Comparing the Modeling Capabilities of UPPAAL and

RealySt for Stochastic Hybrid Systems
Final Talk

Seraphim Zaytsev
Supervision: Prof. Erika Abrahdm (THS)

LuFG Theory of Hybrid Systems

SS 2025

RWTHAACHEN
UNIVERSITY

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Hybrid systems: continuous evolution of variables (flows) with
discrete transitions (jumps)

Stochastic hybrid systems: add probabilistic timing/events

Need tools that handle time, uncertainty

Goal today: Present the final modeling coverage and benchmark
results for UPPAAL vs. REALYST.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 2/53

Hybrid Automata

Rectangular Automata
B Rectangular Automata with Random Events

0e

B Rectangular Automata with Random Clocks
(de-)Composed And More: Eager and Lazy Specifications
RA/RAE/RAC in CAMELS
DENP = RAC

CAMELS vs. REALYST
W UPPAAL

B REALYST
ARCH benchmark
CAMELS benchmark
Conclusion

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 3/53

Hybrid Automata

®

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Hybrid Automata (HA): Intuition & Notation

‘H = (Loc, Var, Flow, Inv, Lab, Edge, Init)

m Flows: in location ¢, variables x € R9 evolve with x = Flow(¢)(x) while
x € Inv({)

m Jumps: (¢,a,g,r,¢'): enabled if x € g, apply reset r, target must satisfy
Inv(¢'), a € Lab

m Runs: alternate time steps and jumps

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

5/53

Example: Sisyphus as an HA

early rollback
x>b5Ax <25

Sisyphus pushing Rolling down
x=0 x=1 x=-3
x <30 x>0
bottom reached
x=0

One variable x € [0, 30], linear rates, early rollback encodes the “curse”

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 6/53

Outline

Rectangular Automata

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt

Rectangular Automata (RA)

m Guards & Invariants: rectangles in valuation space: xj € [h, u1], no
diagonal constraints (e.g. x; < x2)

m Flows: per-variable, rate bounds: x; € [a;, b;] (deterministic if
aj = b;)
m Intuition: “boxy” geometry in both state and derivative spaces

m Why RA here? This structure is exactly what REALYST exploits for
reachability

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 8/53

0e

Rectangular Automata
B Rectangular Automata with Random Events

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 9/53

RA with Random Events (RAE)

m Attach a random event to a jump: when the guard is enabled, sample a delay

m Semantics uses logical stopwatches p,: rate 1 while r-labelled jump is
enabled, else 0

m Sample s, initially and after each occurrence
m Fire when u, = s, and the guard holds, then reset u, := 0 and resample s,

m Timers are handled semantically (no extra state variables needed)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

0e

Rectangular Automata

B Rectangular Automata with Random Clocks

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

RA with Random Clocks (RAC/RAR)

m Add a per-label random clock ¢ (stopwatch) to store the duration of
enabledness

Sample an expiration R. ~ Distr(c) initially and after each c-labelled firing
m In each location: ¢ = 1 iff a c-labelled jump is enabled, else ¢ =0

m Fire when ¢ = R, while enabled, upon firing set ¢ := 0 and resample R;
from Distr(c)

Timing is handled syntactically (explicit clocks) = enables geometric
reachability and max-prob analysis

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Example: RAC Sisyphus with an Explicit Random Clock

stone slips

Rolling down

x=30 catch rock x €[0,0)
x € [0, 10]

Random clock ¢ measures duration of enabledness, slip delay e.g. ~ Uniform][0, 6]

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

(2]

(de-)Composed And More: Eager and Lazy Specifications

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

CAMELS: Scheduling & Realizability intuition

Axes:

m Scheduling: Composed (one global delay, then choose label) vs.
Decomposed (per-label delays race)

m Realizability: Lazy (resample if invalid), Eager Predictive (only realizable
delays), Eager Non-predictive (durations of enabledness)

\ Lazy Eager Predictive Eager Non-predictive
Composed v v v
Decomposed v X v

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Example: Decomposed Eager Non-predictive (two

stopwatches)

reaches top (ap)
=

x> 20

stone slips (a1)

Pushin
g bottom reached (a;)

x=0

Rolling down

In £y, both stopwatches (¢ freedom, ¢; slip) accumulate enabledness, the first to
hit its sampled duration wins. Includes resampling loops for each label when
needed. We use ¢; ~ Uniform[0, 18] and ¢ ~ Uniform|[0, 10].

