Star Set based Reachability Analysis of Neural Networks with differing Layers and Activation Functions

Hana Masara Supervision: Prof. Dr. Erika Ábrahám, László Antal

LuFG Theory of Hybrid Systems

03.07.2023

1 Preliminaries

2 Methodology and Implementation

3 Evaluation

4 Conclusion

1 Preliminaries

2 Methodology and Implementation

3 Evaluation

4 Conclusion

• FFN transmits information forward through:

- FFN transmits information forward through:
 - Input layer

- FFN transmits information forward through:
 - Input layer
 - One or multiple hidden layers

- FFN transmits information forward through:
 - Input layer
 - One or multiple hidden layers
 - Output layer

Given an input vector *x*

- Given an input vector x
- Three components define the output:

- Given an input vector x
- Three components define the output:
 - The weight matrix W^k between two layers k-1 and k

- Given an input vector x
- Three components define the output:
 - The weight matrix W^k between two layers k-1 and k
 - The bias vectors b^k of the k^{th} layer

- Given an input vector x
- Three components define the output:
 - The weight matrix W^k between two layers k-1 and k
 - The bias vectors b^k of the k^{th} layer

■ The activation function *f*

- Given an input vector x
- Three components define the output:
 - The weight matrix W^k between two layers k-1 and k
 - The bias vectors b^k of the k^{th} layer

The activation function f

• Overall y_i give the output of a neuron *i* by:

$$y_i = f(b_i + \sum_{j=1}^n w_{ij}x_j)$$

• A star set $\langle c, V, P \rangle$ where:

• A star set $\langle c, V, P \rangle$ where: • $c \in \mathbb{R}^n$ the center

- A star set $\langle c, V, P \rangle$ where:
 - $c \in \mathbb{R}^n$ the center
 - $V = \{v_1, \ldots, v_m\} \subseteq \mathbb{R}^n$ the basis vertors

• A star set $\langle c, V, P \rangle$ where:

- $c \in \mathbb{R}^n$ the center
- $V = \{v_1, \ldots, v_m\} \subseteq \mathbb{R}^n$ the basis vertors
- $P : \mathbb{R}^m \to \{\bot, \top\}$ a predicate of $P(\alpha) \triangleq C\alpha \leq d$

A star set ⟨c, V, P⟩ where: c ∈ ℝⁿ the center V = {v₁,..., v_m} ⊆ ℝⁿ the basis vertors P : ℝ^m → {⊥, T} a predicate of P(α) ≜ Cα ≤ d

The set of states:

$$\llbracket \Theta \rrbracket = \{ x \mid x = c + \sum_{i=1}^{m} (\alpha_i v_i) \text{ such that } P(\alpha) = \top \}$$

Affine Mapping of a Star

Star and Half-space Intersection

Star and Half-space Intersection

Reachability Analysis of FNNs with ReLU

Given the input *x*,

$$\textit{ReLU}(x) = egin{cases} x, & x \geq 0 \\ 0, & x < 0 \end{bmatrix} = \textit{max}(0, x)$$

Exact Analysis

Over-approximate Analysis Convex Relaxation

Over-approximate Analysis

Over-approximate Analysis

Over-approximate Analysis

1 Preliminaries

2 Methodology and Implementation

3 Evaluation

4 Conclusion
Neural networks process and learn from complex, non-linear datasets

- $\Rightarrow\,$ Non-linear activation functions to prevent linearity
- $\Rightarrow\,$ Verifying neural networks to ensure their reliability, robustness, and safety

Leaky ReLU Layer

- Leaky ReLU Layer
- Hard Tanh Layer

- Leaky ReLU Layer
- Hard Tanh Layer
- Hard Sigmoid Layer

- Leaky ReLU Layer
- Hard Tanh Layer
- Hard Sigmoid Layer
- Unit Step Function Layer

- Leaky ReLU Layer
- Hard Tanh Layer
- Hard Sigmoid Layer
- Unit Step Function Layer

for exact and over-approximation on bounded/unbounded sets.

