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Neural Networks in Hybrid Systems

Hybrid systems: systems combining continuous and discrete dynamics

If too complex, may be regulated by neural network controllers

Often in engineering and control systems

Examples

Automotive systems, robotics, power systems

Importance

Ensure safety and reliability in critical systems

Predict and prevent undesirable behaviors
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Challenges and Current Methods

Challenges

Complexity of modeling and analyzing hybrid systems
Black box behavior of neural networks
Dealing with over-approximation

Current methods

Model checking
Theorem proving
Simulation-based approaches

Limitations of current methods

Limited scalability
Assumptions about system behavior
Lack of guarantees for certain properties
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Two Types of Hybrid Systems

Autonomous system
ẋ(t) = Ax(t)

Non-autonomous system

ẋ(t) = Ax(t)+Bu(t)

where x are the variables, A is the flow matrix at time t, u the
external inputs.
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Neural Network Control System

(X ,U,F ,N , δ,X0)

NN Controller
u(tk) = N (y(tk))

Plant
ẋ(t) = Ax(t) + Bu(tk)

Simplified
hybrid automatonNeural network Flowpipe construction

Exact star-based
NN reachability

u(tk)

y(tk) = Cx(tk)
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Plant
ẋ(t) = Ax(t) + Bu(tk)

Simplified
hybrid automatonNeural network Flowpipe construction

Exact star-based
NN reachability

u(tk)

y(tk) = Cx(tk)

F : R≥0 → Rn the ODE defining the continuous dynamics of the plant
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Plant
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Simplified
hybrid automatonNeural network Flowpipe construction

Exact star-based
NN reachability

u(tk)

y(tk) = Cx(tk)
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Simplified
hybrid automatonNeural network Flowpipe construction

Exact star-based
NN reachability

u(tk)

y(tk) = Cx(tk)
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Neural Network Control System

Modeled as

NN Controller
u(tk) = N (y(tk))

Plant
ẋ(t) = Ax(t) + Bu(tk)

Simplified
hybrid automatonNeural network Flowpipe construction

Exact star-based
NN reachability

u(tk)
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Neural Network Control System

Reachability analysis

NN Controller
u(tk) = N (y(tk))

Plant
ẋ(t) = Ax(t) + Bu(tk)

Simplified
hybrid automatonNeural network Flowpipe construction

Exact star-based
NN reachability

u(tk)

y(tk) = Cx(tk)
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Hybrid Automaton of the Thermostat [Alur et al. 1995]

(Loc, Var , Con, Lab, Edge, Act, Inv , Init)

ℓon

ẋ = K (ρ− x)
x ≤ 23
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ẋ = K (ρ− x)
x ≤ 23

ℓon
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ẋ = −Kx
x ≤ 23

ℓoff

x ≤ 23

ℓoff
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ẋ = K (ρ− x)
x ≤ 23

ℓon
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ẋ = −Kx
x ≤ 23

ℓoff

x
x ≤ 23

ℓoff

ẋ = −Kx
x ≤ 23

ℓoff
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ẋ = −Kx
x ≤ 23

ℓoff

x
x ≤ 23

ℓoff
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ẋ = −Kx

x ∈ [19.5, 20.5]
a :

a :

a :

b :

a : x ≥ 22

b : x ≤ 18

a : x ≥ 22

b : x ≤ 18

Gabriela Jiang Verifying AI-controlled Hybrid Systems 8 / 49



Hybrid Automaton of the Thermostat [Alur et al. 1995]

(Loc, Var , Con, Lab, Edge, Act, Inv , Init)

ℓon
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ẋ = −Kx
x ≤ 23

ℓoff

x ≤ 23

ℓoff
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Reachability Analysis of Hybrid Automata

Exact reachable set

R(I ) = {σ ∈ Σ | ∃σ′ ∈ I .σ′ →∗ σ}

not computable [Henzinger et al. 1998]

Hence over-approximate approaches where

R[0,T ](I ) ⊆ Ω[0,T ](I )

Such as flowpipe construction

In the following, T = Kδ
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Flowpipe Construction

X0

Ωi+1 = eδAΩi
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Flowpipe Construction