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

0e

RA/RAE/RAC in CAMELS

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Where do RA, RAE, and RAC sit within CAMELS?

m RA: no stochastic delays = outside CAMELS

m RAE: per-label stochastic delays interpreted as enabledness durations =
Decomposed, Eager Non-predictive

m RAC/RAR: makes those per-label timers explicit as continuous random
clocks, syntactic subclass of RAE = Decomposed, Eager Non-predictive

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

0e

DENP = RAC

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

DENP = RAC: General procedure

Take boundaries where enabledness changes.

Cut locations along these hyperplanes.

Set clock rates to ¢, = 1 iff a enabled in window, else ¢, = 0.
From locations where a's guard holds, add unguarded a-edge.
On firing, set ¢, := 0 and resample its duration.

I[@ Add edges at each cut and keep source invariants.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Example: DENP (two stopwatches)

reaches top (ap)
Co

x > 20

stone slips (a1)

Pushin
& bottom reached (a;)

x=0

Rolling down

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Example DENP to RAC conversion

e

Pushing a

10 < xx< 24
V x> 26

Seraphim Zaytsev (THS)

00[0, 10]
x=1

o
(0[10, 20]

x=1
=0 =1

10 <x <20

00[20, 24]
x=1
=1, ¢&=1

20<x <24

UPPAAL vs RealySt

0o[24, 26]
x=1
=1 6&=0

24 < x <26

00[26,30]
x=1
=1, ¢ =1

26 <x <30

SS 2025

£0[0,10]
i=1

stone slips (a1)

Rolling diwn

reaches top (ao)
Co

£0[20,24)
=1
=1 .

é=1 stone slips (a1)
<z< reaches top (ag

£0[24,26] £[26,30]
=1 i=1
=1

=1
26 <x <30

Seraphim Zaytsev

UPPAAL vs RealySt

(2]

CAMELS vs. RealySt
B UPPAAL

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL

m Networks: timed automata with parallel composition and synchronization
channels (a!/a?)

m Locations: with invariants, edges with guards, updates, and clock resets

Clocks: progress uniformly, invariants restrict time elapse

Tooling: Symbolic Simulator, Concrete Simulator (sampled runs), Verifier
(reachability /safety)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL SMC: Stochastic Semantics & Queries

m Race semantics: concurrently enabled components draw delays
(uniform /exponential), earliest enabled transition fires

m Random sampling: e.g. random(a,b) for variables/parameters

m Continuous rates: dynamics via x’== expr during simulation/model
checking

m Queries (statistical): probability estimation, hypothesis testing,
expectations with confidence
Examples:

// probability that goal is reached within T
Pr[<=T](<> goal)

// hypothesis testing
Pr[<=T](<> goal) >= 0.9

// expected maximum of variable x up to T
E[<=T](max: x)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Example: Sisyphus as an UPPAAL model

Sample push speed
X.r.and . random cs0
10 clock c_r

@ x_r=random(3.0),

x'=-3 8&&

. S x=0
c_r=random(6.0), X'=x_r 8& =76
c=c_r c'=-1 8& x_r=random(3.0),
X< 30 8& c_r=random(6.0),
c=0 c=c_r
Countdown c instead Resample push
of "reaching speed x.r
sampled value" c_r

Random uphill speed x_r sampled, early rollback with random clock c, roll at
speed —3 back to x € [0, 10]

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL Concrete Simulator

Symbolic Simulator

R4
S

Editor
00 ,10 20 3.0 ,40 50 6.0 ,70 .80 9.0
Process =
0.0 ¢
i< Earliest 1 Latest Shrink Expand
Trace

Deay. U-£3597UTIEUGIUL LT, FIUCESS 7
(1)
Delay: 3.8288135533221066; Process —

No Strategy Random [Open ¥ save

1 i]
Slow Fast

Concrete runs with realized delays, useful for validating race behavior before SMC

Seraphim Zaytsev (THS)

Concrete Simulator

Verifier

Process
x_r = 2.00
c_r = 3.82
x = 13.012
c=20.0

(]
andon (3.9),

c_r=random(6.0),

Process

queries.

