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Overview

Wind energy has been on the rise since the climate crisis, and there is ample need
to provide better tools to plan new installations. A good use case for augmented
reality and deep learning-based occlusion in augmented reality deals with the problem
of how to accurately occlude virtual wind turbines in a smartphone. Using computer
vision, one can programmatically derive these occlusion maps, using both non-neural-
network and neural-network approaches, both of which are compared in this thesis.
Depth estimation is an equivalently hard challenge, but efforts are made to solve this
problem for a better final result as well. This thesis looks at two methods to provide
sky segmentation, and a third method to provide depth estimation on the ground,
finally combining to give an occlusion map that is used to place virtual objects. It
finally concludes that a mixture of methods can be used to realize an implementable
occlusion map.
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1 Introduction

Due to the increasing effects of climate change, a huge proportion of resources are being
funneled into renewable resources. Here, in Germany, the renewable of choice for large
power-generating units have become wind power[22], being the majority electricity provider
in the country compared to other renewables. Still, many challenges remain, one of which
deals with the accurate planning of the wind turbines that must be built. To facilitate
this plan, this thesis looks at ways to augment the planning process using new technologies,
particularly augmented reality and computer vision. The overall objective of this work is to
contribute to the growing pool of solutions regarding accurate augmented reality applications
for wind turbine placements. To that end, we look at how computer vision techniques can
help solve the problem of the placement of virtual wind turbines in the viewfinder of a regular
smartphone. Due to the complicated factors of the performance of the device, the infeasible
task of accurately measuring the distance with a single, or monocular, image, and finally the
task of deploying the methods at scale, we can consider this task to be non-trivial and worth
looking at.

In particular, we look at the problem of occlusion, that is, the ability of an algorithm
to accurately predict which pixel should be behind a given virtual object, and which pixel
should be ahead of the given object. We first start with the formulation of the problem and
previous literature in the domain, and then jump into looking at how to solve the problem.
Throughout this thesis, the mention of ”author” corresponds to the author of this thesis,
unless stated otherwise.

1.1 Problem Formulation

We verbally define the problem as follows: From an input image, assuming that the given
image is of an outdoor landscape, return a mask that provides per-pixel information on
whether this pixel should be behind the object that is intended to be placed, or in front of
this said object, by either performing this calculation locally or using a tiered server system
that sends and receives the data via a network.

Refining this problem statement, we want to judge the occlusion of a virtual wind turbine
when placed in the viewfinder of a smartphone camera, computing the depth information
for the pixel and returning the information to a comparator algorithm to compare with the
intended placement depth of the virtual wind turbine. Since the problem requires multiple
solutions at multiple levels, we focus on a specific subset of tasks that should be solved
in this case. Particularly, we look at receiving an input image and running it through an
algorithm that provides an estimation of the depth, and finally providing this ”mask” for
further processing. We ignore the problems of actual deployment on devices using Unity, the
lighting estimation, and the overall engineering challenges at scale, instead focusing on simply
providing a comparison of possible solutions to provide the most efficient depth estimation
for this image.

To achieve this result, we can divide the occlusion task further into two broad subtasks:
sky segmentation, i.e. differentiating the sky from the ground since the sky will always
be behind the virtual object, and ground depth estimation, i.e. deciding the occlusion of
each pixel on the ground. We start with sky segmentation, first looking at a data-specific
method to segment the sky from the ground using Mean Shift Clustering[12], followed by a
deep learning method using UNets[50] and finally comparing the two methods for efficiency.
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We then look at the ground depth estimation using pre-trained openly available models to
provide relative depth information on the image. We then finally combine these approaches
to provide as accurate a depth map as possible and list all the possible further challenges,
improvements, and overall goals for this task.

For the sky segmentation subtask, we can define the problem more formally as: Given
an input image X, label each pixel as the sky, which we shall consider as 1 throughout this
thesis, and ground, which we shall consider as 0 throughout this thesis, based on a function
F (X, θ), where θ is the model parameters or algorithm being used. The metrics we can define
to evaluate the final result Yθ = F (X, θ) is precision, which is formulated as precisionX(Y ) =
true positivesX(Y )/(true positivesX(Y ) + false positivesX(Y )), where true positives are
correctly classified sky pixels, and false positives are incorrectly classified sky pixels. Similarly,
for recall, which is formulated as recallX(Y ) = true positivesX(Y )/(true positivesX(Y ) +
false negativesX(Y )), where false negatives are incorrectly classified ground pixels. These
metrics will be used throughout this thesis.

1.2 Previous Literature

In this section, we look at the existing literature related to various aspects of augmented
reality, including occlusion, depth estimation, neural networks for computer vision, and AR-
Core.

1.2.1 Augmented Reality

Augmented Reality (AR) has emerged as a significant technology that holds promise across
various domains. By seamlessly merging digital elements with the physical world, AR en-
hances users’ perceptual experiences, changing the way we interact with our environment.
This dynamic integration of virtual objects into real surroundings has sparked interest due
to its potential to bridge the gap between the digital and physical realms.

