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Abstract

In recent years, neural networks have gained remarkable importance due to
their ability to learn complex patterns, make accurate predictions, and address
real-world problems. Ensuring the safety and robustness of these networks is
crucial, making the reachability analysis for neural networks essential. In this
work, we focus on star set based reachability analysis of neural networks with
various types of layers and activation functions. We present a detailed examina-
tion of the exact and over-approximate reachability analysis algorithms of each
proposed activation function (ReLU, leaky ReLU, HardTanh, Sigmoid, Unit
Step function). Furthermore, we consider the reachability analysis of unbounded
input star sets. Moreover, we investigate and research different layers types,
such as convolutional, pooling, residual, and recurrent layers. To facilitate the
integration of various neural network architectures, extend the existing neural
network reachability analysis functionality of the Hypro library by implementing
an ONNX parser. We demonstrate the effectiveness of our implementation by
re-evaluating and verifying different benchmarks and neural networks. Further-
more, we present the results of an experiment aimed at improving the runtime of
the reachability analysis algorithms. Overall, our work provides comprehensive
and computationally efficient algorithms that enable the reachability analysis of
different layers and activation functions.

Keywords— Neural network, safety and robustness verification, piece-wise
linear activation functions, reachability analysis, exact computation, over-appro-
ximative computation, unbounded computation
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Chapter 1

Introduction

Artificial intelligence (AI) has experienced remarkable growth in the past two decades,
permeating various domains, including healthcare, marketing, banking, gaming, and
the automotive industry. Feedforward neural networks have emerged as a leading
technique for addressing various problems, including classification [RW17], pattern
recognition [AJO+19], natural language processing [HDY+12, LWL+17], and beyond.
Their effectiveness is based on their remarkable ability to process and learn from large
datasets, enabling them to tackle complex tasks accurately and efficiently. Therefore,
verifying neural networks is essential to ensure their reliability, robustness, and safety.
It helps to address potential issues, enhance performance, and build trust in AI sys-
tems.

In this work, we investigate the reachability analysis of different activation func-
tions using star sets, since it is well suited for the reachability analysis of neural
networks. We examine various activation functions: the leaky ReLU, HardTanh,
Hard Sigmoid, and Unit Step function. We propose the reachability analysis algo-
rithms for exact, over-approximation applied to bounded/unbounded sets of each of
the presented activation functions. The exact and complete analysis of each layer’s
reachable output set is a union of star subsets. In contrast, the over-approximative
analysis tries to reduce the number of stars by over-approximating some of them with
fewer stars by performing point-wise over-approximation of the reachable set for all
neurons within the layer. We consider the exact and over-approximative analysis of
different cases in the unbounded analysis. For each analysis, we formulate lemmas
about the worst-case complexity of the number of stars in the reachable set as well
as the number of constraints.

In addition to being able to conduct different benchmarks in our used framework
Hypro, i.e., hybrid system analysis tool, we implemented an ONNX parser, which
unable working with ONNX file format that can represents deep learning models.
We re-evaluate different benchmark runtimes using our proposed reachability algo-
rithms besides the safety verification of the benchmark’s neural networks and report
quantitative results from an experiment to improve the runtime of our implemented
algorithms.

1.1 Related Work
Generalized star sets and reachable set computation using the star sets were first
introduced in [BD17]. The presented approach is simulation-equivalent, i.e., it can
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detect if an unsafe state is reachable if and only if a fixed-step simulation exists for
the unsafe states.

The reachability analysis of feedforward neural networks with ReLU activation
function using the concept of star set was presented in [TMLM+19, Tra20]. This ap-
proach deals with the exact and over-approximation analysis. It performs the reach-
ability analysis layer by layer. It evaluates the proposed algorithms, which results in
the reachable analysis using the star approach much faster than another approach,
such as Reluplex [KBD+17]. Reluplex is a method for verifying the safety and cor-
rectness of neural networks. Reluplex is similar to simplex in that it allows variables
to temporarily violate their bounds while searching for a viable variable assignment.
However, Reluplex goes further by allowing variables with ReLU pairs to temporarily
violate ReLU semantics. During the iterative process, Reluplex identifies variables
that are either out of bounds or violate a ReLU and applies Pivot and update op-
erations. Furthermore, compared to the zonotope and abstract domain approaches,
the over-approximation approach verifies more safety properties due to its minimal
over-approximation errors.

Hypro [SÁMK17] is a library to support the implementation of algorithms for the
reachability analysis of hybrid systems via flowpipe-construction with mixed discrete-
continuous behavior and offers implementations for the most used state-set represen-
tations include boxes, convex polytopes, support functions, star sets, or zonotopes.
Therefore, we extended hypro by the presented reachability analysis of different acti-
vation functions in this work and the implementation of the ONNX parser to facili-
tate the integration of different neural network architectures represented in the Open
Neural Network Exchange (ONNX) format. Furthermore, we researched various layer
types that can be implemented in Hypro.

1.2 Thesis Outline
In this thesis, we begin by presenting the fundamental concepts and definitions in
Chapter 2. Specifically, in Section 2.1, we introduce the feedforward neural networks,
followed by the star set representation and its advantages in Section 2.2.1, and the
reachability analysis approach for feedforward neural networks using ReLU activation
functions in Section 2.3.

After establishing the foundations for our work, we move forward by introducing
our algorithms in Chapter 3. We discuss and investigate the reachability analysis
of different activation function layers: the leaky ReLU, HardTanh, Hard Sigmoid,
and Unit step function. For each activation function, we present the implemented
reachability algorithm for the exact and complete as well as the over-approximation
analysis. For both analyses, we investigate the unbounded analysis. Furthermore, we
explain the implementation of an ONNX parser.

To assess the effectiveness of the algorithms, we evaluate different benchmarks and
conduct an experiment with the intention of improving the runtime of the algorithms
in Section 4. Lastly, we comprehensively discuss this work’s contributions and limi-
tations. Additionally, we offer insightful suggestions for future directions that can be
pursued to expand upon this research.



Chapter 2

Preliminaries

In this chapter, first, we will elucidate the fundamentals of the feedforward neural
network (FNN). Then, explain star sets. Lastly, we want to cover the reachability
analysis of neural networks with the rectified linear unit (ReLU) activation function.
Focusing closely on both the exact and the over-approximation analysis.

2.1 Feedforward Neural Network

Feedforward neural network (FNN) transmits information forward through different
layers [Kum19]. The first layer is the input layer, followed by one or multiple hidden
layers, and the last layer is the output layer (Figure 2.1).

Figure 2.1: Feedforward neural network with four layers. Input with two neurons,
two hidden layers, each with three neurons, and an output layer with one neuron.

Each layer consists of neurons connected with all neurons in the next layer and
labeled using weights. An input vector x is propagated forward through the FNN.
Three components define the output: first, the weight matrix W k represents the
weighted connection between neurons of two layers k − 1 and k. In addition, the
weight coefficient wk

ij characterizes the connection from the jth to the ith neuron
(Figure 2.2).
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j i

wij

bj bi

Figure 2.2: Connection between two neurons (Redrawn from [SKP97]).

Secondly, each layer has a bias vector. Therefore bk represents the bias of the kth
layer. However, bki is the bias of the ith neuron in the kth layer. Lastly, the non-linear
activation function f applied at each layer [Tra20, SKP97]. Overall yi give the output
of a neuron i by:

yi = fi(b
k
i +

n∑
j=1

wijxj) (2.1)

where xj is the jth input of the ith neuron [Tra20].

2.2 Star Set Representation

Definition 2.2.1 (Generalized Star Set [BD17]). A generalized n-dimensional star
set Θ is a tuple ⟨c, V, P ⟩ where c ∈ Rn is the center, V = {v1, . . . ,vm} ⊆ Rn is a set of
m vectors called the basis (or generator) vertors, and P : Rm → {⊤,⊥} is a predicate.
The set of states represented by the star is given as

JΘK = {x | x = c+

m∑
i=1

αivi such that P (α1, . . . ,αm) = ⊤}. (2.2)

Sometimes we will refer to both the tuple Θ and the set of states JΘK as Θ. In this work,
we restrict the predicate to be a conjunction of linear constraints, P (α) ≜ Cα ≤
d where, for p linear constraints, C ∈ Rp×m, α is the vector of m-variables i.e.
α = [α1, . . . ,αm]T , and d ∈ Rp×1.

Example 2.2.1. Let Θ = ⟨c, V, P ⟩, where:

the basis V =

[
1 0
0 −2

]
, and the center c =

[
1
−1

]
,

also the predicate P (α) = Cα ≤ d where C =


1 0
−1 0
0 1
0 −1

 and d =


3
2
1
1


In addition, an equivalent definition to the starset would be the following set:

JΘK ≡ {(x1, x2) | −1 ≤ x1 ≤ 4 ∧ −3 ≤ x2 ≤ 1}
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α1
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2

Figure 2.3: The corresponding
visualization of the predicate P of
the star set from Example 2.2.1.

x1

x2

Θ

-2 -1 0 1 2 3 4

-4

-3

-2

-1

1

Figure 2.4: The corresponding
visualization of the star set from
Example 2.2.1.

In the upcoming propositions, we show the universal representation power of star
sets. The comprehensive proofs are in Chapter A.

Proposition 2.2.1. Any bounded convex polyhedron P ≜ {x | Cx ≤ d, x ∈ Rn} can
be presented as a star.

Proposition 2.2.2 (Affine Mapping of Star). Given a star set Θ = ⟨c, V, P ⟩, an
affine mapping of the star Θ with the linear mapping matrix W and offset vector b
defined by Θ̄ = {y | y =Wx+ b, x ∈ Θ} is another star such that

Θ̄ = ⟨c̄, V̄ , P̄ ⟩, c̄ =Wc+ b, V̄ = {Wv1, . . . ,Wvm}, P̄ ≡ P

The use of matrix multiplications to the basis and center and one addition of
vectors, as well as preserving the predicate in the affine mapping of star sets, means
that the complexity of the affine mapping of a star is constant. However, the fact that
there is no known polynomial algorithm for the affine mapping ofH-polytopes [SFÁ19]
indicates that the time complexity of affine mapping of H-polytopes is exponential.
In conclusion, star sets are an efficient alternative compared to H-polytopes.

Example 2.2.2. Let Θ = ⟨c, V, P ⟩ be the same as in Example 2.2.1, additionally
consider for the affine mapping of the star Θ:

the affine mapping matrix W =

[
cos(45°) −sin(45°)
sin(45°) cos(45°)

]
and the offset vector b =

[
−0.5
−0.5

]

The resulting star set is defined as Θ′ = ⟨c̄,V̄ ,P ⟩ where:

the basis V̄ =

[
0.707107 −1.41421
0.707107 1.41421

]
, and the center c̄ =

[
0.914214
−0.5

]
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Θ before affine mapping.
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Θ′ after affine mapping.

Figure 2.5: The affine mapping results according to Example 2.2.2.

Proposition 2.2.3 (Star and half-space Intersection). The intersection of a star
Θ ≜ ⟨c, V, P ⟩ and a half-space H ≜ {x | Hx ≤ g} is another star

Θ̄ = Θ ∩H = ⟨c, V, P̄ ⟩ with P̄ = P ∧ P ′,

where P ′(α) ≜ (H × V )α ≤ g −H × c, V = [v1, v2, . . . , vm].

Example 2.2.3. Let Θ = ⟨c, V, P ⟩ be the same as in Example 2.2.2 where

the basis V =

[
0.707107 −1.41421
0.707107 1.41421

]
, and the center c =

[
0.914214
−0.5

]
,

also the predicate P (α) = Cα ≤ d where C =


1 0
−1 0
0 1
0 −1

 and d =


3
2
1
1


Additionally let half-space H be defined as:

H ≜ {x | Hx ≤ g} with x ∈ R2, H =

[
1
1

]
and g = 3

The resulting star set becomes Θ′ = ⟨c, V, P̄ ⟩ where

P̄ (ᾱ) = C̄ᾱ ≤ d̄ where C̄ =


1 0
−1 0
0 1
0 −1

1.41421 0

 and d =


3
2
1
1
1

2.58579





Reachability Analysis of Neural Networks with ReLU Activation Function 15

x1

x2

-2 -1 0 1 2 3 4 5

-4

-3

-2

-1

1

2

3

Θ before the intersection with the
Halfspace H .
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Θ′ after the intersection.

Figure 2.6: The intersection results according to the Example 2.2.3.

Proposition 2.2.4 (Check for Emptiness). Given the star set Θ = ⟨c, V, P ⟩ where
P (Θ) ≜ Cα ≤ d and C ∈ Rp×m, α is the vector of m-variables, i.e., α = [α1 . . . αm]T

and d ∈ Rp×1. Check if there exists no alpha that can satify the constraint set P =
{Cα ≤ d | α ∈ Rm}. This can be accomplished using an LP- or SMT-solver like
SMT-RAT [CKJ+15].

Proposition 2.2.5 (Compute the lower and upper bounds in the star set). Given an
n-dimensional set Θ = ⟨c, V, P ⟩ for each dimension n, determine the direction vectors
[0 . . . 1 . . . 0], [0 . . . −1 . . . 0], one for the upper bound and one for the lower bound
in the inner polytope in the star set. Then, we optimize the obtained direction vectors
[v1n . . . vmn ], [−v1n . . . − vmn ] of each dimension by computing the furthest point in
the specific direction and shifting it by the center c ∈ Rn of the star set.

2.3 Reachability Analysis of Neural Networks with
ReLU Activation Function

In this section, we are interested in the reachability analysis of FNN with the ReLU
activation function using star set from Definition 2.2.1. But first, to better understand
the concept of reachability analysis, it’s required to introduce a few other definitions.
Generally, reachability analysis involves determining whether a specific state or set of
states within a system can be reached [LM17].

Definition 2.3.1 (Reachable Set of FNN). Given a bounded convex polyhedron in-
put set I ≜ {x | Ax ≤ b, x ∈ Rn}, and a k-layers feed-forward neural network
F ≜ {L1, . . . , Lk}. Accordingly, the reachable set F (I ) = RLk

of the neural net-
work F given the input set I is defined by:

RL0
≜ I ,

RLi
≜ {yi | yi = fi(Wiyi−1 + bi), yi−1 ∈ RLi−1

,}

where Wk, bk and fk are the weight matrix, bias vector and activation function of the
kth layer Lk, respectively. Note that RLi can be recursively applied to all i = 1 to k.
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Also, the reachable set RLk
contains the output set of the neural network corresponding

to the input set.

Definition 2.3.2 (Safety Verification of FNN). Given a k-layers feed-forward neural
network F , and a safety specification S defined as a set of linear constraints on
the neural network outputs S ≜ {yk | Cyk ≤ d}. The neural network F is safe
corresponding to the input set I , .i.e. F (I ) |= S , iff RLk

∩ ¬S = ∅.

Given our current interest in the analysis with the ReLU activation function, let’s
start with its definition.

Definition 2.3.3 (Rectified Linear Unit (ReLU) Function [YAT+20]). Given the
input x,

ReLU(x) =

{
x, x ≥ 0

0, x < 0
= max(0, x) (2.3)

xi

ReLU(xi)

0

Figure 2.7: Rectified Linear Unit (ReLU) function

2.3.1 Exact and Complete Analysis
Given that any bounded convex polyhedron can be presented as a star by Proposition
2.2.1, we deduce that the input set of a k-layer FNN can be represented as a star
set Θ = ⟨c, V, P ⟩. According to Proposition 2.2.2, the affine mapping of a star also
results in a star, along with Definition 2.3.1 the reachable set on layer k with n
neurons can be computed, by applying a sequence of n exactReLU operations RLk

=
ReLUn(ReLUn−1(. . . ReLU1(Θ))) on the star set input Θ. The ReLU function 2.3.3
handles two cases, first is the input less than zero and second is greater than or equal
to zero. Based on that the exactReLU operation on the ith neuron, i.e. ReLUi(·)
works as follows. Given the input star set Θ = ⟨c, V, P ⟩, Θ is divided into two subsets
Θ1 = Θ∧(xi ≥ 0) and Θ2 = Θ∧(xi < 0). Based on Proposition 2.2.3 those subsets are
also stars. So let Θ1 = ⟨c,V,P1⟩ and Θ2 = ⟨c, V, P2⟩. The ReLU activation function
does not modify the set Θ1 when applied on xi in x = [x1 . . . xn]

T ∈ Θ1 becuase
ReLU on the positive branch acts as an identity function. On the other side since
xi < 0, Θ2 is projected to zero by the mapping matrixM = [e1 . . . ei−1 0 ei+1 . . . en].
So applying ReLU on the element xi in x = [x1 . . . xn]

T ∈ Θ2 results a new verctor
x′ = [x1 . . . xi−1 0 xi+1 . . . xn]

T . Therefore, the exactReLU operation for the input
star set Θ of the ith neuron results in ReLUi(Θ) = ⟨c, V, P1⟩ ∪ ⟨Mc,MV, P2⟩.

Lemma 2.3.1. The worst-case complexity of the number of stars in the reachable set
of an N-neurons FNN is O(2N ).
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Lemma 2.3.2. The worst-case complexity of the number of constraints of a star in
the reachable set of an N-neurons FNN is O(N).

Theorem 2.3.3 (Verification Complexity). Let F be an FNN with N neurons, Θ an
input star set with p linear constraints and m-variables in the predicate, S a safety
specification with s linear constraints. In the worst case, determining the verification

of the safety of neural network F (Θ)
?

|= S is equivalent to solving up to 2N feasibility
problems, each entails N + p+ s linear constraints and m variables.

