

Verifying Al-controlled Hybrid Systems Master's Thesis Presentation

Gabriela Jiang

March 27, 2023

Contents

1 Introduction

2 Preliminaries

3 Methods

4 Evaluation

5 Conclusion

6 References

- Hybrid systems: systems combining continuous and discrete dynamics
- If too complex, may be regulated by neural network controllers
- Often in engineering and control systems

- Hybrid systems: systems combining continuous and discrete dynamics
- If too complex, may be regulated by neural network controllers
- Often in engineering and control systems

Examples

Automotive systems, robotics, power systems

- Hybrid systems: systems combining continuous and discrete dynamics
- If too complex, may be regulated by neural network controllers
- Often in engineering and control systems

Examples

Automotive systems, robotics, power systems

Importance

- Ensure safety and reliability in critical systems
- Predict and prevent undesirable behaviors

Challenges

- Complexity of modeling and analyzing hybrid systems
- Black box behavior of neural networks
- Dealing with over-approximation

Challenges

- Complexity of modeling and analyzing hybrid systems
- Black box behavior of neural networks
- Dealing with over-approximation

Current methods

- Model checking
- Theorem proving
- Simulation-based approaches

Challenges

- Complexity of modeling and analyzing hybrid systems
- Black box behavior of neural networks
- Dealing with over-approximation
- Current methods
 - Model checking
 - Theorem proving
 - Simulation-based approaches
- Limitations of current methods
 - Limited scalability
 - Assumptions about system behavior
 - Lack of guarantees for certain properties

1 Introduction

2 Preliminaries

- 3 Methods
- 4 Evaluation
- 5 Conclusion

6 References

Autonomous system

$$\dot{x}(t) = Ax(t)$$

Autonomous system

$$\dot{x}(t) = Ax(t)$$

Non-autonomous system

$$\dot{x}(t) = Ax(t) + \frac{Bu(t)}{Bu(t)}$$

where x are the variables, A is the flow matrix at time t, u the external inputs.

 $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$

 $(\mathbf{X}, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$

$$\begin{array}{c|c}
 & \text{NN Controller} \\
 & u(t_k) = \mathcal{N}(y(t_k)) \\
\hline & y(t_k) = Cx(t_k) \\
\hline & \dot{x}(t) = Ax(t) + Bu(t_k) \\
\hline & \dot{x}(t)$$

 $X = \{x_1, \ldots, x_n\}$ is the set of finitely many state variables

 $(X, \boldsymbol{U}, \boldsymbol{F}, \mathcal{N}, \delta, \mathcal{X}_0)$

$$\begin{array}{c}
 \text{NN Controller} \\
 \textbf{u}(t_k) = \mathcal{N}(y(t_k)) \\
 \textbf{y}(t_k) = Cx(t_k) \\
\end{array} \xrightarrow{\text{Plant}} \dot{x}(t) = Ax(t) + Bu(t_k)
\end{array}$$

 $U = \{u_1, \ldots, u_m\}$ the set of finitely many control variables

 $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$

$$\begin{array}{c|c}
 & \text{NN Controller} \\
 & u(t_k) = \mathcal{N}(y(t_k)) \\
\hline & y(t_k) = Cx(t_k) \\
\hline & \dot{x}(t) = Ax(t) + Bu(t_k) \\
\hline & \dot{x}(t)$$

$F: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ the ODE defining the continuous dynamics of the plant

 $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$

$$(1)$$
NN Controller
$$u(t_k) = \mathcal{N}(y(t_k))$$

$$(1)$$

$$u(t_k) = Cx(t_k)$$

$$(1)$$

$$V(t_k) = Cx(t_k)$$

$$(1)$$

$$V(t_k) = Cx(t_k)$$

$\mathcal{N}: \mathbb{R}^{n_{x}} \to \mathbb{R}^{n_{y}}$ denotes the input-output mapping by the NN controller

 $(X, U, F, \mathcal{N}, \frac{\delta}{\delta}, \mathcal{X}_0)$

$$\begin{array}{c|c}
 & \text{NN Controller} \\
 & u(t_k) = \mathcal{N}(y(t_k)) \\
\hline & y(t_k) = Cx(t_k) \\
\hline & \dot{x}(t) = Ax(t) + Bu(t_k) \\
\hline & \dot{x}(t)$$

$\delta \in \mathbb{R}_{>0}$ denotes the control step size

 $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$

$\mathcal{X}_0 \subset \mathbb{R}^n$ is the set of the initial values of the state variables

