
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

PLANNING WITH SETS: EXPLORING DIFFERENT

ENCODINGS

Leon Spitzer

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Gerhard Lakemeyer, Ph.D.

Additional Advisor:
Francesco Leofante, Ph.D. Aachen, 02.09.2022

Abstract

Much work has been put into extending the scope of planning beyond us-
ing propositional domains. We present an extension to the modelling language
PDDL that allows for set creation and reasoning with set semantics in a plan-
ning domain. We show that modelling efforts can be reduced by exploiting set
theory. We then present two encodings that reduce the problem of planning
with sets to Satisfiability Modulo Theories, using propositional and a bit vector
theories. We provide an implementation extending OMTPlan, an SMT-based
planner, and evaluate it on existing benchmarks from the planning literature.
The evaluation shows that the increased expressivity of the language does in-
deed ease the modelling for well-known planning domains; however this also
introduces extra overhead that affect the performance of the planner.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekenn-
zeichnet.

Leon Spitzer
Aachen, den 02. September 2022

vi

vii

Acknowledgements
I want to thank Prof. Dr. Erika Ábrahám and Francesco Leofante, Ph.D. for provid-
ing me with excellent guidance throughout my thesis. I also thank Prof. Gerhard
Lakemeyer for being my second supervisor.

viii

Contents

1 Introduction 9
1.1 Planning in AI . 9
1.2 Outline . 10

2 Preliminaries 11
2.1 Classical Planning . 11
2.2 Planning as Satisfiability . 12
2.3 Introduction to PDDL . 13

3 Planning with Sets 17
3.1 Set Syntax and Semantics . 17
3.2 Propositional Encoding . 19
3.3 Bit Vector Encoding . 21

4 Experimental Results 23
4.1 Easing the Modelling Task . 24
4.2 Propositional versus Bit Vector Encoding 26
4.3 Set Extension versus Standard PDDL 26

5 Conclusion 29
5.1 Summary . 29
5.2 Future Work . 29

Bibliography 31

x Contents

Chapter 1

Introduction

1.1 Planning in AI

Planning in AI is the task of finding an applicable sequence of actions that lead to a
satisfying outcome. The domain of a planning problem is a collection of states and
the actions in a plan transform these states step by step. A planning problem can be
visualized with a directed graph with nodes as states and edges as actions that switch
between the states. A valid plan is a sequence of applicable actions that start in the
initial state and end in a desired goal state.

A planner is a program that tries to find a valid plan to a planning problem.
Explicitly searching the state space was the earliest method for automatically solving
planning problems. While this approach can be efficient, it has scalability issues in
larger state spaces. The Planning as Satisfiability approach, introduced by Kautz and
Selman [KS92], reduces a planning problem to Satisfiability Checking (SAT) which in
turn can be solved by existing SAT solvers. This approach can be extended to SAT
Modulo Theories (SMT) which allows to reason over one or more theories. A planner
can use the latest SMT solver and take advantage of higher expressivity that can be
leveraged.

To describe planning problems the Planning Domain Definition Language (PDDL)
was developed by McDermott in 1998 [McD00]. It allows for precise descriptions of
tasks and facilitated the exchange and comparison of planners. PDDL was developed
for the International Planning Competition (IPC) which hosts events for planners to
compete over a growing collection of benchmarks since 1998.

Since the creation of PDDL it got regularly extended by the planning community.
From using only propositional variables in PDDL1.2 [McD00], more sophisticated
problems including time and numbers could be modelled in PDDL2.1 [FL03]. In this
thesis we propose an extension of PDDL that allows for reasoning with set theory in
planning problems. We formalize its semantics and present two different SMT encod-
ings. We propose an implementation extending OMTPlan, an SMT based planner,
that utilizes our extension and evaluate it on a collection of benchmarks from the
IPC.

10 Introduction

1.2 Outline
We first introduce a formal definition of Classical Planning in Chapter 2 Section 2.1
and Planning as Satisfiability in Section 2.2. Then we thoroughly look at PDDL in
Section 2.3. We introduce our new set extension to PDDL in Chapter 3 Section 3.1 and
show Propositional 3.2 and Bit Vector 3.3 encodings. In Chapter 4 we evaluate our
extension on benchmarks from the IPC and compare them to equivalent problems
modelled without our extension. Lastly, we summarize findings in Chapter 5 and
conclude about future work in extending PDDL with sets.

Chapter 2

Preliminaries

2.1 Classical Planning
The formal model of a classical planning problem can be described as follows:

Definition 2.1.1. (Classical Planning Problem). A planning problem Π = 〈V,A, I,G〉
consists of:

• A finite set of propositional variables V ,
• A set of actions A,
• An initial condition I,
• A goal specification G.