Theorem 2.3.4 (Safety and complete counter input set). Let F be an FNN, Θ a star
input set, F (Θ) =

⋃k
i=1 Θi, Θi = ⟨ci, Vi, Pi⟩ be the reachable set of the neural network,

and S be a safety specification. Denote Θ̄i = Θi ∩ ¬S = ⟨ci,Vi,P̄i⟩, i = 1, . . . ,k. The
neural network is safe iff P̄i = ∅ for all i. If the neural network violates its safety
property, then the complete counter input set containing all possible inputs in the input
set that lead the neural network to unsafe states is CΘ =

⋃k
i=1⟨c, V, P̄i⟩, where P̄i ̸= ∅.

2.3.2 Over-approximate Analysis

While it is possible to perform an exact and complete analysis to compute the reach-
able values of a ReLU FNN, the over-approximative reachability analysis is an alter-
native approach to address the problem of exponential growth in the number of stars
with each neuron, which significantly increases the computational cost and thus limits
scalability. This approach uses a different algorithm which involves constructing only
a single star at each neuron using the following rule.
For any input xi the output yi = ReLU(xi), let

yi = xi li ≥ 0,

yi = 0 ui ≤ 0,

yi ≥ 0, yi ≤ ui(xi−li)
ui−li

, yi ≥ xi li < 0 and ui > 0

(2.4)

where li and ui are lower and upper bounds of xi.

xi

ReLU(xi)

yi ≥ 0

y i
≥
x i

yi ≤
λ · x

i
+ µ

uili

Figure 2.8: Convex relaxation for the ReLU function. The dark line represents the
exact set (non-convex) and the light area the approximate set (convex and linear). In
the figure, λ = ui

ui−li
and µ = − liui

ui−li
(Redrawn from [SGPV19]).

Similar to the exact approach, the over-approximate reachable set of a layer with
n neurons can be computed by executing a sequence of n approxReLU operations.
The algorithm takes the star set Θ = ⟨c, V, P ⟩ as input. After first determining the
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lower and upper bounds using Proposition 2.2.5, there are three cases. First, if the
lower bound is greater than or equal to zero, which means the set is in the positive
range, the star set remains the same. If the upper bound is less than zero, i.e., the
set is in the negative range, star set’s values in the given dimension are projected to
zero, similarly to the exact analysis. But if the upper limit is greater than zero and
the lower limit is less than zero, we introduce a new variable αm+1 to the predicate
P where P (α) ≜ Cα ≤ d. αm+1 encodes the over-approximation of the activation
function at the ith neuron according to Equation 2.4.
Consequently, we have three new linear constraints:

αm+1 ≥ xi, αm+1 ≥ 0, αm+1 ≤
ui(xi − li)
ui − li

As the reachable set contains one more variable and three more linear constraints in
the predicate, this leads to the following analysis complexity.

Lemma 2.3.5. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neurons FNN is N +m0 and 3N +n0, respectively, where
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.



Chapter 3

Implementation

In the previous chapter, we first presented the foundation of neural networks, and
furthermore introduced the star sets and their benefits. Moreover, we introduced
an algorithm for star based reachability analysis, both exact computation and over-
approximation the reachable set of neural networks using ReLU activation function.
In this chapter, our interest lies in investigating the reachability analysis using other
activation functions. Additionally, we discuss various types of non-fully connected
layers. Lastly, we review a common file format to represent, store and share machine
learning models, Open Neural Network Exchange (ONNX) [ONN].

3.1 Star Set based Reachability Analysis of Neural
Networks

This section presents the extension of our star based reachability analysis algorithm to
include and incorporate also leaky rectified linear unit (leaky ReLU), hard hyperbolic
tangent (HardTanh), hard sigmoid (HardSigmoid), and unit step activation functions.
First, we begin by introducing the definition of each function. Next, we present a
concept for the corresponding reachability analysis. More specifically, as with ReLU
reachability analysis, we examine the exact and over-approximative analyses, as well
as the analysis of an unbounded input. We implemented the described methods using
the hybrid system analysis tool HyPro [SÁMK17].

If the neural network does not hold any activation function, the resulting output
signal would be a linear function, essentially a polynomial of degree one. However,
neural networks are designed to learn relationships between inputs and outputs that
are non-linear and complex. Correspondingly, non-linear activation functions are used
in neural networks to prevent linearity [SSA20].
Despite the importance of the activation functions in neural networks, they face chal-
lenges that can impact their effectiveness. The two main problems are the vanishing
gradient problem and the dead neuron problem.

Vanishing gradient problem [Dat20, Edu23]
The term vanishing gradient problem refers to a phenomenon when the gradient ap-
proaches a very small value, close to zero. Neural networks train and learn by adjust-
ing the weights of their neurons based on the error it makes in predicting the correct
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output. This adjustment happens with the help of backpropagation. Backpropa-
gation computes the network’s gradients, which is the measure of how the weights
should change, and propagates it back through the network to update the weights.
Certain activation functions squish a large input into a small output. Therefore, a
large change in the function’s input results in a small change in the output, this result
in the gradient vanishing. Correspondingly, it makes it difficult to learn and improve
the parameters of the earlier layers in the network.

Dead neuron problem [Dat20, Ram21]
The "Dead Neuron" problem in neural networks refers to a scenario where a neuron
becomes unresponsive and does not contribute to the network output. The dead
neuron problem occurs when an activation function forces a significant part of the
input to zero or close to zero, rendering corresponding neurons inactive or "dead" in
contributing to the final output. Once this happens, the network struggles to recover,
and a large part of the input fails to contribute to the network’s functioning.

The ReLU activation function is widely used in neural networks because of its
efficiency and substantial contribution to solving the vanishing gradient problem,
having its gradient be either 0 or 1. Nevertheless, since the ReLU activation function
evaluates the negative input to a zero output, the neural network suffers from the
previously seen dead neuron problem.

Moving forward, we will discuss different activation function alternatives and their
star set based reachability analysis. We assume that the input is a star set I = ⟨c, V, P ⟩
for all the upcoming reachability analyses since any bounded convex polyhedron can
be presented as a star by Proposition 2.2.1, and the affine mapping of a star also results
in a star by Proposition 2.2.2. Since the reachable set is derived laver-by-layer, the
main step in computing the reachable set of a layer is applying the activation function
on the star input, i.e., calculate f(Θ) where f is the chosen activation function and
Θ = ⟨c, V, P ⟩.

3.1.1 Reachability of Leaky ReLU Layer (LReLU)

Leaky ReLU is another type of activation function. It was introduced by Mass et
al.[Maa13].

Definition 3.1.1 (Leaky ReLU Function [XLD+20]). Given the input x

LeakyReLU(x) =

{
x, x > 0

γ · x, x ≤ 0
= max(γ · x, x) (3.1)

where γ ∈ (0,1).

Due to the dead neuron problem caused by the ReLU activation function, the
alternative variant, Leaky ReLU, was introduced. The leaky ReLU function allows a
small part of the negative input to be passed on as output, unlike the ReLU function,
where the negative part is pushed to zero. Correspondently, this helps to minimize
the occurrence of silent or dead neurons. Nevertheless, the gradient of the negative
outputs may cause the vanishing gradient problem to occur [Gus22, Dat20, XLD+20].
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xi

LeakyReLU(xi)

0

Figure 3.1: Leaky ReLU function (LReLU) where γ = 0.2

Exact and Complete Analysis

Given the input Θ = ⟨c, V, P ⟩ then, we can apply a sequence of n exactLReLU oper-
ations so that Rk = LeakyReLUn(LeakyReLUn−1(. . . LeakyReLU1(Θ))) computes
the reachable set on layer k with n neurons. First, we compute the input’s lower bound
li and upper bound ui at the ith neuron. After that, the operation as presented in
Algorithm 1 distinguishes three cases:

• If the lower bound lu is in the positive range, i.e., is not negative, no change is
applied to the input set, and the exactLReLU returns a set that is the same as
the input set.

• If the upper bound ui is equal or less than zero, i.e., is not positive, the ex-
actLReLU returns a new reachable set where the ith state variable xi is set to
γ · xi.

• Otherwise, Θ is decomposed into two subsets Θ1 = Θ ∧ (xi > 0) and
Θ2 = Θ ∧ (xi ≤ 0). Based on Proposition 2.2.3 those subsets are also stars.
So let Θ1 = ⟨c,V,P1⟩ and Θ2 = ⟨c, V, P2⟩. By Definition 3.1.1, for xi in
x = [x1 . . . xn]

T ∈ Θ1, there is no change after applying the leaky ReLU acti-
vation function on Θ1. Since Θ2 has xi ≤ 0, for x = [x1 . . . xn]

T ∈ Θ2 applying
leaky ReLU will yield a new vector x′ = [x1 . . . xi−1 γxi xi+1 . . . xn]

T . This is
equivalent to mapping Θ2 by the scaling matrix M = [e1 . . . ei−1 γ ei+1 . . . en].
Accordingly, the exactLReLU operation of the ith neuron for the input star set
Θ results in LeakyReLUi(Θ) = ⟨c, V, P1⟩ ∪ ⟨Mc,MV, P2⟩.

A concrete example of exactLReLU operation is illustrated in Example 3.1.1. To
reduce the number of calculations, it is helpful to determine the ranges of all states in
the input star set Θ at the ith neuron beforehand, as presented in the first two cases
in line 15 and line 17 in Algorithm 1.

Lemma 3.1.1. The worst-case complexity of the number of stars in the reachable set
of an N-neurons FNN is O(2N ).

Lemma 3.1.2. The worst-case complexity of the number of constraints of a star in
the reachable set of an N-neurons FNN is O(N).
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Example 3.1.1. Let Θ = ⟨c, V, P ⟩ be the input set, where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,

also the predicate P (α) ≜ Cα ≤ d where C =


−2.5 1.2
−2.5 1.4
3.9 1.6
2 2.4
−0.9 −3.8

 and d =


6.7
4.1
7.86
6.4
6.42



x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

Figure 3.2: The input star set Θ corresponding to Example 3.1.1

We apply the exactLReLU operation on the dimensions of Θ with γ = 0.2, resulting
in:

x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

Figure 3.3: Θ′ after applying
exactLReLU on the first dimension.

x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

Figure 3.4: Θ′′ after applying
exactLReLU on the second dimension.
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Algorithm 1 Star set based exact reachability analysis for a leaky ReLU layer

Input: Input star set I = [Θ1 . . .ΘN ]
Output: Exact reachable set R
1: procedure layerReach(I,W, b)
2: R ← ∅
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj , Pj⟩
5: R1 ← I1
6: for i = 1 : n do ▷ n exactLReLU operations
7: R1 ← exactLReLU(R1, i, li, ui)

8: R ← R∪R1

9: return R
10: procedure exactLReLU(Ĩ , i, li, ui)
11: R̃ ← ∅, Ĩ = [Θ̃1, . . . , Θ̃k] ▷ Intermediate representations
12: for j = 1 : k do
13: [li, ui]← Θ̃j .range(i) ▷ li ≤ xi ≤ ui, xi ∈ I1[i]

14: R1 ← ∅, M ← [e1 . . . ei−1 γ ei+1 . . . en]
15: if li > 0 then
16: R1 ← Θ̃j = ⟨c̃j , Ṽj , P̃j⟩
17: else if ui ≤ 0 then
18: R1 ←M ∗ Θ̃j = ⟨Mc̃j ,MṼj , P̃j⟩
19: else ▷ li < 0 & ui > 0

20: Θ̃′
j ← Θ̃j ∧ x[i] > 0 = ⟨c̃j , Ṽj , P̃ ′

j⟩
21: Θ̃′′

j ← Θ̃j ∧ x[i] ≤ 0 = ⟨c̃j , Ṽj , P̃ ′′
j ⟩

22: R1 ← Θ̃′
j ∪M ∗ Θ̃′′

j

23: R̃ ← R̃ ∪ R1

24: return R̃

Over-approximate Analysis

Although the exact algorithm computes the exact reachable sets of a leaky ReLU
FNN, the over-approximative reachability analysis, like in ReLU, is an approach to
avoid the exponentially growing number of stars over the number of layers. In this
section, we investigate an over-approximative reachability algorithm for leaky ReLU
FNNs. Here, we also construct only a single star at each neuron using the following
approximation rule.

Lemma 3.1.3. For the input xi, the output yi = LeakyReLU(xi), let
yi = xi li ≥ 0

yi = xi · γ ui ≤ 0

yi ≥ xi · γ, yi ≤ ui−(γ·li)
ui−li

· xi + (ui·li)(γ−1)
ui−li

, yi ≥ xi li < 0 ∧ ui > 0

(3.2)

where li and ui are lower and upper bounds of xi.

The approximate reachable set of a layer with n neurons is also computed by exe-
cuting a sequence of n approxLReLU operations as shown in Algorithm 2. Given the
input Θ = ⟨c, V, P ⟩. For the state variable xi at the ith neuron, the algorithm deter-
mines the lower and upper bounds li, ui. The approxLReLU operation differentiates
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xi

LeakyReLU(xi)

yi ≥ xi ·
γ

y i
≥
x i

yi ≤
λ · x

i
+ µ

uili 0

Figure 3.5: Convex relaxation for the leaky ReLU function. The dark line represents
the exact set (non-convex) and the light area the approximate set (convex and linear).
In the figure, λ = ui−(γ·li)

ui−li
and µ = (ui·li)(γ−1)

ui−li
and γ = 0.2.

between three cases.

• The input remains unchanged if the lower bound li is non-negative, as in line
12. The approxLReLU returns a set that is the same as the input set.

• If the upper bound ui is equal or less than zero, the set is mapped by the scaling
matrix M = [e1 . . . ei−1 γ ei+1 . . . en] so that the ith state variable is set to
γxi in the new returned reachable set (line 14).

• Though, if the lower bound is negative and the upper bound is positive, as in
line 16, we introduce a new variable αm+1 to the predicate P (α) ≜ Cα ≤ d
that represents the over-approximation of the leaky ReLU function at the ith
neuron according to Equation 3.2. Resulting in three more linear constraints in
the predicate P ′(α′) ≜ C ′α′ ≤ d′ where α′ = [α1 . . . αm αm+1]:

αm+1 ≥ xi, αm+1 ≥ xi · γ, αm+1 ≤
ui − (γ · li)
ui − li

· xi +
(ui · li)(γ − 1)

ui − li

Adding one more variable and three more linear constraints in the predicate of the
reachable set leads to the following lemma.

Lemma 3.1.4. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neurons FNN is N +m0 and 3N +n0, respectively, where
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.

Example 3.1.2. Let Θ = ⟨c,V,P ⟩ be the input set where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,

also the predicate P (α) ≜ Cα ≤ d where C =


−2.5 1.2
−2.5 1.4
3.9 1.6
2 2.4
−0.9 −3.8

 and d =


6.7
4.1
7.86
6.4
6.42


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Figure 3.6: The input star set Θ corresponding to Example 3.1.2

We apply the approxLReLU operation on the dimensions of Θ with γ = 0.2, resulting
in:
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Figure 3.7: Θ′ after applying
approxLReLU on the first dimension.
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Figure 3.8: Θ′′ after applying
approxLReLU on the second dimension.
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Algorithm 2 Star set based over-approximate reachability analysis for a leaky ReLU
layer

Input: Input star set I = [Θ]
Output: Over-approximate reachable set R
1: procedure layerReach(I,W, b)
2: I1 ←W ∗ I0 + b = ⟨Wc+ b,WV, P ⟩
3: I ′ ← I1
4: for i = 1 : n do ▷ n approxLReLU operations
5: I ′ ← approxLReLU(I ′,i)

6: R1 ← I ′

7: procedure approxLReLU(Ĩ , i)
8: Ĩ ← Θ = ⟨c̃, Ṽ , P̃ ⟩
9: [li,ui]← Θ̃.range(i) ▷ li ≤ xi ≤ ui

10: M ← [e1 . . . ei−1 0 ei+1 . . . en]
11: M ′ ← [e1 . . . ei−1 γ ei+1 . . . en]
12: if li ≥ 0 then
13: R̃ ← Θ̃j = ⟨c̃, Ṽ , P̃ ⟩
14: else if ui ≤ 0 then
15: R̃ ←M ′ ∗ Θ̃ = ⟨M ′c̃,M ′Ṽ , P̃ ⟩
16: else ▷ li < 0 & ui > 0

17: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

18: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

19: C1 ← [Ṽi − 1], d1 ← −c̃i
20: C2 ← [Ṽi − γ], d2 ← −γ · c̃i
21: C3 ← [−ui−(γ·li)

ui−li
Ṽi 1], d3 ← (ui−γ·li)c̃i+li·ui(γ−1)

ui−li

22: C0 ← [C̃ 0m×1], d0 ← d̃
23: C ′ ← [C0 C1 C2 C3], d

′ ← [d0 d1 d2 d3]
24: P ′(α′) ≜ C ′α′ ≤ d′
25: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]
26: R̃ ← ⟨c′,V ′,P ′⟩

Unbounded Analysis

After presenting the exact and over-approximative analysis, in this section, we want
to discuss the reachability analysis of an input star set with the condition of being
unbounded. For the input star set Θ = ⟨c, V, P ⟩, we consider three scenarios: The
input Θ has only one lower or only one upper or no bounds at all.

• First, if the input star set Θ has a lower, but no upper bound, i.e., the input
(in the given dimension) can take any positive value, without a maximal limit.
Computing the exact and complete analysis on this input would be the same
process as applying the exactLReLU operation on a bounded input star set in
3.1.1. Since we can detect whether the lower is in the positive range, we get a
reachable set that is the same as the input. If the lower bound is in the negative
range and we know that the upper bound growth extends infinitely into the
positive range, we treat the set the same as in Algorithm 1, line 19. However,
the case that the input set is always in the negative range, as in line 17, will
never occur as the set continuously grows infinitely in the positive direction.
Regarding the overapproximative analysis, our presented approximation rule 2.8
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will change to the following.