Modeled as

Neural network

Simplified hybrid automaton

Reachability analysis

Exact star-based NN reachability

Flowpipe construction

$$\mathcal{R}(I) = \{ \sigma \in \Sigma \mid \exists \sigma' \in I.\sigma' \to^* \sigma \}$$

not computable [Henzinger et al. 1998]

$$\mathcal{R}(I) = \{ \sigma \in \Sigma \mid \exists \sigma' \in I.\sigma' \to^* \sigma \}$$

not computable [Henzinger et al. 1998]

Hence over-approximate approaches where

 $\mathcal{R}_{[0,T]}(I) \subseteq \Omega_{[0,T]}(I)$

$$\mathcal{R}(I) = \{ \sigma \in \Sigma \mid \exists \sigma' \in I.\sigma' \to^* \sigma \}$$

not computable [Henzinger et al. 1998]

Hence over-approximate approaches where

$$\mathcal{R}_{[0,T]}(I) \subseteq \Omega_{[0,T]}(I)$$

Such as flowpipe construction

$$\mathcal{R}(I) = \{ \sigma \in \Sigma \mid \exists \sigma' \in I.\sigma' \to^* \sigma \}$$

not computable [Henzinger et al. 1998]

Hence over-approximate approaches where

$$\mathcal{R}_{[0,T]}(I) \subseteq \Omega_{[0,T]}(I)$$

- Such as flowpipe construction
- In the following, $T = K\delta$

Flowpipe Construction

Flowpipe Construction

$$X_0 \cup e^{\delta A} X_0$$

Gabriela Jiang

Flowpipe Construction

$$conv(X_0 \cup e^{\delta A}X_0)$$

Gabriela Jiang
Flowpipe Construction

$$\Omega_0 = \mathit{conv}(X_0 \cup e^{\delta A}X_0) \oplus \mathcal{B}_lpha$$

Flowpipe Construction

$$egin{aligned} \Omega_0 &= \mathit{conv}(X_0 \cup e^{\delta A}X_0) \oplus \mathcal{B}_lpha \ \Omega_{i+1} &= e^{\delta A}\Omega_i \end{aligned}$$

State Set Representations

(c) V-polytope

Reachability Analysis of Neural Networks

Definition (Reachable set of an FNN)

Given

- Input set $I = \{x \in \mathbb{R}^d \mid Ax \leq b\}$ with $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n$
- *k*-layer FNN $\mathcal{N} = \{L_1, \cdots, L_k\}$

Reachability Analysis of Neural Networks

Definition (Reachable set of an FNN)

Given

- Input set $I = \{x \in \mathbb{R}^d \mid Ax \le b\}$ with $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n$
- *k*-layer FNN $\mathcal{N} = \{L_1, \cdots, L_k\}$

• Reachable set $\mathcal{N}(I) = \mathcal{R}_{L_k}$ is defined by

$$\begin{aligned} \mathcal{R}_{L_0} &:= I \\ \mathcal{R}_{L_i} &:= \left\{ y_i \mid y_i = \phi_i \left(\mathcal{W}_i y_{i-1} + b_i \right), y_{i-1} \in \mathcal{R}_{L_{i-1}} \right\}, \quad i = 1, \dots, k \end{aligned}$$

Reachability Analysis of Neural Networks

Definition (Reachable set of an FNN)

Given

Input set $I = \{x \in \mathbb{R}^d \mid Ax \le b\}$ with $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n$ *k*-layer FNN $\mathcal{N} = \{L_1, \dots, L_k\}$

• Reachable set $\mathcal{N}(I) = \mathcal{R}_{L_k}$ is defined by

$$\begin{aligned} \mathcal{R}_{L_0} &:= I \\ \mathcal{R}_{L_i} &:= \left\{ y_i \mid y_i = \phi_i \left(\mathcal{W}_i y_{i-1} + b_i \right), y_{i-1} \in \mathcal{R}_{L_{i-1}} \right\}, \quad i = 1, \dots, k \end{aligned}$$

Approach [Tran 2020]

Exact analysis for FNNs with piece-wise linear activations.