X0 ∪ eδAX0

Ωi+1 = eδAΩi
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Flowpipe Construction

Ω0 = conv(X0 ∪ eδAX0)⊕ Bα

Ωi+1 = eδAΩi
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Reachability Analysis of Neural Networks

Definition (Reachable set of an FNN)

Given

Input set I =
{
x ∈ Rd | Ax ≤ b

}
with A ∈ Rn×d , b ∈ Rn

k-layer FNN N = {L1, · · · , Lk}

Reachable set N (I ) = RLk is defined by

RL0 := I

RLi :=
{
yi | yi = ϕi (Wiyi−1 + bi ) , yi−1 ∈ RLi−1

}
, i = 1, . . . , k

Approach [Tran 2020]

Exact analysis for FNNs with piece-wise linear activations.
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Star Set Representation

Definition (Generalized star set)

A generalized star set is a tuple Θ = ⟨c,V ,P⟩ where

c ∈ Rd is the center,

V = {v1, . . . , vm} ⊆ Rd a set of basis vectors, and

P : Rm → {⊤,⊥} a predicate.

Efficient w.r.t. computing affine mappings and halfspace intersections.
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Example Starset

Θ = ⟨c ,V ,P⟩

c =

[
0
0

]
,

V =

{[
1
0

]
,

[
0
1

]}
,

P =


−1 0
1 0
0 −1
0 1

[
x
y

]
≤


−4
4
−3
3


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Example Starset

Θ+ t

Translate by

t =

[
−1
−1

]
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Example Starset

Θ′ = M(Θ + t)

Rotate by

M =

[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

]
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Example Starset

Θ′ = ⟨c ′,V ′,P⟩

c ′ =

[
−1
−1

]
,

V ′ =

{[
cos 45◦

sin 45◦

]
,

[
− sin 45◦

cos 45◦

]}
,
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0 1
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Goal

Develop techniques for verifying the safety of NNCS

Focus on non-autonomous hybrid systems with discrete interactions

Keep over-approximation errors small
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Interaction

1 Continuous

Independent of the time step δ

2 Discrete

Irregular: time steps δ1, δ2, . . .
Regular: time step δ
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The Step Size δ is Crucial

(a) δ = 0.01

(b) δ = 0.1 (c) δ = 0.5

Trade-off between safety and computational effort
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Conceptualization

Challenges

Devise a suitable controller to ensure the system’s safety
Need benchmark for validating method

Rationale

No suitable benchmarks
Create own benchmarks
Train controller to learn behavior of hybrid automata
Reduce hybrid automaton to a simplified automaton
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Simplified Hybrid Automaton
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f2,x : ẋ = −K (x − ρ)

Gabriela Jiang Verifying AI-controlled Hybrid Systems 20 / 49



Simplified Hybrid Automaton

H′ = (Loc ′, Var ′, Lab′, Act ′, Init ′)

ℓ

f1,x : ẋ = −Kx
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f1,x : ẋ = −Kx
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Modeling the Neural Network Controller

Two broad types of output:

1 Continuous value from an uncountable but usually bounded set

PID controller

2 Discrete value from a finite and countable set

Multi-class classifier
Variable in the hybrid system’s flow function
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Neural Network Output

Flow of non-autonomous system:

ẋ(t) = Ax(t) + Bu(t)

Flows of the thermostat:

ẋ = −Kx (ℓoff)

ẋ = K (ρ− x) = −Kx + Kρ (ℓon)

where Kρ can be seen as the external input Bu(t) from the controller

Hence, let the neural network predict Kρ

Or more generally, hi
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ẋ = −Kx (ℓoff)
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Output Classification

Use step function

fstep(x) =
n∑

i=1

αiχAi
(x)

where αi ∈ R, n > 0, and

χAi
(x) =

{
1, if x ∈ Ai ,

0, otherwise

for each interval Ai , i = 1, . . . , n.
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Output Classification (cont’d)

