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Neural Networks in Hybrid Systems

m Hybrid systems: systems combining continuous and discrete dynamics
m If too complex, may be regulated by neural network controllers

m Often in engineering and control systems
Examples

Automotive systems, robotics, power systems

Importance

m Ensure safety and reliability in critical systems

m Predict and prevent undesirable behaviors
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Challenges and Current Methods

m Challenges
m Complexity of modeling and analyzing hybrid systems
m Black box behavior of neural networks
m Dealing with over-approximation
m Current methods
m Model checking
m Theorem proving
m Simulation-based approaches

m Limitations of current methods
m Limited scalability
m Assumptions about system behavior
m Lack of guarantees for certain properties
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Two Types of Hybrid Systems
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x(t) = Ax(t)

Gabriela Jiang Verifying Al-controlled Hybrid Systems



Two Types of Hybrid Systems

m Autonomous system
x(t) = Ax(t)

m Non-autonomous system
x(t) = Ax(t)+Bu(t)

where x are the variables, A is the flow matrix at time t, u the
external inputs.
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Neural Network Control System

(X7 U7 F7N757X0)

[ NN Controller ) u(te) =( . Plant }
() =NO(0)Jo—m— o] 50 = A1) + Bu(t)

.
-
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Neural Network Control System

NN Controller
u(te) = N(y(t))

(X7 U7 F7N767X0)

U(fk)

\

y(te) = Cx(tx)

-

Plant
x(t) = Ax(t) + Bu(tx)

X ={x1,...,xn} is the set of finitely many state variables
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Neural Network Control System

(X7 U7 F7N767X0)

\

[ NN Controller ) u(te) f - Plant }
() = N oo 50 = Ax(0) + Bul)

-

U={u1,...,um} the set of finitely many control variables
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Neural Network Control System

(X7 U7 F7N767X0)

\

NN Controller ) u(te) f Plant
) = NA8) oo (0 = A1) + Buli)

-

F :R>op — R" the ODE defining the continuous dynamics of the plant
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Neural Network Control System

NN Controller
u(te) = N(y(t))

(X7 U7 F7N767X0)

u(t)

\

() = Cx()

-

Plant
X(t) = Ax(t) + Bu(tx)

N :R™ — R™ denotes the input-output mapping by the NN controller

Gabriela Jiang
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Neural Network Control System

(X7 U? F7N757X0)

\

[ NN Controller ) u(te) f . Plant }
() = NA) oo (0 = A1) + Buli)

-

6 € R~ denotes the control step size
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Neural Network Control System

NN Controller
u(ti) = N(y(t))

(X7 U7 F7N767XO)

U(fk)

\

() = Cx()

-

Plant
X(t) = Ax(t) + Bu(tx)

Xo C R" is the set of the initial values of the state variables

Gabriela Jiang
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Neural Network Control System

Modeled as
[ NN Controller ) u(ti) :r . Plant }
u(te) = N(y(t)) J* (5) = Cx(tn) x(t) = Ax(t) + Bu(tx)

Simplified

Neural network hybrid automaton
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Neural Network Control System

Reachability analysis

\4

N t s
[ NN Controller u(ti) Plant }

() = NO(0) fomamn| A0 = Ax(0) + Bu(s)

Exact star-based
NN reachability

Flowpipe construction

Gabriela Jiang Verifying Al-controlled Hybrid Systems 7 /49



Hybrid Automaton of the Thermostat [Alur et al. 1995]

(Loc, Var, Con, Lab, Edge, Act, Inv, Init)
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Hybrid Automaton of the Thermostat [Alur et al. 1995]

(Loc, Var, Con, Lab, Edge, Act, Inv, Init)
a.
b:
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Hybrid Automaton of the Thermostat [Alur et al. 1995]

(Loc, Var, Con, Lab, Edge, Act, Inv, Init)

x € [19.5,20.5]

a:x>22
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Reachability Analysis of Hybrid Automata

m Exact reachable set
R(I)={ceX |3 €l.d’ =*c}

not computable [Henzinger et al. 1998]
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Reachability Analysis of Hybrid Automata

Exact reachable set

R(I)={ceX|3o' €l.d’ ="}

not computable [Henzinger et al. 1998]

Hence over-approximate approaches where

Rio,11(1) € Qpo,11(1)

Such as flowpipe construction
In the following, T = K¢
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Flowpipe Construction