A state in Π is a function s : V → B, which assigns a value s(v) ∈ B to every
variable v ∈ V . Each action a ∈ A can be modelled by a tuple a = (prea, effa, ca).

prea is the precondition of a, which consists of a set of constraints and effa is an
effect consisting of a set of assignments v := e for v ∈ V and e ∈ {>,⊥} meaning true
or false. effa contains at most one assignment v := e for each variable v ∈ V . Lastly,
ca is a positive rational which denotes the cost of action a. In this work we assume a
uniform cost of 1 for each action.

The evaluation function J·Ks and the satisfaction relation |= for expressions, con-
straints and conditions are as usual. A state s′ is called successor state from state
s and effects Ψ, if s′ results from applying effects in Ψ to s and the other variables
not affected from Ψ remain unchanged. Formally, for some state s and effect Ψ, the
successor of s and Ψ is the unique state s′ with s′(v) = JeKs for each assignment v := e
in Ψ, and s′(v) = s(v) for each v ∈ V that is not assigned in Ψ.

An action a = (prea, effa, ca) is called applicable in state s, if all constraints in
precondition prea hold in s and JeKs is defined for all assignments in effect effa.

I is called the initial condition which is satisfied by exactly one state s, called the
initial state. I contains exactly one constraint for each variable v ∈ V . G is called
the goal condition, which is satisfied by goal states.

A serial plan π = (a0, ..., an−1) is a sequence of actions a0, ..., an−1 ∈ A such
that there exist (unique) states s0, ..., sn ∈ S such that s0 |= I, si−1 |= preai−1 and
si−1,si |= effai−1 for each i = 1,...,n and sn |= G. We call π a valid plan for Π if it
satisfies the initial condition at the beginning of the plan, if all states during the plan
are properly defined and the goal condition at the end is satisfied.

12 Preliminaries

With that in mind, we are going to look at an example of a classical planning
problem.

Example 2.1.1. Let us consider a logistics problem involving a truck driving between
two cities. The goal of the truck is to pick up a package from one city and deliver it to
the other city. We model this instance by a number of variables that define the state
of our system. Without considering cost, we define a planning task Π = 〈V,A, I,G〉
with

• V = {t@c1, t@c2, pck@c1, pck@c2, pck@t}
• A = {amove = ({t@c1}, {¬t@c1 ∧ t@c2}),

aload = ({pck@c1 ∧ t@c1}, {¬pck@c1 ∧ pck@t}),
aunload = ({pck@t ∧ t@c2}, {¬pck@t ∧ pck@c2})}

• I = pck@c1 ∧ t@c1 ∧ ¬pck@c2 ∧ ¬pck@t ∧ ¬t@c2
• G = pck@c2

Our example consists of five variables defining the location of the truck and the pack-
age. For instance, we use pck@c1 to model that the package (pck) is at city1 (c1).
Similarly, we use t@c2 to model that the truck (t) is at city2 (c2). The precondition
of aload is that package and truck are at city1. The effect of aload enforces that the
location of the package changes from city1 to truck. Initially the truck and the package
are at city1, therefore these variables are true, and all other variables are false. The
goal condition specifies that the package should be at city2. There exists a valid plan
π = (aload, amove, aunload) which solves this planning task.

2.2 Planning as Satisfiability

Planning as Satisfiability works by reducing a planning problem to the propositional
satisfiability problem (SAT). A first approach was introduced by Kautz und Selman in
1992 [KS92] which was extended in [KMS96]. Sequences of formulas are constructed
that encode bounded versions of a planning problem Π. For a given horizon n, which
denotes the length of a plan, a formula Πn is defined whose solutions correspond to
plans of length n. Starting with a small n, the horizon is continuously increased in the
search for a valid plan. Πn consists for each step of variables representing the value
of each variable and action in Π. Solutions of Πn contain a list of action variables
that are set to true, which is the plan we are looking for.

Given a planning problem Π = 〈V,A, I,G〉, the encoding uses n action variable
sets A0, ..., An−1 where each Ai contains a unique variable for every action a ∈ A and
n+ 1 state variable sets V0, ..., Vn where each Vi contains a unique variable for every
propositional variable v ∈ V . With these variables we define following formulas:

Let I(V0) be the formula that specifies the assignment of variables in the initial
state with variables v ∈ V0. Let G(Vn) be the formula that specifies the goal condition
with variables v ∈ Vn. Note that every step has an own copy of state and action
variables.

