
Comparing the Modeling Capabilities of UPPAAL and
RealySt for Stochastic Hybrid Systems

Final Talk

Seraphim Zaytsev
Supervision: Prof. Erika Ábrahám (THS)

LuFG Theory of Hybrid Systems

SS 2025

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 1 / 53

Motivation

Hybrid systems: continuous evolution of variables (flows) with
discrete transitions (jumps)

Stochastic hybrid systems: add probabilistic timing/events

Need tools that handle time, uncertainty

Goal today: Present the final modeling coverage and benchmark
results for UPPAAL vs. RealySt.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 2 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 3 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 4 / 53

Hybrid Automata (HA): Intuition & Notation

H = (Loc,Var,Flow, Inv,Lab,Edge, Init)

Flows: in location ℓ, variables x ∈ Rd evolve with ẋ = Flow(ℓ)(x) while
x ∈ Inv(ℓ)

Jumps: (ℓ, a, g , r , ℓ′): enabled if x ∈ g , apply reset r , target must satisfy
Inv(ℓ′), a ∈ Lab

Runs: alternate time steps and jumps

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 5 / 53

Example: Sisyphus as an HA

Sisyphus pushing
ẋ = 1
x ≤ 30

x = 0

Rolling down
ẋ = −3
x ≥ 0

early rollback
x ≥ 5 ∧ x ≤ 25

bottom reached
x = 0

One variable x ∈ [0, 30], linear rates, early rollback encodes the “curse”

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 6 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 7 / 53

Rectangular Automata (RA)

Guards & Invariants: rectangles in valuation space: x1 ∈ [l1, u1], no
diagonal constraints (e.g. x1 ≤ x2)

Flows: per-variable, rate bounds: ẋi ∈ [ai , bi] (deterministic if
ai = bi)

Intuition: “boxy” geometry in both state and derivative spaces

Why RA here? This structure is exactly what RealySt exploits for
reachability

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 8 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 9 / 53

RA with Random Events (RAE)

Attach a random event to a jump: when the guard is enabled, sample a delay

Semantics uses logical stopwatches µr : rate 1 while r -labelled jump is
enabled, else 0

Sample sr initially and after each occurrence

Fire when µr = sr and the guard holds, then reset µr := 0 and resample sr

Timers are handled semantically (no extra state variables needed)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 10 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 11 / 53

RA with Random Clocks (RAC/RAR)

Add a per-label random clock c (stopwatch) to store the duration of
enabledness

Sample an expiration Rc ∼ Distr(c) initially and after each c-labelled firing

In each location: ċ = 1 iff a c-labelled jump is enabled, else ċ = 0

Fire when c = Rc while enabled, upon firing set c := 0 and resample Rs

from Distr(c)

Timing is handled syntactically (explicit clocks) ⇒ enables geometric
reachability and max-prob analysis

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 12 / 53

Example: RAC Sisyphus with an Explicit Random Clock

Sisyphus pushing
ẋ ∈ [1, 3]
ċ = 1
x ≤ 30

x = 0
c = 0

Rolling down
ẋ = −3
ċ = 0

x ∈ [0,∞)

stone slips
c

c := 0

catch rock
x ∈ [0, 10]

Random clock c measures duration of enabledness, slip delay e.g. ∼ Uniform[0, 6]

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 13 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 14 / 53

CAMELS: Scheduling & Realizability intuition

Axes:

Scheduling: Composed (one global delay, then choose label) vs.
Decomposed (per-label delays race)

Realizability: Lazy (resample if invalid), Eager Predictive (only realizable
delays), Eager Non-predictive (durations of enabledness)

Lazy Eager Predictive Eager Non-predictive
Composed ✓ ✓ ✓
Decomposed ✓ ✗ ✓

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 15 / 53

Example: Decomposed Eager Non-predictive (two
stopwatches)

ℓ0
ẋ = 1
ċ0
ċ1

x ≤ 30

Pushing

ℓ1
ẋ = 0
ċ0 = 0
ċ1 = 0

Freedom

ℓ2
ẋ = −3
ċ0 = 0
ċ1 = 0
x ≥ 0

Rolling down

x = 0
c0 = 0
c1 = 0 stone slips (a1)

c1

10 ≤ x ≤ 24∨
x ≥ 26

reaches top (a0)
c0

x ≥ 20

bottom reached (a2)
x = 0

In ℓ0, both stopwatches (c0 freedom, c1 slip) accumulate enabledness, the first to
hit its sampled duration wins. Includes resampling loops for each label when

needed. We use c1 ∼ Uniform[0, 18] and c0 ∼ Uniform[0, 10].
Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 16 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 17 / 53

Where do RA, RAE, and RAC sit within CAMELS?