Xo
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Flowpipe Construction

Xo U e6AX0
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Flowpipe Construction

conv(Xo U e**Xp)
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Flowpipe Construction

Qo = conv(Xo U e‘SAXo) @ B,
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Flowpipe Construction

Qo = conv(Xo U e‘SAXo) @ B,

Qi1 =
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State Set Representations

T ————— T [T
2 |+ :HJ—'— 2 |+ ﬁ 2 |+

i
O |4 o1 ||~ P |+
: | : -~ ] :
520 | EZO - ’/_[ 220
EA’ [ ‘ g i ~ i
ﬁlg ﬁlg = L f \U glg -

Emin
18 I | 18 |+ =1 18
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 0 0.5 1 15 2 25
Time in s Time in s Timein s
(a) Box (b) H-polytope (c) V-polytope
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Reachability Analysis of Neural Networks

Definition (Reachable set of an FNN)

m Given

m Input set / = {x €eRY| Ax < b} with A€ R"™¥9 b c R"
m k-layer FNN NV = {Ly, -, Ly}
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Definition (Reachable set of an FNN)

m Given

m Input set / = {x €eRY| Ax < b} with A€ R"™¥9 b c R"
m k-layer FNN NV = {Ly, -, Ly}

m Reachable set (/) = R, is defined by

Ri, =1
Ry, ={yilyi=6i(Wiyic1+b),yica €Ry,_,}, i=1,....k
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Reachability Analysis of Neural Networks

Definition (Reachable set of an FNN)

m Given
m Input set / = {x € RY | Ax < b} with A€ R"™ b€ R"
m k-layer FNN NV = {Ly, -, Ly}

m Reachable set (/) = R, is defined by

Ry, =1

R, ={yilyi=¢i(Wiyic1+ bi),yic1 €Re, .}, i=1,...

Approach [Tran 2020]

Exact analysis for FNNs with piece-wise linear activations.
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Star Set Representation

Definition (Generalized star set)

A generalized star set is a tuple © = (¢, V, P) where
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Star Set Representation

Definition (Generalized star set)

A generalized star set is a tuple © = (¢, V, P) where
m c € RY is the center,
BV ={vi,...,vn} CR? a set of basis vectors, and
m P:R"”— {T, L} a predicate.
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Star Set Representation

Definition (Generalized star set)

A generalized star set is a tuple © = (¢, V, P) where
m c € RY is the center,
BV ={vi,...,vn} CR? a set of basis vectors, and
m P:R"”— {T, L} a predicate.

Efficient w.r.t. computing affine mappings and halfspace intersections.
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Example Starset

sy

©={cV,P)

Gabriela Jiang

-1 0

1 0

P= 0 -1
0 1
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Example Starset

HERRREER
O+t

Gabriela Jiang

Translate by
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Example Starset

Rotate by

cos45° —sin4h°
sin 45° cos 45°

o = M(© +t)
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Example Starset

. Vv — cos45° | [ —sin4b°
S o sin45° |’ cos 45° ’
1 0] 4
1 0 X 4
e =(c, V', P _ <
(VLA P 0 -1 [y ] = -3
0 1 3
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Goal

m Develop techniques for verifying the safety of NNCS
m Focus on non-autonomous hybrid systems with discrete interactions

m Keep over-approximation errors small
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Interaction

Continuous
m Independent of the time step §
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Interaction

Continuous
m Independent of the time step §
Discrete

m Irregular: time steps d1, 0o, ...
m Regular: time step

Gabriela Jiang Verifying Al-controlled Hybrid Systems 17 / 49



The Step Size 0 is Crucial

% IR AR AR AR

21

Temperature x in °C

[INRARAARAAN! ‘ 11
1.0 1.5 20

Time tins

(111
00 05

(a) 6 =0.01
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The Step Size 0 is Crucial

% TN AR ARE AR AR ARRNAARTY »
2 2
o 9
<2 <21
£ =
%zo 210
2 £
519 519
[ =
18 18
I I
! IR AN AR R R AR ARARNAAAY ’
0.0 05 1.0 1.5 20 0.0 05 1.0 15 20
Time tin's Time tin's

(a) 6 =0.01 (b) 6 =0.1
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The Step Size 0 is Crucial
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The Step Size 0 is Crucial

o [T m »