A generalized star set is a tuple $\Theta = \langle c, V, P \rangle$ where

A generalized star set is a tuple $\Theta = \langle \textit{c},\textit{V},\textit{P} \rangle$ where

• $c \in \mathbb{R}^d$ is the center,

A generalized star set is a tuple $\Theta = \langle c, V, P \rangle$ where

- $c \in \mathbb{R}^d$ is the center,
- $V = \{v_1, \ldots, v_m\} \subseteq \mathbb{R}^d$ a set of basis vectors, and

A generalized star set is a tuple $\Theta = \langle \boldsymbol{c}, \boldsymbol{V}, \boldsymbol{P} \rangle$ where

- $c \in \mathbb{R}^d$ is the center,
- $V = \{v_1, \dots, v_m\} \subseteq \mathbb{R}^d$ a set of basis vectors, and
- $P : \mathbb{R}^m \to \{\top, \bot\}$ a predicate.

A generalized star set is a tuple $\Theta = \langle \textit{c},\textit{V},\textit{P} \rangle$ where

- $c \in \mathbb{R}^d$ is the center,
- $V = \{v_1, \ldots, v_m\} \subseteq \mathbb{R}^d$ a set of basis vectors, and
- $P : \mathbb{R}^m \to \{\top, \bot\}$ a predicate.

Efficient w.r.t. computing affine mappings and halfspace intersections.

Example Starset

 $\Theta + t$

Translate by

$$t = \left[egin{array}{c} -1 \\ -1 \end{array}
ight]$$

Rotate by

$$M = \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix}$$

Example Starset

$$c' = \begin{bmatrix} -1\\ -1 \end{bmatrix},$$

$$V' = \left\{ \begin{bmatrix} \cos 45^{\circ}\\ \sin 45^{\circ} \end{bmatrix}, \begin{bmatrix} -\sin 45^{\circ}\\ \cos 45^{\circ} \end{bmatrix} \right\},$$

$$P = \begin{bmatrix} -1 & 0\\ 1 & 0\\ 0 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} \le \begin{bmatrix} -4\\ 4\\ -3\\ 3 \end{bmatrix}$$

Contents

1 Introduction

2 Preliminaries

3 Methods

4 Evaluation

5 Conclusion

6 References

Develop techniques for verifying the safety of NNCS

- Develop techniques for verifying the safety of NNCS
- Focus on non-autonomous hybrid systems with discrete interactions

- Develop techniques for verifying the safety of NNCS
- Focus on non-autonomous hybrid systems with discrete interactions
- Keep over-approximation errors small

1 Continuous

 \blacksquare Independent of the time step δ

1 Continuous

- \blacksquare Independent of the time step δ
- 2 Discrete
 - Irregular: time steps $\delta_1, \delta_2, \ldots$
 - \blacksquare Regular: time step δ

(a) $\delta = 0.01$

Trade-off between safety and computational effort

Devise a suitable controller to ensure the system's safety

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method
- Rationale

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method
- Rationale
 - No suitable benchmarks

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method
- Rationale
 - No suitable benchmarks
 - Create own benchmarks

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method
- Rationale
 - No suitable benchmarks
 - Create own benchmarks
 - Train controller to learn behavior of hybrid automata

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method
- Rationale
 - No suitable benchmarks
 - Create own benchmarks
 - Train controller to learn behavior of hybrid automata

- Devise a suitable controller to ensure the system's safety
- Need benchmark for validating method
- Rationale
 - No suitable benchmarks
 - Create own benchmarks
 - Train controller to learn behavior of hybrid automata
 - Reduce hybrid automaton to a simplified automaton

Simplified Hybrid Automaton

$$\mathcal{H}' = (Loc', Var', Lab', Act', Init')$$

$$k \in [19.5, 20.5], f_{2,x} \rightarrow \begin{pmatrix} \ell \\ f_{1,x} : \dot{x} = -Kx \\ f_{2,x} : \dot{x} = -K(x-\rho) \end{pmatrix}$$

Simplified Hybrid Automaton

$$\mathcal{H}' = (Loc', Var', Lab', Act', Init')$$

$$\ell$$

$$f_{1,x} : \dot{x} = -Kx$$

$$f_{2,x} : \dot{x} = -K(x - \rho)$$
$$\mathcal{H}' = (Loc', Var', Lab', Act', Init')$$

$$k \in [19.5, 20.5], f_{2,x} \rightarrow \begin{pmatrix} \ell \\ f_{1,x} : \dot{x} = -Kx \\ f_{2,x} : \dot{x} = -K(x-\rho) \end{pmatrix}$$

$$\mathcal{H}' = (Loc', Var', Lab', Act', Init')$$

$$k \in [19.5, 20.5], f_{2,x} \rightarrow \begin{pmatrix} \ell \\ f_{1,x} : \dot{x} = -Kx \\ f_{2,x} : \dot{x} = -K(x-\rho) \end{pmatrix}$$

$$\mathcal{H}' = (Loc', Var', Lab', Act', Init')$$

$$x \in [19.5, 20.5], f_{2,x} \rightarrow \begin{pmatrix} \ell \\ f_{1,x} : \dot{x} = -Kx \\ f_{2,x} : \dot{x} = -K(x-\rho) \end{pmatrix}$$

$$\mathcal{H}' = (Loc', Var', Lab', Act', Init')$$

$$k \in [19.5, 20.5], f_{2,x} \rightarrow \begin{pmatrix} \ell \\ f_{1,x} : \dot{x} = -Kx \\ f_{2,x} : \dot{x} = -K(x-\rho) \end{pmatrix}$$