In recent years, AR has witnessed a surge in research and application across diverse fields
including education, healthcare, entertainment, and industrial training. Its educational po-
tential is demonstrated by its ability to create interactive learning environments, making
complex concepts more accessible through interactive visualizations [32]. In the healthcare
sector, AR has been explored for medical training, surgery simulations, and aiding in diag-
nostics by projecting medical imagery directly onto patients’ bodies [5]. The gaming industry
has harnessed AR’s interactive capabilities to create immersive and engaging gaming experi-
ences, blurring the lines between the virtual and real worlds [60]. Furthermore, AR has found
utility in industrial training, facilitating the acquisition of complex skills through interactive
simulations in sectors such as manufacturing and maintenance [5].

One of the key challenges in AR technology is the precise positioning and alignment of
virtual objects in the real world. Researchers have diligently explored tracking techniques
to accurately anchor virtual objects within physical environments. Marker-based tracking
methods involve placing recognizable markers in the real world, which can be detected by
AR systems to establish reference points [5]. Markerless tracking methods, on the other
hand, seek to identify features in the real world without the need for predefined markers [60].
These methods have significantly contributed to enhancing the spatial accuracy and realism
of AR applications, enabling users to interact with virtual objects as if they were part of
their immediate surroundings.
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While the field of AR is rapidly evolving, these developments underscore the transformative
potential of this technology across diverse domains, offering a glimpse into a future where
the virtual and real worlds interact seamlessly.

1.2.2 Occlusion in Augmented Reality

Creating convincing occlusion effects, where virtual objects realistically appear behind real-
world elements, is a complex and ongoing challenge in the field of AR. The ability to seam-
lessly integrate virtual objects within the physical environment is essential for creating im-
mersive and believable AR experiences.

To address this challenge, researchers have explored various techniques for handling occlu-
sion in AR applications. These techniques aim to accurately depict the relationships between
virtual and real objects in terms of depth and occlusion effects. By simulating how virtual
elements interact with the surrounding environment, occlusion techniques enhance the sense
of realism and immersion [8].

One common approach involves depth-based methods. These techniques rely on accurate
depth information to determine the relative positions of virtual and real objects in the scene
[26]. Depth maps, acquired through methods like stereo vision or depth sensors, provide
valuable insights into the scene’s geometry. By utilizing this depth information, AR systems
can intelligently render virtual objects in a manner that respects the occlusion interactions
with real objects.

Another avenue of research involves multi-view stereo techniques. These methods leverage
multiple viewpoints of the same scene to reconstruct the underlying 3D geometry [26]. By
analyzing the scene from different perspectives, multi-view stereo techniques enhance the
accuracy of occlusion effects, ensuring that virtual objects align seamlessly with real-world
elements.

Environment reconstruction is yet another strategy to handle occlusion. By creating a
detailed 3D representation of the physical environment, AR systems can better understand
the scene’s layout and occlusion relationships [26]. This understanding enables more accurate
rendering of virtual objects within the context of the real world.

Researchers have proposed innovative solutions to overcome occlusion challenges in AR
applications. Depth image-based rendering involves generating images from depth maps,
allowing virtual objects to be properly occluded by natural objects. Depth-aware compositing
techniques enable the seamless fusion of virtual and real elements by taking into account
depth information during the compositing process [26, 8].

These approaches collectively contribute to achieving more convincing occlusion effects in
AR, enhancing users’ perception of the virtual elements’ integration within the real-world
context. As AR technology continues to evolve, the ongoing advancements in occlusion
handling techniques promise to elevate the quality and authenticity of AR experiences.

1.2.3 Depth Estimation

Accurate depth estimation plays a vital role in enhancing the realism and authenticity of AR
experiences. Depth information offers critical context for the proper positioning of virtual
objects within the physical environment and facilitates the accurate simulation of occlusion
interactions between virtual and real elements. By accurately capturing the spatial relation-
ships between objects, depth estimation ensures that virtual elements align seamlessly with
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their real counterparts, contributing to a more immersive and believable AR environment.
Various techniques have been explored for depth estimation in AR applications. These

techniques encompass a range of methodologies, each leveraging distinct principles and tech-
nologies to infer depth information.

Stereo matching is a fundamental technique that relies on the disparity between corre-
sponding points in stereo images to estimate depth [24, 53]. By comparing the differences in
pixel positions between left and right views, stereo matching can deduce the relative distances
of objects from the camera.

Structured light involves projecting patterns of light onto a scene and analyzing the de-
formation of these patterns as they interact with the scene’s geometry. This deformation
provides valuable cues for depth estimation, enabling the reconstruction of a scene’s 3D
structure. [6]

Time-of-flight (ToF) sensors measure the time it takes for light to travel to an object
and back to the sensor, allowing for the calculation of distance. ToF technology facilitates
real-time depth measurements, making it suitable for dynamic AR environments. [23]

Monocular depth estimation leverages a single camera to infer depth information from
2D images. While traditional monocular techniques often rely on hand-crafted features and
heuristics, recent advancements in deep learning, particularly Convolutional Neural Net-
works (CNN), have revolutionized this field. CNNs can learn complex depth cues from large
datasets, enabling them to accurately estimate depth solely from a single image.