2 2
9 9 9
<o <o <
= = !
E 2 g 0 é
£ £ 2
Y £ 19 g
S S &

18 18

Ry m 7

0.0 05 10 15 2.0 0.0 05 1.0 15 20 0.0 05 L0 15 2.0

Time tins Time tins Time tins

(a) 6 =0.01 (b) 6 =0.1 (c)§=05

m Trade-off between safety and computational effort
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Conceptualization

m Challenges
m Devise a suitable controller to ensure the system’s safety
m Need benchmark for validating method
m Rationale
m No suitable benchmarks
m Create own benchmarks
m Train controller to learn behavior of hybrid automata
m Reduce hybrid automaton to a simplified automaton
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Simplified Hybrid Automaton

H' = (Loc’, Var', Lab’, Act’, Init")

x € [19.5,20.5], ., —>
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Simplified Hybrid Automaton
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Modeling the Neural Network Controller
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Continuous value from an uncountable but usually bounded set

Gabriela Jiang Verifying Al-controlled Hybrid Systems 21/ 49



Modeling the Neural Network Controller

Two broad types of output:
Continuous value from an uncountable but usually bounded set
m PID controller

Gabriela Jiang Verifying Al-controlled Hybrid Systems 21/ 49



Modeling the Neural Network Controller

Two broad types of output:
Continuous value from an uncountable but usually bounded set
m PID controller
Discrete value from a finite and countable set

Gabriela Jiang Verifying Al-controlled Hybrid Systems 21 / 49



Modeling the Neural Network Controller

Two broad types of output:
Continuous value from an uncountable but usually bounded set
m PID controller
Discrete value from a finite and countable set
m Multi-class classifier

Gabriela Jiang Verifying Al-controlled Hybrid Systems 21 / 49



Modeling the Neural Network Controller

Two broad types of output:
Continuous value from an uncountable but usually bounded set
m PID controller
Discrete value from a finite and countable set

m Multi-class classifier
m Variable in the hybrid system's flow function

Gabriela Jiang Verifying Al-controlled Hybrid Systems 21/ 49



Neural Network Output

m Flow of non-autonomous system:

x(t) = Ax(t) + Bu(t)

Gabriela Jiang Verifying Al-controlled Hybrid Systems



Neural Network Output

m Flow of non-autonomous system:
x(t) = Ax(t) + Bu(t)
m Flows of the thermostat:

x = —Kx (Cotr)
x=K(p—x)=—Kx+Kp (Yon)

where Kp can be seen as the external input Bu(t) from the controller
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m Flow of non-autonomous system:
x(t) = Ax(t) + Bu(t)
m Flows of the thermostat:

x = —Kx (Cotr)
x=K(p—x)=—Kx+Kp (Yon)

where Kp can be seen as the external input Bu(t) from the controller

m Hence, let the neural network predict Kp

Gabriela Jiang Verifying Al-controlled Hybrid Systems 22 / 49



Neural Network Output

m Flow of non-autonomous system:
x(t) = Ax(t) + Bu(t)
m Flows of the thermostat:

x = —Kx (Cotr)
)'(:K(p—x):—KX—l—K[) (gon)

where Kp can be seen as the external input Bu(t) from the controller
m Hence, let the neural network predict Kp

m Or more generally, h;
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Output Classification

m Use step function
step Z aIXA

where a; € R, n > 0, and

( ) 1, if x € A,
(x) =
XA 0, otherwise

for each interval A;, i=1,...,n.
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Output Classification (cont'd)

m Given: ordered target outputs h; € R with i =1,...,nand h;_1 < h;

m Apply step function with intervals

hit+hita -
(—o0, =51, ifi=1,
hi+hi_ "
Ai =[5, 00), if i = n,
hi_1+hi hi+h; .
[%, %), otherwise

and o = h,'.
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Output Classification: Visualized

ha

hs

ho

h
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Neural Network Architecture

X1
N

Xn

Runtime

fstep
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Neural Network Architecture

ein(X17 X2y ..oy Xn,y m) g N/ fstep @out

NN reachability analysis

where x; C R
with ©,,¢ covering trivial sets {h;}
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Input Star Definition

m Goal: Capture the plant’s current state in the input to the controller
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Input Star Definition

m Goal: Capture the plant’s current state in the input to the controller

Example (Thermostat)

At time point ty, let
B temperature x € [xk,, Xk, ],
m mode my € {0, 1} (off / on).