1 Continuous value from an uncountable but usually bounded set

- 1 Continuous value from an uncountable but usually bounded set
 - PID controller

- 1 Continuous value from an uncountable but usually bounded set
 - PID controller
- 2 Discrete value from a finite and countable set

- 1 Continuous value from an uncountable but usually bounded set
 - PID controller
- 2 Discrete value from a finite and countable set
 - Multi-class classifier

- 1 Continuous value from an uncountable but usually bounded set
 - PID controller
- 2 Discrete value from a finite and countable set
 - Multi-class classifier
 - Variable in the hybrid system's flow function

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Flows of the thermostat:

$$\begin{aligned} \dot{x} &= -Kx \qquad (\ell_{\text{off}}) \\ \dot{x} &= K(\rho - x) = -Kx + K\rho \qquad (\ell_{\text{on}}) \end{aligned}$$

where $K\rho$ can be seen as the external input Bu(t) from the controller

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Flows of the thermostat:

$$\begin{aligned} \dot{x} &= -Kx \qquad (\ell_{\text{off}}) \\ \dot{x} &= K(\rho - x) = -Kx + K\rho \qquad (\ell_{\text{on}}) \end{aligned}$$

where $K\rho$ can be seen as the external input Bu(t) from the controller • Hence, let the neural network predict $K\rho$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Flows of the thermostat:

$$\begin{aligned} \dot{x} &= -Kx \qquad (\ell_{\text{off}}) \\ \dot{x} &= K(\rho - x) = -Kx + K\rho \qquad (\ell_{\text{on}}) \end{aligned}$$

where $K\rho$ can be seen as the external input Bu(t) from the controller • Hence, let the neural network predict $K\rho$

• Or more generally, h_i

Use step function

$$f_{\text{step}}(x) = \sum_{i=1}^{n} \alpha_i \chi_{A_i}(x)$$

where $\alpha_i \in \mathbb{R}$, n > 0, and

$$\chi_{A_i}(x) = egin{cases} 1, \ ext{if } x \in A_i, \ 0, \ ext{otherwise} \end{cases}$$

for each interval A_i , $i = 1, \ldots, n$.

Given: ordered target outputs h_i ∈ ℝ with i = 1,..., n and h_{i-1} < h_i
Apply step function with intervals

$$A_{i} = \begin{cases} (-\infty, \frac{h_{i}+h_{i+1}}{2}), & \text{if } i = 1, \\ [\frac{h_{i}+h_{i-1}}{2}, \infty), & \text{if } i = n, \\ [\frac{h_{i-1}+h_{i}}{2}, \frac{h_{i}+h_{i+1}}{2}), & \text{otherwise} \end{cases}$$

and $\alpha_i = h_i$.

Output Classification: Visualized

Neural Network Architecture

NN reachability analysis

where $x_j \subset \mathbb{R}$ with Θ_{out} covering trivial sets $\{h_i\}$

Example (Thermostat)

At time point t_k , let

Example (Thermostat)

At time point t_k , let

• temperature $x \in [x_{k_l}, x_{k_u}]$,

Example (Thermostat)

At time point t_k , let

- temperature $x \in [x_{k_l}, x_{k_u}]$,
- mode $m_k \in \{0, 1\}$ (off / on).

Example (Thermostat)

At time point t_k , let

- temperature $x \in [x_{k_l}, x_{k_u}]$,
- mode $m_k \in \{0, 1\}$ (off / on).