Recent developments in CNN-based monocular depth estimation techniques have led to
remarkable improvements in accuracy. Models such as those introduced by Eigen et al. [16],
Liu et al. [42], and Fu et al. [17] have demonstrated the potential of deep learning in
capturing intricate depth patterns and translating them into accurate depth maps.

Collectively, these depth estimation techniques contribute to the foundational aspects of
AR, enabling virtual content to be integrated with real-world scenes. As the field of depth
estimation continues to evolve, these techniques promise to play a crucial role in shaping the
future of augmented reality experiences.

1.2.4 Neural Networks for Computer Vision

Neural networks have played a significant role in computer vision, revolutionizing how tasks
such as object recognition, image segmentation, and object tracking are approached. Among
a variety of neural network architectures, convolutional neural networks (CNNs) have shown
significant promise, showcasing remarkable efficacy across a spectrum of computer vision
challenges.

CNNs excel in learning spatial hierarchies of features, making them particularly suited
for tasks involving image data. These networks are structured to automatically capture and
hierarchically process features, learning to discern essential patterns in raw images without
explicit feature engineering. As a result, CNNs have demonstrated exceptional proficiency in
tasks like image classification, where they outperform traditional methods by a considerable
margin.

The efficacy of CNNs can be seen by their notable success in various computer vision
competitions, including the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)).
Pioneering CNN architectures, such as AlexNet [36], VGG [55], ResNet [25], and DenseNet
[27], have set new benchmarks in terms of accuracy and performance on challenging datasets.
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Researchers have extensively explored these architectures for a range of applications, adapt-
ing them to specific domains including augmented reality. By integrating these advanced
neural networks into AR systems, researchers have fortified the capabilities of object recog-
nition and scene understanding. The robust feature extraction capabilities of CNNs enable
accurate identification of objects within real-world scenes, while their hierarchical structure
aids in comprehending the contextual information present in the environment.

Incorporating CNN-based models, such as those inspired by VGG, ResNet, and DenseNet,
has elevated the quality and accuracy of object recognition and scene understanding in AR
applications. These architectures’ innate ability to capture intricate visual patterns and their
potential for transfer learning has empowered AR systems to better perceive and interpret
the visual information present in the user’s surroundings.

The combination of neural networks and AR represents a significant advancement in the
field. It utilizes state-of-the-art computer vision techniques to improve how we perceive
augmented reality.

1.2.5 ARCore

ARCore, developed by Google, leads the way in enhancing AR experiences on Android de-
vices. This advanced platform empowers developers with a wide range of tools and features,
simplifying the creation of immersive and interactive AR apps.

ARCore’s foundation relies on cutting-edge technologies to connect the digital and physical
worlds. It achieves this through three essential features that transform how users interact
with their environment:

1. Motion Tracking: ARCore uses advanced motion tracking algorithms to closely track
the device’s position and orientation in the real world. This enables a seamless blend of
virtual objects into the user’s surroundings, ensuring these objects move and interact
naturally with real-world elements.

2. Environmental Understanding: ARCore excels in its capability to understand the spa-
tial context of the environment. It achieves this by mapping the physical world, iden-
tifying flat surfaces, and recognizing features. This empowers developers to accurately
place virtual content onto real-world objects, seamlessly merging the two realms.

3. Light Estimation: ARCore doesn’t stop at spatial alignment; it also considers lighting
conditions. It measures the intensity and direction of lighting in the environment,
enabling virtual objects to cast shadows and be illuminated realistically, just like in
the real world. This adds an exceptional level of visual detail and authenticity to AR
experiences.

ARCore’s impressive features have captivated the developer community, drawing consid-
erable interest. Its versatility serves as an excellent starting point for creating a wide range
of AR applications, spanning immersive games to useful tools for real-world tasks. By sim-
plifying the intricacies of AR technology, ARCore frees developers to channel their creativity
and innovation, allowing them to craft intricate and captivating digital experiences within
the physical environments users inhabit.

ARCore has become a preferred choice for developers eager to explore the possibilities of
AR [59]. By making these potent AR-building tools accessible to a wider audience, ARCore
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drives the adoption of augmented reality experiences, fundamentally reshaping our interac-
tions with the world.

In the following section, we look at the first of the two subtasks, namely the sky segmen-
tation using mean-shift clustering, and then sky segmentation using UNets.

2 Mean-Shift Segmentation

As a baseline, we look at a clustering algorithm called mean-shift clustering, and an ac-
companying classification condition to segment the clustered image. We start off with a
basic explanation of Image Segmentation and proceed to give an in-depth explanation of the
algorithm itself, followed by an implementation.