Gabriela Jiang Verifying Al-controlled Hybrid Systems
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Input Star Definition

m Goal: Capture the plant's current state in the input to the controller

Example (Thermostat)

At time point ty, let
B temperature x € [xk,, Xk, ],
m mode my € {0, 1} (off / on).
Define ©;, = (c, V, P) with P(a) £ Ca < s s.t.

0
0 —_
1| 7
1

—1

0 1
C:|:O:|7 V:{el7e2}7 C= 0
0

Gabriela Jiang Verifying Al-controlled Hybrid Systems

— Xk,
Xku
—my
my
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Flowpipe Construction Using Control Input

Definition (Initial set of NNCS analysis)

m Let (X, U, F,N,d,Xp) be an NNCS and T = K¢ the time horizon
m Initial set Z, at time point t, = k¢ is defined by

I() = Xo
Ik = eaAk_Ikal, k= 1, ceey K

where Ai_1 is the flow matrix over the time interval [tx_1, tk].
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Handling Potential Branching

ti—1 ti

Si1 = {(X,‘, F,I) | X; C V/, Fe ACt/(f),I S Init’}
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Handling Potential Branching

tic1 t;

Si—l - {(Xia fl,XaZi—1)7 (Xi/) fé,XaZi—l)}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). th=0

Input: NNCS (X, U, F, N, 3, Xp), HA H’, initial set Zo, T = K&
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K) ‘
2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3
3 X; < GETRELEVANTSETS(R, d); » |
4 S {(X Fo, To)} o
5: for i=1to K do C2l |-
6 Si+0; ‘®
7 for (X}, F,Z;) € Si—1 do 220 |-
8 (X', F',T') < comPUTESETFLOWMAPS(X}, Fj, Z;); é’lg |
9 S+ S;u{(X', F. 7}, ©
10: end for 18 |-
11 for j =1 to |S;| do
12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+ RUR;; | | ! !
14: end for 0 05 1 15 2
15: Si_1 < Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
17: end for

. !
5 return R To = {(fox.v) € ' | v(x) € [19.5,20.5]}

19: end procedure
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). th=0
Input: NNCS (X, U, F, N, d, Xp), HA H', initial set Zo, T = K&
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zo, K)

2. R ¢ CONSTRUCTFLOWPIPE(Z, §); 3

3 X; + GETRELEVANTSETS(R, 9); »

4 Sio1 < {(X, Fo.To)} o

5: for i =1to K do o1 |

6 S« 0; °

7 for (X, F;,Z;) € Si—1 do g2

8 (X', F',T") +~ coMPUTESETFLOWMAPS(X}, Fj, Z)); qéw L

9 S« S;u{(X', F,. T} =

10: end for 18

11: for j =1 to |S;| do
12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, §); 17
13: R+ RUR;; | | |
14: end for 0 0.5 1 15
15: Sii1 4 Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
17 end for Flowpipe construction for ¢ time
18: return R
19: end procedure R = Qpo,5)(Xo, U)
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). th=0

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3

3 X; < GETRELEVANTSETS(R, 9); » |-

4 S {(X Fo, To)} o

5: for i=1to K do T2l |+

6 Si+ 0; e

7 for (X}, F,Z;) € Si—1 do £20 |

8 (X', F',T') < comPUTESETFLOWMAPS(X}, Fj, Z;); é’lg H

9 Si+ S U{(X,F. T} e

10: end for 18 |-

11 for j =1 to |S;| do

12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+ RUR;; | | ! !
14: end for 04 0.5 1 15 2
15: Si_1 < Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
LA B R0 -
19: end procedure ={v|v(t) € ,v(x) € [20,21]}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). =90

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2 R « CONSTRUCTFLOWPIPE(Zy, §);
3 X; < GETRELEVANTSETS(R, d);
4 Simn < {(Xi, Fo, Zo) )

5: for i=1to K do
6

7

8

9

N
@

N
N>
!