Leaky ReLU Function

Given the input *x*,

$$LeakyReLU(x) = \begin{cases} x, & x > 0 \\ \gamma \cdot x, & x \le 0 \end{cases} = max(\gamma \cdot x, x)$$

where $\gamma \in (0,1)$

Case 2

Case 3

Over-approximate Analysis Convex Relaxation

Over-approximate Analysis

Over-approximate Analysis

Over-approximate Analysis

Comparison

Case 2

No upper bound

Case 3

For the input *x*,

$$HardTanh(x) = \begin{cases} -1 & x < -1 \\ 1 & x > 1 \\ x & -1 \le x \le 1 \end{cases}$$

For the input *x*,

$$\mathit{HardTanh}(x) = egin{cases} V_{min}, & x < V_{min} \ V_{max}, & x > V_{max} \ x, & V_{min} \leq x \leq V_{max} \end{cases}$$

 \Rightarrow Remain the same

 \Rightarrow Project onto V_{min}

\Rightarrow Remain the same

 $\begin{array}{l} \Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} \leq x_i \leq V_{max}) \\ \Theta_2 = \Theta \land (x_i < V_{min}) \end{array}$

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} \le x_i \le V_{max}) \\ \Theta_2 = \Theta \land (x_i < V_{min})$

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} \le x_i \le V_{max}) \\ \Theta_2 = \Theta \land (x_i > V_{max})$

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} \le x_i \le V_{max}) \\ \Theta_2 = \Theta \land (x_i < V_{min})$

 $\Rightarrow \text{ Decompose into three subsets} \\ \Theta_1 = \Theta \land (V_{min} \le x_i \le V_{max}) \\ \Theta_2 = \Theta \land (x_i < V_{min}) \\ \Theta_3 = \Theta \land (x_i > V_{max})$

Exact Analysis

Exact Analysis

Case 1, 2, and 3 equivalent to exact analysis

Case 4

Case 5

Case 6

Case 4

Over-approximate Analysis

Over-approximate Analysis

Over-approximate Analysis

Case 1

Case 2

Case 3

No upper bound

Case 3

No upper bound

Case 3

Hard Sigmoid Function

For the input *x*,

$$HardSigmoid(x) = \begin{cases} 0 & x \le -1 \\ 1 & x \ge 1 \\ \frac{1}{2} \cdot x + \frac{1}{2} & -1 < x < 1 \end{cases} = max(0, min(\frac{1}{2} \cdot x + \frac{1}{2}))$$

Hard Sigmoid Function

For the input *x*,

$$HardSigmoid(x) = \begin{cases} 0 & x \leq V_{min} \\ 1 & x \geq V_{max} \\ \hline V_{min} - V_{min} & x + \frac{V_{min}}{V_{min} - V_{max}} & V_{min} < x < V_{max} \end{cases}$$

$$HardSigmoid(x_i)$$

$$0 & x_i$$

 $\Rightarrow\,$ Correspond to the function

 $\Rightarrow\,$ Correspond to the function

 \Rightarrow Correspond to the function

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} < x_i < V_{max}) \\ \Theta_2 = \Theta \land (x_i \le V_{min})$

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} < x_i < V_{max}) \\ \Theta_2 = \Theta \land (x_i \le V_{min})$

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} < x_i < V_{max}) \\ \Theta_2 = \Theta \land (x_i \ge V_{max})$

 $\Rightarrow \text{ Decompose into two subsets} \\ \Theta_1 = \Theta \land (V_{min} < x_i < V_{max}) \\ \Theta_2 = \Theta \land (x_i \le V_{min})$

 $\Rightarrow \text{ Decompose into three subsets} \\ \Theta_1 = \Theta \land (V_{min} < x_i < V_{max}) \\ \Theta_2 = \Theta \land (x_i \le V_{min}) \\ \Theta_3 = \Theta \land (x_i \ge V_{max})$

Exact Analysis

Exact Analysis

Exact Analysis

Exact Analysis

Case 2

Case 3

Over-approximate Analysis

Over-approximate Analysis

Over-approximate Analysis

Case 2

No upper bound

Case 3

No upper bound

Case 3

For the input *x*,

$$UnitStep(x) = egin{cases} 0 & x \leq 0 \ 1 & x > 0 \end{cases}$$

For the input *x*,

$$unitStep(x) = \begin{cases} V_{min} & x < V \\ V_{max} & x \ge V \end{cases}$$

Case 2

Case 3

Case 3

Case 3

Case 3

Case 3

- Open Neural Network Exchange (ONNX)
- Standard for representing deep learning models