2.1 Image Segmentation

Image segmentation is the process of dividing an image into different regions based on a
certain feature or set of features in order to separate salient regions that might be of inter-
est in solving a particular problem. Each region is homogeneous and this process is used
in many applications such as object tracking and recognition[10], image retrieval[7], and
volumetric reconstruction[11]. There are three main categories of image segmentation al-
gorithms: feature-based clustering, spatial segmentation, and graph-based approaches[14].
Feature-based clustering uses the characteristics of the image through extraction and se-
lection schemes. Spatial segmentation methods are called region-based when derived from
region entities. Graph-based approaches combine feature and spatial information to group
and organize images.

Alongside these three categories, there are also three levels of resolution for color image
segmentation:

1. Undersegmentation is the case where the tolerance margin is very high, leading to
multiple groups of pixels being assigned together as a single segment. This means that
the most dominant color segments are considered, hence it has very low resolution.

2. Oversegmentation is the case when the feature palette is wide enough for the color
segments to be significantly more than the undersgemented case. In this case, the
tolerance is lower, the algorithm is more sensitive to changes in the color and the
resolution is higher. This case is most favored for object recognition.

3. Quantization is the most sensitive case, where even small changes in color are significant
for the algorithm to create separate segments, and the resolution is the highest. This
means that the image can be quantized into very small sections, which are good for
small object detection.

We shall utilize the undersegmentation case for the sky-segmentation algorithm since we
are looking to segment the image into ”Sky”and ”Ground”, which are very broad segmentation
labels. The goal of this work is to use color and spatial segmentation to provide accurate
background and foreground in the context of the sky, in order to place a virtual object at
the optimum depth. One algorithm that the author used to segment the sky region from
the ground region is the ”Mean-Shift Clustering” algorithm to cluster the images and an
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additional classification condition to classify the clusters into their respective segments. The
following sub-section details more on the same.

2.2 Mean-Shift Clustering

Mean-Shift Sky Segmentation derives its inner workings from the original algorithm of Mean-
Shift Clustering. We can elaborate on the Mean-Shift Clustering algorithm as follows:

Mean-shift Clustering is an iterative algorithm used for cluster analysis and mode-seeking
in a dataset. In each iteration, it shifts each data point toward the weighted mean of its
neighbors within a given window size (bandwidth). The algorithm continues to update the
positions of the data points until convergence, where each data point reaches a local mode
in the underlying data distribution.[12]. The algorithm starts by assigning each data point
in the n-dimensional space to its own cluster. Then, for each data point, it computes the
mean of all points within the window and shifts the data point to this mean. This process is
repeated until convergence, which is defined as the iteration after which there are no changes
to the mean value of the points in the window, or a certain maximum number of iterations
have been reached.

Once all points have been processed by the mean-shift algorithm and their values have
converged, clusters are formed by grouping together points that have converged to the same
final mean value. The final step involves filtering out near-duplicate clusters and clusters
with less than a minimum defined number of points within, to form the final set of centroids.

In the context of mean-shift clustering, the key parameter is the bandwidth (window size),
which controls the number of points being processed in a single iteration and thus determines
the smoothness of the resulting density estimate. A smaller bandwidth will result in more
detailed clusters since the window size is smaller. The algorithm focuses on a smaller region
around each data point which allows it to capture more fine-grained patterns and local
variations in the data. As a result, the clusters formed will be more detailed, representing
smaller regions with distinct characteristics. with more peaks and valleys. A larger window
size leads to a broader consideration of neighboring points. As a result, data points from
a larger region influence the mean shift of each data point. This tends to smooth out the
cluster boundaries, as points from different regions may have similar mean values and become
part of the same cluster.

We can elaborate this method mathematically by starting with Kernel Density Estimation,
which is used to identify the clusters in a non-parametric way for Mean-Shift Clustering.

2.2.1 Kernel Density Estimation

Kernel density estimation [62] is a non-parametric way to estimate the density function of
a random vector. Since this work deals with multivariate random variables (due to the fact
that each pixel has a multivariate feature space), we can directly look at the mathematical
definition of the multivariate density estimation function. We have X1, X2, X3 . . . XN d-
variate random vectors which are also independent and identically distributed, whose density
function is defined by f . Given a kernel K, which is a symmetric multivariate density
function, bandwidth parameter H which is a d × d symmetric, positive-definite matrix, the
Kernel Density Estimator for a given set of N -dimensional points is:
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f̂H(X) :=
1

N

N∑
i=1

KH(X −Xi) (1)

Where KH is defined as

KH(X) := |H|−
1
2K(H− 1

2X)

Kernels follow the additive property, i.e., if K(X) and L(X) are kernels as defined above,
then (K + L)(X) is also a kernel, defined as a symmetric multivariate density. This is used
for the clustering algorithm since we add the kernels of individual points to create the kernel
density.