Let T (Ai, Vi, Vi+1) be a formula describing how actions affect states. T enforces
that each action in Ai implies its preconditions over Vi and its effects over Vi+1. T also
encodes frame axioms which enforce that variables keep their value over time unless
they are modified by an actions effect. Lastly, T also encodes mutex axioms that

Introduction to PDDL 13

specify execution semantics. In our case we allow exactly one action to be executed
in each step. We encode bounded plans of length n with following formula:

Πn := I(V0) ∧
n−1∧
i=0

T (Ai, Vi, Vi+1) ∧G(Vn)

By construction Πn is satisfiable if and only if there exists a plan πn with length
n. Plans can be extracted by the model of Πn. In the following example we are going
to look at how a specific planning problem is encoded as a SAT formula.

Example 2.2.1. Assume a simplified version of the planning problem from example
2.1.1 with one propositional variable V = {pck@t}, initial condition I = ¬pck@t, goal
condition G = pck@t, and two actions A = {aload, aunload} with
aload = ({¬pck@t}, {pck@t}) and aunload = ({pck@t}, {¬pck@t}). Without consider-
ing cost, the encoding of Π1 uses following constructs:

• A0 = {aload0, aunload0}

• V0 = {pck@t0}, V1 = {pck@t1}

• I(V0) = ¬pck@t0, G(V1) = pck@t1

• T (A0, V0, V1) = aload0 → (¬pck@t0 ∧ pck@t1) ∧
aunload0 → (pck@t0 ∧ ¬pck@t1) ∧
(¬pck@t0 ∧ pck@t1)→ aload0 ∧
(pck@t0 ∧ ¬pck@t1)→ aunload0 ∧
aload0 ⊕ aunload0

where ⊕ denotes mutual exclusion. Two state variable sets V0, V1 and one action
variable set A0 are created. The variables get the step as an index. The initial and
goal condition depict that in step 0 there is no package at the truck and in step 1
the package is in the truck. T enforces first that if action aload is executed in step
0 the precondition in step 0 hold and the effects in step 1 hold. aunload is encoded
similarly. Next the frame axioms state that if the variable pck@t changes over a
time step, meaning pck@t0 and pck@t1 have a different value, the responsible action
must be the reason. Lastly, the execution semantic states that only one action can be
executed in one time step. We notice that Π1 has a solution: aload0 = pck@t1 = true,
aunload0 = pck@t0 = false, which corresponds to the plan π1 = (aload).

2.3 Introduction to PDDL

The Planning Domain Definition Language (PDDL) [McD00] is the community stan-
dard for the representation and exchange of planning domain models. It standardizes
the formulation of planning problems and facilitates the comparison between differ-
ent planners. With PDDL a user can define planning problems through domains and
problems. A domain defines what type of objects can exist and what actions can be
performed. A problem specifies which objects exist, what initial state we have and
which goal state we pursue. The task for a planner is then to find an applicable set
of actions which start in the initial state and end in the goal state. In the following
we will explore in detail the specific parts that make up a planning task in PDDL1.2.

14 Preliminaries

2.3.1 Domain file

The domain file specifies first the name of the domain and the requirements the
planner must support to correctly solve the problem. By looking at this list the
planner can already decide if it is able to handle this kind of domain. When :typing
is used the user can define types of objects. PDDL1.2 models objects with predicate
properties which are either true or false. The list of predicates is defined under the
keyword :predicates.

In the following example we look at the logistics domain. It consists of trucks,
locations and packages. Predicates are defined that specify properties between these
object types and actions are defined which can modify predicates in their effect. In
Listing 2.1 we see the whole domain file of the logistics domain.

1 (define (domain logistics)
2 (:requirements :typing)
3 (:types truck location package)
4 (:predicates
5 (truck-at ?truck - truck ?loc - location)
6 (connected ?loc1 ?loc2 - location)
7 (in ?pck - package ?truck - truck)
8 (at ?pck - package ?loc - location))
9

10 (:action move-truck
11 :parameters (?start ?end - location ?truck - truck)
12 :precondition (and (truck-at ?truck ?start)
13 (connected ?start ?end))
14 :effect (and (truck-at ?truck ?end)
15 (not (truck-at ?truck ?start))))
16

17 (:action load-one-package
18 :parameters (?loc - location ?truck - truck ?pck - package)
19 :precondition (and (truck-at ?truck ?loc)
20 (at ?pck ?loc))
21 :effect (and (in ?pck ?truck)
22 (not (at ?pck ?loc))))
23

24 (:action unload-one-package
25 :parameters (?loc - location ?truck - truck ?pck - package)
26 :precondition (and (truck-at ?truck ?loc)
27 (in ?pck ?truck))
28 :effect (and (at ?pck ?loc)
29 (not (in ?pck ?truck))))
30)

Listing 2.1: Domain file of the logistics domain defining requirements, types,
predicates and actions.

The predicate truck-at takes as input one object of type truck and one object
of type location and defines if that truck is at that location. connected specifies if
two locations are connected and in and at define if a package is in a truck or at a
location.