Given: ordered target outputs hi ∈ R with i = 1, . . . , n and hi−1 < hi

Apply step function with intervals

Ai =


(−∞, hi+hi+1

2 ), if i = 1,

[
hi+hi−1

2 ,∞), if i = n,

[
hi−1+hi

2 , hi+hi+1

2 ), otherwise

and αi = hi .
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Output Classification: Visualized

h1 h2 h3 h4

h1

h2

h3

h4

h1+h2
2

h2+h3
2

h3+h4
2

A1

A2

A3

A4

x

f s
te
p
(x
)
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Neural Network Architecture

N ′

x1

0
...
xn
m

fstep hi

Runtime

where xj ⊂ R
with Θout covering trivial sets {hi}
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Neural Network Architecture

N ′Θin(x1, x2, . . . , xn,m) fstep Θout

NN reachability analysis

where xj ⊂ R
with Θout covering trivial sets {hi}
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Input Star Definition

Goal: Capture the plant’s current state in the input to the controller

Example (Thermostat)

At time point tk , let

temperature x ∈ [xkl , xku ],

mode mk ∈ {0, 1} (off / on).

Define ΘIk = ⟨c ,V ,P⟩ with P(α) ≜ Cα ≤ s s.t.

c =

[
0
0

]
, V = {e1, e2}, C =


−1 0
1 0
0 −1
0 1

 , s =


−xkl
xku
−mk

mk

 .
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Flowpipe Construction Using Control Input

Definition (Initial set of NNCS analysis)

Let (X ,U,F ,N , δ,X0) be an NNCS and T = Kδ the time horizon

Initial set Ik at time point tk = kδ is defined by

I0 := X0

Ik := eδAk−1Ik−1, k = 1, . . . ,K

where Ak−1 is the flow matrix over the time interval [tk−1, tk ].
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Handling Potential Branching

Si−1 = {(Xi ,F , I) | Xi ⊆ V ′,F ∈ Act′(ℓ), I ∈ Init′}
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Handling Potential Branching

Si−1 = {(Xi , f1,x , Ii−1), (X ′
i , f2,x , Ii−1)}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t0 = 0

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

I0 =
{
(f2,x , ν) ∈ Σ′ | ν(x) ∈ [19.5, 20.5]

}
nothinghere

nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).
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t0 = 0

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

Flowpipe construction for δ time

R = Ω[0,δ](X0,U)
nothinghere

nothinghere
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NNCS Analysis: Pseudo-code
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T
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u
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in
◦ C

Time in s

δ

17

18

19

20

21

22

23

0 0.5 1 1.5 2

Xi = R∩ {ν | ν(t) = δ}
= {ν | ν(t) ∈ δ, ν(x) ∈ [20, 21]}
nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
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21
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23

0 0.5 1 1.5 2

N (Θ(Xj)) = Θy where Θy .range = {Kρ}
=⇒ F ′ = f2,x

=⇒ I ′ = affineTransformation(I0, f2,x , δ)
=⇒ Si = {(Xi , f2,x , I ′)}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
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Time in s

17
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0 0.5 1 1.5 2

Rj = Ω[δ,2δ](Xj ,U)
R = Ω[0,2δ](X0,U)
nothinghere

nothinghere

Gabriela Jiang Verifying AI-controlled Hybrid Systems 30 / 49



NNCS Analysis: Pseudo-code
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Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t1 = δ

T
em

p
er
at
u
re

in
◦ C

Time in s

2δ

17

18

19

20

21

22

23

0 0.5 1 1.5 2

Xi = R∩ {ν | ν(t) = 2δ}
= {ν | ν(t) ∈ δ, ν(x) ∈ [20.5, 21.5]}

nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t4 = 4δ

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

N (Θ(Xj)).range = {0,Kρ}
=⇒ Si = {(Xi , f1,x , I ′), (Xi , f2,x , I ′′)}

nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t4 = 4δ

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

Branching into two flowpipes with different flows

nothinghere

nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t5 = 5δ

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

nothinghere

nothinghere

nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t6 = 6δ

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

Unsafe region entered

nothinghere

nothinghere

nothinghere
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X ,U,F ,N , δ,X0), HAH′, initial set I0, T = Kδ
Output: Reachable states R over [0,T ]