UPPAAL vs RealySt

UPPAAL Stratego: Strategy Optimization

m Synthesizes schedulers to optimize quantitative objectives (probability, time,
cost)

m Simulation-driven policy iteration

Examples:
// maximize reachability probability by time T
strategy opt = maxPr[<=T](<> goal);

// minimize expected time to reach goal (bounded)
strategy fast = minE(time)[<=T]: goal;

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL: e model

Component syntax A = (Loc, Clk, Var, Inv, Flow, E, £y, v):

m Locations: Loc € {normal, urgent, committed}. Optional exponential exit
rate A(¢) >0 used only if the stay is unbounded.

m Urgent/committed forbid time elapse, committed forces next discrete
step to involve committed component.

m Clocks: evolve by rate equations ¢/ == e in locations.

m Variables: int/bool/arrays/records/doubles used in rates, guards,
invariants, updates.

m Invariants: Inv bound time in locations.

Edges E: Guards, optional weights, updates (incl. random draws), resets.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL SMC: Execution semantics

Delays & sampling

m Bounded stay: sample U[0, b(s)] and attempt to leave at expiry.

m Unbounded stay with A(¢) >0: sample Exp(A(¢)).

m Random assignments via SMC store values for later guards/flows.
Race in a network

m Nonblocked component sample delay, minimum wins the race.
Discrete choice at jump time

m Choose edge proportionally to weights, if none given choose uniformly.

m Set weight 0 to block an option.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

(2]

CAMELS vs. RealySt

B RealySt

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

RealySt: RAC/RAR with Explicit Ran

m Models: rectangular/singular automata with random clocks
m Pipeline:

Forward reachability via exact geometry

Backward refinement to keep only states that can still reach the goal

Project onto random-clock dimensions and integrate the probability densities
(Monte Carlo / VEGAS) to obtain Pmax({ goal)

m Qutput: maximum bounded-time reachability under prophetic schedulers.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

RealySt: Flowpipe & Probability (bounded-time)

forward-flowpipe

S it 0 (10,0,10), -
= Sy Cmd options (What they
Segment 2 (12,0)
Seommant 4 togdo:z0fh
egment —
25| — o Segme;ns(lz;!) — mean)
Segment 6 (10,0,10],2)
Segments7 (10 0‘2;](; p—
20l - arment 9 (12,0) m -t 30 - time bound
Segmenno(l 010
s«;gmenm(lolé A m -d 100 - jump-depth
S menﬂag(lrrb 26, 3!)]3T) —
BT oot 14 1) ® -b SISYPHUS - benchmark
Segmen(15 (12,0) .
" m -m A - model variant
m --plotDimensions 0 1 -
5| - select variables as plot axes
m -1 trace - logging level
o+ I

CLI: ./realyst -t 30 -d 100 -b SISYPHUS -m A --plotDimensions 0 1 -1 trace

Seraphim Zaytsev (THS) UPPAAL vs R

(2]

ARCH benchmark

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

ARCH-COMP'22 minimal examples: what we model

Cases

m A: Two independent event components race (b1!, b2!); system goes to
hold or descend.

m B: Like A, but after b27 the system waits exactly 2 time units, then urgent
non-determinist split.

m C: Like B, but flow in the waiting phase has Gaussian noise (we approximate
by fixed ticks).

m D: Like A, but system has invariant x < 6 (potential timelock avoided by
boundary jump).

Each case has 2 subcases: Exp/Exp (both exponential) and Exp/Normal (X;
exponential, X; single draw from folded normal |N(5,2)|).