Define $\Theta_{I_k} = \langle c, V, P \rangle$ with $P(\alpha) \triangleq C\alpha \leq s$ s.t.

$$c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad V = \{e_1, e_2\}, \quad C = \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}, \quad s = \begin{bmatrix} -x_{k_l} \\ x_{k_u} \\ -m_k \\ m_k \end{bmatrix}$$

Definition (Initial set of NNCS analysis)

- Let $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$ be an NNCS and $T = K\delta$ the time horizon
- Initial set \mathcal{I}_k at time point $t_k = k\delta$ is defined by

$$egin{aligned} \mathcal{I}_0 &:= \mathcal{X}_0 \ \mathcal{I}_k &:= \mathsf{e}^{\delta A_{k-1}} \mathcal{I}_{k-1}, \quad k = 1, \dots, K \end{aligned}$$

where A_{k-1} is the flow matrix over the time interval $[t_{k-1}, t_k]$.

Handling Potential Branching

 $\mathcal{S}_{i-1} = \{ (\mathcal{X}_i, F, \mathcal{I}) \mid \mathcal{X}_i \subseteq V', F \in Act'(\ell), \mathcal{I} \in \textit{Init'} \}$

Handling Potential Branching

 $\mathcal{S}_{i-1} = \{(\mathcal{X}_i, f_{1,x}, \mathcal{I}_{i-1}), (\mathcal{X}'_i, f_{2,x}, \mathcal{I}_{i-1})\}$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set $\mathcal{I}_0, T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$; 15 16. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18:

19: end procedure

 $t_0 = 0$

$$\mathcal{I}_0 = \left\{ (f_{2,x}, \nu) \in \Sigma' \mid \nu(x) \in [19.5, 20.5] \right\}$$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set $\mathcal{I}_0, T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(\mathcal{I}_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2: $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ 4: 5. for i = 1 to K do $S_i \leftarrow \emptyset$: 6. for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', F', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, F_i, \mathcal{I}_i);$ 8: 9: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\};$ 10: end for 11. for i = 1 to $|S_i|$ do $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12. $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i;$ 13. end for 14: $S_{i-1} \leftarrow S_i$; 15: $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 16: 17: end for return \mathcal{R} 18. 19: end procedure

 $t_0 = 0$

Flowpipe construction for δ time

 $\mathcal{R} = \Omega_{[0,\delta]}(\mathcal{X}_0, \mathcal{U})$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$; 15 16. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18: 19: end procedure

 $t_0 = 0$

$$\mathcal{X}_i = \mathcal{R} \cap \{ \nu \mid \nu(t) = \delta \}$$

= $\{ \nu \mid \nu(t) \in \delta, \nu(x) \in [20, 21] \}$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\};$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$; 15 16. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18: 19: end procedure

 $t_1 = \delta$

$$\begin{aligned} \mathcal{X}_i &= \mathcal{R} \cap \{ \nu \mid \nu(t) = \delta \} \\ &= \{ \nu \mid \nu(t) \in \delta, \nu(x) \in [20, 21] \} \\ \mathcal{S}_{i-1} &= \{ (\mathcal{X}_i, f_{2,x}, \mathcal{I}_0) \} \end{aligned}$$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$; 15 16. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18: 19: end procedure

 $t_1 = \delta$

$$\mathcal{X}_i = \mathcal{R} \cap \{ \nu \mid \nu(t) = \delta \}$$

= { $\nu \mid \nu(t) \in \delta, \nu(x) \in [20, 21]$ }
 $S_{i-1} = \{ (\mathcal{X}_i, f_{2,x}, \mathcal{I}_0) \}$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set $\mathcal{I}_0, T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(\mathcal{I}_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta)$: 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', F', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, F_i, \mathcal{I}_i);$ 8. $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\};$ Q٠ 10: end for for i = 1 to $|S_i|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$; 15 16. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ end for 17: return \mathcal{R} 18: 19: end procedure

 $t_1 = \delta$

 $\mathcal{N}(\Theta(\mathcal{X}_{j})) = \Theta_{y} \text{ where } \Theta_{y}. \text{range} = \{K\rho\}$ $\implies F' = f_{2,x}$ $\implies \mathcal{I}' = \text{AFFINETRANSFORMATION}(\mathcal{I}_{0}, f_{2,x}, \delta)$ $\implies \mathcal{S}_{i} = \{(\mathcal{X}_{i}, f_{2,x}, \mathcal{I}')\}$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set $\mathcal{I}_0, T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta)$: 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ 4: 5. for i = 1 to K do 6: $S_i \leftarrow \emptyset_i$ for $(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ end for 10. for i = 1 to $|S_i|$ do 11-12: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14: $S_{i-1} \leftarrow S_i$: 15: $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 16 17. end for return \mathcal{R} 18: 19: end procedure