N
=
I

Temperature in °C
N
S
I}
==

Si+0;
for (X, F;,T)) € i1 do
(X', F',T") - coMPUTESETFLOWMAPS(X], Fj, Z));

Si ¢ SU{(A, FLT)): el
10: end for 18 |-
11 for j =1 to |S;| do
12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+ RUR;; | | ! !
14: end for 04 0.5 1 15 2
15: Si_1 < Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
17: end for

18 return R X =RnN{v|v(t) =0}
19: end procedure = {v | v(t) € §,v(x) € [20,21]}
Sic1 ={(X, bx, To)}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). =90

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2 R « CONSTRUCTFLOWPIPE(Zy, §);
3 X; < GETRELEVANTSETS(R, d);
4 Sior < {(A), Fo, o)}

5: for i=1to K do
6

7

8

9

N
@

N
N>
!

N
=
I

Temperature in °C
N
S
I}
==

Si+0;
for (X, F;,T)) € i1 do
(X', F',T") - coMPUTESETFLOWMAPS(X], Fj, Z));

Si ¢ SU{(A, FLT)): el
10: end for 18 |-
11 for j =1 to |S;| do
12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+ RUR;; | | ! !
14: end for 04 0.5 1 15 2
15: Si_1 < Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
17: end for

18 return R X =RnN{v|v(t) =0}
19: end procedure = {v | v(t) € §,v(x) € [20,21]}
Sic1 ={(X, bx, To)}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). =90

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3

3 X; < GETRELEVANTSETS(R, d); » |

4 Sio1 < {(A), Fo, o)} o

5: for i=1to K do T2l |+

6 Si+0; ®

7 for (X}, F;,Z;) € Si—1 do £20 |

8 (X', F'.T") - coMPUTESETFLOWMAPS(X;, Fj, Z)); é’lg i

9 Si+ S;Uu{(X' F. T}, =

10: end for 18 |-

11 for j =1 to |S;| do

12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+ RUR;; | | ! !
14: end for 04 0.5 1 15 2
15: Si_1 < Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
i; f:ti::r’k N(©(X)) =0, whe/re ©,.range = {Kp}
19: end procedure = F =f

= I’ = AFFINETRANSFORMATION(Zp, f , §)
= S ={(X, hx,T')}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). =9
Input: NNCS (X, U, F, N, 6, Xp), HA /', initial set Tp, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zo, K)

2. R ¢ CONSTRUCTFLOWPIPE(Zy, d); 3

3 X; < GETRELEVANTSETS(R, 6); » |2

4: Siz1 {(X,', FQ,IQ)} o

5: for i=1to K do o1 |-

6 S; <« 0; o

7 for (X, F;,Z;) € Si—1 do g2

8 (X', F',T') < coMPUTESETFLOWMAPS(X}, F;, Z;); “élg P

9 Si+ S;u{(X', F.7}, S

10: end for 18

11: for j =1 to |S;| do

12: Rj ¢ CONSTRUCTFLOWPIPE(Z}, §); 17

13: R+ RU Rj; | | |
14: end for 0 0.5 1 15
15: 51;1 — Si; Time in s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
17: nd for
1;: fe::;r: R Rj = Qs 26 (X5, U)
19: end procedure R = Qo 25) (X0, U)
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). =90

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3

3 X; < GETRELEVANTSETS(R, d); » |

4 Sio1 < {(Xi, Fo. To)} o

5: for i=1to K do C2l |-

6 Si+0; ‘®

7 for (X}, F,Z;) € Si—1 do £20 |

8 (X', F',T') < comPUTESETFLOWMAPS(X}, Fj, Z;); é’lg |

9 S+ S;u{(X', F. 7}, ©

10: end for 18 |-

11 for j =1 to |S;| do

12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+ RUR;; | | ! !
14: end for 0 25 05 1 15 2
15: Si1+ Si; Time in s
16: Xj < GETRELEVANTSETS(R, (i + 1)d);
e R0 -2
10: end procedure ={v|v(t) € 6,v(x) € [20.5,21.5]}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete).

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2 R « CONSTRUCTFLOWPIPE(Zy, §);

3 X; < GETRELEVANTSETS(R, d);

4 Sior < {(A), Fo, o)}

5: for i=1to K do

6 Si+0;

7 for (X}, Fj.Z;) € Si—1 do

8 (X', F'.T") - coMPUTESETFLOWMAPS(X;, Fj, Z));
9 Si+ S;Uu{(X' F. T},

10: end for

11: for j =1 to |S;| do

12: Rj + CONSTRUCTFLOWPIPE(Z;, 0);
13 R+ RUR;;

14: end for

15: Si1+ Si;