2.2.2 Mean-Shift

In the case of mean-shift clustering, we can take the defined kernel density estimation function
and use it to find the mean of the kernel with bandwidth H. The mathematical description
follows:

m̂(X) :=

∑
Xi∈N(X)KH(X −Xi)Xi∑
Xi∈N(X)KH(X −Xi)

−X (2)

where m̂(X) is the mean-shift vector, X is the centroid at which the bandwidth is centered,
and N(X) is the set of points in the neighborhood of X, i.e. the set of points for which
KH(X−Xi) ̸= 0. At each iteration, we have X ←− X+m̂(X), that is, X+m̂(X) is assigned
to X for all X ∈ X,X ⊂ R(n×d) (X being the set of all data points, which is initially the set
of centroids as well), and then we calculate the mean-shift vector again until convergence,
which is when the L2 distance between X and X + m̂(X) is a very small quantity ϵ, or we
reach the maximum number of iterations T . The final X̂ value is now considered as the label
of the initial X and is assigned to the cluster centered at X̂. This process is further referred
to as mean-shift-clustering, which is only the clustering algorithm.

For each data point Xj ∈ X, we perform this mean-shift clustering and obtain a set of
centroids belonging to each point. This method is also considered a gradient ascent approach
since we obtain the gradient estimate of the density function for each point and shift the
mean vector of the cluster of points to a position that has a higher function value than the
current mean value, which is also known as a gradient clustering approach[18].

2.3 Sky Segmentation: Algorithm and Implementation

To perform mean-shift clustering-based sky segmentation, we shall perform mean-shift clus-
tering on a feature space of an image in a multidimensional setting, then take the most
dominant cluster in the top half of the image to be the sky. We can restrict the parameters
(i.e. size of the bandwidth and the kernel function) of Mean-Shift and optimize the final
segmentation using knowledge control i.e. knowing that the sky must be the most dominant
cluster in the upper half, which we define to be as the cluster with the largest number of
pixels. The algorithm for mean-shift clustering-based sky segmentation, named as baseline-
mean-shift from further on here (since we consider this algorithm as our baseline to compare
all other algorithms to), is as follows

8



Algorithm 1 mean-shift-clustering

Let X be the set of all 5-dimensional data points of the image (RGB values and XY
coordinates)
Let Xj ∈ X be a pixel.
Let T be the maximum number of iterations allowed.
Let τ be the current iteration number, initialized as 0.
Let m̂(·) be the mean-shift function.
Let KH be a chosen kernel function with bandwidth H
Let w(·) be 1
X̄j = Xj

while m̂(Xj) > ϵ or τ ≤ T do
X̄j ←− X̄j + m̂(Xj)

end while
Let X̂j be the final value of Xj

Assign Xj to the cluster whose centroid is X̂j.

We perform Algorithm 1 on each pixel of the image X to get the cluster of each pixel. We
then eliminate all clusters that contain less than a certain number of points, which we term as
min-density. We then assign the remaining centroids X‘ to the closest cluster centroid using
the L2 distance between them. The bandwidth consists of two radii, namely the Spatial
Radius (consisting of x position and y position) and the Color Range Radius (consisting
of R, G, and B values). In terms of matrices, these radii are the diagonal elements of the
bandwidth matrix H, which are pre-defined before the experiments.

2.3.1 Implementation

The algorithm was implemented by the author in Python 3.9.7 for testing and benchmark-
ing purposes. The external libraries used were OpenCV[9], SciPy[58], MatPlotLib[28] and
PyMeanShift[30]. PyMeanShift is a Python package that implements the mean-shift-

clustering algorithm using the Blepo Computer Vision Library, which is a C++ imple-
mentation of some of the most commonly used computer vision algorithms. Particularly for
mean-shift-clustering, the library uses the Uniform Kernel, which is defined as follows:

Khi,i
(ui) := 1{|ui|≤hi}|ui ∈ U, hi,i ∈ H,U ∈ X (3)

Here, Khi,i
(ui) is the kernel function on the ith feature ui of a random vector U , which is

a point in the 5-dimensional pixel space, and hi,i is the bandwidth for the ith feature, and
the diagonal element (i, i) of H, and X is the set of all vectors. The implementation details
are presented at this1 GitHub repository.

Before segmentation using mean-shift-clustering, we must first resize the images to 256×
256 in order to reduce computation. After segmenting the image into its mean-shifted com-
ponents, we can perform a simple approximation of the sky label by splitting the image in
half and taking the most dominant cluster on the top half of the image, as performed in Nice
et al. [44]. The author performed their analysis on three combinations of parameters, mainly

1https://github.com/cjblackout/masterthesis
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Figure 1: Example of baseline-mean-shift for Sky Segmentation

Original Image (left), Segmented Image (middle), and Final Result (right). This example uses the baseline-
mean-shift algorithm with parameters (sr = 2, rr = 8,min = 200), yielding a precision of 0.97 and recall
of 1.0.

(sr = 7, rr = 7,min = 200), (sr = 5, rr = 6,min = 100), and (sr = 5, rr = 8,min = 300),
referenced from Nice et al. [43] (see Section 2.3.2 for more details on this dataset), where
sr is the Spatial Radius (SR) parameter for the x and y coordinates of a pixel, rr is the
Color Range Radius (RR) parameter for the Red-Green-Blue (RGB) values, and min is the
minimum density parameter, equivalent to min-density defined previously. An internal pa-
rameter, ’speedup’ was set to default as ’SPEEDUP HIGH’, which was not controlled during
experiments.