1 Preliminaries

2 Methodology and Implementation

3 Evaluation

4 Conclusion

- Airborne Collision Avoidance System Xu (ACAS Xu)
- A set of 45 feedforward neural networks, each with
 - 5 inputs,
 - 5 outputs,
 - 7 fully connected layers,
 - 300 neurons
- 10 properties to test the networks

For the evaluation, we

- compute the reachable set
- check the safety verification
- check the computation (RT) and the safety verification time (VT)

ACAS Xu

From the results,

• the star set approach is, on average, faster than the Reluplex

properties	Exact	Overapproximation
	AVG RT(s)	AVG RT(s)
ϕ_1	29402.5067	2049.4807
ϕ_2	44631.003	1775.056
ϕ_3	254.60	10.38
ϕ_{4}	140.7655	9.4855
Sum	74428.8752	3844.4022

Average computation results for properties $\phi_1, \phi_2, \phi_3, \phi_4$

Thermostat

- Maintains room temperature between $17^{\circ}C$ and $23^{\circ}C$
- Neural network, with
 - 2 input neurons,
 - 2 hidden layers,
 - 1 output

The hybrid automaton model of the thermostat

- Drone takeoff and hover at chosen altitude
- A set of 8 feedforward neural networks

Architecture	Network ID	Neurons		
	AC1	32, 16		
T	AC2	64, 32		
I wo layers	AC3	128, 64		
	AC4	256, 128		
	AC5	32, 16, 8		
Three lovers	AC6	64, 32, 16		
Three layers	AC7	128, 64, 32		
	AC8	256, 128, 64		

For the evaluation, we check

- the computation time (RT)
- the safety verification time (VT)

Exact		Overapproximation		
RT(s)	VT(s)	RT(s)	VT(s)	
232.37	8.86	4.94	1.37	

Average computation and verification time results

- Binary classification, distinguishing rocks from metal cylinders
- Neural network, with
 - 60 inputs,
 - 1 output,
 - 2 layers
- We check the local robustness of the neural network

Experimental Results

Experiments to improve the running time of our algorithms, with
matrix multiplications vs. column multiplications

Run time with increasing matrix numbers

Run time with increasing matrix dimensions

1 Preliminaries

- 2 Methodology and Implementation
- 3 Evaluation

4 Conclusion

- Reachability analysis
 - provides valuable insights into complex network behavior
 - ensures network safety and reliability
- Developed various activation functions, includes
 - exact analysis
 - over-approximate analysis

for bounded and unbounded cases.

ONNX parser for easier integration in Hypro

Questions?

References I

0	ONNX. https://	'onnx.ai/.	[Accessed:	May 30,	2023].
---	----------------	------------	------------	---------	--------

OpenMP. https://www.openmp.org/. [Accessed : May 29, 2023].

- [AG21] Sushma Priya Anthadupula and Manasi Gyanchandani. "A Review and Performance Analysis of Non-Linear Activation Functions in Deep Neural Networks". In: *Int. Res. J. Mod. Eng. Technol. Sci* (2021).
- [BD17] Stanley Bak and Parasara Sridhar Duggirala. "Simulation-Equivalent Reachability of Large Linear Systems with Inputs". In: Computer Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak. 2017, pp. 401–420.
- [Bro22] Jason Brownlee. Binary Classification Tutorial with the Keras Deep Learning Library. https://machinelearningmastery.com/binary-classificationtutorial-with-the-keras-deep-learning-library/. [Accessed : June 1, 2023]. 2022.
- [CBD15] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural networks with binary weights during propagations". In: Advances in neural information processing systems 28 (2015).

[Col+11] Ronan Collobert et al. Natural Language Processing (almost) from Scratch. 2011.

- [Col04] Ronan Collobert. "Large Scale Machine Learning". In: (2004).
- [GJ+10] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. [Accessed : May 29, 2023]. 2010.
- [Gui+22] Dario Guidotti et al. Evaluating Reachability Algorithms for Neural Networks on NeVer2. Sept. 2022.
- [Jia23] Ruoran Gabriela Jiang. "Verifying ai-controlled hybrid systems". MA thesis. RWTH Aachen University, 2023.
- [JKO19] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. "Deep Neural Network Compression for Aircraft Collision Avoidance Systems". In: Journal of Guidance, Control, and Dynamics 42.3 (Mar. 2019), pp. 598–608. DOI: 10.2514/1.g003724. URL: https://doi.org/10.2514%2F1.g003724.