 $t_1 = \delta$

$$\mathcal{R}_j = \Omega_{[\delta, 2\delta]}(\mathcal{X}_j, \mathcal{U})$$

 $\mathcal{R} = \Omega_{[0, 2\delta]}(\mathcal{X}_0, \mathcal{U})$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$: 15 16 $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18: 19: end procedure

 $t_1 = \delta$

$$\begin{aligned} \mathcal{X}_i &= \mathcal{R} \cap \{ \nu \mid \nu(t) = 2\delta \} \\ &= \{ \nu \mid \nu(t) \in \delta, \nu(x) \in [20.5, 21.5] \} \end{aligned}$$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8. $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14 $S_{i-1} \leftarrow S_i$: 15 16 $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ end for 17: return \mathcal{R} 18:

19: end procedure

 $t_4 = 4\delta$

$$\mathcal{N}(\Theta(\mathcal{X}_j)).range = \{0, K\rho\}$$

$$\implies \mathcal{S}_i = \{(\mathcal{X}_i, f_{1,x}, \mathcal{I}'), (\mathcal{X}_i, f_{2,x}, \mathcal{I}'')\}$$

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8. $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for i = 1 to $|S_i|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14 $S_{i-1} \leftarrow S_i$: 15 16 $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ end for 17: return \mathcal{R} 18:

19: end procedure

 $t_4 = 4\delta$

Branching into two flowpipes with different flows
NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8. $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14 $S_{i-1} \leftarrow S_i$ 15 16 $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18:

19: end procedure

 $t_5 = 5\delta$

NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', \mathcal{F}', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, \mathcal{F}_i, \mathcal{I}_i);$ 8. $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14 $S_{i-1} \leftarrow S_i$ 15 16 $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ end for 17: return \mathcal{R} 18: 19: end procedure

 $t_6 = 6\delta$

Unsafe region entered

NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS $(X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$, HA \mathcal{H}' , initial set \mathcal{I}_0 , $T = K\delta$ **Output:** Reachable states \mathcal{R} over [0, T]1: procedure NNCSREACH(I_0, K) $\mathcal{R} \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_0, \delta);$ 2. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, \delta);$ 3. 4: $S_{i-1} \leftarrow \{(\mathcal{X}_i, F_0, \mathcal{I}_0)\}$ for i = 1 to K do 5: $S_i \leftarrow \emptyset$: 6: for $(\mathcal{X}_i, F_i, \mathcal{I}_i) \in \mathcal{S}_{i-1}$ do 7: $(\mathcal{X}', F', \mathcal{I}') \leftarrow \text{COMPUTESETFLOWMAPS}(\mathcal{X}_i, F_i, \mathcal{I}_i);$ 8: $S_i \leftarrow S_i \cup \{(\mathcal{X}', F', \mathcal{I}')\}$: Q٠ 10: end for for j = 1 to $|S_j|$ do 11: $\mathcal{R}_i \leftarrow \text{CONSTRUCTFLOWPIPE}(\mathcal{I}_i, \delta);$ 12: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_i$ 13: end for 14. $S_{i-1} \leftarrow S_i$; 15 16. $\mathcal{X}_i \leftarrow \text{GETRELEVANTSETS}(\mathcal{R}, (i+1)\delta);$ 17: end for return \mathcal{R} 18:

19: end procedure

 $t_{21} = 21\delta$

Full time horizon reached

Theorem (Over-approximation of First Segment) Let $\mathfrak{N} = (X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$ be an NNCS. Then $\mathcal{R}_{[0,\delta]}(\mathcal{X}_0) \subseteq \Omega_{[0,\delta]}(\mathcal{X}_0, \mathcal{U}).$ Theorem (Over-approximation of First Segment) Let $\mathfrak{N} = (X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$ be an NNCS. Then $\mathcal{R}_{[0,\delta]}(\mathcal{X}_0) \subseteq \Omega_{[0,\delta]}(\mathcal{X}_0, \mathcal{U}).$

$$\implies \mathcal{R}_{[0,T]}(\mathcal{X}_0) \subseteq \Omega_{[0,T]}(\mathcal{X}_0, \mathcal{U}) = \bigcup_{i=1}^{K} \Omega_{[(i-1)\delta, i\delta]}(\mathcal{I}_{i-1}, \mathcal{U}).$$

Theorem (Over-approximation of First Segment) Let $\mathfrak{N} = (X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$ be an NNCS. Then $\mathcal{R}_{[0,\delta]}(\mathcal{X}_0) \subseteq \Omega_{[0,\delta]}(\mathcal{X}_0, \mathcal{U}).$

$$\implies \mathcal{R}_{[0,T]}(\mathcal{X}_0) \subseteq \Omega_{[0,T]}(\mathcal{X}_0,\mathcal{U}) = \bigcup_{i=1}^K \Omega_{[(i-1)\delta,i\delta]}(\mathcal{I}_{i-1},\mathcal{U}).$$