An example of the Mean-Shift Clustering-based Sky Segmentation algorithm, baseline-
mean-shift is presented in Figure 1.

2.3.2 Dataset

This small section deals with listing the main dataset used in this thesis for evaluation of the
current algorithm, and training and evaluation of all neural network-based algorithms that
are mentioned later.

The input image presented in Figure 1 is taken from the dataset presented by Nice et al.
[43], which is described as follows: The dataset consists of two directories, OriginalImages
and ValidationImages. The former directory contains the input images which are taken
from 39 locations, each location having been photographed multiple times during a year
for multiple years. These images are images of landscapes from various regions, covering a
variety of possible geographies. These images are of type JPEG and are in the RGB space.
The validation images directory contains PNG images, where each pixel is either 0 or 1, 1
representing a sky pixel, and 0 representing a ground pixel. These pixels create a mask,
for each corresponding image in the original images directory, that segments the sky from
the ground. The total number of images sums up to be around 38,000, excluding partially
corrupted images that may exist. In all following sections, we use the term ”dataset” to refer
to this dataset or original-dataset, unless mentioned otherwise.

Another, smaller, dataset used in later sections of this thesis, named as bachelor-dataset
is taken from the work of [20] who provide a dataset similar to original-dataset, but much
smaller in the number of images (It contains only 62 images) taken around the city of Aachen,
Germany. It has been modified to have the same directory structure as the original-

dataset and contains the same RGB feature images, and label images that provide per-pixel
labels for sky (label 1) and ground (label 0). The author specifies the usage of this dataset
wherever used, but otherwise mean original-dataset whenever they reference ”dataset”.
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Figure 2: Change in Precision, Recall, and Time-Taken on varying Minimum Density

(Left) X-Axis is the min density value, Y-axis is the mean and median of precision, recall, and time taken
respectively. (Right) Distribution of the images based on their precision, recall, and time, for a minimum
density value of 150. Note that change in minimum density does not affect the precision, recall, or time
taken, hence we take 150 based on the score in Figure 5

In the next section, we look at the results of the evaluation done on original-dataset.

2.4 Image Analysis Results

In this section, the author provides some results regarding different parameters of the algo-
rithm that have an impact on the performance of the algorithm. To define performance, they
show the most important metrics that we need to quantify a successful detection of the sky.
Since we must optimize the algorithm to work for video input in real-time, we must take into
account the speed i.e. the time taken for one frame to process in a running video format
should be equal to the framerate of the input stream or video, alongside our previous metrics
of precision and recall. Since this condition is extremely strict considering varying hardware
and software limitations, we instead look at a unified score that combines precision, recall,
and time taken per frame (also referred to as just time taken), in order to select the most
optimized configuration of the algorithm.

For their analysis, the author provides an evaluation of the combination of parameters that
affect the algorithm. These are the spatial radius, the color range radius, and the minimum
density of a cluster, plotted in Figures 2, 3, and 4.

To evaluate all metrics using a level playing field, the author defined a score function which
is

score =
precision + recall

time taken + 1

This function takes the precision and recall of each predicted value and divides it by the time
taken to process the image from start to end. They added 1 to time taken in order to scale
the denominator better with the numerator since, in practice, the value of time taken can
vary a lot depending on the parameters. It can range from 10 seconds to 0.01 seconds, and
hence, to visualize the score better, they chose to scale the lower values of time. Using this
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Figure 3: Change in Precision, Recall, and Time-Taken on varying Color Range Radius

(Left) X-Axis is the color range radius value, Y-axis is the mean and median of precision, recall, and time
taken respectively. (Right) Distribution of the images based on their precision, recall, and time, for a color
range of 8. Note that there is a trade-off between the precision and recall, and the time taken, for lower
values of color range radius. Hence, we choose the optimum values based on the results of Figure 5.

Figure 4: Change in Precision, Recall, and Time-Taken on varying Spatial Radius

(Left) X-Axis is the spatial radius value, Y-axis is the mean and median of precision, recall, and time taken
respectively. (Right) Distribution of the images based on their precision, recall, and time, for a spatial
radius of 2. Note that spatial radius is significant in the time taken, but less significant for the precision
and recall values. Hence, we take 2 as the optimum value, also proven by Figure 5.
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Figure 5: 3D Plane of the Distribution of Score Values on varying Spatial Radius, Color
Range Radius, and Minimum Density

X-axis is the Spatial Radius, Y-Axis is the Color Range Radius, Z-Axis is the Score. The color variation
goes from bluer to redder as the score increases. A black point is placed on the highest score combination
of metrics. It can be observed that lower spatial radii values produce better scores, while color range radii
minimally affect the score value.

score, we can plot a score graph to account for the best value to use in real-time applications,
which can be seen in Figure 5

Using this analysis, it is clear that certain values of spatial and color range radii affect the
performance of the algorithm, with respect to the time taken. We can take the best value for
spatial range since the relationship is inverse i.e. higher values of spatial radius yield worse
scores. An exception is also the fact that values below 2 also yield worse scores, hence peak
score is achieved at spatial radius 2. Hence, we take the value of 2 for the spatial radius
for our optimal algorithm while taking the color range radius as 8. We keep the minimum
density at 150 since it doesn’t affect the overall performance.