16: Xj < GETRELEVANTSETS(R, (i + 1)d);
17: end for

18: return R
19: end procedure

Temperature in °C
2R N NN
5 S =B 8 &

—
©

-
=~}

ty =46

0 0.5 1 15 2
Time in s

N(O(5)).range = {0.Kp}
= Si={(X, Ax.T), (X ox. I")}
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). ty =40

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3

3 X; < GETRELEVANTSETS(R, d); » |- A

4 Sior < {(A), Fo, o)} o

5: for i =1to K do oo |-

6 Si+0; ¢

7 for (X}, F;,Z;) € Si—1 do £20 |

8 (X', F'.T") - coMPUTESETFLOWMAPS(X;, Fj, Z)); ‘é&’lg i

9 Si+ S;Uu{(X' F. T}, =
10: end for 18 |-
11: for j =1 to |S;| do
12: Rj + CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+~ RURj; | | | |
14: end for 0 05 1 15 2
15: Si1+ Si; Time in s
16: Xj < GETRELEVANTSETS(R, (i + 1)d);
17: end for

Branching into two flowpipes with different flows
18: return R & PP

19: end procedure
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). ts = 50

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K)

2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3

3 X; < GETRELEVANTSETS(R, d); » |- A

4 Sior < {(A), Fo, o)} o

5: for i =1to K do oo |-

6 Si+0; ‘®

7 for (X}, F;,Z;) € Si—1 do £20 |

8 (X', F'.T") - coMPUTESETFLOWMAPS(X;, Fj, Z)); ‘é&’lg i

9 Si+ S;Uu{(X' F. T}, =
10: end for 18 |-
11: for j =1 to |S;| do
12: Rj + CONSTRUCTFLOWPIPE(Z;, 0); 17 ‘
13: R+~ RURj; | | ! |
14: end for 0 05 1 15 2
15: Si1+ Si; Time in s
16: Xj < GETRELEVANTSETS(R, (i + 1)d);
17: end for

18: return R
19: end procedure
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). ts = 60
Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K) ‘

2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3 “‘!

3 X; < GETRELEVANTSETS(R, d); » |-

4 Sior < {(A), Fo, o)} o V

5: for i =1to K do oo |-

6 Si+0; ‘®

7 for (X}, F;,Z;) € Si—1 do £20 |

8 (X', F'.T") - coMPUTESETFLOWMAPS(X;, Fj, Z)); ‘é&’lg i

9 Si+ S;Uu{(X' F. T}, =

10: end for 18 |-

11: for j =1 to |S;| do

12: Rj + CONSTRUCTFLOWPIPE(Z;, 0); 17

13: R+~ RURj; | | !
14: end for 0 05 1 15
15: Si1+ Si; Time in s
16: Xj < GETRELEVANTSETS(R, (i + 1)d);
17 end for Unsafe region entered
18: return R
19: end procedure
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NNCS Analysis: Pseudo-code

Algorithm NNCS analysis (discrete). 1 =218

Input: NNCS (X, U, F, N, 8, X), HA 1/, initial set Zo, T = K¢
Output: Reachable states R over [0, T]

1: procedure NNCSREACH(Zp, K) (111 i [ i (111 i [11] i ]
2. R ¢ CONSTRUCTFLOWPIPE(Zy, 8); 3
3 X; < GETRELEVANTSETS(R, d); »
4 Simi < {(X), Fo, Zo)} o
5: fori=1to K do o 21
6 Si+0; ‘®
7 for (X}, F,Z;) € Si—1 do £20
8 (X', F',T') < comPUTESETFLOWMAPS(X}, Fj, Z;); ‘é’lg
9 S+ S;u{(X', F. 7}, ©
10: end for 18
11 for j =1 to |S;| do
12: Rj ¢ CONSTRUCTFLOWPIPE(Z;, 0); b [TITII1] [T
13: R+ RUR;; i i i i
14: end for 0 0.5 1 15 2
15: Si—l — Si; Timein s
16: X; < GETRELEVANTSETS(R, (i + 1)4);
1 end for Full time horizon reached
18: return R

19: end procedure
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Soundness of NNCS Analysis

Theorem (Over-approximation of First Segment)

Let M= (X, U, F,N,0,X) be an NNCS. Then

Ri0,5(X0) € Qjo,5(Xo,U).
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Soundness of NNCS Analysis

Theorem (Over-approximation of First Segment)

Let M= (X,U,F,N,d,Xy) be an NNCS. Then

Ri0,61(X0) € Qjo,51(Xo, U).