Lemma 3.1.5. For the input xi, the output yi = LeakyReLU(xi), let{
yi = xi li ≥ 0

yi ≥ xi · γ, yi ≤ xi + li · (γ − 1), yi ≥ xi li < 0
(3.3)

where li is the lower bound of xi.

xi

LeakyReLU(xi)

yi ≥ xi ·
γ

y i
≥
x i

y i
≤
x i
+
l i
· (
γ
−
1)

li 0

Figure 3.9: Convex relaxation for the leaky ReLU function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, γ = 0.2.

Applying approxLReLU on unbounded input set according to the newly pre-
sented rule works as follows. After computing the lower bound, if it is greater
than 0, the input remains as it is. But if the lower bound is less than 0, we
introduce a new variable αm+1 to capture the over-approximation, which will
result in three more linear constraints in the predicate:

αm+1 ≥ xi, αm+1 ≥ xi · γ, αm+1 ≤ xi + li · (γ − 1)

• The second case is when the input star set has an upper but no lower bound,
meaning that the input extends infinitely to the negative direction without a
minimum limit. Similar to the first case applying exactLReLU on this input
will be the same as applying it on a bounded input star set. We will only notice
a change with respect to the over-approximative analysis. Therefore, the over-
approximation rule changes as follows since we only have an upper bound, and
the set does not have a minimum limit.

Lemma 3.1.6. For the input xi, the output yi = LeakyReLU(xi), let{
yi = γ · xi ui ≤ 0

yi ≥ xi · γ, yi ≤ γ · xi + ui · (1− γ), yi ≥ xi ui > 0
(3.4)

where ui is the upper bound of xi.
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xi

LeakyReLU(xi)

yi ≥ xi ·
γ

y i
≥
x i

yi ≤ γ · xi
+ ui · (1−

γ)

ui0

Figure 3.10: Convex relaxation for the leaky ReLU function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, γ = 0.2.

For the approxLReLU, we start by determining the upper bound. If the upper
bound is less than zero, we operate the same as over-approximation using a
bounded input set. If the upper bound is greater than zero, we introduce a
new variable αm+1, representing the over-approximation. Accordingly, we have
three new constraints:

αm+1 ≥ xi, αm+1 ≥ xi · γ, αm+1 ≤ γ · xi + ui · (1− γ)

• The last case is when the input has no lower or upper bound bounds, i.e., the
input has no finite limits in the analyized dimension. According to this case,
our exact analysis does not differ from the case of having a bounded input
set. Nevertheless, the over-approximative analysis would differ, resulting in the
following rule.

Lemma 3.1.7. For the input xi, the output yi = LeakyReLU(xi), let{
yi ≥ xi · γ, yi ≥ xi xi ∈ R (3.5)

xi

LeakyReLU(xi)

yi = xi · γ

y i
=
x i

0

Figure 3.11: Convex relaxation for the leaky ReLU function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, γ = 0.2.

Since the input star set does not have an upper or lower bound, by introducing
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the new variable αm+1, the over-approximation is only limited by the two new
constraints:

αm+1 ≥ xi, αm+1 ≥ xi · γ

Lemma 3.1.8. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neurons FNN is N +m0 and 3N +n0, where respectively
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.

3.1.2 Reachability of Hard Tanh Layer
The hard hyperbolic tangent function, also referred to as the HardTanh function, is
a variation of the hyperbolic tangent activation function. It is defined as follows.

Definition 3.1.2 (Hard hyperbolic tangent Function (HardTanh) [Col04]). For the
input x

HardTanh(x) =


−1, x < −1
1, x > 1

x, −1 ≤ x ≤ 1

(3.6)

xi

HardTanh(xi)

0

Figure 3.12: Hard hyperbolic function (HardTanh)

The hyperbolic tangent (tanh) is more popular than the sigmoid function since
it gives better training performance [Gus22]. The tanh function binds a large in-
put range to a range between -1 and 1. Thus, a large change in the input value
results in a minimal change to the output value. This leads to close to zero gradient
values. Therefore, the tanh function suffers from the vanishing gradient problem.
However, the HardTanh function does not face the dead neuron problem since its
range contains positive and negative values. We chose the HardTanh version for our
implementation since it is cheaper and more computational than the tanh function
[CWB+11, NIGM18] as well as since we can verify it, in contrast to the tanh.

Exact and Complete Analysis

With the input Θ = ⟨c,V,P ⟩, we compute the reachable set by executing a sequence of
n exactHTangent operations Rk = HardTanhn(HardTanhn−1(. . . HardTanh1(Θ)))
for a layer k with n neurons. For our implemented exactHTangent operation, we
modified the function and exchanged the −1 and 1 with minV al and maxV al to
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adapt the function to the own use. minV al stands for the minimum value of the
linear part and maxV al for the maximum value of the linear part. This yields the
following function definition:

HardTanh(x) =


minV al, x < minV al

maxV al, x > maxV al

x, minV al ≤ x ≤ maxV al
(3.7)

Like the other reachability analyses, we first compute the lower and upper bounds
li, ui on the ith neuron. Afterward, as outlined in the Algorithm 3, the function
exactHTangent tackles six different cases.

• If the lower bound li is greater than minV al and the upper bound ui is less
than maxV al, the input set remains unchanged, and the function returns a new
reachable set which is the same as the input set.

• If the upper bound ui is less than the minV al, we project the input onto
minV al. First, we project the set to zero by the mapping matrix
M = [e1 . . . ei−1 0 ei+1 . . . en]. Then we set the center of the input set at the
ith position to minV al, i.e., ci = minV al.

• Similar to the second case, when the lower bound li is greater than maxV al, we
project the input onto the maxV al. We initiate the process by mapping the set
to zero with the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en]. Afterwards,
the center at the ith position is set to maxV al, ci = maxV al.

• When the lower bound li is between minV al and maxV al and the upper bound
ui is greater than maxV al. Then, we split the input set into two subsets
Θ1 = Θ ∧ (minV al ≤ xi ≤ maxV al) and Θ2 = Θ ∧ (xi > maxV al). By
Definition 3.7, the first subset Θ1 = ⟨c, V, P1⟩ remains unchanged since it is
in the range between minV al and maxV al. However, since Θ2 = ⟨c, V, P2⟩ is
greater than maxV al, applying the activation function will leads to the new
vector x′ = [x1 . . . xi−1 maxV al xi+1 . . . xn]

T ∈ Θ2, which is the same as pro-
jecting the set to zero by the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en],
then the center ci is set to maxV al so that ci = maxV al. Finally, the ex-
actHTangent operation at the ith neuron for the input star set Θ results in
HardTanhi(Θ) = ⟨c, V, P1⟩ ∪ ⟨Mc+ s,MV, P2⟩, where s is the shifting vector
s = [0 . . .maxV al . . . 0]T .

• When the lower bound li is less than minV al, and the upper bound ui is less
than maxV al, i.e., in the range between minV al and maxV al, we split the
input set into two subsets Θ1 = Θ ∧ (minV al ≤ xi ≤ maxV al) and
Θ2 = Θ ∧ (xi < minV al). By Definition 3.7, the first subset Θ1 = ⟨c, V, P1⟩
remains unchanged since it is in the range between minV al and maxV al.
Θ2 = ⟨c, V, P2⟩ is projected to minV al, by projecting the set to zero by mapping
the set with the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en] and afterward
changing the center ci to minV al. Finally, the exactHTangent operation at the
ith neuron for the input star set Θ results in HardTanhTi(Θ) = ⟨c, V, P1⟩ ∪
⟨Mc+ s′,MV, P2⟩, where s′ is the shifting vector, s′ = [0 . . . minV al . . . 0]T .

• The last case occurs when the lower bound li is less than minV al, and the
upper bound ui is greater than maxV al. We partition the set into three subsets
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Θ1 = Θ ∧ (minV al ≤ xi ≤ maxV al), Θ2 = Θ ∧ (xi > maxV al), and
Θ3 = Θ ∧ (xi < minV al). Θ1 = ⟨c, V, P1⟩, by Definition 3.7, remains the same.
In contrast, applying the activation function on xi of x = [x1 . . . xn]

T ∈ Θ2

leads to a new vector x′ = [x1 . . . xi−1 maxV al xi+1 . . . xn]
T ,i.e., we map

the set with the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en], then set the
center to maxV al. For Θ3, we do the same, but instead of setting the center ci
to maxV al, we place it to minV al. Accordingly, the exactHTangent operation
at the ith neuron for the input star set Θ results in a union of three star sets
HardTanhi(Θ) = ⟨c, V, P1⟩∪⟨Mc+s,MV, P2⟩∪⟨Mc+s′,MV, P3⟩, where s, s′
are the shifting vectors, s = [0 . . . maxV al . . . 0]T and
s′ = [0 . . . minV al . . . 0]T .

Lemma 3.1.9. The worst-case complexity of the number of stars in the reachable set
of an N-neurons FNN is O(3N ).

Lemma 3.1.10. The worst-case complexity of the number of constraints of a star in
the reachable set of an N-neurons FNN is O(2N).

Example 3.1.3. Let Θ = ⟨c, V, P ⟩ be the input set where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,

also the predicate P (α) ≜ Cα ≤ d where C =


−2.5 1.2
−2.5 1.4
3.9 1.6
2 2.4
−0.9 −3.8

 and d =


6.7
4.1
7.86
6.4
6.42



x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

Figure 3.13: The input star set Θ corresponding to Example 3.1.3

We apply the exactHTangent operation on the dimensions of Θ with minV al = −2
and maxV al = 2, resulting in:
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x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1
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3

Figure 3.14: Θ′ after applying
exactHTangent on the first dimension.

x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

Figure 3.15: Θ′′ after applying
exactHTangent on the second dimension.
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Algorithm 3 Star set based exact reachability analysis for a HardTanh layer
Constants: minV al,maxV al
Input: Input star set I = [Θ1 . . .ΘN ]
Output: Exact reachable set R
1: procedure layerReach(I,W, b)
2: R ← ∅
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj , Pj⟩
5: R1 ← I1
6: for i = 1 : n do ▷ n exactHTangent operations
7: R1 ← exactHTangent(R1, i, li, ui)

8: R ← R∪R1

9: return R
10: procedure exactHTangent(Ĩ , i, li, ui)
11: R̃ ← ∅, Ĩ = [Θ̃1, . . . , Θ̃k] ▷ Intermediate representations
12: for j = 1 : k do
13: [li, ui]← Θ̃j .range(i) ▷ li ≤ xi ≤ ui, xi ∈ I1[i]
14: R1 ← ∅, M ← [e1 . . . ei−1 0 ei+1 . . . en]
15: s← [0 . . . maxV al . . . 0]T

16: s′ ← [0 . . . minV al . . . 0]T

17: if li ≥ minV al and ui ≤ maxV al then
18: R1 ← Θ̃j = ⟨c̃j , Ṽj , P̃j⟩
19: else if ui < minV al then
20: Θ̃j ←M ∗ Θ̃j = ⟨Mc̃j + s′,MṼj , P̃j⟩
21: R1 ← Θ̃
22: else if li > maxV al then
23: Θ̃j ←M ∗ Θ̃j = ⟨Mc̃j + s,MṼj , P̃j⟩
24: R1 ← Θ̃
25: else if minV al ≤ li ≤ maxV al and ui > maxV al then
26: Θ̃′

j ← Θ̃j ∧minV al ≤ x[i] ≤ maxV al = ⟨c̃j , Ṽj , P̃ ′
j⟩

27: Θ̃′′
j ← Θ̃j ∧ x[i] > maxV al = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

28: Θ̃′′
j ←M ∗ Θ̃′′

j = ⟨Mc̃′′j + s,MṼ ′′
j , P̃

′′
j ⟩

29: R1 ← Θ̃′
j ∪ Θ̃′′

j
30: else if li < minV al and ui ≤ maxV al then
31: Θ̃′

j ← Θ̃j ∧minV al ≤ x[i] ≤ maxV al = ⟨c̃j , Ṽj , P̃ ′
j⟩

32: Θ̃′′
j ← Θ̃j ∧ x[i] < minV al = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

33: Θ̃′′
j ←M ∗ Θ̃′′

j = ⟨Mc̃′′j + s′,MṼ ′′
j , P̃

′′
j ⟩

34: R1 ← Θ̃′
j ∪ Θ̃′′

j
35: else ▷ li < minV al and ui > maxV al
36: Θ̃′

j ← Θ̃j ∧minV al ≤ x[i] ≤ maxV al = ⟨c̃j , Ṽj , P̃ ′
j⟩

37: Θ̃′′
j ← Θ̃j ∧ x[i] > maxV al = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

38: Θ̃′′
j ←M ∗ Θ̃′′

j = ⟨Mc̃′′j + s,MṼ ′′
j , P̃

′′
j ⟩

39: Θ̃′′′
j ← Θ̃j ∧ x[i] < minV al = ⟨c̃′′′j , Ṽ ′′′

j , P̃ ′′′
j ⟩

40: Θ̃′′′
j ←M ∗ Θ̃′′′

j = ⟨Mc̃′′′j + s′,MṼ ′′′
j , P̃ ′′′

j ⟩
41: R1 ← Θ̃′

j ∪ Θ̃′′
j ∪ Θ̃′′′

j

42: R̃ ← R̃ ∪ R1

43: return R̃
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Over-approximate Analysis

In the previous section, we saw that we mainly deal with three main ranges using the
HardTanh function 3.7. Now we want to examine the over-approximation algorithm
for HardTanh in FNNs where each layer constructs only one star. In the exact analysis,
we discussed six cases. Similar to those cases, our approximation rule is defined as
follows.

Lemma 3.1.11. For any input xi, the output yi = HardTanh(xi), let
yi = xi li ≥ minV al ∧ ui ≤ maxV al
yi = minV al ui < minV al

yi = maxV al li > maxV al

(3.8)


yi ≤ maxV al,
yi ≥ − li−maxV al

ui−li
· xi − li·(maxV al−ui)

ui−li
, minV al ≤ li ≤ maxV al ∧ ui > maxV al

yi ≤ xi
(3.9)

xi

HardTanh(xi)

uili 0

Figure 3.16: Convex relaxation for the HardTanh function. The dark line represents
the exact set (non-convex) and the light area the approximate set (convex and linear).
In the figure, minV al = −1, maxV al = 1.


yi ≥ minV al,
yi ≤ ui−minV al

ui−li
· xi − ui·(li−minV al)

ui−li
, li < minV al ∧ ui ≤ maxV al

yi ≥ xi
(3.10)



Star Set based Reachability Analysis of Neural Networks 35

xi

HardTanh(xi)

uili 0

Figure 3.17: Convex relaxation for the HardTanh function. The dark line represents
the exact set (non-convex) and the light area the approximate set (convex and linear).
In the figure, minV al = −1, maxV al = 1.


yi ≤ maxV al,
yi ≥ minV al, li < minV al ∧ ui > maxV al

yi ≤ maxV al−minV al
maxV al−li

· xi − maxV al·(li−minV al)
maxV al−li

,

yi ≥ minV al−maxV al
minV al−ui

· xi − minV al·(maxV al−ui)
minV al−ui

(3.11)

xi

HardTanh(xi)

uili 0

Figure 3.18: Convex relaxation for the HardTanh function. The dark line represents
the exact set (non-convex) and the light area the approximate set (convex and linear).
In the figure, minV al = −1, maxV al = 1.

where li and ui are lower and upper bounds of xi

For the over-approximates approach, it is depicted as a triangle when the set is over
two ranges. However, when the set covers three ranges, our approach is represented by
a parallelogram. Similar to the reachable analyses, we compute the reachable set by
the execution of a sequence of n approxHTangent operation of a layer with n neurons.

• If the lower bound li is greater than minV al, and the upper bound ui is less
than maxV al, i.e., the set is between the lower and upper bounds, the function
returns a set that is the same as the input set.
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• If the upper bound ui is less than minV al, we project the set to minV al by
mapping the set with the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en] and
then changing the ith position in the center ci to minV al.

• In contrast to the second case, we project the set to maxV al, since the lower
bound li is greater than maxV al. However, here we also map the set with the
mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en]. After that, we set ci to
maxV al.

• When the lower bound li is between minV al and maxV al and the upper bound
ui is over maxV al. To capture the over-approximation at the ith neuron, we
introduce a new variable αm+1. As a result, the obtained reachable set has one
more variable and three more linear constraints to the predicate
P ′(α′) ≜ C ′α′ ≤ d′ where α′ = [α1 . . . αm αm+1]:

αm+1 ≤ maxV al, αm+1 ≤ xi,

αm+1 ≥ −
li −maxV al

ui − li
· xi −

li · (maxV al − ui)
ui − li

• In the opposite case, when the upper bound ui is between minV al and maxV al
and the lower bound li is less than minV al, we also introduce a new variable
αm+1 to the predicate , resulting in three different linear constraints:

αm+1 ≥ minV al, αm+1 ≥ xi,

αm+1 ≤
ui −minV al

ui − li
· xi −

ui · (li −minV al)
ui − li

• If the set is over minV al and maxV al, i.e., the lower bound li is less than
minV al, and the upper bound ui is greater than maxV al. We introduce a new
variable αm+1 to encode the over-approximation at the ith neuron. In addition,
the reachable set has one more variable. However, according to Equation 3.1.11,
we have four more linear constraints, so the predicate P ′(α′) ≜ C ′α′ ≤ d′ where
α′ = [α1 . . . αm αm+1] in the reachable set holds:

αm+1 ≥ minV al, αm+1 ≤ maxV al,

αm+1 ≤
maxV al −minV al

maxV al − li
· xi −

maxV al · (li −minV al)
maxV al − li

,

αm+1 ≥
minV al −maxV al

minV al − ui
· xi −

minV al · (maxV al − ui)
minV al − ui

Lemma 3.1.12. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neuron FNN is N +m0 and 4N + n0, where respectively
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.