Theorem

Soundness Let $\mathfrak{N} = (X, U, F, \mathcal{N}, \delta, \mathcal{X}_0)$ be an NNCS, $I \subseteq X$ the initial state set, $\overline{S} \subseteq X$ the set of bad states. Then \mathfrak{N} is safe iff $\Omega_{[0, T]}(I) \cap \overline{S} = \emptyset$.

Contents

1 Introduction

2 Preliminaries

3 Methods

4 Evaluation

5 Conclusion

6 References

Thermostat

- Global time horizon T = 2.1
- Step size $\delta = 0.1$
- Segment size 0.05
- Initial set *x* ∈ [19.5, 20.5]
- Rod reactor
 - Global time horizon T = 17
 - Step size $\delta = 1$
 - Segment size 0.2
 - Initial set $x \in [510, 520], c_1 = c_2 = 20$

Result on Thermostat

Rod Reactor Hybrid Automaton

Result on Rod Reactor

Gabriela Jiang

Run-time

Run 100 times

Run-time

- Run 100 times
- Accuracy
 - Area of projected flowpipes

Run-time

- Run 100 times
- Accuracy
 - Area of projected flowpipes
- Complexity
 - Branching and number of flowpipes

Rep	Mean	Median	Min	Max	Std		
Thermostat							
Box	880.73	864.33	657.49	3433.20	279.67		
$\mathcal H$ -polytope	4426.76	4418.52	3759.03	4980.86	186.12		
$\mathcal V$ -polytope	2544.66	2496.54	1650.08	5090.44	355.09		
Rod reactor							
Box	6969.49	6953.31	4877.65	9638.46	474.57		
$\mathcal V$ -polytope	93445.35	91314.90	87657.10	116347.00	4646.71		

Projection	Box	$\mathcal H$ -polytope	$\mathcal V$ -polytope				
Thermostat							
t,x	11.0967	10.4597	6.8272				
Rod Reactor							
t,x	8226.88	-	8087.65				
t, c_1	49.02	-	5.82292				

Accuracy Thermostat

Accuracy Rod Reactor

Complexity Thermostat

Complexity Rod Reactor

Contents

1 Introduction

2 Preliminaries

3 Methods

4 Evaluation

5 Conclusion

6 References

- Flowpipe construction
- Exact star-based neural network reachability analysis

- Flowpipe construction
- Exact star-based neural network reachability analysis
- Mitigates accumulated wrapping effects

- Flowpipe construction
- Exact star-based neural network reachability analysis
- Mitigates accumulated wrapping effects
- Assessed effectiveness on two benchmarks

- Flowpipe construction
- Exact star-based neural network reachability analysis
- Mitigates accumulated wrapping effects
- Assessed effectiveness on two benchmarks
- Quantified run-time, accuracy, and complexity

- Flowpipe construction
- Exact star-based neural network reachability analysis
- Mitigates accumulated wrapping effects
- Assessed effectiveness on two benchmarks
- Quantified run-time, accuracy, and complexity
- Implemented with HyPro [Schupp et al. 2017]

Refine controller output to reduce over-approximation errors

- Refine controller output to reduce over-approximation errors
- Handle nonlinear dynamics for comparability with existing techniques

- Refine controller output to reduce over-approximation errors
- Handle nonlinear dynamics for comparability with existing techniques
- Extend to PID controller output

- Refine controller output to reduce over-approximation errors
- Handle nonlinear dynamics for comparability with existing techniques
- Extend to PID controller output
- Use reinforcement learning to find optimal controls

- Refine controller output to reduce over-approximation errors
- Handle nonlinear dynamics for comparability with existing techniques
- Extend to PID controller output
- Use reinforcement learning to find optimal controls
- Analyze theoretical time and space complexity

- Refine controller output to reduce over-approximation errors
- Handle nonlinear dynamics for comparability with existing techniques
- Extend to PID controller output
- Use reinforcement learning to find optimal controls
- Analyze theoretical time and space complexity
- Overcome numerical challenges

Thank you for your attention!