1: procedure nncsReach(I0,K )
2: R ← constructFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ);
4: Si−1 ← {(Xi ,F0, I0)}
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj ,Fj , Ij) ∈ Si−1 do
8: (X ′,F ′, I ′)← computeSetFlowMaps(Xj ,Fj , Ij);
9: Si ← Si ∪ {(X ′,F ′, I ′)};

10: end for
11: for j = 1 to |Si | do
12: Rj ← constructFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si ;
16: Xi ← getRelevantSets(R, (i + 1)δ);
17: end for
18: return R
19: end procedure

t21 = 21δ

T
em

p
er
at
u
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

Full time horizon reached

nothinghere

nothinghere

nothinghere
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Soundness of NNCS Analysis

Theorem (Over-approximation of First Segment)

Let N = (X ,U,F ,N , δ,X0) be an NNCS. Then

R[0,δ](X0) ⊆ Ω[0,δ](X0,U).

Theorem

Soundness Let N = (X ,U,F ,N , δ,X0) be an NNCS, I ⊆ X the initial
state set, S̄ ⊆ X the set of bad states. Then N is safe iff Ω[0,T ](I )∩ S̄ = ∅.
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Benchmarks

Thermostat

Global time horizon T = 2.1
Step size δ = 0.1
Segment size 0.05
Initial set x ∈ [19.5, 20.5]

Rod reactor

Global time horizon T = 17
Step size δ = 1
Segment size 0.2
Initial set x ∈ [510, 520], c1 = c2 = 20
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Result on Thermostat

(a) V-polytope representation (b) Box representation

Gabriela Jiang Verifying AI-controlled Hybrid Systems 34 / 49



Rod Reactor Hybrid Automaton

rod 1

ẋ = Kx − 56
ċ1 = 1
ċ2 = 1
x ≥ 510

no rods

ẋ = Kx − 50
ċ1 = 1
ċ2 = 1
x ≤ 550

x ∈ [510, 520]
c1 = 20
c2 = 20

rod 2

ẋ = Kx − 60
ċ1 = 1
ċ2 = 1
x ≥ 510

shutdown

ẋ = 0
ċ1 = 0
ċ2 = 0

x = 510
c ′1 = 0

x = 550
c1 ≥ 20

x = 550
c2 ≥ 20

x = 510
c ′2 = 0

x = 550
c1 < 20
c2 < 20
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Result on Rod Reactor

(a) Reachable states colored by flow (b) With trajectories (dark blue) overlay
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Quantifying Metrics

Run-time

Run 100 times

Accuracy

Area of projected flowpipes

Complexity

Branching and number of flowpipes
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Run-time in ms

Rep Mean Median Min Max Std

Thermostat

Box 880.73 864.33 657.49 3433.20 279.67

H-polytope 4426.76 4418.52 3759.03 4980.86 186.12

V-polytope 2544.66 2496.54 1650.08 5090.44 355.09

Rod reactor

Box 6969.49 6953.31 4877.65 9638.46 474.57

V-polytope 93445.35 91314.90 87657.10 116347.00 4646.71
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Total area over projections

Projection Box H-polytope V-polytope
Thermostat

t, x 11.0967 10.4597 6.8272

Rod Reactor

t, x 8226.88 - 8087.65

t, c1 49.02 - 5.82292
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Accuracy Thermostat
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Accuracy Rod Reactor
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Complexity Thermostat
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Complexity Rod Reactor
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Discussion

Algorithm for NNCS safety verification of hybrid systems

Flowpipe construction
Exact star-based neural network reachability analysis

Mitigates accumulated wrapping effects

Assessed effectiveness on two benchmarks

Quantified run-time, accuracy, and complexity

Implemented with HyPro [Schupp et al. 2017]
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Future Work

Refine controller output to reduce over-approximation errors

Handle nonlinear dynamics for comparability with existing techniques

Extend to PID controller output

Use reinforcement learning to find optimal controls

Analyze theoretical time and space complexity

Overcome numerical challenges
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Summary

Thank you for your attention!