The actions can be executed if specified input parameters fulfil the precondition
formula and change the assignment of predicates in the effect. For example the action

Introduction to PDDL 15

move-truck can be executed if the truck is at the start location and the start and
end locations are connected. The effect changes then the location of the truck by
modifying the truck-at predicate. The action load-one-package checks if the
truck and the package are at the same location and then modifies the location of the
package. Similarly, the action unload-one-package unloads one package at the
location of the truck if it is in the truck.

2.3.2 Problem file
The problem file defines a specific problem instance over a domain. It specifies what
name the problem has and what domain it refers to. It then declares the objects used
in the problem instance. In our example seen in Listing 2.2 we have one truck, three
packages and three locations.

1 (define (problem instance-1)
2 (:domain logistics)
3 (:objects truck1 - truck
4 city1 city2 city3 - location
5 pck1 pck2 pck3 - package)
6 (:init
7 (connected city1 city2)
8 (connected city2 city3)
9 (connected city3 city2)

10 (connected city2 city1)
11 (truck-at truck1 city2)
12 (at pck1 city1)
13 (at pck2 city2)
14 (at pck3 city3))
15 (:goal
16 (and
17 (at pck1 city2)
18 (at pck2 city2)
19 (at pck3 city2)))
20)

Listing 2.2: Problem instance for the logistics domain consisting of one truck,
three packages and three locations.

The initial state defines what predicates are true at the beginning of the problem.
In this example the three cities form a line, the truck is in the middle city and
each city has one package. PDDL applies the closed world assumption which is the
presumption that what is not currently known to be true is false. Therefore, the rest
of the predicates are set to false. The goal state is a formula of predicates which must
be satisfied at the end of the plan, for the plan to be considered as a solution. In this
problem we want all packages to be at city2.

A valid plan for this problem is for the truck to move to city1 first and pick up
the package, move back to city2 and drop of the package and then repeat the same
for city3. Note that this is not the only valid plan as the truck could go first to city3
or it could drop the packages at the end of the plan.

16 Preliminaries

Chapter 3

Planning with Sets

Our extension introduces the new data type set into PDDL. It is inspired by Planning
Modulo Theories (PMT) from [GLFB12] which treats arbitrary first order theories as
parameters in a modelling language. Our set extension allows the user to define sets
of objects in the problem file and reason with new semantics like union or intersection
of sets in the preconditions and effects of actions. We aim to further improve mod-
elling capabilities. For instance, using a set of packages in a truck instead of having
individual predicates may be beneficial in describing loading or unloading operations.
In the following we present our approach to modelling sets in PDDL.

3.1 Set Syntax and Semantics
We propose the following extension to the semantics of PDDL1.2. The extension
allows to define sets in a new (:sets)-block in the domain file. The construction and
assignment of sets is possible in the (:init) and (:goal)-block in the problem file. We
present an overview of our syntax and semantics in Figure 3.1.

(construct-set x1 x2) - returns set constant with objects x1 and x2
(emptyset) - returns an empty set
(:= (myset s1) (myset s2)) - assigns all objects from myset s2 to myset s1
(add-element (myset s1) x1) - adds object x1 to myset s1
(rem-element (myset s1) x1) - removes object x1 from myset s1
(union (myset s1) (myset s2)) - returns union of myset s1 and myset s2
(intersect (myset s1) (myset s2)) - returns intersection of myset s1 and myset s2
(difference (myset s1) (myset s2)) - returns difference of myset s1 and myset s2
(member x1 (myset s1)) - returns true iff x1 is a member of myset s1
(subset (myset s1) (myset s2)) - returns true iff myset s1 is subset of myset s2

Figure 3.1: Syntax and semantics of set extension. Let x1, x2, s1, s2 be objects in
the problem and myset a set variable for s1, s2 defined in the (:sets)-block.

Actions can reason with the new set operations in precondition and effect formu-
las. The goal condition can also use set operations to express goals. As an example we
modified the logistics domain from the last chapter to reason with our new extension

18 Planning with Sets

seen in Listing 3.1. All predicates got replaced with sets.

1 (define (domain set-logistics)
2 (:requirements :sets :typing)
3 (:types truck location package)
4 (:sets
5 (in ?truck - truck)
6 (at ?loc - location)
7 (connections ?loc - location)
8)
9 (:action move-truck

10 :parameters (?start ?end - location ?truck - truck)
11 :precondition (and (member ?truck (at ?start))
12 (member ?end (connections ?start)))
13 :effect (and (add-element (at ?end) ?truck)
14 (rem-element (at ?start) ?truck)))
15

16 (:action load-one-package
17 :parameters (?loc - location ?truck - truck
18 ?pck - package)
19 :precondition (and (member ?truck (at ?loc))
20 (member ?pck (at ?loc)))
21 :effect (and (add-element (in ?truck) ?pck)
22 (rem-element (at ?loc) ?pck)))
23

24 (:action unload-one-package
25 :parameters (?loc - location ?truck - truck
26 ?pck - package)
27 :precondition (and (member ?truck (at ?loc))
28 (member ?pck (in ?truck)))
29 :effect (and (add-element (at ?loc) ?pck)
30 (rem-element (in ?truck) ?pck)))
31)

Listing 3.1: The set-logistics domain. Predicates are replaced with sets. New
operations like member, add-element and rem-element are used.