RA: no stochastic delays ⇒ outside CAMELS

RAE: per-label stochastic delays interpreted as enabledness durations ⇒
Decomposed, Eager Non-predictive

RAC/RAR: makes those per-label timers explicit as continuous random
clocks, syntactic subclass of RAE ⇒ Decomposed, Eager Non-predictive

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 18 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 19 / 53

DENP ⇒ RAC: General procedure

1 Take boundaries where enabledness changes.

2 Cut locations along these hyperplanes.

3 Set clock rates to ċa = 1 iff a enabled in window, else ċa = 0.

4 From locations where a’s guard holds, add unguarded a-edge.

5 On firing, set ca := 0 and resample its duration.

6 Add edges at each cut and keep source invariants.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 20 / 53

Example: DENP (two stopwatches)

ℓ0
ẋ = 1
ċ0
ċ1

x ≤ 30

Pushing

ℓ1
ẋ = 0
ċ0 = 0
ċ1 = 0

Freedom

ℓ2
ẋ = −3
ċ0 = 0
ċ1 = 0
x ≥ 0

Rolling down

x = 0
c0 = 0
c1 = 0 stone slips (a1)

c1

10 ≤ x ≤ 24∨
x ≥ 26

reaches top (a0)
c0

x ≥ 20

bottom reached (a2)
x = 0

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 21 / 53

Example DENP to RAC conversion

ℓ0
ẋ = 1
ċ0
ċ1

x ≤ 30

Pushing

ℓ0[0, 10]
ẋ = 1

ċ0 = 0, ċ1 = 0
0 ≤ x ≤ 10

ℓ0[10, 20]
ẋ = 1

ċ0 = 0, ċ1 = 1
10 ≤ x ≤ 20

ℓ0[20, 24]
ẋ = 1

ċ0 = 1, ċ1 = 1
20 ≤ x ≤ 24

ℓ0[24, 26]
ẋ = 1

ċ0 = 1, ċ1 = 0
24 ≤ x ≤ 26

ℓ0[26, 30]
ẋ = 1

ċ0 = 1, ċ1 = 1
26 ≤ x ≤ 30

(a0)
c0

x ≥ 20

(a1)
c1

10 ≤ x ≤ 24
∨ x ≥ 26

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 22 / 53

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 23 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 24 / 53

UPPAAL

Networks: timed automata with parallel composition and synchronization
channels (a!/a?)

Locations: with invariants, edges with guards, updates, and clock resets

Clocks: progress uniformly, invariants restrict time elapse

Tooling: Symbolic Simulator, Concrete Simulator (sampled runs), Verifier
(reachability/safety)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 25 / 53

UPPAAL SMC: Stochastic Semantics & Queries

Race semantics: concurrently enabled components draw delays
(uniform/exponential), earliest enabled transition fires

Random sampling: e.g. random(a,b) for variables/parameters

Continuous rates: dynamics via x’== expr during simulation/model
checking

Queries (statistical): probability estimation, hypothesis testing,
expectations with confidence

Examples:

// p r o b a b i l i t y t ha t goa l i s r eached w i t h i n T
Pr[<=T](<> goa l)

// h y p o t h e s i s t e s t i n g
Pr[<=T](<> goa l) >= 0.9

// expec t ed maximum of v a r i a b l e x up to T
E[<=T] (max : x)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 26 / 53

Example: Sisyphus as an UPPAAL model

Random uphill speed x r sampled, early rollback with random clock c, roll at
speed −3 back to x ∈ [0, 10]