In conclusion, a certain set of parameters, (sr = 2, rr = 6,min = 150), give the most
optimum performance, with the average time taken to detect sky being 0.052 seconds, albeit
on high-end hardware(AMD Ryzen 9 5900HX, RTX3070 Mobile GPU, 16GB of DDR4 RAM
and 1TB of NVMe SSD, using Windows 11 64-bit). This gives us an average framerate
(without any additional functions) of 19.23 frames or 19 frames as a rounded figure.

In the next section, we shall look at an in-depth analysis of each cluster computed by the
mean-shift clustering algorithm and the classification paradigm, with an analysis of failure
cases and further ways to improve the performance.

2.5 Cluster Analysis Results

In this section, we look at the original-dataset from the lens of each cluster. We first start
by evaluating the clustering algorithm itself by defining ”ground truth” metrics and taking
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Figure 6: Distribution of Clusters against ground truth values under different condi-
tions

(Top Left) Distribution of the cluster ground truth value for each cluster, as a count. (Top Right) Distri-
bution of the cluster ground truth for each cluster, as a count, where the prediction made by baseline-

mean-shift is the sky. (Bottom Left) Distribution of the cluster ground truth values against the number
of clusters, where the prediction made by baseline-mean-shift is 0. (Bottom Right) Distribution of the
cluster ground truth values against the number of clusters such that the number of ground and sky clusters
are not imbalanced.
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an ideal classification condition that classifies the clusters based on a threshold value for the
”ground truth”. After evaluating the maximum, possible performance that can be achieved
through the mean-shift-clustering, we then look at where the baseline-mean-shift

algorithm fails by looking at the false positives and false negatives generated by it.

2.5.1 Ideal Classification Condition

In order to evaluate the performance of the overall mean-shift-clustering algorithm, we
must first look at each cluster, and whether the clusters encapsulate the sky and ground
effectively. In simpler terms, we look at if all the pixels in a given cluster are either completely
sky or completely ground, and there exists no cluster where there is a mixture of the two.
Since this condition is too strict, we instead look at the percentage of pixels in a cluster
that are sky and define a threshold value for the percentage to classify these clusters as sky
clusters.

The author first generated a per-cluster CSV file of the entire original-dataset, in order
to infer the performance of the algorithm on a per-cluster basis. This was done in order
to better understand the shortfalls of the mean-shift-clustering algorithm by analyzing
how well the algorithm can create the clusters, and whether the clusters themselves are well-
divided into sky and ground regions, with minimal overlap. We can do this by first running
the mean-shift-clustering algorithm on each image of the original-dataset and then
taking the metadata produced (average color of cluster, average position of centroid, etc.) of
each cluster as the data points for our CSV. The data points include the label of the cluster
given by the mean-shift-clustering algorithm, mean R, G, B, the number of pixels, the
X coordinate of the centroid, and the Y coordinate of the centroid. We also produce two
artificial metrics, ”ground truth”, i.e. the percentage of pixels that are the sky in a cluster,
”predicted value”, i.e. the label given to the cluster by baseline-mean-shift. For evaluating
the mean-shift-clustering algorithm, we only use the ground truth metrics, while the
predicted value metric is used to see the false positives and false negatives produced by
baseline-mean-shift.

For each cluster, we can compute a percentage value, which we name ”ground truth”,
representing the percentage of pixels in any cluster that belongs to the sky. We get this
value by taking the cluster in question and masking the rest of the image, so as to isolate
the clusters in the image, then masking the validation image with the same mask, and finally
comparing the remaining regions to calculate the percentage of sky pixels. We can then
calculate the number of sky pixels in this isolated-masked image and divide it by the total
number of pixels in the cluster. Note, ground truth is a metric derived from the original-

dataset itself. To visualize the performance of the mean-shift-clustering, we can plot
the distribution of all clusters with respect to ground truth, which is shown in Figure 6,
top-left. Since the number of clusters in the bottom half of the image is more than the top
half, owing to the fact that the ground in any landscape image is always more complex, a
large number of clusters have no sky pixels at all, which can be seen in the high count for
pixels with almost 0 ground truth.

The author computed the maximal precision, recall, and F1 score that can be achieved
by the clustering algorithm, by computing the number of pixels that are correctly classified
as the sky using a ”threshold” value for each cluster. Using experimental trial-and-error,
they came to a threshold value of 0.6 for the best possible values of the intended metrics,
therefore saying that if a cluster has a ”ground truth” value of more than 0.6, it is classified
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Figure 7: False Negative Cases for baseline-mean-shift

Two samples of images where there are clusters with predicted value as ground but they contain
”ground truth” of more than the threshold, i.e. they contain a majority of sky pixels. It can be seen
that the algorithm classifies the sky region as the ground in both cases.

as the sky, otherwise it is classified as ground. Using this ”threshold” classification condition
yields the following results: True Positive Pixels were 1,215,772,930, False Positive Pixels
were 34,256,824, True Negative Pixels were 1,211,930,278, and False Negative Pixels were
33,692,969. Using this information, we calculate the total Precision as 0.972, Recall as 0.973,
and the F1 score as 0.973. We can consider this to be the maximum possible performance
that can be delivered by the mean-shift-clustering algorithm due to its inherent clustering
nature. We shall use this result in the next section during the improvement phase of the
baseline-mean-shift.