The truck-at and the pck-at predicate that specify the location of a truck or
a package respectively are replaced with a set of objects for every location. When
reasoning with the location of a truck or a package the member operation in combina-
tion with a location can get used. Changing the location of a truck or a package can
be done with the add-element and rem-element operation. The in-truck predicate
that holds information if a package is in a certain truck is replaced with a set of objects
for every truck. Similarly to the set of a location the set of a truck holds a number
of objects that can be modified with the same operations. Lastly, the connections
predicate can also be replaced by a set of objects for every location.

Note that the sets we define are not typed, meaning that they can contain objects
of any type. This is not a problem in a sense that any objects might end up in a set,
as this is controlled by the user in the effects of actions, but rather a challenge for
the encoding as the number of objects in a problem tends to be large. A problem file
using our set extension can be seen in Listing 3.2.

Propositional Encoding 19

1 (define (problem instance-1)
2 (:domain set-logistics)
3 (:objects truck1 - truck
4 city1 city2 city3 - location
5 pck1 pck2 pck3 - package)
6 (:init
7 (:= (connections city1) (construct-set city2))
8 (:= (connections city2) (construct-set city1 city3))
9 (:= (connections city3) (construct-set city2))

10 (:= (at city1) (construct-set pck1))
11 (:= (at city2) (construct-set pck2 truck1))
12 (:= (at city3) (construct-set pck3))
13 (:= (in truck1) emtpyset)
14)
15 (:goal
16 (and
17 (= (at city2) (construct-set pck1 pck2 pck3 truck1))))
18)

Listing 3.2: Problem instance-1 for set-logistics domain. Sets get created and
assigned in the (:init)-block. The goal formula reasons about the equality of two
sets.

Similar to the chapter before this problem instance describes a line of 3 cities
which each have one single package and the truck needs to move to every city and
bring the package to the starting point.

The creation of sets is done with construct-set and a list of objects. An empty
set gets created with the keyword emptyset. The goal condition holds iff the set
accessed by (at city2) equals the set consisting of objects pck1, pck2, pck3,
truck1.

We now show how planning problems with our extended semantics can be encoded
into SMT. We present a propositional and a bit vector encoding.

3.2 Propositional Encoding

The first SMT encoding we implemented is the propositional encoding. In the en-
coding, every set contains one variable for every object in the problem. Each of the
variables in a set indicate for a single object in the problem instance if it is contained
in this set. This essentially adds a constant number of new variables to the problem
for every set we create. With these variables we can create formulas for Planning as
Satisfiability as introduced in Chapter 2 Section 2.2, that encode the set operations
introduced in the last section.

We introduce dedicated variable names for objects in a set. These are determined
by the set name and the object name having the set reference. Additionally, we need
to add an index i that specifies the time step of the variable. For example if we
have objects x1, x2, s1 in our problem and the set myset exists for s1, then we have
propositional variables myset-s1x1i , myset-s1x2i , myset-s1s1i with 0 ≤ i ≤ n with n
being the horizon, which indicate with their value if objects x1, x2, s1 are contained
in the set (myset s1) in step i. With this information about the extra set variables
we present propositional encodings of set operations in Figure 3.2.

20 Planning with Sets

(:= (myset s1) (construct-set x1 x2))∧
obj∈{x1,x2}

myset-s1obj0

∧
obj∈{x3,s1,s2,s3}

¬myset-s1obj0 (3.1)

(:= (myset s1) emptyset) ∧
obj∈{x1,x2,x3,

s1,s2,s3}

¬myset-s1obj0 (3.2)

(member x1 (myset s1))

ai → myset-s1x1i (3.3)

(subset (myset s1) (myset s2))∧
obj∈{x1,x2,x3,

s1,s2,s3}

ai → (myset-s1obji → myset-s2obji) (3.4)

(add-element (myset s1) x1)

ai → myset-s1x1i+1 (3.5)

(rem-element (myset s1) x1)

ai → ¬myset-s1x1i+1 (3.6)

(:= (myset s1) (union (myset s2) (myset s3)))∧
obj∈{x1,x2,x3,

s1,s2,s3}

ai → (myset-s1obji+1 == (myset-s2obji ∨myset-s3obji)) (3.7)