K
= Ry, 7)(X0) € Qpo,7)(&Xo,U) = U Qq(i—1)s,i5)(Zi-1,U).
i=1
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Soundness of NNCS Analysis

Theorem (Over-approximation of First Segment)

Let M= (X,U,F,N,d,Xy) be an NNCS. Then

7—‘J'[O,é](‘;\fb) C Q[O,(S] (Xo, U).

K
= Rpo,71(X0) € Qpo,7y(Xo, U) = | Qi—1)s,i8) (Zi1,U).
i=1

Theorem

Soundness Let = (X, U, F,N, 4, Xy) be an NNCS, | C X the initial
state set, S C X the set of bad states. Then M is safe iff Qo 11(/) NS = 0.
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Benchmarks

m Thermostat
m Global time horizon T =2.1
m Step size 0 = 0.1
m Segment size 0.05
m Initial set x € [19.5,20.5]
m Rod reactor
Global time horizon T = 17
m Stepsized =1
m Segment size 0.2
m Initial set x € [510,520],¢c; = ¢ = 20
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Result on Thermostat

T T T T T | T T T T
oy | LI LT JATTITTTTTITIT]] gy | LI LT Il [T TTTT] [
22 — 2 |-

o o

<21 |— 2o |

Z 20 | Z 20 |

B By

E 19 | =+ & 19 | =
18 | — 18 |-
17 | = 17

NIRERRNEA AN AANREEEEN |

I | 1 | | I I | | |

0 0.5 1 15 2 0 0.5 1 15 2

Time in s Time in s
(a) V-polytope representation (b) Box representation
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Rod Reactor Hybrid Automaton

x € [510,520]
G = 20
C = 20

v

no rods

X = Kx — 50

=1
o=1
x < 550

shutdown
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Result on Rod Reactor

T T T T T T T T T T T T T
600 600 | -
580 580 |-
& 560 © 560
= 8
s 540 & 540
2 Z
§ g
1;. 520 é 520
] S
500 £ 500
480 480 |+
460 160 |
| I | | | | | | | 1 1 I I 1 1 | | |
0o 2 4 6 8 10 12 U 16 0 2 4 6 8 10 12 14 16
Time in s Time in s
(a) Reachable states colored by flow (b) With trajectories (dark blue) overlay

Gabriela Jiang Verifying Al-controlled Hybrid Systems



Quantifying Metrics

m Run-time
m Run 100 times
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Quantifying Metrics

m Run-time
m Run 100 times
m Accuracy
m Area of projected flowpipes

Gabriela Jiang Verifying Al-controlled Hybrid Systems 37 /49



Quantifying Metrics

m Run-time
m Run 100 times
m Accuracy
m Area of projected flowpipes
m Complexity
m Branching and number of flowpipes
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Run-time in ms

Rep Mean Median Min Max Std
Thermostat
Box 880.73 864.33 657.49 3433.20 279.67

‘H-polytope | 4426.76 441852  3759.03 4980.86 186.12
V-polytope | 2544.66  2496.54  1650.08 5090.44 355.09
Rod reactor

Box 6969.49  6953.31  4877.65 9638.46 47457
V-polytope | 93445.35 91314.90 87657.10 116347.00 4646.71
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Total area over projections

Projection ‘ Box ‘H-polytope V-polytope
Thermostat

t,x [ 11.0967  10.4597 6.8272
Rod Reactor

t, x 8226.88 - 8087.65

t,c1 49.02 - 5.82292
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Accuracy Thermostat

——Box
i —5—Hpoly
1.8 —— Vpoly
5 --- 1 box
i _
. 2 16 --- p hpoly
o < -~ p vpoly
< +
g 1.4
R N - T =
24 N
1 |
T T T T T T T T
0 5 10 15 20 0 5 10 15 20
Time step Time step
(a) Cumulative area (b) Area growth factor
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Accuracy Rod Reactor

8,000 - .
6,000 5 187
©
o E 16
2,000 4 £
o .
o 14 —e—Box
2,000 - o
1.2 4 Vpoly
-~ p box
04 14 - p vpoly
T T T T T T
5 10 15 5 10 15
Time step Time step
(a) Cumulative area (b) Area growth factor
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Complexity Thermostat

124 24 —e—Branching
—&— Flowpipes growth
ﬁ 104 Q 100 4 1.84 --- p branching
o a 5 --- 1 flowpipe
£ 8 H 8§ 164
s s £
. 69 o £
5 3 50 g 14
£ 44 £ il
S E
= = 124
24
0 14 e
T T T T T T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time step Time step Time step
(a) Branching (b) Flowpipes (c) Growth factors
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Complexity Rod Reactor

7| |—=—Branching

150 4 —&—Flowpipes growth
254 |1 branc.hing

--- p flowpipe

w
S
!