Example 3.1.4. Let Θ = ⟨c, V, P ⟩ be the input set where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,
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also the predicate P (α) ≜ Cα ≤ d where C =


−2.5 1.2
−2.5 1.4
3.9 1.6
2 2.4
−0.9 −3.8

 and d =


6.7
4.1
7.86
6.4
6.42



x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

Figure 3.19: The input star set Θ corresponding to Example 3.1.4

We apply the approxHTangent operation on the dimensions of Θ with minV al =
−2 and maxV al = 2, resulting in:

x1

x2

-3 -2 -1 0 1 2 3

-3

-2
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1

2

3

Figure 3.20: Θ′ after applying
approxHTangent on the first dimension.

x1

x2
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1
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3

Figure 3.21: Θ′′ after applying
approxHTangent on the second dimen-
sion.
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Algorithm 4 Star set based over-approximate reachability analysis for a HardTanh
layer
Constants: minV al,maxV al
Input: Input star set I = [Θ]
Output: Over-approximate reachable set R
1: procedure layerReach(I,W, b)
2: I1 ←W ∗ I0 + b = ⟨Wc+ b,WV, P ⟩
3: I ′ ← I1
4: for i = 1 : n do ▷ n approxHTangent operations
5: I ′ ← approxHTangent(I ′,i)
6: R1 ← I ′

7: procedure approxHTangent(Ĩ , i)
8: Ĩ ← Θ = ⟨c̃, Ṽ , P̃ ⟩
9: [li,ui]← Θ̃.range(i)

10: M ← [e1 . . . ei−1 0 ei+1 . . . en]
11: s← [0 . . . maxV al . . . 0]T

12: s′ ← [0 . . . minV al . . . 0]T

13: if li ≥ minV al and ui ≤ maxV al then
14: R1 ← Θ̃j = ⟨c̃j , Ṽj , P̃j⟩
15: else if ui < minV al then
16: Θ̃j ←M ∗ Θ̃j = ⟨Mc̃j + s′,MṼj , P̃j⟩
17: R1 ← Θ̃
18: else if li > maxV al then
19: Θ̃j ←M ∗ Θ̃j = ⟨Mc̃j + s,MṼj , P̃j⟩
20: R1 ← Θ̃
21: else if minV al ≤ li ≤ maxV al and ui > maxV al then
22: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

23: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

24: C1 ← [0 . . . 0 1], d1 ← maxV al

25: C2 ← [Ṽi 1], d2 ← c̃i
26: C3 ← [− li−maxV al

ui−li
Ṽi − 1], d3 ← c̃i·(li−maxV al)+li·(maxV al−ui)

ui−li

27: C0 ← [C̃ 0m×1], d0 ← d̃
28: C ′ ← [C0 C1 C2 C3], d

′ ← [d0 d1 d2 d3]

29: P ′(α′) ≜ C ′α′ ≤ d′
30: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]

31: R̃ ← ⟨c′,V ′,P ′⟩
32: else if li < minV al and ui ≤ maxV al then
33: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

34: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

35: C1 ← [0 . . . 0 − 1], d1 ← minV al

36: C2 ← [Ṽi − 1], d2 ← −c̃i
37: C3 ← [−ui−minV al

ui−li
Ṽi 1], d3 ← c̃i·(ui−minV al)−ui·(li−minV al)

ui−li

38: C0 ← [C̃ 0m×1], d0 ← d̃
39: C ′ ← [C0 C1 C2 C3], d

′ ← [d0 d1 d2 d3]

40: P ′(α′) ≜ C ′α′ ≤ d′
41: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]

42: R̃ ← ⟨c′,V ′,P ′⟩
43: else ▷ li < minV al and ui > maxV al
44: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

45: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

46: C1 ← [0 . . . 0 − 1], d1 ← minV al
47: C2 ← [0 . . . 0 1], d2 ← maxV al

48: C3 ← [−maxV al−minV al
maxV al−li

Ṽi 1], d3 ← c̃i·(maxV al−minV al)−maxV al·(li−minV al)
maxV al−li

49: C4 ← [minV al−maxV al
minV al−ui

Ṽi −1], d4 ← c̃i·(minV al−maxV al)+minV al·(maxV al−ui)
ui−minV al

50: C0 ← [C̃ 0m×1], d0 ← d̃
51: C ′ ← [C0 C1 C2 C3 C4], d

′ ← [d0 d1 d2 d3 d4]

52: P ′(α′) ≜ C ′α′ ≤ d′
53: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]

54: R̃ ← ⟨c′,V ′,P ′⟩
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Unbounded Analysis

In this section, we investigate the reachability analysis of an unbounded input star set
Θ = ⟨c, V, P ⟩. For the unboundedness, we consider three cases the same as in 3.1.1.

• In case, the input star set Θ has no upper bound and accordingly increases
infinitely without reaching a maximum value. By executing the exaxtHTangent
operation to compute an exact reachability set for the input set without an
upper bound, in compersion, the exaxtHTangent operation will work the same
as with the bounded input star set. However, only three of the six presented
cases will occur. First, if the lower bound is greater than maxV al, we apply
the case of line 22 in Algorithm 3. As we can compute if the lower bound is in
the range between minV al and maxV al, we can treat the input as presented in
Algorithm 3, line 25. Furthermore, if the lower bound is less than minV al, we
handle the set in a manner equivalent to Algorithm 3, line 35. In contrast, the
over-approximative analysis will change, and consequently, the approximation
rule as well.

Lemma 3.1.13. For any input xi, the output yi = HardTanh(xi), let
yi ≤ maxV al,
yi ≥ li minV al ≤ li ≤ maxV al
yi ≤ xi

(3.12)

xi

HardTanh(xi)

li

0

Figure 3.22: Convex relaxation for the HardTanh function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.


yi ≤ maxV al,
yi ≥ minV al, li < minV al

yi ≤ maxV al−minV al
maxV al−li

· xi − maxV al·(li−minV al)
maxV al−li

(3.13)
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xi

HardTanh(xi)

li 0

Figure 3.23: Convex relaxation for the HardTanh function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.

where li is the lower bound of xi.

We apply approxHTangent on our input set, which will differ between the two
cases. First, suppose the lower bound is between minV al and maxV al. In that
case, we introduce a new variable αm+1 to encode the over-approximation of
the activation function according to Equation 3.12, which will result in three
more linear constraints:

αm+1 ≤ maxV al, αm+1 ≥ li, αm+1 ≤ xi

The second case is when the lower bound is less than minV al. Therefore, the
new variable αm+1 captures the over-approximation according to Equation 3.13,
generating three more linear constraints:

αm+1 ≤ maxV al, αm+1 ≥ minV al,

αm+1 ≤
maxV al −minV al

maxV al − li
· xi −

maxV al · (li −minV al)
maxV al − li

• The second case is when the input star set Θ has no lower bound, i.e., the
input extends infinitely to the negative direction without a minimum limit.
Alike the first case, applying the exactHTangent operation would result in the
same process as having a bounded input, but only three of the six presented
cases will occur. If the upper bound is less than minV al, we project the input
onto minV al, as in Algorithm 4, line 13. If the upper bound is in the range
between minV al and maxV al, then we handle the set the same as in line 32 in
Algorithm 4. Lastly, if our upper bound is greater than maxV al, then we apply
the case of line 43 Algorithm 4. Regarding the over-approximative analysis, the
approximation rule changes as follows.

Lemma 3.1.14. For any input xi, the output yi = HardTanh(xi), let
yi ≥ minV al,
yi ≤ ui minV al ≤ ui ≤ maxV al
yi ≥ xi

(3.14)
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xi

HardTanh(xi)

ui0

Figure 3.24: Convex relaxation for the HardTanh function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.


yi ≥ minV al,
yi ≤ maxV al, ui > maxV al

yi ≥ minV al−maxV al
minV al−ui

· xi − minV al·(maxV al−ui)
minV al−ui

(3.15)

xi

HardTanh(xi)

ui0

Figure 3.25: Convex relaxation for the HardTanh function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.

where ui is the upper bound of xi.

If the upper bound is in the range between minV al and maxV al, we introduce
the new variable αm+1 encoding the over-approximation according to Equation
3.14, resulting in three more constraints:

αm+1 ≥ minV al, αm+1 ≤ ui, αm+1 ≥ xi

However, if the upper bound is greater than maxV al, the over-approximation
is captured by the new variable αm+1 according to the Equation 3.15. Hence
we have three more constraints:

αm+1 ≥ minV al, αm+1 ≤ maxV al,
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αm+1 ≥
minV al −maxV al

minV al − ui
· xi −

minV al · (maxV al − ui)
minV al − ui

• Lastly, we consider the input with no upper or lower bound, i.e., the input grows
infinitely without limits. In this case, the exact analysis also does not differ from
the exact analysis with bounded input. Regardless, the over-approximative
analysis would change, resulting in the following rule.

Lemma 3.1.15. For any input xi, the output yi = HardTanh(xi), let{
yi ≥ minV al, yi ≤ maxV al xi ∈ R (3.16)

xi

HardTanh(xi)

0

Figure 3.26: Convex relaxation for the HardTanh function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.

Introducing the new variable αm+1 to the predicate will result in these two new
constraints

αm+1 ≥ minV al, αm+1 ≤ maxV al

Regarding the dimension, after applying HardTanh, the obtained star set has
any possible value in the codomain.

Lemma 3.1.16. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neurons FNN is N +m0 and 3N +n0, where respectively
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.

3.1.3 Reachability of Hard Sigmoid Layer
The hard sigmoid activation function is a variant of the sigmoid function. It is similar
to the Hard Tanh function 3.6.

Definition 3.1.3 (Hard Sigmoid Function (HardSigmoid) [AG21]). Given the input
x,

HardSigmoid(x) =


0 x ≤ −1
1 x ≥ 1
1
2 · x+ 1

2 −1 < x < 1

= max(0,min(
1

2
· x+

1

2
)) (3.17)
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xi

HardSigmoid(xi)

0

Figure 3.27: Hard sigmoid function (HardSigmoid)

The sigmoid function is known for its nonlinearity and simplicity of computation-
ally inexpensive derivative. Since the function is bound in the range [0,1], it always
produces a non-negative value as output. Hence large input changes yield small output
changes, thus generating small gradient values. Accordingly, the function suffers from
the vanishing gradient problem. However, it does not face the dead neuron problem
[Gus22, Dat20]. In our implementation, we decided on the hard sigmoid since it has a
lower computation cost (both in software and specialized hardware implementations)
and performs excellently in binary classification tasks [CBD15, AG21] as well as since
we can verify it, in contrast to the sigmoid.
Considering that the hard sigmoid function has different variants, as in [TF223] and
[PT221], we wanted to use a general form of the function definition in our implemen-
tation to adjust the function to the own use. Consequently, the function definition is
as follows.

HardSigmoid(x) =


0 x ≤ minV al
1 x ≥ maxV al

1
maxV al−minV al · x+ minV al

minV al−maxV al minV al < x < maxV al

(3.18)
We will discuss the analyses in the following sections using this function 3.18.

Exact and Complete Analysis

Given the input Θ = ⟨c, V, P ⟩, the core step to compute the reachable set of a layer
k is by applying the activation function on the input star set Θ. For a layer with n
neurons, we apply a sequence of n exactHSigmoid operation
Rk = HardSigmoidn(HardSigmoidn−1(. . . HardSigmoid1(Θ))). As described in
Algorithm 5, we start by computing the lower and upper bounds li, ui on the ith
neuron. The function distinguishes six different cases.

• If the lower and upper bounds between minV al and maxV al, we apply the
HardSigmoid function on the xi of the vector x = [x1 . . . xn]

T , leading to a
new vector x′ = [x1 . . . xi−1

1
maxV al−minV alxi+

minV al
minV al−maxV al xi+1 . . . xn]

T .
This procedure is equivalent to mapping the input set by the scaling matrix
M ′ = [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en]. Afterward, we set the center ci

to minV al
minV al−maxV al .
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• If the upper bound ui is less than minV al, i.e., ui ≤ minV al, we project the
input onto zero by mapping the set with M = [e1 . . . ei−1 0 ei+1 . . . en].

• If the lower bound li exceeds maxV al, we project the set onto one. First, we
map the set with the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en]. Then
we change the center at the ith position to one, i.e., ci = 1.

• We split the set into two subsets if the lower bound li is between minV al and
maxV al and the upper bound ui is greater than maxV al.
Θ1 = Θ∧(xi < maxV al), Θ2 = Θ∧(xi ≥ maxV al). According to the Definition
3.18, we map Θ1 = ⟨c, V, P1⟩ by the scaling matrix
M ′ = [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en] and then change its center ci

to minV al
minV al−maxV al . Furthermore, we project Θ2 = ⟨c, V, P2⟩ to 1, as in case 3,

first by mapping the Θ2 by the matrix M = [e1 . . . ei−1 0 ei+1 . . . en] and
then setting the center ci to 1. Finally, the exactHSigmoid operation at the ith
neuron for the input star set Θ results in
HardSigmoidi(Θ) = ⟨M ′c+s,M ′V, P1⟩∪⟨Mc+s′,MV, P2⟩, where s, s′ are the
shifting vectors, s = [0 . . . minV al

minV al−maxV al . . . 0]
T and s′ = [0 . . . 1 . . . 0]T .

• When the lower bound li is less than minV al, and the upper bound ui is less
than maxV al, we split the set into two subsets Θ1 = Θ ∧ (xi ≤ minV al),
Θ2 = Θ ∧ (xi > minV al). By Definition 3.18, the first subset Θ1 is projected
to zero by mapping the set with M = [e1 . . . ei−1 0 ei+1 . . . en]. Θ2 is in the
range between minV al and maxV al, so we map it by the scaling matrix
M ′ = [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en] and set ci to minV al

minV al−maxV al .
Consequently, the result of the exactHSigmoid operation of the ith neuron for
the input star set Θ is union of two star sets
HardSigmoidi(Θ) = ⟨Mc,MV, P1⟩ ∪ ⟨M ′c+ s,M ′V, P2⟩, where
s = [0 . . . minV al

minV al−maxV al . . . 0]
T is the shifting vector.

• In the last case, we partition the set into three subsets
Θ1 = Θ ∧ (minV al < xi < maxV al), Θ2 = Θ ∧ (xi ≤ minV al), and
Θ3 = Θ ∧ (xi ≥ maxV al). Similar to the last cases, Θ1 is scaled according to
the Definition 3.18, so first, we map it with the scaling matrix
M ′ = [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en] and adjust ci to minV al

minV al−maxV al .
Θ2 is projected onto zero, so we map the set with the mapping matrix
M = [e1 . . . ei−1 0 ei+1 . . . en]. However, Θ3 is projected to 1 by mapping
the set with M = [e1 . . . ei−1 0 ei+1 . . . en], and setting the center ci to 1.
Accordingly, the exactHSigmoid operation at the ith neuron results in a union
of three star sets
HardSigmoidi(Θ) = ⟨M ′c+ s,M ′V, P1⟩ ∪ ⟨Mc,MV, P2⟩ ∪ ⟨Mc+ s′,MV, P3⟩,
where s = [0 . . . minV al

minV al−maxV al . . . 0]T and s′ = [0 . . . 1 . . . 0]T are the
shifting vectors.