(:= (myset s1) (intersect (myset s2) (myset s3)))∧
obj∈{x1,x2,x3,

s1,s2,s3}

ai → (myset-s1obji+1 == (myset-s2obji ∧myset-s3obji)) (3.8)

(:= (myset s1) (difference (myset s2) (myset s3)))∧
obj∈{x1,x2,x3,

s1,s2,s3}

ai → (myset-s1obji+1 == (myset-s2obji ∧ ¬myset-s3obji)) (3.9)

Figure 3.2: Propositional Encoding. Let x1,x2,x3,s1,s2,s3 be objects in the problem
and myset a set for objects s1,s2,s3. Let a be some action in the domain. We present
propositional set encodings for gerneral set usage examples in the initial state 3.1, 3.2,
the precondition of action a 3.3, 3.4 and the effect of action a 3.5 - 3.9.

Bit Vector Encoding 21

Additionally to the shown encodings we need to add frame axioms for every added
propositional set variable. This will increase the size of the formula significantly.

3.3 Bit Vector Encoding
The second encoding we implemented is the bit vector encoding. SMT-LIB already
supports the theory of fixed sized bit vectors and we can directly use it to build SMT
formulas for the encoding of sets.

Every set gets represented with one bit vector. According to a look up table, a
single bit encodes if an object is included in the set. Our bit vector encoding adds for
every set we create a single bit vector with size n, with n being the number of objects
in the problem instance.

We introduce dedicated variable names for the bit vectors. They consist of the
set name and the object having the set. Additionally, we also need an index i that
specifies the time step of the bit vector variable. For example if we have objects
x1, x2, s1 in our problem and the set myset exists for s1, then we have the bit vector
variable myset-s1i of size 3, with 0 ≤ i ≤ n, n being the horizon, which indicates
with its value if objects x1, x2, s1 are contained in the set (myset s1). Set encodings
with bit vectors are seen in Figure 3.3. We additionally need frame axioms for every
bit vector variable.

22 Planning with Sets

(:= (myset s1) (construct-set x1 x2))

myset-s10 == (1,1,0,0,0,0) (3.10)

(:= (myset s1) emptyset)

myset-s10 == (0,0,0,0,0,0) (3.11)

(member x1 (myset s1))

ai → ((1,0,0,0,0,0) == (myset-s1i & (1,0,0,0,0,0))) (3.12)

(subset (myset s1) (myset s2))

ai → ((0,0,0,0,0,0) == (myset-s1i & ∼ myset-s2i)) (3.13)

(add-element (myset s1) x1)

ai → (myset-s1i+1 == (myset-s1i | (1,0,0,0,0,0))) (3.14)

(rem-element (myset s1) x1)

ai → (myset-s1i+1 == (myset-s1i & (0,1,1,1,1,1))) (3.15)

(:= (myset s1) (union (myset s2) (myset s3)))

ai → (myset-s1i+1 == (myset-s2i |myset-s3i)) (3.16)

(:= (myset s1) (intersect (myset s2) (myset s3)))

ai → (myset-s1i+1 == (myset-s2i &myset-s3i)) (3.17)

(:= (myset s1) (difference (myset s2) (myset s3)))

ai → (myset-s1i+1 == (myset-s2i & ∼ myset-s3i)) (3.18)

Figure 3.3: Bit Vector Encoding. Let x1, x2, x3, s1, s2, s3 be objects in the problem
and myset a set for objects s1, s2, s3. Let a be some action in the domain. Let & be
a bitwise and operation, | be a bitwise or operation, and ∼ be a bitwise negation. We
present bit vector encodings for gerneral set usage examples in the initial state 3.10,
3.11, the precondition of action a 3.12, 3.13 and the effect of action a 3.14 - 3.18.

Chapter 4

Experimental Results

To evaluate the proposed set extension we extended OMTPlan [LGÁT21] an SMT
based planner. We first extended the parser to accept set syntax. Then we extended
the encoder with new set semantics using propositional and bit vector encodings.

We evaluate our implementation on standard benchmarks from the IPC. The
domains we use are Elevator, Logistics, Zeno-Travel and Gripper. An illustration of
the domains is seen in Figure 4.1.

Figure 4.1: Illustration of domains from the IPC for evaluation.

We use the STRIPS domains with typed objects, meaning that objects can be
typed and in the effects of actions, add and delete effects are allowed. To compare our
extension with standard PDDL we created a set variant of each domain that utilizes
our set extension. The set variants of the domains use sets as much as possible.