NN Controller
u(tk) = N (y(tk))

Plant
ẋ(t) = Ax(t) + Bu(tk)

Input star

Affine transformation
of initial set

u(
tk)

u(tk ), I
k

x(tk
)y(tk )

tk = δ, 2δ, . . . ,Kδ

Gabriela Jiang Verifying AI-controlled Hybrid Systems 47 / 49



Contents

1 Introduction

2 Preliminaries

3 Methods

4 Evaluation

5 Conclusion

6 References

Gabriela Jiang Verifying AI-controlled Hybrid Systems 48 / 49



References I

Alur, Rajeev et al. (1995). “The algorithmic analysis of hybrid
systems”. In: Theoretical computer science 138.1, pp. 3–34.
Henzinger, Thomas A. et al. (1998). “What’s Decidable about Hybrid
Automata?” In: Journal of Computer and System Sciences 57.1,
pp. 94–124. issn: 0022-0000. doi:
https://doi.org/10.1006/jcss.1998.1581. url:
https://www.sciencedirect.com/science/article/
pii/S0022000098915811.
Schupp, Stefan et al. (2017). “HyPro: A C++ library of state set
representations for hybrid systems reachability analysis”. In: NASA
Formal Methods Symposium. Springer, pp. 288–294.
Tran, Dung Hoang (2020). “Verification of Learning-Enabled
Cyber-Physical Systems”. PhD thesis. Vanderbilt University.

Gabriela Jiang Verifying AI-controlled Hybrid Systems 49 / 49

https://doi.org/https://doi.org/10.1006/jcss.1998.1581
https://www.sciencedirect.com/science/article/pii/S0022000098915811
https://www.sciencedirect.com/science/article/pii/S0022000098915811


Wrapping Effects of Box Representation

(a) Step-size dependent (b) Inherent over-approximation errors

Wrapping effects in the box representation.
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Step Size Rod Reactor

(a) δ = 0.5 (b) δ = 1.0 (c) δ = 3.0
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Reachability Analysis using Staircase Function
Algorithm Star-based exact reachability analysis for one layer with step function.

Input Input star set I = [Θ1 · · · ΘN ], ordered classes [h1 · · · hm] with intervals [A1 · · ·Am]
Output Exact reachable set R

1: procedure layerReach(I ,W , b)
2: R ← ∅;
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj ,Pj⟩;
5: R1 ← I1;
6: for i = 1 : n do
7: [li , ui ]← I1.range(i); ▷ li ≤ xi ≤ ui , xi ∈ I1[i ]

8: R1 ← stepStaircase(R1, i , li , ui );
9: end for

10: R ← R∪R1;
11: end for
12: return R;
13: end procedure
14: procedure stepStaircase(Ĩ , i , li , ui )
15: R̃ ← ∅;
16: Ĩ = [Θ̃1 · · · Θ̃k ];
17: M ← [e1 e2 · · · ei−1 0 ei+1 · · · en]; ▷ Intermediate representations

18: for j = 1 : k do
19: R1 ← ∅;
20: Θ̃j = ⟨c̃j , Ṽj , P̃j , ⟩;
21: imin ← argmini ′{hi ′ | li ∈ Ai ′ , i

′ ≤ m}; ▷ Index of smallest class

22: imax ← argmaxi ′{hi ′ | ui ∈ Ai ′ , i
′ ≤ m}; ▷ Index of greatest class

23: for j ′ = imin : imax do
24: v1 ← hj ′ · ei ;
25: Θ̃′

j ′ ← ⟨Mc̃j + v1,MṼj , P̃j , ⟩;
26: R1 ← R1 ∪ Θ̃′

j ′ ;
27: end for
28: R̃ ← R̃ ∪ R1;
29: end for
30: return R̃;
31: end procedure
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Proof of Over-approximation

Proof.

Flowpipe construction with R̄[0,δ] is over-approximation

1. controller invocation at time δ: reachable set Xi ⊆ R̄[0,δ] with
Xi ∩R[δ,δ] is used to obtain the current state variable valuations for
creating the input star ΘI , which by design encompasses the
reachable set at time δ.

Exactness of star-based reachability algorithm

Initial set for the first time step is Ik = eδA0X0, for A0 over [0,δ].

Hence Ik ⊆ R̄[0,δ].

Prediction yields a valid flow such that in the next iteration, flowpipe
construction can be applied to the transformed initial set.
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