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 27 / 53

UPPAAL Concrete Simulator

Concrete runs with realized delays, useful for validating race behavior before SMC
queries.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 28 / 53

UPPAAL Stratego: Strategy Optimization

Synthesizes schedulers to optimize quantitative objectives (probability, time,
cost)

Simulation-driven policy iteration

Examples:

// maximize r e a c h a b i l i t y p r o b a b i l i t y by t ime T
s t r a t e g y opt = maxPr[<=T](<> goa l) ;

// min imize expec t ed t ime to r each goa l (bounded)
s t r a t e g y f a s t = minE (t ime)[<=T] : goa l ;

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 29 / 53

UPPAAL: Core model

Component syntax A = (Loc,Clk,Var, Inv,Flow,E , ℓ0, v0):

Locations: Loc ∈ {normal, urgent, committed}. Optional exponential exit
rate λ(ℓ)≥0 used only if the stay is unbounded.

Urgent/committed forbid time elapse, committed forces next discrete
step to involve committed component.

Clocks: evolve by rate equations c ′ == e in locations.

Variables: int/bool/arrays/records/doubles used in rates, guards,
invariants, updates.

Invariants: Inv bound time in locations.

Edges E : Guards, optional weights, updates (incl. random draws), resets.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 30 / 53

UPPAAL SMC: Execution semantics

Delays & sampling

Bounded stay: sample U[0, b(s)] and attempt to leave at expiry.

Unbounded stay with λ(ℓ)>0: sample Exp(λ(ℓ)).

Random assignments via SMC store values for later guards/flows.

Race in a network

Nonblocked component sample delay, minimum wins the race.

Discrete choice at jump time

Choose edge proportionally to weights, if none given choose uniformly.

Set weight 0 to block an option.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 31 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 32 / 53

RealySt: RAC/RAR with Explicit Random Clocks

Models: rectangular/singular automata with random clocks

Pipeline:

1 Forward reachability via exact geometry
2 Backward refinement to keep only states that can still reach the goal
3 Project onto random-clock dimensions and integrate the probability densities

(Monte Carlo / VEGAS) to obtain Pmax(♢ goal)

Output: maximum bounded-time reachability under prophetic schedulers.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 33 / 53

RealySt: Flowpipe & Probability (bounded-time)

CLI: ./realyst -t 30 -d 100 -b SISYPHUS -m A --plotDimensions 0 1 -l trace

Cmd options (what they
mean)

-t 30 - time bound

-d 100 - jump-depth

-b SISYPHUS - benchmark

-m A - model variant

--plotDimensions 0 1 -
select variables as plot axes

-l trace - logging level

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 34 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 35 / 53

ARCH-COMP’22 minimal examples: what we model

Cases

A: Two independent event components race (b1!, b2!); system goes to
hold or descend.

B: Like A, but after b2? the system waits exactly 2 time units, then urgent
non-determinist split.

C: Like B, but flow in the waiting phase has Gaussian noise (we approximate
by fixed ticks).

D: Like A, but system has invariant x ≤ 6 (potential timelock avoided by
boundary jump).

Each case has 2 subcases: Exp/Exp (both exponential) and Exp/Normal (X1

exponential, X2 single draw from folded normal |N(5, 2)|).

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 36 / 53

ARCH’22 Case A: automata

Exp/Exp Exp/Normal

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 37 / 53

ARCH’22 Case C: automaton (Exp/Exp baseline)