Example 3.1.5. Let Θ = ⟨c,V,P ⟩ be the input set, where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,
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also the predicate P (α) ≜ Cα ≤ d where C =


−2.5 1.2
−2.5 1.4
3.9 1.6
2 2.4
−0.9 −3.8

 and d =


6.7
4.1
7.86
6.4
6.42


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Figure 3.28: The input star set Θ corresponding to Example 3.1.5

We apply the exactHSigmoid operation on the dimensions of Θ with minV al = −2
and maxV al = 2, resulting in:
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Figure 3.29: Θ′ after applying
exactHSigmoid on the first dimension.
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2

3

Figure 3.30: Θ′′ after applying
exactHSigmoid on the second dimension.
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Algorithm 5 Star set based exact reachability analysis for a HardSigmoid layer
Constants: minV al,maxV al
Input: Input star set I = [Θ1 . . .ΘN ]
Output: Exact reachable set R
1: procedure layerReach(I,W, b)
2: R ← ∅
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj , Pj⟩
5: R1 ← I1
6: for i = 1 : n do ▷ n exactHTangent operations
7: R1 ← exactHSigmoid(R1, i, li, ui)

8: R ← R∪R1

9: return R
10: procedure exactHSigmoid(Ĩ , i, li, ui)
11: R̃ ← ∅, Ĩ = [Θ̃1, . . . , Θ̃k] ▷ Intermediate representations
12: for j = 1 : k do
13: [li, ui]← Θ̃j .range(i) ▷ li ≤ xi ≤ ui, xi ∈ I1[i]
14: R1 ← ∅
15: M ← [e1 . . . ei−1 0 ei+1 . . . en]
16: M ′ ← [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en]

17: s← [0 . . . minV al
minV al−maxV al . . . 0]

T

18: s′ ← [0 . . . 1 . . . 0]T

19: if li > minV al and ui < maxV al then
20: Θ̃←M ′ ∗ Θ̃j = ⟨Mc̃j + s,MṼj , P̃j⟩
21: R1 ← Θ̃j

22: else if ui ≤ minV al then
23: R1 ←M ∗ Θ̃j = ⟨Mc̃j ,MṼj , P̃j⟩
24: else if li ≥ maxV al then
25: Θ̃j ←M ∗ Θ̃j = ⟨Mc̃j + s′,MṼj , P̃j⟩
26: R1 ← Θ̃j

27: else if minV al < li < maxV al and ui ≥ maxV al then
28: Θ̃′

j ← Θ̃j ∧minV al < x[i] < maxV al = ⟨c̃j , Ṽj , P̃ ′
j⟩

29: Θ̃′ ←M ′ ∗ Θ̃′
j = ⟨Mc̃j + s,MṼj , P̃

′
j⟩

30: Θ̃′′
j ← Θ̃j ∧ x[i] ≥ maxV al = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

31: Θ̃′′
j ←M ∗ Θ̃′′

j = ⟨Mc̃′′j + s′,MṼ ′′
j , P̃

′′
j ⟩

32: R1 ← Θ̃′
j ∪ Θ̃′′

j
33: else if li ≤ minV al and ui < maxV al then
34: Θ̃′

j ← Θ̃j ∧minV al < x[i] < maxV al = ⟨c̃j , Ṽj , P̃ ′
j⟩

35: Θ̃′ ←M ′ ∗ Θ̃′
j = ⟨Mc̃j + s,MṼj , P̃

′
j⟩

36: Θ̃′′
j ← Θ̃j ∧ x[i] < minV al = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

37: R1 ← Θ̃′
j ∪M ∗ Θ̃′′

j
38: else ▷ li ≤ minV al and ui ≥ maxV al
39: Θ̃′

j ← Θ̃j ∧minV al < x[i] < maxV al = ⟨c̃j , Ṽj , P̃ ′
j⟩

40: Θ̃′ ←M ′ ∗ Θ̃′
j = ⟨Mc̃j + s,MṼj , P̃

′
j⟩

41: Θ̃′′
j ← Θ̃j ∧ x[i] ≤ minV al = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

42: Θ̃′′
j ←M ∗ Θ̃′′

j

43: Θ̃′′′
j ← Θ̃j ∧ x[i] ≥ maxV al = ⟨c̃′′′j , Ṽ ′′′

j , P̃ ′′′
j ⟩

44: Θ̃′′′
j ←M ∗ Θ̃′′′

j = ⟨Mc̃′′′j + s′,MṼ ′′′
j , P̃ ′′′

j ⟩
45: R1 ← Θ̃′

j ∪ Θ̃′′
j ∪ Θ̃′′′

j

46: R̃ ← R̃ ∪ R1

47: return R̃
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Lemma 3.1.17. The worst-case complexity of the number of stars in the reachable
set of an N-neurons FNN is O(3N ).

Lemma 3.1.18. The worst-case complexity of the number of constraints of a star in
the reachable set of an N-neurons FNN is O(2N).

Over-approximate Analysis

In this section, we want to discuss the over-approximation reachability algorithm for
HardSigmoid 6. Then, equivalent to the last section, we will distinguish between six
cases. Likewise, the other analyses of this over-approximative analysis construct one
star at each neuron using the following approximation rule.

Lemma 3.1.19. Given the input xi, for an output yi = HardSigmoid(xi), let
yi =

1
maxV al−minV al · x+ minV al

minV al−maxV al li > minV al ∧ ui < maxV al

yi = 0 ui ≤ minV al
yi = 1 li ≥ maxV al

(3.19)


yi ≤ 1,

yi ≤ 1
maxV al−minV al · xi +

minV al
minV al−maxV al , minV al < li < maxV al ∧

yi ≥ li−1
li−ui

· xi + li·(1−ui)
li−ui

ui ≥ maxV al
(3.20)

xi

HardSigmoid(xi)

uili 0

Figure 3.31: Convex relaxation for the HardSigmoid function. The dark line repre-
sents the exact set (non-convex) and the light area the approximate set (convex and
linear). In the figure, minV al = −1, maxV al = 1.


yi ≥ 0,

yi ≥ 1
maxV al−minV al · xi +

minV al
minV al−maxV al , li ≤ minV al ∧ ui < maxV al

yi ≤ ui·(xi−li)
ui−li

(3.21)
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xi

HardSigmoid(xi)

uili 0

Figure 3.32: Convex relaxation for the HardSigmoid function. The dark line repre-
sents the exact set (non-convex) and the light area the approximate set (convex and
linear). In the figure, minV al = −1, maxV al = 1.


yi ≤ 1,

yi ≥ 0, li ≤ minV al ∧ ui ≥ maxV al
yi ≤ 1

maxV al−li
· xi − li

maxV al−li
,

yi ≥ 1
ui−minV al · xi −

minV al
ui−minV al

(3.22)

xi

HardSigmoid(xi)

uili 0

Figure 3.33: Convex relaxation for the HardSigmoid function. The dark line repre-
sents the exact set (non-convex) and the light area the approximate set (convex and
linear). In the figure, minV al = −1, maxV al = 1.

where li and ui are lower and upper bounds of xi.

We compute the reachable set by executing a sequence of n approxHSigmoid op-
erations for a layer with n neurons. Given an input star set Θ, we determine the
input’s lower and upper bounds li,ui at the ith neuron. We differentiate six cases.

• Equivalent to the exact analysis, if the lower bound li and upper bound ui
between minV al and maxV al, we scale the input set by the scaling matrix
M ′ = [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en], then adjust the center

ci =
minV al

minV al−maxV al .

• If the upper bound ui is less than minV al, we project the input set onto zero
by mapping the set by the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en].
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• If the lower bound li is greater than maxV al, we project the input set onto one
by mapping the set by the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en]
and afterward adjust ci to 1.

• If the lower bound li is in the range between minV al and maxV al and the
upper bound ui is over maxV al, to encode the over-approximation at the ith
neuron, we introduce αm+1, which result in three new linear constraints:

αm+1 ≤ 1, αm+1 ≤
1

maxV al −minV al
· xi −

minV al

maxV al −minV al

αm+1 ≥
li − 1

li − ui
· xi +

li · (1− ui)
li − ui

• In contrast to the previous case, in this case, we consider the upper bound ui
is between minV al and maxV al, and the lower bound li is less than minV al.
We introduce a new variable αm+1 to capture the over-approximation. Corre-
spondingly we have three new constraints:

αm+1 ≥ 0, αm+1 ≥
1

maxV al −minV al
· xi +

minV al

maxV al −minV al

αm+1 ≤
ui · (xi − li)
ui − li

• Otherwise, since the upper bound ui is over maxV al and lower bound li less
than minV al, we introduce a new variable αm+1. As a result, the obtained
reachable set has four more linear constraints:

αm+1 ≤ 1, αm+1 ≥ 0,

αm+1 ≤
1

maxV al − li
· xi −

li
maxV al − li

,

αm+1 ≥
1

minV al − ui
· xi −

minV al

ui −minV al

Lemma 3.1.20. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neurons FNN is N +m0 and 4N +n0, where respectively
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.

Example 3.1.6. Let Θ = ⟨c, V, P ⟩ be the input set where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,

also the predicate P (α) ≜ Cα ≤ d where C =


−2.5 1.2
−2.5 1.4
3.9 1.6
2 2.4
−0.9 −3.8

 and d =


6.7
4.1
7.86
6.4
6.42


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Figure 3.34: The input star set Θ corresponding to Example 3.1.6

We apply the approxHSigmoid operation on the dimensions of Θ with minV al = −2
and maxV al = 2, resulting in:
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Figure 3.35: Θ′ after applying
approxHSigmoid on the first dimension.
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Figure 3.36: Θ′′ after applying
approxHSigmoid on the second dimen-
sion.
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Algorithm 6 Star set based over-approximate reachability analysis for a HardSig-
moid layer
Constants: minV al,maxV al
Input: Input star set I = [Θ]
Output: Over-approximate reachable set R
1: procedure layerReach(I,W, b)
2: I1 ←W ∗ I0 + b = ⟨Wc+ b,WV, P ⟩
3: I ′ ← I1
4: for i = 1 : n do ▷ n approxHSigmoid operations
5: I ′ ← approxHSigmoid(I ′,i)
6: R1 ← I ′

7: procedure approxHSigmoid(Ĩ , i)
8: Ĩ ← Θ = ⟨c̃, Ṽ , P̃ ⟩
9: [li,ui]← Θ̃.range(i)

10: M ← [e1 . . . ei−1 0 ei+1 . . . en]
11: M ′ ← [e1 . . . ei−1

1
maxV al−minV al ei+1 . . . en]

12: s← [0 . . . minV al
minV al−maxV al . . . 0]

T , s′ ← [0 . . . 1 . . . 0]T

13: if li > minV al and ui < maxV al then
14: Θ̃←M ′ ∗ Θ̃j = ⟨Mc̃j + s,MṼj , P̃j⟩
15: R1 ← Θ̃j

16: else if ui ≤ minV al then
17: R1 ←M ∗ Θ̃j = ⟨Mc̃j ,MṼj , P̃j⟩
18: else if li ≥ maxV al then
19: Θ̃j ←M ∗ Θ̃j = ⟨Mc̃j + s′,MṼj , P̃j⟩
20: R1 ← Θ̃j

21: else if minV al < li < maxV al and ui ≥ maxV al then
22: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

23: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

24: C1 ← [0 . . . 0 1], d1 ← 1

25: C2 ← [ −1
maxV al−minV al Ṽi 1], d2 ←

c̃i−minV al
maxV al−minV al

26: C3 ← [ li−1
li−ui

Ṽi − 1], d3 ← − c̃i·(li−1)+li·(1−ui)
li−ui

27: C0 ← [C̃ 0m×1], d0 ← d̃
28: C ′ ← [C0 C1 C2 C3], d

′ ← [d0 d1 d2 d3]

29: P ′(α′) ≜ C ′α′ ≤ d′
30: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]

31: R̃ ← ⟨c′,V ′,P ′⟩
32: else if li ≤ minV al and ui < maxV al then
33: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

34: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

35: C1 ← [0 . . . 0 − 1], d1 ← 0

36: C2 ← [ −1
maxV al−minV al Ṽi − 1], d2 ← − c̃i−minV al

maxV al−minV al

37: C3 ← [− ui

ui−li
Ṽi 1], d3 ← ui·(c̃i−li)

ui−li

38: C0 ← [C̃ 0m×1], d0 ← d̃
39: C ′ ← [C0 C1 C2 C3], d

′ ← [d0 d1 d2 d3]

40: P ′(α′) ≜ C ′α′ ≤ d′
41: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]

42: R̃ ← ⟨c′,V ′,P ′⟩
43: else ▷ li ≤ minV al and ui ≥ maxV al
44: P̃ (α) ≜ C̃α ≤ d̃, α = [α1 . . . αm]T

45: α′ ← [α1 . . . αm αm+1]
T ▷ New variable αm+1

46: C1 ← [0 . . . 0 − 1], d1 ← 0
47: C2 ← [0 . . . 0 1], d2 ← 1

48: C3 ← [− −1
maxV al−li

Ṽi 1], d3 ← c̃i−li
maxV al−li

49: C4 ← [ 1
ui−minV al Ṽi − 1], d4 ← − c̃i−minV al

ui−minV al

50: C0 ← [C̃ 0m×1], d0 ← d̃
51: C ′ ← [C0 C1 C2 C3 C4], d

′ ← [d0 d1 d2 d3 d4]

52: P ′(α′) ≜ C ′α′ ≤ d′
53: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]

54: R̃ ← ⟨c′,V ′,P ′⟩
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Unbounded Analysis

In this section, we present the exact and over-approximative analysis for an unbounded
input star set Θ = ⟨c, V, P ⟩. Therefore we consider three cases of unboundedness.

• The first case is when the input set has no upper bound, only a lower one, i.e.,
the input grows infinitely into the positive range. Applying the exactHSigmoid
operation will not differ from using the operation on a bounded input set. But
only three of the six cases from the exact reachability analysis will appear after
computing the lower bound. If the lower bound is greater than maxV al, we
project the set onto one as in line 24, Algorithm 5. If the lower bound is between
minVal and maxVal, we handle the set the same in Algorithm 5, line 27. We
compute the last case in line 38 when the lower bound is less than minV al.
For the over-approximative analysis, the approximation rule is changed to as
follows.

Lemma 3.1.21. For any input xi, the output yi = HardSigmoid(xi), let
yi ≤ 1,

yi ≥ 1
maxV al−minV al · li +

minV al
min−maxV al , minV al < li < maxV al

yi ≤ 1
maxV al−minV al · xi +

minV al
min−maxV al

(3.23)

xi

HardSigmoid(xi)

li 0

Figure 3.37: Convex relaxation for the HardSigmoid function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.


yi ≤ 1,

yi ≥ 0, li ≤ minV al
yi ≤ 1

maxV al−minV al · xi +
minV al

min−maxV al

(3.24)
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xi

HardSigmoid(xi)

li 0

Figure 3.38: Convex relaxation for the HardSigmoid function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1 and maxV al = 1.

where li is the lower bound of xi.

If the lower bound is within the range between minV al and maxV al, we intro-
duce a new variable denoted as αm+1 to represent the over-approximation as
specified in Equation 3.23. Correspondingly, the predicate will have three more
constraints:

αm+1 ≤ 1, αm+1 ≥
1

maxV al −minV al
· li +

minV al

min−maxV al
,

αm+1 ≤
1

maxV al −minV al
· xi +

minV al

min−maxV al
In case the lower bound is less than maxV al, we introduce the new variable
αm+1to capture the over-approximation, resulting in three new constraints:

αm+1 ≤ 1, αm+1 ≥ 0

αm+1 ≤
1

maxV al −minV al
· xi +

minV al

min−maxV al

• The second case occurs when the input star set has an upper but no lower bound
and extends infinitely into the negative range. Applying the exactHSigmoid
operation on the input results in the same process as for a bounded input.
However, three of the six cases will occur. If the upper bound is less than
minV al, we project the set onto zero as in line 22, Algorithm 5. If the upper
bound is between minV al and maxV al, we treat the set the same as in line 33
in Algorithm 5. In case the upper bound is greater than maxV al, we apply the
case of line 38. In difference from the exact analysis, the over-approximative
analysis will change with an unbounded input. Accordingly, the approximation
rule adjusts to the following rule.

Lemma 3.1.22. For any input xi, the output yi = HardSigmoid(xi), let
yi ≥ 0,

yi ≤ 1
maxV al−minV al · ui +

minV al
min−maxV al minV al < ui < maxV al

yi ≥ 1
maxV al−minV al · xi +

minV al
min−maxV al

(3.25)
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xi

HardSigmoid(xi)

ui0

Figure 3.39: Convex relaxation for the HardSigmoid function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.


yi ≥ 0,

yi ≤ 1, ui ≥ maxV al
yi ≥ minV al−maxV al

ui−minV al · xi − minV al·(maxV al−ui)
ui−minV al

(3.26)

xi

HardSigmoid(xi)

ui0

Figure 3.40: Convex relaxation for the HardSigmoid function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.

where ui is the upper bound of xi.

When the upper bound is between the minV al and maxV al, we introduce a
new variable αm+1 encoding the over-approximation according to equation 3,
resulting in three new constraints:

αm+1 ≥ 0, αm+1 ≤
1

maxV al −minV al
· ui +

minV al

min−maxV al

αm+1 ≥
1

maxV al −minV al
· xi +

minV al

min−maxV al
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If the upper bound exceeds maxV al, we introduce a new variable αm+1 to
represent the over-approximation. Coordinately, we have three new constraints:

yi ≥ 0, yi ≤ 1, yi ≥
minV al −maxV al

ui −minV al
· xi −

minV al · (maxV al − ui)
ui −minV al

• The last case is when the input grows infinitely into the positive and negative
regions, i.e., it has no upper or lower bound. The exact analysis is the same
as with the bounded input, but the only case that occurs is the same as in
Algorithm 5, line 38. However, the over-approximative rule will adjust to this
case, resulting in the following rule.

Lemma 3.1.23. For any input xi, the output yi = HardSigmoid(xi), let{
yi ≥ 0, yi ≤ 1 xi ∈ R (3.27)

xi

HardSigmoid(xi)

0

Figure 3.41: Convex relaxation for the HardSigmoid function, in the unbounded case.
The dark line represents the exact set (non-convex) and the light area the approximate
set (convex and linear). In the figure, minV al = −1, maxV al = 1.

Since the input star set does not have an upper or lower bound, by introducing
a new variable αm+1, two new constraints added to the predicate:

αm+1 ≥ 0, αm+1 ≤ 1

Regarding the dimension, after applying HardSigmoid, the obtained star set has
any possible value in the codomain.

Lemma 3.1.24. The worst-case complexity of the number of variables and constraints
in the reachable set of an N-neurons FNN is N +m0 and 3N +n0, respectively, where
m0 is the number of variables and n0 the number of linear constraints of the predicate
of the input set.

3.1.4 Reachability of Unit Step Function Layer

The unit step activation function, also called as the heaviside function is defined as
follows
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Definition 3.1.4 (Unit step function [GML+08]). For the input x, let

unitStep(x) =

{
0 x ≤ 0

1 x > 0
(3.28)

xi

UnitStep(xi)

0

Figure 3.42: Unit step function (UnitStep)

The step function is a straightforward activation function. It takes the input and
produces a single-bit output. Accordingly, it is helpful for linear separation between
two classes. In our implementation, we needed it to help us round the reachable sets
from our previous layers to specific values, enabling a straightforward representation of
the reachable set. This makes the verification of neural networks easier. Consequently,
we have generalized the function’s definition to adapt the function to our use.

unitStep(x) =

{
minRes x < val

maxRes x ≥ val
(3.29)

where val is the value that serves as the separator for our values, minRes andmaxRes
are the upper and lower limits for our results.