Contents

1 Introduction

2 Preliminaries

3 Methods

4 Evaluation

5 Conclusion

6 References

References I

Alur, Rajeev et al. (1995). "The algorithmic analysis of hybrid systems". In: Theoretical computer science 138.1, pp. 3–34. Henzinger, Thomas A. et al. (1998). "What's Decidable about Hybrid Automata?" In: Journal of Computer and System Sciences 57.1, pp. 94–124. ISSN: 0022-0000. DOI: https://doi.org/10.1006/jcss.1998.1581.URL: https://www.sciencedirect.com/science/article/ pii/S0022000098915811. Schupp, Stefan et al. (2017). "HyPro: A C++ library of state set representations for hybrid systems reachability analysis". In: NASA Formal Methods Symposium. Springer, pp. 288–294. Tran, Dung Hoang (2020). "Verification of Learning-Enabled Cyber-Physical Systems". PhD thesis. Vanderbilt University.
Wrapping Effects of Box Representation

(a) Step-size dependent

(b) Inherent over-approximation errors

Wrapping effects in the box representation.

Step Size Rod Reactor

Reachability Analysis using Staircase Function

Algorithm Star-based exact reachability analysis for one layer with step function Input Input star set $I = [\Theta_1 \cdots \Theta_N]$, ordered classes $[h_1 \cdots h_m]$ with intervals $[A_1 \cdots A_m]$ Output Exact reachable set R 1: procedure LAYERREACH(1, W, b) $\mathcal{R} \leftarrow \emptyset$: 2. 3 for i = 1 : N do $I_1 \leftarrow W * \Theta_i + b = \langle Wc_i + b, WV_i, P_i \rangle;$ 4. 5 $\mathcal{R}_1 \leftarrow I_1$; for i = 1 : n do 6: $[l_i, u_i] \leftarrow l_1.range(i);$ \triangleright $l_i \leq x_i \leq u_i, x_i \in l_1[i]$ 7: $\mathcal{R}_1 \leftarrow \text{STEPSTAIRCASE}(\mathcal{R}_1, i, l_i, u_i);$ 8. Q٠ end for 10: $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_1$: 11end for 12. return R: 13: end procedure 14: procedure STEPSTAIRCASE(1, i, li, ui) $\tilde{\mathcal{R}} \leftarrow \emptyset$: 15 $\tilde{I} = [\tilde{\Theta}_1 \cdots \tilde{\Theta}_k];$ 16 $M \leftarrow [e_1 \ e_2 \ \cdots \ e_{i-1} \ 0 \ e_{i+1} \ \cdots \ e_n];$ 17: Intermediate representations for i = 1 : k do 18: $\mathcal{R}_1 \leftarrow \emptyset$; 19 $\tilde{\Theta}_i = \langle \tilde{c}_i, \tilde{V}_i, \tilde{P}_i, \rangle;$ 20. $i_{min} \leftarrow \arg\min_{i'} \{h_{i'} \mid I_i \in A_{i'}, i' < m\};$ Index of smallest class 21 $i_{max} \leftarrow \arg \max_{i'} \{ h_{i'} \mid u_i \in A_{i'}, i' \leq m \};$ 22. Index of greatest class 23 for $i' = i_{min} : i_{max}$ do 24 $v_1 \leftarrow h_{i'} \cdot e_i;$ $\tilde{\Theta}'_{i'} \leftarrow \langle M\tilde{c}_j + v_1, M\tilde{V}_i, \tilde{P}_i, \rangle;$ 25 $\mathcal{R}_1 \leftarrow \mathcal{R}_1 \cup \tilde{\Theta}'_{i'};$ 26: 27. end for $\tilde{\mathcal{R}} \leftarrow \tilde{\mathcal{R}} \cup \mathcal{R}_1$: 28. 29 end for return $\tilde{\mathcal{R}}$: 30 31: end procedure

```
Gabriela Jiang
```

Proof.

- \blacksquare Flowpipe construction with $\bar{\mathcal{R}}_{[0,\delta]}$ is over-approximation
- 1. controller invocation at time δ: reachable set X_i ⊆ R
 _[0,δ] with X_i ∩ R_[δ,δ] is used to obtain the current state variable valuations for creating the input star Θ_I, which by design encompasses the reachable set at time δ.
- Exactness of star-based reachability algorithm
- Initial set for the first time step is $\mathcal{I}_k = e^{\delta A_0} \mathcal{X}_0$, for A_0 over $[0,\delta]$.
- Hence $\mathcal{I}_k \subseteq \overline{\mathcal{R}}_{[0,\delta]}$.
- Prediction yields a valid flow such that in the next iteration, flowpipe construction can be applied to the transformed initial set.