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 36 /53

ARCH'22 Case A: automata

Exp/Exp Exp/Normal

Process

Process
lost
6.000000001

6.000000001

X1 =
X2
lost
lost
6.000000001
0.000000001 Tost
0.000000001
[
start rhee won
1 r=randon_normal(s,2),
6.000000001 n=fabs(r) n'=-188 0.000908801
n>0

UPPAAL vs RealySt

Seraphim Zaytsev

ARCH'22 Case C: automaton (Exp/Exp baseline)

Process

0

b2?

bl?
d_c=random_normal(@,2),

c:=0.01

c<0
d_c=random_normal(0,2),
c:=0.

x'=0 8&
y'=1+d_c 8&&
y<2 8&
c'=-1 8&
c=0

13
x'=0 && x'=-3 &&
y'=0 && y'=0 8&
c'=0 c'=0
X2

X1

Tlost

Tlost
0.000000001

0.000000001

b2? b1?

0.000000001 0.000000001

55|

UPPAAL vs RealySt

Seraphim Zaytsev

ARCH'22 results: UPPAAL SMC vs. RealySt

Case Variant / Property UPPAAL (95% Cl) RealySt Notes

A Exp/Exp, ¢ (T=10) 0.288719 +0.000993 0.288236 match

A Exp/Normal, ¢ (T=10) 0.448690 £ 0.000975 0.448211 match

B Exp/Exp, ¢ (T=10) 0.125192 £ 0.000917 0.250016 max vs. prob. split
B Exp/Exp, ¢/ (T=12) 0.144624 £ 0.000975 0.288236 max vs. prob. split
B Exp/Normal, ¢ (T=10) 0.154144 4+ 0.000846 0.308558 max vs. prob. split
B Exp/Normal, ¢/ (T=12) 0.224051 + 0.000977 0.448211 max vs. prob. split
C Exp/Exp, ¢ (T=10) 0.125755 + 0.000649 N/A UPPAAL only

C Exp/Exp, ¢' (T=12) 0.143548 4+ 0.000687 N/A UPPAAL only

C Exp/Normal, ¢ (T=10) 0.154234 £ 0.000708 N/A UPPAAL only

C Exp/Normal, ¢' (T=12) 0.224111+0.000817 N/A UPPAAL only

D Exp/Exp, ¢ (T=10) 0.185505 + 0.000762 0.185280 match

D Exp/Normal, ¢ (T=10) 0.130076 + 0.000659 0.130280 match

Note: UPPAAL approximates Case C with fixed ticks At=0.01. For Case B UPPAAL
matches other SMC tools.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 39/53

(2]

CAMELS benchmark

000 00006

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

CAMELS in REALYST

m DENP (RAC) supported natively.

Not supported in general:
m Composed need one global delay + probabilistic label choice.
m CENP: timing can match via single clock for all random jumps.

m CEP: can match with precomputation of the set of possible samples
for the global random clock.

m Current RealySt impl. random clocks fire only once.
m DL not in RealySt: needs absolute delays that keep ticking and
resample (core semantics mismatch).
Workaround & stance

m Loop unrolling with fresh clocks per repetition is possible but in our
runs probabilities did not match.
m Therefore only cross-tool comparison on DENP.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 41/53

DENP in UPPAAL

X224
x 220 c0=0
delay@=randon(10.0), cO<0
c0:=delay0
T
16_c1cO_a T

x'=1 8& cl<0

xz10
delayl=random(18.0),
cl:=delayl
c1<0
8&
8&
X<208&
c1=0 x<0

UPPAAL vs RealySt

raphim Zaytsev

DENP results (reachability of I1)

Tool Bound Estimate Uncertainty

UPPAAL SMC t<30 0.222000 +8.14545x10*
t <100 0.617393 +9.52590x10~*
t<30 0.2221555 +5.26794x107°

REALYST

Analytic check (DENP): Pr(top before slip) = % ~ 0.222 (matches both).