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 38 / 53

ARCH’22 results: UPPAAL SMC vs. RealySt

Case Variant / Property UPPAAL (95% CI) RealySt Notes

A Exp/Exp, ϕ (T=10) 0.288719± 0.000993 0.288236 match

A Exp/Normal, ϕ (T=10) 0.448690± 0.000975 0.448211 match

B Exp/Exp, ϕ (T=10) 0.125192± 0.000917 0.250016 max vs. prob. split

B Exp/Exp, ϕ′ (T=12) 0.144624± 0.000975 0.288236 max vs. prob. split

B Exp/Normal, ϕ (T=10) 0.154144± 0.000846 0.308558 max vs. prob. split

B Exp/Normal, ϕ′ (T=12) 0.224051± 0.000977 0.448211 max vs. prob. split

C Exp/Exp, ϕ (T=10) 0.125755± 0.000649 N/A UPPAAL only

C Exp/Exp, ϕ′ (T=12) 0.143548± 0.000687 N/A UPPAAL only

C Exp/Normal, ϕ (T=10) 0.154234± 0.000708 N/A UPPAAL only

C Exp/Normal, ϕ′ (T=12) 0.224111± 0.000817 N/A UPPAAL only

D Exp/Exp, ϕ (T=10) 0.185505± 0.000762 0.185280 match

D Exp/Normal, ϕ (T=10) 0.130076± 0.000659 0.130280 match

Note: UPPAAL approximates Case C with fixed ticks ∆t=0.01. For Case B UPPAAL
matches other SMC tools.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 39 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 40 / 53

CAMELS in RealySt

DENP (RAC) supported natively.

Not supported in general:

Composed need one global delay + probabilistic label choice.

CENP: timing can match via single clock for all random jumps.

CEP: can match with precomputation of the set of possible samples
for the global random clock.

Current RealySt impl. random clocks fire only once.

DL not in RealySt: needs absolute delays that keep ticking and
resample (core semantics mismatch).

Workaround & stance

Loop unrolling with fresh clocks per repetition is possible but in our
runs probabilities did not match.

Therefore only cross-tool comparison on DENP.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 41 / 53

DENP in UPPAAL

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 42 / 53

DENP results (reachability of l1)

Tool Bound Estimate Uncertainty

UPPAAL SMC t ≤ 30 0.222000 ± 8.14545×10−4

t ≤ 100 0.617393 ± 9.52590×10−4

RealySt t ≤ 30 0.2221555 ± 5.26794×10−5

Analytic check (DENP): Pr(top before slip) = 2
9
≈ 0.222 (matches both).

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 43 / 53

UPPAAL: implementing DL

Idea

Per label ai : one countdown ci that never pauses.

Make expiry urgent: invariant ci ≥ 0 + guard all expiry edges with ci ≤ 0.

At expiry: deterministic branch fire vs. resample.

Compile ¬gi into “gaps” and add one resampling loop per gap.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 44 / 53

UPPAAL DL: automaton

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 45 / 53

UPPAAL: implementing CL

Idea

One global countdown c , never pauses.

Weights wi resolve overlaps among enabled random jumps.

If expiry lands in a gap: resampling loop redraws c and wi .

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 46 / 53

UPPAAL CL: automaton

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 47 / 53

UPPAAL: implementing CEP

Idea

One global countdown c , samples only from times where some label will be
enabled.

Have to manually precompute the “enabled-samples”.

Overlaps still resolved by weights wi .

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 48 / 53

UPPAAL CEP: automaton

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 49 / 53

UPPAAL: implementing CENP

Idea

One stopwatch c on the union g =
∨

i gi , c keeps running through gaps of
individual labels.

Sample when g becomes true.

Overlaps resolved by weights wi .

Same windows as DENP, c keeps running across single-label gaps.

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 50 / 53

UPPAAL CENP: automaton

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 51 / 53

Outline

1 Hybrid Automata
2 Rectangular Automata

■ Rectangular Automata with Random Events

■ Rectangular Automata with Random Clocks

3 (de-)Composed And More: Eager and Lazy Specifications
4 RA/RAE/RAC in CAMELS
5 DENP ⇒ RAC
6 CAMELS vs. RealySt

■ UPPAAL

■ RealySt

7 ARCH benchmark
8 CAMELS benchmark
9 Conclusion

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 52 / 53

Conclusion

Decision model difference:

UPPAAL (SMC) resolves choices probabilistically
RealySt resolves overlaps maximizing (prophetic).
This is the main source of divergence in composed variants.

Expressivity (CAMELS):

UPPAAL can model DENP, DL, CL, (CEP), CENP.
RealySt natively matches DENP/RAC.

When semantics align, both tools agree.

Limits:

RealySt currently fires a stochastic clock only once.
Composed variants only faithful under disjoint enablement (no tie at
expiry).

Seraphim Zaytsev (THS) UPPAAL vs RealySt SS 2025 53 / 53