Exact and Complete Analysis

Given the input Θ = ⟨c, V, P ⟩. The exactUStep operation on the ith neuron, i.e.,
unitStepi(·), works as follows. We compute the lower and upper bounds li, ui. The
function tackles three cases:

• If the upper bound ui is less than val, we project the set onto minRes by
mapping the set with the mapping matrix M = [e1 . . . ei−1 0 ei+1 . . . en] and
then setting ci to minRes.

• In the opposite case, when the lower bound li is greater than val, we project
the set onto maxRes by mapping the set with the mapping matrix
M = [e1 . . . ei−1 0 ei+1 . . . en] and set ci to maxRes.

• Otherwise, we partition the input into two subsets Θ1 = Θ ∧ (xi < val) and
Θ2 = Θ∧(xi ≥ val). By definition 3.29, for Θ1, we project the set onto minRes
the same way in the first case, first by mapping the set with the mapping
matrix M = [e1 . . . ei−1 0 ei+1 . . . en], then adjusting ci to minRes. For
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Θ2, we project it onto maxRes by mapping the set with the mapping matrix
M = [e1 . . . ei−1 0 ei+1 . . . en] and changing ci to maxRes. Accordingly, the
exactUStep operation at the ith neuron for Θ as input yields the union of two
star sets unitStepi(Θ) = ⟨Mc+ s,MV, P1⟩∪ ⟨Mc+ s′,MV, P2⟩, where s, s′ are
the shifting vectors, s = [0 . . . minRes . . . 0]T and s′ = [0 . . . maxRes . . . 0]T .

Lemma 3.1.25. The worst-case complexity of the number of stars in the reachable
set of an N-neurons FNN is O(2N ).

Lemma 3.1.26. The worst-case complexity of the number of constraints of a star in
the reachable set of an N-neurons FNN is O(N).

Algorithm 7 Star set based exact reachability analysis for a unit step function layer
Constants: val,minRes,maxRes
Input: Input star set I = [Θ1 . . .ΘN ]
Output: Exact reachable set R
1: procedure layerReach(I,W, b)
2: R ← ∅
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj , Pj⟩
5: R1 ← I1
6: for i = 1 : n do ▷ n exactUStep operations
7: R1 ← exactUstep(R1, i, li, ui)

8: R ← R∪R1

9: return R
10: procedure exactUstep(Ĩ , i, li, ui)
11: R̃ ← ∅, Ĩ = [Θ̃1, . . . , Θ̃k] ▷ Intermediate representations
12: for j = 1 : k do
13: [li, ui]← Θ̃j .range(i) ▷ li ≤ xi ≤ ui, xi ∈ I1[i]

14: R1 ← ∅, M ← [e1 . . . ei−1 0 ei+1 . . . en]
15: s← [0 . . . minRes . . . 0]T

16: s′ ← [0 . . . maxRes . . . 0]T

17: if ui ≤ val then
18: R1 ←M ∗ Θ̃j = ⟨Mc̃j + s,MṼj , P̃j⟩
19: R1 ← Θ̃j

20: else if li ≥ val then
21: R1 ←M ∗ Θ̃j = ⟨Mc̃j + s′,MṼj , P̃j⟩
22: R1 ← Θ̃j

23: else ▷ li < val and ui ≥ val

24: Θ̃′
j ← Θ̃j ∧ x[i] < val = ⟨c̃′j , Ṽ ′

j , P̃
′
j⟩

25: Θ̃′
j ←M ∗ Θ̃′

j = ⟨Mc̃′j + s,MṼ ′
j , P̃

′
j⟩

26: Θ̃′′
j ← Θ̃j ∧ x[i] ≥ val = ⟨c̃′′j , Ṽ ′′

j , P̃
′′
j ⟩

27: Θ̃′′
j ←M ∗ Θ̃′′

j = ⟨Mc̃′′j + s′,MṼ ′′
j , P̃

′′
j ⟩

28: R1 ← Θ̃′
j ∪ Θ̃′′

j

29: R̃ ← R̃ ∪ R1

30: return R̃
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3.2 Non-Fully Connected Layers

In the previous section, we learned about different types of piecewise-linear activation
functions and their reachability analyses. In this section, we want to discuss non-fully
connected layer types also used frequently in neural networks. However, they were
not implemented in this thesis since the implementation was outside the scope of this
work.

Definition 3.2.1 (ImageStar [LW20]). An ImageStar Θ is a tuple ⟨c, V, P ⟩ where
c ∈ Rh×w×nc is the anchor image, V = {v1, . . . ,vm} ⊆ Rh×w×nc is a set of m images
called generator images, and P : Rm → {⊤,⊥} is a predicate, and h,w, nc are the
height, width and number of channels of the images respectively. The generator images
are arranged to form the ImageStar’s h×w × nc×m basis array. The set of images
represented by the ImageStar is given as:

JΘK = {x | x = c+

m∑
i=1

αivi such that P (α1, . . . ,αm) = ⊤}. (3.30)

3.2.1 Convolutional Layer

An n-dimensional convolutional layer consists of the weights W ∈ Rhf×wf×nc×nf , the
bias b ∈ R1×1×nf , the filter or kernels, the padding size, the stride, and the dilation
where hf , wf , nc are the height, width, and the number of channels of the filters in
the layer. Furthermore, nf is the number of filters [LW20, ON15, AAS20].

• The filter, also known as the learnable kernels, is a small matrix that detects
certain features in the input. The filter or kernels size must be specified for
each layer. The filter convolves over the image input. Then, as it slides over the
input till it parses the complete width, it calculates the scalar product and, in
the end, sums with the bias to give us a squashed one-depth convoluted feature
output.

• The padding size describes the amount of padding applied to the input. It
involves adding extra rows and columns, mostly of zeros, around the input
image before performing convolution. By adding the padding to the input,
we control the reduction in spatial dimensions during convolution, resulting in
better preservation of spatial information.

• The stride sets the distance by which the filter shifts across the input. Therefore,
the larger the stride is, the smaller the output. Hence, smaller strides are used
for better results.

• The dilation controls the spacing between the kernel points, so we increase the
skipped input units by increasing the dilation. It cheaply increases the output
units without increasing the kernel size.

A convolutional layer is the core layer of a convolutional neural network. It is
mainly used in processing and analyzing structured grid-like data, such as images.
By Definition 3.2.1, we saw that ImageStar is an extension of the star set. Moreover,
a convolutional layer can process ImageStar. Therefore, the following lemma presents
the reachability of a convolutional layer.
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Figure 3.43: The convolution operation [Ste19]

Lemma 3.2.1 (Reachable set of a convolutional layer [Tra20]). Given an ImageStar
as input I = ⟨c,V,P ⟩, the reachable set of a convolutional layer is another ImageStar
I = ⟨c′,V ′,P ′⟩ where c′ = Convol(c) is the convolution operation applied to the anchor
image, V ′ = {v′1, . . . , v′m}, v′i = ConvolZeroBias(vi) is the convolution operation with
zero bias applied to the generator images, i.e., only using the weights of the layer.

Convolutional layers have many advantages, by applying filters to small input
data regions, it enables localized feature extraction [AAS20]. Using shared weights
in convolutional layers reduces the number of learnable parameters compared to fully
connected layers. In addition, this parameter sharing allows convolutional neural
networks to efficiently learn and generalize from data by reusing learned features
across different input regions [YNDT18].

After researching the convolutional layer to be able to implement the described
layer to verify different types of neural networks in Hypro, since the convolutional
layer takes images, i.e., ImageStar as input, we concluded that implementing both
ImageStars and the analysis of the convoltuional layer is outside of the scope of this
bachelor’s thesis.

3.2.2 Pooling Layer

The pooling layer is another layer type in a convolutional neural network. It aims to
reduce the input volume’s dimensions (width and height) to reduce the complexity
for further layers while maintaining the essential features. There are many pooling
layers, but the most common are max and min pooling and average pooling [GK20,
ON15, AMAZ17].

• The max pooling also divides the input into smaller regions called pooling re-
gions and returns each region’s maximum value. This layer helps preserve the
most important features while reducing the dimensionality of the input. Min
pooling works similarly to max pooling, but instead of returning the region’s
maximum value, it returns the minimum value for each region.
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• The average pooling layer partitions the input into pooling regions and com-
putes the average values of each region. It provides a smoother downsampling
compared to max pooling.

Since pooling layers also process images stores as input and, in our case, ImageStar,
implementing this layer was was beyond this project’s scope.

Figure 3.44: Pooling Operation (max, min, and average pooling) [MS21].

3.2.3 Residual Layer

A residual layer, also known as a residual block, is an essential building block in deep
neural networks. Residual layers address the degradation problem. The degrada-
tion problem refers to the issue that arises when deep neural networks with a large
number of layers are trained. As the network’s depth increases, the training set’s per-
formance begins to saturate and then degrades, even though the network capacity is
theoretically increasing [HZRS16, Yad22]. In a residual layer, the input goes through
convolutional layers, activation functions, and other operations. The output of these
operations is then added to the original input, which creates a residual connection.
This connection allows the network to learn the residual or the difference between the
input and the desired output rather than learning the entire mapping from scratch. If
the residual is close to zero, the layer can effectively pass the input through without
adding much distortion [HZRS16, Nan17]. This layer implementation was outside the
scope of this work. However, the research took place to simplify the implementation
for the future.

Figure 3.45: Residual learning: a building block [HZRS16]
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3.2.4 Recurrent Layer

A recurrent layer is commonly used in recurrent neural networks for processing se-
quential or time-series data. Within a recurrent layer, a hidden state acts as a mem-
ory that stores information about past inputs in the sequence. At each time step,
the recurrent layer takes the current input and the previous hidden state as inputs,
producing an output and a new hidden state. This operation is repeated for each
element in the sequence, allowing the layer to consider the contextual information
from prior inputs. The key feature of a recurrent layer is its capacity to share weights
across various time steps, allowing it to learn and capture temporal dependencies
[PGCB14, Nab19]. Therefore, like the previous section, The implementation of this
layer was beyond this project’s scope, but still, the research took place.

Recurrent Neural Network

Feedforward Neural Network

Rolled RNN Unrolled RNN

Time

Output layer

Hidden layer

Input layer

Yt

X Xt 0X0 X1X X2X

Y00 Y1 Y2

Figure 3.46: Recurrent neural network [IBM]

3.3 ONNX Parser

Open Neural Network Exchange, abbreviated as ONNX, is an open format that allows
for the interchange of deep learning models between different frameworks. The ONNX
file format is a standard for representing deep learning models [ONN]. An ONNX file
contains a serialized representation of a trained neural network model. In addition,
this file includes the model’s architecture, weights, and computational graph, which
makes it usable for inference in different frameworks or deployment scenarios. Until
now, Hypro only supports the nnet file format to load models of neural networks
[Sta21]. The nnet file format is text-based for feed-forward, fully connected, ReLU-
activated neural networks. However, as we implemented activation functions other
than ReLU, we needed another format than the nnet file format to build and work
with the different model’s architecture. Therefore, we implemented the ONNX Parser
to be able to read and interpret models in ONNX format in Hypro. ONNX model
format uses Protocol Buffers (protobuf) as the underlying serialization format, so
the ONNX model files are stored in the Protobuf binary format. Accordingly, we
integrated Protobuf library in Hypro. Afterward, we implemented an adapter to read
the ONNX model’s attributes and save it as an object to work with it in Hypro. So
as a user, to be able to use this implementation, it is required to install Protobuf.
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Figure 3.47: A neural network represented with ONNX format



Chapter 4

Evaluation

In this section, we re-evaluate different benchmarks using our implemented star based
reachability algorithms, the exact and the over-approximation approach, using Hypro.
We start with the run time and safety verification of the ACAS Xu DNNs, move to
the thermostat benchmark afterward, and finally, a benchmark based on a case study
about autonomous drone control. Lastly, we evaluate the robustness of the binary
classification of sonar data.

The evaluations were run on a machine with Intel Xeon Platinum 8160 Processors
“SkyLake” (2.1 GHz, 24 cores each) and 16 GB RAM.

4.1 Benchmarks

4.1.1 ACAS Xu
The Airborne Collision Avoidance System Xu (ACAS Xu) is a mid-air collision avoid-
ance system focusing on unmanned aircraft. The ACAS Xu networks (ACAS Xu
DNNs) provide advisories for horizontal maneuvers to avoid collisions while mini-
mizing unnecessary alerts. It is a set of 45 feedforward neural networks, each with
seven fully connected layers, comprising a combined count of 300 neurons. The net-
works possess five inputs and five outputs, employing ReLU activation functions.
[JKO19, KBD+17] The units for the ACAS Xu DNNs’ inputs are:

• ρ : distance from ownship to intruder in feet

• θ : angle to intruder relative to ownship heading direction in radians for the
range [−τ,τ ]

• ψ : heading angle of intruder relative to ownship heading direction in radians
for the range [−τ,τ ]

• vown : speed of ownship in feet per second

• vint : speed of intruder in feet per second

Additionally, two other variables are used to generate the 45 neural networks
mentioned.

• τ : time until loss of vertical separation in seconds, discretized possible values
for it [0, 1, 5, 10, 20, 40, 60, 80, 100].
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Figure 4.1: Vertical view of a general example of the ACAS Xu. [KBD+17]

• aprev : previous advisory, possible values for it [Clear-of-Conflict, weak left, weak
right, strong left, strong right]

The networks are indexed as Nx,y where the networks are trained for the x-th value
of aprev and y-th value of τ . For example, N3,5 is the network trained for the case
where aprev = weak right and τ = 20. Further, different 10 properties are defined to
test the networks.

• Property ϕ1:

– If the intruder is distant and is much slower than the ownship, the score
of a COC advisory will always be below a certain fixed threshold.

– The property is tested on all 45 networks.
– Three input constraints: ρ ≥ 55947.69, vown ≥ 1145, xint ≤ 60.
– The desired output property is that the score for COC is at most 1500.

• Property ϕ2:

– If the intruder is distant and is much slower than the ownship, the score
of a COC advisory will never be maximal.

– The property is tested on Nx,y where x ≥ 2 and for all y.
– Three input constraints: ρ ≥ 55947.69, vown ≥ 1145, xint ≤ 60.
– The desired output property is that the score for COC is not the maximal

score.

• Property ϕ3:

– If the intruder is directly ahead towards the ownship, the score for COC
will not be minimal.

– The property is tested on all 45 networks except N1,7, N1,8 N1,9.
– Five input constraints: 1500 ≤ ρ ≤ 1800, − 0.06 ≤ θ ≤ 0.06, ψ ≥

3.10, vown ≥ 980, vint ≥ 960.
– The desired output property is that the score for COC is not the minimal

score.

• Property ϕ4:

– If the intruder is directly ahead away from the ownship but at a lower
speed than that of the ownship, the score for COC will not be minimal.



Benchmarks 65

– The property is tested on all 45 networks except N1,7, N1,8 N1,9.

– Five input constraints: 1500 ≤ ρ ≤ 1800, −0.06 ≤ θ ≤ 0.06, ψ = 0, vown ≥
1000, 700 ≤ vint ≤ 800.

– The desired output property is that the score for COC is not the minimal
score.

• Property ϕ5:

– If the intruder is near and approaching from the left, the network advises
“strong right”.

– The property is tested on N1,1.

– Five input constraints: 250 ≤ ρ ≤ 400, 0.2 ≤ θ ≤ 0.4, − 3.141592 ≤ ψ ≤
−3.141592 + 0.005, 100 ≤ vown ≤ 400, vint ≤ 400.

– The desired output property is that the score for “strong right” is the
minimal score.

• Property ϕ6:

– If the intruder is sufficiently far away, the network advises COC.

– The property is tested on N1,1.

– Five input constraints: 12000 ≤ ρ ≤ 62000, (0.7 ≤ θ ≤ 3.141592) ∨
(−3.141592 ≤ θ ≤ 0.7), − 3.141592 ≤ ψ ≤ −3.141592 + 0.005, 100 ≤
vown ≤ 1200, 0 ≤ vint ≤ 1200.

– The desired output property is that the score for COC is the minimal score.

• Property ϕ7:

– For a large vertical separation and a previous “weak left” advisory, the
network will either output COC or continue advising “weak left”.

– The property is tested on N1,9.

– Five input constraints: 0 ≤ ρ ≤ 60760, − 3.141592 ≤ θ ≤ 3.141592,
− 3.141592 ≤ ψ ≤ 3.141592, 100 ≤ vown ≤ 1200, 0 ≤ vint ≤ 1200.

– The desired output property is that the scores for “strong right” and “strong
left” are never the minimal scores.

• Property ϕ8:

– For a large vertical separation and a previous “weak left” advisory, the
network will either output COC or continue advising “weak left”.

– The property is tested on N2,9.

– Five input constraints: 0 ≤ ρ ≤ 60760, − 3.141592 ≤ θ ≤ −0.75 ·
3.141592, − 0.1 ≤ ψ ≤ 0.1, 600 ≤ vown ≤ 1200, 600 ≤ vint ≤ 1200.

– The desired output property is that the score for “weak left” is minimal or
the score for COC is minimal.

• Property ϕ9:

– Even if the previous advisory was “weak right”, the presence of a nearby
intruder will cause the network to output a “strong left” advisory instead.
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– The property is tested on N3,3.

– Five input constraints: 2000 ≤ ρ ≤ 7000, −0.4 ≤ θ ≤ −0.14, −3.141592 ≤
ψ ≤ −3.141592 + 0.01, 100 ≤ vown ≤ 150, 0 ≤ vint ≤ 150.

– The desired output property is that the score for “strong left” is minimal.

• Property ϕ10:

– For a far away intruder, the network advises COC.

– The property is tested on N4,5.

– Five input constraints: 36000 ≤ ρ ≤ 60760, 0.7 ≤ θ ≤ 3.14159,
−3.141592 ≤ ψ ≤ −3.141592+0.01, 900 ≤ vown ≤ 1200, 600 ≤ vint ≤ 1200.