References III

- [Kat+17] Guy Katz et al. "Reluplex: An efficient SMT solver for verifying deep neural networks". In: Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30. Springer. 2017, pp. 97–117.
- [Kum19] Kumar, Niranjan. Deep Learning: Feedforward Neural Networks Explained. https://medium.com/hackernoon/deep-learning-feedforward-neuralnetworks-explained-\c34ae3f084f1. [Accessed: May 03, 2023]. 2019.
- [Nwa+18] Chigozie Nwankpa et al. Activation Functions: Comparison of trends in Practice and Research for Deep Learning. 2018.
- [Sch+17] Stefan Schupp et al. "HyPro: A C++ Library of State Set Representations for Hybrid Systems Reachability Analysis". In: NASA Formal Methods. Ed. by Clark Barrett, Misty Davies, and Temesghen Kahsai. 2017, pp. 288–294. ISBN: 978-3-319-57287-1.

References IV

- [Sin+19] Gagandeep Singh et al. "An abstract domain for certifying neural networks". In: Proceedings of the ACM on Programming Languages 3 (Jan. 2019), pp. 1–30. DOI: 10.1145/3290354.
- [SKP97] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. "Introduction to multi-layer feed-forward neural networks". In: Chemometrics and Intelligent Laboratory Systems 39.1 (1997), pp. 43–62. ISSN: 0169-7439. DOI: doi.org/10.1016/S0169-7439(97)00061-0.
- [Tra20] Dung Tran. "Verification of Learning-enabled Cyber-Physical Systems". PhD thesis. Vanderbilt University Graduate School, Aug. 2020.
- [Xu+20] Jin Xu et al. "Reluplex made more practical: Leaky ReLU". In: 2020 IEEE Symposium on Computers and Communications (ISCC). 2020, pp. 1–7. DOI: 10.1109/ISCC50000.2020.9219587.
- [Yu+20] Yongbin Yu et al. "RMAF: Relu-Memristor-Like Activation Function for Deep Learning". In: IEEE Access 8 (2020), pp. 72727–72741. DOI: 10.1109/ACCESS.2020.2987829.

The worst-case complexity of the number of stars in the reachable set of an N-neurons FNN is $\mathcal{O}(2^N)$.

Lemma

The worst-case complexity of the number of constraints of a star in the reachable set of an N-neurons FNN is $\mathcal{O}(N)$.

Lemma

The worst-case complexity of the number of variables and constraints in the reachable set of an N-neurons FNN is $N + m_0$ and $3N + n_0$, respectively, where m_0 is the number of variables and n_0 the number of linear constraints of the predicate of the input set.

The worst-case complexity of the number of stars in the reachable set of an N-neurons FNN is $\mathcal{O}(3^N)$.

Lemma

The worst-case complexity of the number of constraints of a star in the reachable set of an N-neurons FNN is $\mathcal{O}(2N)$.

Lemma

The worst-case complexity of the number of variables and constraints in the reachable set of an N-neuron FNN is $N + m_0$ and $4N + n_0$, where respectively m_0 is the number of variables and n_0 the number of linear constraints of the predicate of the input set.

The worst-case complexity of the number of stars in the reachable set of an N-neurons FNN is $\mathcal{O}(3^N)$.

Lemma

The worst-case complexity of the number of constraints of a star in the reachable set of an N-neurons FNN is $\mathcal{O}(2N)$.

Lemma

The worst-case complexity of the number of variables and constraints in the reachable set of an N-neurons FNN is $N + m_0$ and $4N + n_0$, where respectively m_0 is the number of variables and n_0 the number of linear constraints of the predicate of the input set.

The worst-case complexity of the number of stars in the reachable set of an N-neurons FNN is $\mathcal{O}(2^N)$.

Lemma

The worst-case complexity of the number of constraints of a star in the reachable set of an N-neurons FNN is $\mathcal{O}(N)$.