In the set-elevator domain we model a set of objects in the elevator and at floors.
The set-logistics domain uses sets of objects in trucks and at locations. With the
set-zeno-travel domain we use sets of objects in planes and at locations. Lastly the
set-gripper domain has a set of objects for each room. Furthermore, the actions were
modified to reason with set operations at appropriate places. With these changes

24 Experimental Results

we replaced predicates with sets while still modelling the same planning problem.
Additionally to the domains, every problem instance had to be copied and changed to
using our extension, so we have equivalent problems to compare. In the next section
we present how our extension eased the modelling task compared to standard PDDL.

4.1 Easing the Modelling Task
Consider the Gripper domain. It consists of two gripper constants left and right, a
number of rooms and a number of balls. The gripper can pick up and drop of the
balls and move between the rooms. The gripper domain is seen in Listing 4.1.

1 (define (domain gripper)
2 (:requirements :typing)
3 (:types room ball gripper)
4 (:constants left right - gripper)
5 (:predicates
6 (at-robby ?r - room)
7 (at ?b - ball ?r - room)
8 (free ?g - gripper)
9 (carry ?o - ball ?g - gripper))

10 (:action move
11 :parameters (?from ?to - room)
12 :precondition (at-robby ?from)
13 :effect (and (at-robby ?to)
14 (not (at-robby ?from))))
15 (:action pick
16 :parameters (?obj - ball ?room - room ?gripper - gripper)
17 :precondition (and (at ?obj ?room)
18 (at-robby ?room)
19 (free ?gripper))
20 :effect (and (carry ?obj ?gripper)
21 (not (at ?obj ?room))
22 (not (free ?gripper))))
23 (:action drop
24 :parameters (?obj - ball ?room - room ?gripper - gripper)
25 :precondition (and (carry ?obj ?gripper)
26 (at-robby ?room))
27 :effect (and (at ?obj ?room)
28 (free ?gripper)
29 (not (carry ?obj ?gripper))))
30)

Listing 4.1: Domain file for gripper domain.

We modified this domain and replaced the at predicate with a set in for every
room that holds the information what objects are in the room. The actions pick and
drop must reason with member, add-element, rem-element operations together with
a set and a specific object. The rest of the domain remains unchanged hence we do
not include a Listing.

With this small change we dramatically changed the appearance of a problem file.
When comparing two similar problem instances, one modelled with the set extension
and one with standard PDDL it results in a cleaner look in favour of our set extension.

Easing the Modelling Task 25

Listing 4.2 shows the problem instance modelled with standard PDDL and Listing
4.3 shows it modelled with the set extension.

1 (define (problem instance-1)
2 (:domain gripper)
3 (:objects rooma roomb - room
4 b1 b2 b3 b4 b5 b6 b7 b8 - ball)
5 (:init
6 (at-robby rooma)
7 (free left)
8 (free right)
9 (at b1 rooma)

10 (at b2 rooma)
11 (at b3 rooma)
12 (at b4 rooma)
13 (at b5 rooma)
14 (at b6 rooma)
15 (at b7 rooma)
16 (at b8 rooma)))
17 (:goal (and
18 (at b1 roomb)
19 (at b2 roomb)
20 (at b3 roomb)
21 (at b4 roomb)
22 (at b5 roomb)
23 (at b6 roomb)
24 (at b7 roomb)
25 (at b8 roomb)))
26)

Listing 4.2: Problem file modelled with standard PDDL for gripper domain.

1 (define (problem instance-1)
2 (:domain set-gripper)
3 (:objects rooma roomb - room
4 b1 b2 b3 b4 b5 b6 b7 b8 - ball)
5 (:init
6 (at-robby rooma)
7 (free left)
8 (free right)
9 (:= (in rooma) (construct-set b1 b2 b3 b4 b5 b6 b7 b8))

10 (:= (in roomb) emptyset))
11 (:goal (and
12 (= (in roomb) (construct-set b1 b2 b3 b4 b5 b6 b7 b8))))
13)

Listing 4.3: Problem file modelled with set extension for set-gripper domain.

Many predicate definitions in the initialization get combined in a single set defi-
nition. This reduction of redundancy benefits the size of the file and a reader can get
an overview of the problem quicker.

We created for each domain 5-15 problem instances of varying difficulty. First
we compare the propositional encoding with the bit vector encoding on the Elevator

26 Experimental Results

domain. Then we compare the normal PDDL approach with our set extension using
bit vector encodings.

4.2 Propositional versus Bit Vector Encoding
Results of comparing the propositional with the bit vector encoding are seen in Figure
4.2. We notice that the bit vector encoding performs better than the propositional
encoding in the instances tested.

Figure 4.2: Cactus plot for Elevator domain comparing bit vector and propositional
encodings of sets. Instances are ordered by increasing CPU time (in seconds).