– The desired output property is that the score for COC is minimal.

For our evaluation, we first compute the reachable set of the networks. Afterward,
we check the safety verification of the networks, i.e., if the reachable set lies fully in
the safe zone. If the result is not empty, we know that the star set contains elements
that are not in the safe set and, therefore, not safe. We check both the reachable
set computation time (RT ) and the safety verification time (VT ) in seconds. From
the results, which are also shown in Table 4.1, we can conclude that the star set
approach is, on average, faster than without the Reluplex [KBD+17]. Furthermore,
the exact method is 7× faster, and the over-approximation method is 134× faster.
Additionally, the over-approximative method is 19× faster than the exact method. As
the affine mapping and halfspace intersection operations are cheap in computation, the
efficiency of star sets in the reachability analysis and verification of piecewise linear
DNNs are shown in the results. It is also noticeable that the over-approximation
reachability approach verifies fewer networks than the exact reachability approach
since the Reluplex benchmarks only consider the exact computations [KBD+17]. We
refer to Appendix B for the detailed computation results.

properties Exact Overapproximation
AVG RT(s) AVG RT(s)

ϕ1 29402.5067 2049.4807
ϕ2 44631.003 1775.056
ϕ3 254.60 10.38
ϕ4 140.7655 9.4855
Sum 74428.8752 3844.4022

Table 4.1: Average Verification results for properties ϕ1, ϕ2, ϕ3, ϕ4 in seconds.

4.1.2 Thermostat
In this section, we consider another benchmark mentioned in this master thesis [Jia23].
The presented thermostat maintains the room temperature x between 17°C and 23°C.
It achieves this by activating (mode on) and deactivating (mode off) the heater based
on the measured temperature. The neural network representing the thermostat is a
feedforward neural network with three layers. The input consists of two neurons that
express the temperature x ∈ R and mode (on or off) as m ∈ {0,1}. Furthermore,
two hidden layers, each with ten neurons. Lastly, using the unit step function, the
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output layer predicts whether the heater will turn on Kh ∈ {15} or off Kh ∈ {0}. We
compute the reachable sets to verify the safety of the described neural network using
our reachability algorithm and input as a star set consisting of two variables, one that
presents the temperature x and the other the mode m, defined as Θ = ⟨c,V,P ⟩ where:

the basis V =

[
1 0
0 1

]
, and the center c =

[
0
0

]
,

and the predicate P (α) = Cα ≤ d where C =


1 0
−1 0
0 1
0 −1

 and d =


23
−22
1
−1


As we have the input as a star set and the output reachability set contains multiple
stars, using a unit step function layer presented in Algorithm 7 round the reachable
star sets to 0 or 15. Thus, we choose val = 7.5, minRes = 0, and maxRes = 15.
With this configuration, the input temperature being between 22° and 23°, and the
thermostat being turned on, i.e., m = 1, the expected control output should be turn
off signal. However, the results show two star sets vertices with the value 15, meaning
that the neural network violates its safety specification. The two unsafe star set
properties are:

Θ1 = ⟨c,V,P ⟩ where: the basis V =
[
0 0

]
, the center c =

[
15

]
,

and P (α) = Cα ≤ d where C =



1 0
−1 0
0 1
0 −1

0.16383 −0.68016
0.16627 −0.67315
−4.30272 17.4634
66.2391 −268.762


and d =



23
−22
1
−1

2.9718
3.0211
−77.214
1195.96



Θ2 = ⟨c,V,P ⟩ where: the basis V =
[
0 0

]
, the center c =

[
15

]
,

and P (α) = Cα ≤ d where C =



1 0
−1 0
0 1
0 −1

0.16383 −0.68016
0.16627 −0.67315
4.30272 −17.4634


and d =



23
−22
1
−1

2.9718
3.0211
77.214



Therefore, we take those star sets and construct a complete counter input set as in
Theorem 2.3.4 to falsify the neural networks, i.e., prove that it is unsafe. Accordingly,
we change the basis and center for each star set to the same value of basis and center
in the input star set. Afterward, we give those star sets as input in the presented
thermostat neural network with an extra unit step function layer. Since the resulted
reachability sets have the vertices 15, we know the neural network is unsafe.
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4.1.3 Drones
The functionality of autonomous drone control revolves around launching a drone
into the air and enabling it to hover at a desired altitude. [GDPT22] This benchmark
consists of eight neural networks. The first four consist of two, and the other four
networks of three hidden layers, each followed by a ReLU activation function layer.
The exact number of neurons, i.e., the size of the layers, is shown in Table 4.2.

Architecture Network ID Neurons

Two layers

AC1 32, 16
AC2 64, 32
AC3 128, 64
AC4 256, 128

Three layers

AC5 32, 16, 8
AC6 64, 32, 16
AC7 128, 64, 32
AC8 256, 128, 64

Table 4.2: The used network architectures. The layer size, i.e., the number of neurons
in each layer in column Neurons. [GDPT22]

We compute the reachability set of the networks as well as the safety verification
using our algorithm and measure the computation time verification time in millisec-
onds. The computation is tested with the exact and the over-approximation method.
For each neural network we test two properties.

Nx,y
Exact Overapproximation

RT(ms) RES VT(ms) RT(ms) RES VT(ms)

AC11 61385 True 4925 199 False 19
AC12 526 True 13 60 False 2
AC21 462405 True 17707 530 False 6
AC22 112 True 2 66 False 1
AC31 - - - 2951 False 441
AC32 5119 True 123 242 False 7
AC41 - - - 8711 False 1510
AC42 103014 True 5528 685 False 5
AC51 304844 True 26078 366 False 68
AC52 68 False 2 69 False 0
AC61 2631726 True 84416 651 False 91
AC62 98 False 1 73 False 0
AC71 - - - 2545 False 42
AC72 4050 True 96 288 False 2
AC81 - - - 65930 False 19805
AC82 812 False 48 579 False 4

Table 4.3: Verification results for the used networks. RT is the reachable set com-
putation time, and VT is the safety verification time, both in milliseconds. RES is
the safety verification result. The cells with (-) correspond to networks in which our
algorithm was not able to complete the verification successfully in less than 48 hours.
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The presented results in Table 4.3 show, as we would expect, that the over-
approximative algorithm is much faster compared to the exact algorithm. However,
the exact algorithm verify almost every network compared to the over-approximation
approach.

4.1.4 Sonar Binary Classifier

In this section, we evaluate the robustness of the binary classification of the sonar
dataset. This dataset describes sonar chirp returns bouncing off different services.
It contains 60 input variables representing the returns’ strength at different angles.
The verified neural network should be capable of binary classification, distinguishing
between rocks and metal cylinders. The neural network consists of two layers, the first
followed by a ReLU activation function and the second by a HardSigmoid activation
function. The verification we use is an analysis of the local robustness of the neural
network. A neural network is δ-locally-robust at input x off for every x′ such that
|x − x′|∞ ≤ δ, the network assigns the same label to x and x′. Our focus lies in
determining the robustness value that a verification method can provide a robustness
guarantee for the network.

δ = 0.1 δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001
RT RES RT RES RT RES RT RES RT RES

Set 1 100 False 107 False 103 False 100 False 106 False
Set 2 103 False 101 False 103 False 109 False 109 False
Set 3 103 False 102 False 104 False 109 False 112 False
Set 4 105 False 116 False 107 False 110 False 111 False
Set 5 107 False 109 False 105 True 108 True 122 True
Set 6 103 True 107 True 104 True 108 True 114 True
Set 7 104 False 106 False 106 True 109 True 103 True
Set 8 103 True 101 True 103 True 104 True 107 False
Set 9 104 True 106 True 105 True 111 True 103 False
Set 10 104 True 103 True 105 True 107 True 105 False

Table 4.4: Local adversarial robustness tests of the exact approach. RT is the reach-
able set computation time in milliseconds. RES is the safety verification result.

We examine this problem on ten input sets of the dataset and five δ values. The
first five input sets should be 1, which means a rock, and the next five 0, which means
a metal cylinder. True results show that the networks indicate the output right, and
False means the network indicates the wrong output. Tables 4.4 and 4.5 show the
results of our tests. By comparing the exact algorithm with the over-approximative
algorithm, we can observe that the exact algorithm proves the robustness of the
network in more cases than the over-approximative algorithm. Furthermore, different
input sets have different local robustness depending on the algorithm. For example,
in Table 4.4 for Set 5, the optimal δ value is between 0.01 and 0.001, but in Table
4.5, it is between 0.001 and 0.0001.
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δ = 0.1 δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001
RT RES RT RES RT RES RT RES RT RES

Set 1 105 False 104 False 104 False 112 False 108 False
Set 2 102 False 103 False 108 False 106 False 107 False
Set 3 101 False 107 False 107 False 109 False 107 False
Set 4 102 False 104 False 108 False 110 False 109 False
Set 5 109 False 104 False 108 False 131 True 109 True
Set 6 104 True 102 True 109 True 107 True 107 True
Set 7 102 False 110 False 109 False 107 False 107 True
Set 8 104 True 105 True 109 True 107 True 109 False
Set 9 104 True 102 True 108 True 108 True 128 True
Set 10 106 True 102 True 109 True 108 True 119 False

Table 4.5: Local adversarial robustness tests of the over-approximate approach. RT
is the reachable set computation time in milliseconds. RES is the safety verification
result.

4.2 Experimental Results

4.2.1 Run Time

In this section, we will present performed experiments for the purpose of improving
the running time of our proposed exact reachability algorithms. Since in our reacha-
bility algorithms, in most cases, we compute matrix multiplications, the approach is to
take a closer look at the run time when we perform only single column multiplications
instead of matrix multiplications. The matrix multiplication is done when we scale or
project the star set by the mapping or scaling matrix. In Hypro, matrix multiplication
uses the Eigen library [GJ+10], making the calculation very efficient and cheap. In the
experimental approach, column multiplication, at each position in the result matrix,
we only multiply the row of the mapping or the scaling matrix with the corresponding
column of the basis respectively center matrix. We tested the run time of the column
and matrix multiplication on different matrix dimensions and different matrices num-
bers with OpenMP and without the OpenMp. OpenMP (Open Multi-Processing)
is an application programming interface (API) that supports shared-memory multi-
processing programming. It provides a portable and scalable solution for parallel
programming allowing to write code that can be executed on systems with multiple
processors or cores. [OMP] Since using OpenMP leads to performance improvement
and faster run time, we test with and without it to better understand both methods.
From the corresponding results illustrated in Figure 4.2 and 4.3, we can conclude that
with increasing matrices numbers, the run time of column multiplication is faster. In
addition, with or without the OpenMP, the results are very similar, but still, using
the OpenMP improves the run time. However, with growing matrix dimension, the
matrix multiplication is much faster than the column multiplication. Moreover, using
the openMP in the matrix multiplication with different dimensions makes a noticeable
difference in the run time. In conclusion, depending on the application, it should be
decided which method to use, as each method has its advantages.
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Figure 4.2: Multiplications running
time with increasing matrix numbers.

Figure 4.3: Multiplications running
time with increasing matrix dimensions.
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Chapter 5

Conclusion

5.1 Discussion

In this work, we developed and discussed various algorithms for the star based reach-
ability analysis of different activation functions. The reachability analysis comprises
both the exact and complete analysis, in addition to the unbounded analysis, for each
of which we examined the different possible cases. We have implemented the activa-
tion functions as generally as possible to adapt them to their own use. The computed
reachable analyses are useful for observing the complex behavior of networks and
determining the networks’ safety.

We evaluate the effectiveness of the algorithms on different benchmarks derived
from related literature. Through this evaluation, we present quantitative results that
provide valuable insights into the runtime of the methods as well as safety verifica-
tion of the used benchmark networks. Furthermore, we presented an experimental
approach to improve the runtime of the methods. Additionally, implementing the
ONNX parser in Hypro makes integrating further benchmarks with different networks
architectures easier.

However, the current methods are limited to fully connected feedforward neural
networks with piecewise linear activation functions. As we saw in the results of our
evaluation of the benchmarks, the star based reachability analysis is very efficient.
Therefore it would be useful to perform backpropagation to train neural networks,
enabling them to learn from adversarial examples, adjust their parameters, and make
accurate predictions. Additionally, it is important to expand the scope of evaluation
beyond the current restricted set of architectures, i.e., different types of layers, in
Hypro. All these restrictions give rise to the following improvements in future work.

5.2 Future work

Currently, the functionality of Hypro is limited to supporting star set representation
only. However, as discussed in Section 3.2, it lacks support for other representations
like ImageStar. Additionally, implementing different layer types, such as convolu-
tional, pooling, residual, and recurrent layers, is not possible in Hypro. To address
these limitations, it would be highly beneficial to expand Hypro’s capabilities to in-
clude support for additional representations like ImageStar and enable the implemen-
tation of various layer types.
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Furthermore, it is essential to thoroughly investigate and evaluate the proposed
reachability analysis with these different layer types using appropriate benchmarks.
By conducting comprehensive experiments and evaluations, we can gain deeper in-
sights into the performance, accuracy, and limitations of the reachability analysis
method when applied to neural networks utilizing these layer types.

In addition, given that the star set based reachability analysis focuses on fully
connected feedforward neural networks with different activation functions, it would
be highly valuable to extend the investigation to integrate the backpropagation meth-
ods with star sets. Therefore it would be valuable to investigate the backpropagation
methods using the star sets since it is a widely used algorithm for training artifi-
cial neural networks and offers numerous advantages in efficient training, scalability,
flexibility, and generalization capabilities [WOS+22]. This investigation can provide
insights into the feasibility and benefits of incorporating backpropagation with star
sets, ultimately contributing to the advancement of safe and reliable learning-based
neural networks.
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Appendix A

Supplementary Proofs

This section contains additional proofs that were omitted from the thesis. These
proofs further support the main theorems and lemmas discussed throughout the thesis.
Therefore, the purpose of the supplementary proofs section is to be read alongside
the thesis, enhancing the reader’s understanding.

Proposition A.0.1. 2.2.1 Any bounded convex polyhedron P ≜ {x | Cx ≤ d, x ∈
Rn} can be presented as a star.

Proof. The star set Θ represents the polyhedron P with the center c = [0 0 . . . 0]T ,
the basis vectors V = {e1, . . . , en} in which ei is the i − th basic vector of Rn, and
the predicate P (α) ≜ Cα ≤ d.

Proposition A.0.2. 2.2.2 Given a star set Θ = ⟨c, V, P ⟩, an affine mapping of the
star Θ with the linear mapping matrix W and offset vector b defined by
Θ̄ = {y | y =Wx+ b, x ∈ Θ} is another star such that

Θ̄ = ⟨c̄, V̄ , P̄ ⟩, c̄ =Wc+ b, V̄ = {Wv1, . . . ,Wvm}, P̄ ≡ P

Proof. By the definition of a star, we have Θ̄ = {y | y = Wc + b +
∑m

i=1(αiWvi)},
so that P (α1, . . . , αm) = ⊤ yields that Θ̄ is another star with the center c̄ =Wc+ b,
basis vectors V̄ = {Wv1, . . . ,Wvm} and the same predicate P as the original star
Θ.

Lemma A.0.3. 2.3.1 The worst-case complexity of the number of stars in the reach-
able set of an N -neurons FNN is O(2N ).

Proof. The exactReLU operation produces one or two more stars at most. Accord-
ingly, in the worst-case scenario, the number of stars of one layer is 2nL where nL is the
number of neurons in the layer. Due to the output reachable sets of one layer being the
inputs for the next layer, the total number of stars in the reachable set of an FNN with
k layers and N neurons in the worst case is 2nL1 · · · · · 2nLk = 2nL1

+···+nLk = 2N

Lemma A.0.4. 2.3.2 The worst-case complexity of the number of constraints of a
star in the reachable set of an N-neurons FNN is O(N).

Proof. The exactReLU sub-procedure produces for the given input set Θ one or two
more stars that have at most one more constraint.
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The exactReLU sub-procedure produces for the given input set Θ one or two more
stars with at most one more constraint. Consequently, for a layer of n neurons, n
exactReLU operations are performed most, yielding to star reachable sets with each
having at most n constraints more than the input star set. As a result, the number of
constraints in a star input set increases linearly over layers leading to the worst-case
complexity O(N).

Theorem A.0.5. 2.3.4 Let F be an FNN, Θ a star input set, F (Θ) =
⋃k

i=1 Θi,
Θi = ⟨ci, Vi, Pi⟩ be the reachable set of the neural network, and S be a safety specifi-
cation. Denot Θ̄i = Θi ∩¬S = ⟨ci, Vi, P̄i⟩, i = 1, . . . , k. The neural network is safe iff
P̄i = ∅.

Proof. The exact reachable set is a union of stars. The neural network is considered
safe if and only if none of the stars intersect with the unsafe region, which is trivial.
In other words, Θ̄i is an empty set for all i, equivalently the predicate P̄i is empty for
all i.

Lemma A.0.6. 3.1.9 The worst-case complexity of the number of stars in the reach-
able set of an N-neurons FNN is O(3N ).

Proof. The exactHTangent operation produces three more stars at most. Accordingly,
in the worst-case scenario, the number of stars of one layer is 3nL where nL is the
number of neurons in the layer. Due to the output reachable sets of one layer being the
inputs for the next layer, the total number of stars in the reachable set of an FNN with
k layers and N neurons in the worst case is 3nL1 · · · · · 3nLk = 3nL1

+···+nLk = 3N

Lemma A.0.7. 3.1.17 The worst-case complexity of the number of stars in the reach-
able set of an N-neurons FNN is O(3n).

