nahs.2009.03.002
https://api.semanticscholar.org/CorpusID:2793544
https://api.semanticscholar.org/CorpusID:2793544
https://doi.org/10.1109/TAC.2005.851439
https://doi.org/10.1023/A:1023061927787
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.18154/RWTH-2019-08875
https://doi.org/10.18154/RWTH-2019-08875
http://dx.doi.org/10.4204/EPTCS.250.1
https://doi.org/10.1109/TSE.2005.13

	Notation
	Introduction
	Preliminaries
	Hybrid Systems
	State Set Representations
	Reachability Analysis
	Flowpipe Construction
	Variable Set Separation

	Synchronized Reachability Analysis of Rectangular Automata
	Global Time and Synchronization Labels
	Label Synchronization

	Experimental Results
	Implementation
	Benchmarks

	Conclusion
	Summary
	Discussion and Future Work

	Bibliography