Number of branches
)
S
I

Number of flowpipes

100 +

Growth factor

i
o
!

04

T T T T T T T T T T T T

0 5 10 15 0 5 10 15 0 5 10 15
Time step Time step Time step

o
!

(a) Branching (b) Flowpipes (c) Growth factors
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Discussion

m Algorithm for NNCS safety verification of hybrid systems
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Discussion

Algorithm for NNCS safety verification of hybrid systems

m Flowpipe construction
m Exact star-based neural network reachability analysis

Mitigates accumulated wrapping effects
Assessed effectiveness on two benchmarks
Quantified run-time, accuracy, and complexity
Implemented with HyPro [Schupp et al. 2017]
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Future Work

m Refine controller output to reduce over-approximation errors
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Future Work

Refine controller output to reduce over-approximation errors
Handle nonlinear dynamics for comparability with existing techniques

| |
| |
m Extend to PID controller output
[

Use reinforcement learning to find optimal controls
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Future Work
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Future Work

Refine controller output to reduce over-approximation errors

Handle nonlinear dynamics for comparability with existing techniques
Extend to PID controller output

Use reinforcement learning to find optimal controls

Analyze theoretical time and space complexity

Overcome numerical challenges
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Summary

Thank you for your attention!

£

Affine transformation
of initial set

NN Controller
u(ti) = N(y(t))

|

0
\ Input star

th =06,26,... K§

e
4)24

|

Plant
X(t) = Ax(t) + Bu(tk)

)(\w\
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Wrapping Effects of Box Representation

B NH
Box(N}) or(No
Ny N
Bz Bl T
(a) Step-size dependent (b) Inherent over-approximation errors

Wrapping effects in the box representation.
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Step Size Rod Reactor

Temperature xin °C

Gabriela Jiang Verifying Al-controlled Hybrid Systems 51 /49



Reachability Analysis using Staircase Function

Algorithm Star-based exact reachability analysis for one layer with step function.

Input Input star set / = [©; --- O], ordered classes [hy - - - hy] with intervals [A1 - -+ Ap]
Output Exact reachable set R

1: procedure LAYERREACH(/, W, b)

2 R+ 0;

3 forj=1:Ndo

4 h— W*0j+ b= (W + b, W, Pj);

5: Ry« h;

6 fori=1:ndo

7 [li, ui] < h.range(i); >l < x < up,x € hi]
8 Ry 4 STEPSTAIRCASE(R1, i, Ij, uj);

9 end for

10: R+ RURy;

11: end for

12: return R;

13: end procedure

14: procedure sTEPSTAIRCASE(T, i, f, U)

15: R+ 0;

16 1=1[6; - &

17 M<—lere -+ ei—10641- e > Intermediate representations
18: forj=1:k do

19: Ry« 0;

20: &, =g,V P

21: imin < argming{hy | l; € Ay, i" < m}; > Index of smallest class
22: imax < argmax; {hy | uj € Ay, i’ < m}; > Index of greatest class
23: for j' = imin : imax do

24: vi < hjr-ej;

25: &, (Mg +vi, MV, P );

2: Ry« Ry UG);

27: end for

28: R+ RURy;

29: end for
30: return R;
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Proof of Over-approximation

Proof.

m Flowpipe construction with 73[0,5] is over-approximation

m 1. controller invocation at time §: reachable set &; C ﬁ[o’(;] with
Xi N'Rys5,5) is used to obtain the current state variable valuations for
creating the input star ©;, which by design encompasses the
reachable set at time d.

m Exactness of star-based reachability algorithm

m Initial set for the first time step is Z;, = e® Xy, for Ay over [0,4].

m Hence Z; C 72[0,5].

m Prediction yields a valid flow such that in the next iteration, flowpipe

construction can be applied to the transformed initial set.
L]
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