Proof. The exactHSigmoid operation produces three more stars at most. Accordingly,
in the worst-case scenario, the number of stars of one layer is 3nL where nL is the
number of neurons in the layer. Due to the output reachable sets of one layer being the
inputs for the next layer, the total number of stars in the reachable set of an FNN with
k layers and N neurons in the worst case is 3nL1 ×· · ·×3nLk = 3nL1

+···+nLk = 3N

Theorem A.0.8. 2.3.4 Let F be an FNN, Θ a star input set, F (Θ) =
⋃k

i=1 Θi,
Θi = ⟨ci, Vi, Pi⟩ be the reachable set of the neural network, and S be a safety spec-
ification. Denot Θ̄i = Θi ∩ ¬S = ⟨ci, Vi, P̄i⟩, i = 1, . . . ,k. The neural network is
safe iff P̄i = ∅. neural network violates its safety property, then the complete counter
input set containing all possible inputs in the input set that lead the neural network
to unsafe states is CΘ =

⋃k
i=1⟨c, V, P̄i⟩, P̄i ̸= ∅.

Proof. Safety: The exact reachable set is a union of stars. It is trivial that the
neural network is safe iff all stars in the reachable set do not intersect with the
unsafe region, i.e., Θ̄i is an empty set for all i, or the predicate P̄i is empty for all i.
Complete counter input set: All star sets in the computation process are defined
on the same predicate variable α = [α1 . . . αm]T , which remains unchanged in the
computation. However, the number of constraints on α changes. Therefore, when
P̄i ̸= ∅, it contains values of α that make the neural network unsafe. New conditions
are added from the basic predicate P via exactReLU operations so that P̄i contains
all the conditions of the basic predicate P . Accordingly, the complete counter input
set containing all possible inputs that make the neural network unsafe is defined by
CΘ =

⋃k
i=1⟨c,V,P̄i⟩, P̄i ̸= ∅.



Appendix B

Detailed Tables and Figures

This section contains detailed tables and figures.
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Figure B.1: exactLReLU results
from Example 3.1.1.
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Figure B.2: approxLReLU results
from Example 3.1.2.
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Figure B.3: exactHTangent results
from Example 3.1.3.
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Figure B.4: approxHTangent results
from Example 3.1.4.
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Figure B.5: exactHSigmoid results
from Example 3.1.5.
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Figure B.6: approxHSigmoid results
from Example 3.1.6.
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Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N1,1 3013.64 True 45.71 39835 823.72 False 7.97 1
N1,2 3575.72 True 53.74 45648 2214.74 False 15.48 1
N1,3 11037.81 True 200.90 114287 3211.44 False 16.37 1
N1,4 13111.44 True 267.78 154529 2915.33 False 21.64 1
N1,5 9756.54 True 196.13 122297 1618.80 False 9.97 1
N1,6 35718.94 True 823.34 376647 1385.90 False 13.06 1
N1,7 4712.34 True 85.86 66416 1228.45 False 13.30 1
N1,8 8279.50 True 174.76 110139 2226.28 False 38.84 1
N1,9 9136.22 True 189.03 135645 2999.83 False 24.42 1
N2,1 15355.00 True 325.53 193197 1538.98 False 11.57 1
N2,2 34071.21 True 617.56 472257 1147.34 False 19.50 1
N2,3 13319.28 True 253.42 194275 956.66 False 18.24 1
N2,4 8124.85 True 167.98 114155 1141.23 False 21.41 1
N2,5 53191.97 True 1103.15 677510 1489.67 False 22.42 1
N2,6 23772.93 True 417.89 309631 1972.41 False 10.89 1
N2,7 53504.01 True 1016.92 679523 3330.97 False 39.63 1
N2,8 48084.68 True 777.85 585647 4132.09 False 38.59 1
N2,9 86837.06 True 1395.51 910575 2225.92 False 19.55 1
N3,1 14553.80 True 497.52 252793 1130.78 False 22.86 1
N3,2 16570.78 True 359.74 181433 2678.57 False 19.91 1
N3,3 28386.63 True 649.15 341669 994.11 False 8.74 1
N3,4 8765.59 True 154.49 133782 1662.63 False 23.46 1
N3,5 28583.49 True 641.96 365066 1884.56 False 15.86 1
N3,6 65843.71 True 1595.55 1003886 2494.56 False 28.20 1
N3,7 47664.54 True 1094.01 475299 4453.61 False 36.35 1
N3,8 38414.57 True 652.14 472562 1501.02 False 11.65 1
N3,9 33949.16 True 746.01 379221 3221.20 False 17.70 1
N4,1 35166.18 True 603.51 402853 1007.71 False 19.63 1
N4,2 41913.56 True 748.73 484555 1322.22 False 21.65 1
N4,3 9966.29 True 164.86 138170 1256.42 False 10.84 1
N4,4 12343.79 True 213.54 143424 1295.82 False 20.12 1
N4,5 39853.04 True 861.19 457447 3795.18 False 28.86 1
N4,6 134265.70 True 2703.07 1296311 1816.04 False 18.24 1
N4,7 61325.43 True 942.40 652417 999.71 False 10.53 1
N4,8 32988.07 True 775.16 515113 2781.59 False 49.10 1
N4,9 87048.69 True 1456.81 984701 14379.08 False 7.58 1
N5,1 13215.58 True 262.90 201773 1284.01 False 14.30 1
N5,2 17025.91 True 347.06 261011 1025.24 False 7.94 1
N5,3 10237.07 True 219.97 125860 1089.35 False 13.62 1
N5,4 5989.44 True 106.26 81364 1228.81 False 22.77 1
N5,5 14346.32 True 239.07 213059 1361.83 False 17.98 1
N5,6 102872.82 True 1120.75 622084 2093.55 False 22.16 1
N5,7 31414.81 True 595.66 355919 2211.67 False 21.59 1
N5,8 95265.60 True 886.15 544813 3226.16 False 24.57 1
N5,9 95694.38 True 1002.30 619284 3546.82 False 24.30 1

Table B.1: Verification results for property P1 on 45 ACAS Xu networks. RT is
the reachable set computation time, and VT is the safety verification time, both in
seconds. RES is the safety verification result. OSS describes the number of the
output star sets.
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Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N2,1 15837.45 False 325.53 193197 1338.12 False 43.21 1
N2,2 36112.55 False 1174.41 472257 1005.57 False 68.81 1
N2,3 18532.01 False 303.91 194275 962.63 False 74.02 1
N2,4 8254.17 False 299.08 114155 1391.11 False 73.80 1
N2,5 56241.64 False 2275.48 677510 1790.96 False 111.03 1
N2,6 25991.47 False 650.43 309631 2044.11 False 45.39 1
N2,7 65508.57 False 1544.92 679523 3366.64 False 161.01 1
N2,8 53195.81 False 1260.82 585647 3677.42 False 135.44 1
N2,9 - - - - 1855.61 False 64.66 1
N3,1 15559.97 False 727.35 252793 939.06 False 54.55 1
N3,2 12911.84 False 295.19 181433 2362.05 False 72.16 1
N3,3 24675.76 True 508.77 341669 900.05 False 33.53 1
N3,4 7393.05 False 205.80 133782 1500.14 False 95.91 1
N3,5 23852.32 False 795.67 365066 1723.58 False 67.01 1
N3,6 70608.24 False 2823.21 1003886 2694.87 False 120.82 1
N3,7 41256.50 False 1233.86 475299 4753.87 False 150.12 1
N3,8 37253.31 False 754.01 472562 1304.76 False 38.45 1
N3,9 48309.81 False 1152.44 379221 2498.83 False 54.83 1
N4,1 66720.59 False 854.57 402853 973.59 False 74.23 1
N4,2 85507.29 True 1130.23 484555 1139.11 False 74.50 1
N4,3 10627.68 False 303.07 138170 1096.26 False 38.32 1
N4,4 12923.14 False 357.63 143424 1257.89 False 77.31 1
N4,5 75982.74 False 1223.96 457447 3312.96 False 93.14 1
N4,6 - - - - 1802.32 False 68.50 1
N4,7 107331.18 False 2132.42 652417 781.43 False 32.85 1
N4,8 67596.46 False 1893.68 515113 2661.60 False 186.54 1
N4,9 - - - - 13969.59 False 29.64 1
N5,1 30332.56 False 407.09 201773 1291.09 False 60.81 1
N5,2 43636.56 False 486.83 261011 1173.13 False 36.83 1
N5,3 10740.98 False 191.73 125860 1072.01 False 56.17 1
N5,4 6221.00 False 138.55 81364 1415.43 False 109.63 1
N5,5 31217.25 False 386.70 213059 1275.20 False 61.52 1
N5,6 97829.27 False 1149.06 622084 2196.38 False 94.40 1
N5,7 57210.41 False 918.01 355919 2347.15 False 92.50 1
N5,8 101123.47 False 1521.47 544813 3443.00 False 106.33 1
N5,9 78557.70 False 1164.09 619284 3216.64 False 92.62 1

Table B.2: Verification results for property P2 on 36 ACAS Xu networks. (RT) is
the reachable set computation time, and (VT) is the safety verification time, both in
seconds. (RES) is the safety verification result. (OSS) describes the number of the
output star sets. The cells with (-) correspond to networks in which our algorithm
was not able to compute the reachability set successfully in less than 48 hours.
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Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N1,1 1768.51 True 206.94 71930 33.88 False 1.45 1
N1,2 1647.32 True 115.58 40273 34.65 False 4.28 1
N1,3 442.65 True 29.13 12444 28.54 False 1.87 1
N1,4 224.24 True 3.64 4346 12.95 True 0.09 1
N1,5 246.37 True 4.09 4820 12.65 True 0.11 1
N1,6 65.95 True 0.91 1281 3.79 True 0.03 1
N2,1 485.40 True 17.82 16382 23.79 False 1.84 1
N2,2 178.63 True 6.48 6924 10.60 False 1.04 1
N2,3 316.67 True 10.55 10694 22.85 False 1.21 1
N2,4 20.16 True 0.21 351 1.84 True 0.07 1
N2,5 111.27 True 2.09 2466 8.17 True 0.11 1
N2,6 13.62 True 0.12 255 3.79 True 0.03 1
N2,7 60.04 True 0.91 1229 5.07 True 0.15 1
N2,8 17.78 True 0.17 329 3.84 True 0.01 1
N2,9 9.46 True 0.09 189 0.81 True 0.00 1
N3,1 153.28 True 8.77 5999 5.19 True 0.73 1
N3,2 2018.12 True 88.51 37541 27.15 False 1.97 1
N3,3 390.10 True 12.46 7935 23.19 True 1.89 1
N3,4 76.08 True 1.53 2100 29.34 False 2.27 1
N3,5 44.62 True 1.19 1042 6.18 True 0.30 1
N3,6 99.32 True 1.46 1868 15.38 False 1.73 1
N3,7 4.20 True 0.04 107 1.39 True 0.01 1
N3,8 33.03 True 0.55 669 5.84 True 0.28 1
N3,9 42.36 True 0.82 1223 3.04 True 0.12 1
N4,1 50.28 True 1.66 2298 4.80 False 0.90 1
N4,2 627.65 True 19.89 18088 16.52 False 1.07 1
N4,3 976.11 True 25.53 21237 19.26 False 1.15 1
N4,4 34.30 True 0.39 560 2.86 True 0.06 1
N4,5 9.23 True 0.23 361 2.41 True 0.03 1
N4,6 107.72 True 1.86 2533 39.84 True 0.64 1
N4,7 51.25 True 0.61 948 4.47 True 0.08 1
N4,8 35.98 True 0.38 576 3.01 True 0.02 1
N4,9 36.69 True 0.38 616 7.89 True 0.14 1
N5,1 328.52 True 11.35 9556 12.10 False 0.66 1
N5,2 61.58 True 2.10 2126 5.45 True 0.88 1
N5,3 72.33 True 4.63 2906 10.64 True 3.13 1
N5,4 33.32 True 0.86 765 4.98 True 0.09 1
N5,5 44.61 True 1.02 1310 7.65 True 0.54 1
N5,6 63.87 True 0.71 1166 10.97 True 0.56 1
N5,7 4.93 True 0.04 88 0.81 True 0.01 1
N5,8 134.31 True 2.11 2406 9.51 True 0.15 1
N5,9 4.04 True 0.05 111 1.86 True 0.01 1

Table B.3: Verification results for property P3 on 45 ACAS Xu networks. RT is
the reachable set computation time, and VT is the safety verification time, both in
seconds. RES is the safety verification result. OSS describes the number of the
output star sets.
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Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N1,1 424.83 True 29.77 19142 12.57 False 4.78 1
N1,2 366.72 True 23.35 13143 18.92 False 4.37 1
N1,3 277.95 True 13.40 9837 22.69 False 1.40 1
N1,4 24.99 True 1.42 1184 5.78 False 0.67 1
N1,5 208.17 True 6.32 6608 6.67 False 0.39 1
N1,6 117.16 True 3.32 4443 9.87 True 0.92 1
N2,1 123.79 True 5.38 5066 12.60 False 2.10 1
N2,2 149.75 True 6.18 4500 14.89 False 2.42 1
N2,3 27.12 True 0.99 1087 3.62 True 0.72 1
N2,4 22.95 True 0.51 913 8.44 True 0.06 1
N2,5 88.98 True 2.45 3419 11.61 True 0.45 1
N2,6 46.37 True 0.97 1462 15.22 True 0.46 1
N2,7 18.88 True 0.29 555 5.68 True 0.08 1
N2,8 126.04 True 1.03 1805 51.33 False 1.45 1
N2,9 8.05 True 0.06 157 1.85 True 0.01 1
N3,1 160.56 True 5.17 4281 9.46 True 1.15 1
N3,2 231.23 True 14.38 8708 4.15 True 1.19 1
N3,3 25.16 True 1.25 1201 2.44 True 0.16 1
N3,4 31.60 True 1.22 1214 4.10 True 0.27 1
N3,5 122.59 True 5.01 3630 26.23 True 1.13 1
N3,6 62.39 True 1.21 1495 14.23 True 0.85 1
N3,7 55.24 True 0.48 862 5.02 True 0.12 1
N3,8 20.56 True 0.56 542 8.46 False 0.35 1
N3,9 148.09 True 1.57 2684 15.36 True 0.95 1
N4,1 19.95 True 0.87 848 1.34 True 0.35 1
N4,2 38.94 True 1.41 1348 9.42 True 2.55 1
N4,3 78.86 True 3.72 3725 12.85 True 4.57 1
N4,4 58.67 True 0.82 1253 19.74 False 1.14 1
N4,5 45.51 True 0.71 1255 8.60 True 0.23 1
N4,6 87.67 True 1.65 2366 11.26 True 0.56 1
N4,7 6.78 True 0.10 216 3.65 True 0.08 1
N4,8 79.35 True 1.01 1591 9.29 True 0.09 1
N4,9 139.12 True 1.75 2566 9.37 True 0.20 1
N5,1 166.59 True 9.26 6932 9.45 True 0.63 1
N5,2 117.59 True 6.30 4361 4.22 True 0.56 1
N5,3 42.58 True 2.18 1662 7.46 True 0.71 1
N5,4 40.08 True 1.24 1088 5.68 True 0.16 1
N5,5 52.80 True 0.89 1549 7.65 True 0.24 1
N5,6 27.96 True 0.50 677 6.74 True 0.47 1
N5,7 6.08 True 0.06 157 2.63 True 0.04 1
N5,8 24.29 True 0.28 502 12.76 True 0.73 1
N5,9 34.99 True 0.55 992 5.26 True 0.15 1

Table B.4: Verification results for property P4 on 42 ACAS Xu networks. RT is
the reachable set computation time, and VT is the safety verification time, both in
seconds. RES is the safety verification result. OSS describes the number of the
output star sets.
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Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N1,1 2933.99 True 352.76 59734 461.70 False 8.63 1

Table B.5: Verification results for property P5 on 1 ACAS Xu network. RT is the
reachable set computation time, and VT is the safety verification time, both in sec-
onds. RES is the safety verification result. OSS describes the number of the output
star sets.

Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N1,1 44026.93 True 1159.88 187775 1083.38 False 17.91 1

Table B.6: Verification results for property P6 on 1 ACAS Xu network. RT is the
reachable set computation time, and VT is the safety verification time, both in sec-
onds. RES is the safety verification result. OSS describes the number of the output
star sets.

Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N11 - - - - 1520.91 False 147.38 1

Table B.7: Verification results for property P7 on 1 ACAS Xu network. RT is the
reachable set computation time, and VT is the safety verification time, both in sec-
onds. RES is the safety verification result. OSS describes the number of the output
star sets. The cells with (-) correspond to networks in which our algorithm was not
able to compute the reachability set successfully in less than 48 hours

Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N2,9 - - - - 1560.52 False 46.37 1

Table B.8: Verification results for property P8 on 1 ACAS Xu network. RT is the
reachable set computation time, and VT is the safety verification time, both in sec-
onds. RES is the safety verification result. OSS describes the number of the output
star sets. The cells with (-) correspond to networks in which our algorithm was not
able to compute the reachability set successfully in less than 48 hours.
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Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N3,3 33727.84 False 458.09 338600 541.62 False 7.83 1

Table B.9: Verification results for property P9 on 1 ACAS Xu network. RT is the
reachable set computation time, and VT is the safety verification time, both in sec-
onds. RES is the safety verification result. OSS describes the number of the output
star sets.

Nx,y
Exact Overapproximation

RT(s) RES VT(s) OSS RT(s) RES VT(s) OSS

N4,5 3281.44 True 181.59 41088 1087.41 False 17.68 1

Table B.10: Verification results for property P10 on 1 ACAS Xu network. RT is
the reachable set computation time, and VT is the safety verification time, both in
seconds. RES is the safety verification result. OSS describes the number of the
output star sets.
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