Every instance of the elevator domain got solved faster with using bit vector en-
codings. This is due to extra variables that are created for the propositional encoding.
Every variable needs its own frame which results into many assertions. And the more
assertions we have, the longer the solver takes to find a solution. The bit vector en-
coding uses fewer variables and therefore creates a smaller formula which makes it the
better choice for encoding sets. In the next section we evaluate how our set extension
compares against a normal PDDL approach using predicates.

4.3 Set Extension versus Standard PDDL
Results of comparing the set extension using bit vector encodings to standard PDDL
using the original domains without sets from the IPC, are seen in Figure 4.3.

Set Extension versus Standard PDDL 27

Figure 4.3: Comparison of solving times (sec) for all four domains. Set extension
using bit vector encoding versus normal PDDL using predicates (timeout = 100sec).

We notice that the solving time for instances using sets are always higher than
instances using normal PDDL. This may be fault due to extra overhead we create in
the encoding. The approach we used to evaluate our extension was to take existing
benchmarks and modify them to work with sets. Because the benchmarks were not
specifically designed for sets they did not take advantage of all the set operations.
We observe a linear relationship between the solving times of instances using our set
extension and normal PDDL. This is an invitation for more exploration of sets in
PDDL for the future.

28 Experimental Results

Chapter 5

Conclusion

5.1 Summary

In this thesis we considered the problem of planning with sets. We proposed an
extension of PDDL that allows reasoning with set theory. We discussed the approach
of Planning as Satisfiability and presented two SMT encodings for our set operations.
We developed an extension for OMTPlan an SMT-based planner, that implements
our set extension in a non-optimal setting. We presented examples throughout the
thesis where it is desirable to use sets from a modelling perspective.

In our propositional encoding of a set, every set contains a variable for every
object. These variables indicate with true or false, if objects are contained in the set.
Advantage of the approach is that no other theory except equality needs to be used
in the encodings. This allows for a simple to grasp concept. The disadvantage is that
with many extra variables many frame axioms are needed which does not scale well.

With the bit vector encoding of a set, every set gets represented by one bit vector.
A single bit encodes if an object is included in the set. SMT-LIB supports the theory
of fixed sized bit vectors which made it possible to directly encode them into a SMT
formula. Advantage of bit vectors over a propositional encoding is that union or
intersection operations can benefit directly from bit wise operations. Furthermore,
there are fewer frame axioms needed.

Experimental results of our implementation over benchmarks from the IPC showed
that our set extension does ease the modelling task of planning problems. The higher
expressivity allows for more compact problem definitions. Experiments showed that
bit vector encodings run faster than propositional encodings. When comparing prob-
lems modelled with sets using bit vector encodings to problems modelled with stan-
dard PDDL it shows that our implementation does not scale on larger problem in-
stances. This may be faulted to extra overhead we introduce with bit vector variables
and that the benchmarks were not specifically designed for set usage.

5.2 Future Work

First our implementation of sets should be optimized to reduce overhead it creates.
Additionally, it is desirable to extend our proposed encodings to support PDDL2.1
featuring numeric variables and temporal constraints. With more sophisticated do-

30 Conclusion

mains and problems, many new applications of sets can be explored. Furthermore,
the search of plans in an optimal setting using the set extension should be considered.

Bibliography

[FL03] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for express-
ing temporal planning domains. Journal of artificial intelligence research,
20:61–124, 2003.

[GLFB12] Peter Gregory, Derek Long, Maria Fox, and J Christopher Beck. Planning
modulo theories: Extending the planning paradigm. In Twenty-Second
International Conference on Automated Planning and Scheduling, 2012.

[KMS96] Henry Kautz, David McAllester, and Bart Selman. Encoding plans in
propositional logic. KR, 96:374–384, 1996.

[KS92] Henry A Kautz and Bart Selman. Planning as satisfiability. In ECAI,
volume 92, pages 359–363. Citeseer, 1992.

[LGÁT21] Francesco Leofante, Enrico Giunchiglia, Erika Ábrahám, and Armando
Tacchella. Optimal planning modulo theories. In Proceedings of the
Twenty-Ninth International Conference on International Joint Confer-
ences on Artificial Intelligence, pages 4128–4134, 2021.

[McD00] Drew M McDermott. The 1998 ai planning systems competition. AI
magazine, 21(2):35–35, 2000.

	Introduction
	Planning in AI
	Outline

	Preliminaries
	Classical Planning
	Planning as Satisfiability
	Introduction to PDDL

	Planning with Sets
	Set Syntax and Semantics
	Propositional Encoding
	Bit Vector Encoding

	Experimental Results
	Easing the Modelling Task
	Propositional versus Bit Vector Encoding
	Set Extension versus Standard PDDL

	Conclusion
	Summary
	Future Work

	Bibliography