SS 2025

UPPAAL vs RealySt

Seraphim Zaytsev (THS)

UPPAAL: implementing DL

Idea
m Per label a;: one countdown ¢; that never pauses.
m Make expiry urgent: invariant ¢; > 0 + guard all expiry edges with ¢; < 0.
m At expiry: deterministic branch fire vs. resample.

m Compile —g; into “gaps” and add one resampling loop per gap.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL DL: automaton

delayl=random(18.0),

cl=delayl resample before gap

x<10 8&
clso

[D
delayl=random{ls.b), resamplte Cc1l
cl=delayl during gap V

x>24 8& x<26 &&

c1<0. ye1aye=random(10:0), /O
cO:=delay0 1

< ==
resample cG T x=20 8& xﬂ'fﬂ&i&
c0<0 B -
cl'=0

@delay@:random(l@.@), \/\ X210 8& X <24 8&
delayl=random(18.0) 10 cl1<0

cO:=delay0, x'=1 8&

cl=delayl cB =-1.8&
cl'=-1 8&
XS oU o
c0=0 8& c1=0
X<0

c0'=0 8&&
cl'=0 &&

X=zU

Seraphim Zaytsev (THS) UPPAAL vs R

UPPAAL: implementing CL

Idea
m One global countdown ¢, never pauses.
m Weights w; resolve overlaps among enabled random jumps.

m If expiry lands in a gap: resampling loop redraws ¢ and w;.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

start

delay=random(15.0),
c=delay,

wO=random(1.0), c<0o §&
wl=random(1.0) x<15

x'=0 8&&

X =20 8&&
c'=0

c<0

@ delay=random(15.0),

x=215 8& x<24 &&

Seraphim Zaytsev (THS)

10
wO=random(1.0), x'=1 8&
wl=random(1.0) c'=-18&
x <30 8&&
c28 X'=-3 §&
c'=0 &
xs0 x=0

UPPAAL vs RealySt

UPPAAL: implementing CEP

Idea

m One global countdown ¢, samples only from times where some label will be
enabled.

m Have to manually precompute the “enabled-samples”.

m Overlaps still resolved by weights w;.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL CEP: automaton

delay = random(18.0), x‘ig -
¢ = (delay < 4.8) ? (10.0 + delay) e

(16.0 + (delay - 4.0)),

start

w@:=random(1.0), x=10 8& x<14 8&&

wl:=random(1.8) o cso
x'=1 8&
c'=-1 8&
x<30 8&
ik X'=-3 &&
c'=0 8§&
x<0 x=0

Seraphim Zaytsev (THS) UPPAAL vs RealySt

UPPAAL: implementing CENP

Idea

m One stopwatch ¢ on the union g =/, gi, ¢ keeps running through gaps of
individual labels.

m Sample when g becomes true.
m Overlaps resolved by weights w;.

m Same windows as DENP, ¢ keeps running across single-label gaps.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

UPPAAL CENP: au

xX=26 () we
wl c<0
101211 b
x'=1 8& c<0
cl=-1.8&
x<30 8&
c=8
224 wo
cs<@
1o [.o
x'=1 && x'=0 8&
iclZ=-1 8k i i c'=0
X €26 &&
ozl

X =20 we
0.
x' wl
. c!
xz10 X
delay=random(18.0);, c
elay,
random(1.0),
1.0) wl
c<o
1812
X x"=1 8&
c!==0.8& clim=n1. 8&
x<£10 X €20 8&
cz0
xsO

raphim Zaytsev UPPAAL vs RealySt

(2]

000 00006

Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025

Conclusion

m Decision model difference:

m UPPAAL (SMC) resolves choices probabilistically
m REALYST resolves overlaps maximizing (prophetic).
m This is the main source of divergence in composed variants.

Expressivity (CAMELS):

m UPPAAL can model DENP, DL, CL, (CEP), CENP.
m REALYST natively matches DENP/RAC.

When semantics align, both tools agree.
m Limits:

m REALYST currently fires a stochastic clock only once.
m Composed variants only faithful under disjoint enablement (no tie at

expiry).

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 53 /53