2.5.2 False Positives and False Negatives of baseline-mean-shift

For evaluating the baseline-mean-shift algorithm, we can define a second artificial metric,
”predicted value”, which is the label computed by the algorithm, which in short, takes the
largest cluster by the number of pixels in the upper half of an image, and calls it the sky
cluster.

We can finally plot the distribution of clusters with respect to ”ground truth” that have
”predicted value” (using baseline-mean-shift) as 1, as shown in Figure 6, top-right, and
”predicted value” (using baseline-mean-shift) as 0, shown in Figure 6, bottom-left. From
these graphs, we can see that there are some clusters that are classified as the sky (prediction
1), but contain no sky pixels at all, as plotted in Figure 8, and there are some clusters
classified as ground, but they contain a majority of sky pixels, as plotted in Figure 7. We
also plot a ”resampled” distribution of the in order to better visualize the distribution of
clusters, plotted in Figure 6, bottom-right.
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Figure 8: False Positive Cases for baseline-mean-shift

Two samples of images where there are clusters with predicted value as the sky but they contain
ground truth of less than the threshold, i.e. almost no sky pixels in them. It can be seen that the al-
gorithm classifies the wrong region as the sky.

In the next section, we use these results to formulate improved variations of the baseline-
mean-shift.

2.6 Variations of baseline-mean-shift

In this section, we look at the various modified versions of the baseline-mean-shift algo-
rithm based on insights from the cluster analysis of the original algorithm. Particularly, we
look at how we can improve performance using different classification conditions.

We observe that in some cases, the clustering algorithm produces clusters that might not
represent the complete sky, or ”Fragmentation” (i.e. there are cloud clusters, or the sky
is divided into different portions) or the dominant cluster (i.e. the cluster with the largest
number of pixels) in the top half of the image may not be a sky cluster at all. There is also the
problem of ”border regions”, or the border between the sky and ground where sometimes the
clustering algorithm creates clusters that are overlapping i.e. the cluster contains a significant
number of both sky and ground pixels, and these border regions are not counted towards the
sky.

In order to solve the first problem of fragmentation, we can take each cluster and calculate
certain features that are inherent to this cluster, in order to find a range of values for these
features that correspond to whether that cluster belongs to sky or ground. We can take
the following features: Mean R, G, and B values of the cluster, X and Y coordinates of the
cluster, and the Label of the clusters. The mean R, G, and B values are the mean RGB
values of all the pixels in a cluster, the X and Y coordinate is the pixel number, and the
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Figure 9: 3D Distribution of Clusters in RGB(left) and XY(right) Feature Space

(left) Clusters plotted in 3D Feature space based on their mean RGB values, with the axis being R, G,
and B values that are above the 0.6 threshold value for ground truth, (right) Clusters plotted in a 3D
Feature space based on their XY coordinated, and the ground truth value, with the axis being X, Y, and
ground truth values that are above the 0.6 threshold value for ground truth

Label is the label given by the algorithm to the clusters starting from the top left. Each new
cluster is encountered from the top left going right, and then each row below is assigned this
label, starting from 0 to the number of clusters in the image. The intuition of this approach
follows from Figures 9

Using these features, we can calculate the range of the metadata features (mean RGB,
XY, etc.) of the clusters that are classified as sky using the threshold value of 0.6 for the
ground truth. This means that we can calculate the range of mean R, G, B, X coordinate, Y
coordinate, and Label which cover 96% of all clusters that are classified as Sky. The author
arrived at this number since taking 100% of the cluster lead to more false positives than
with just 96%, but any lower, and the precision suffered again. We name this the optimal
range, calculated based on trial-and-error to figure out which range of values for these novel
features gave the author the least possible error (i.e., using this range, what percentage of
clusters that are classified as sky are not actually sky). After calculating the range of values
for these novel features, we get an error percentage of 4.9% error, which is the lowest in any
configuration of percentage and threshold.

Using these optimal ranges, we can give the initial baseline-mean-shift a new condi-
tion check, stating that if a cluster’s features fall within this optimal range, then classify
this cluster as the sky. The augmented baseline-mean-shift algorithm, which we call
”baseline-mean-shift-augmented” in Algorithm 2:

Another variation that we can compare with the original baseline-mean-shift algorithm
is a modified version of the algorithm that takes the clusters on the top third of the image
instead of the top half. This tackles the problem of clusters that are originally sky, but don’t
occupy a dominant space in the upper half of the image, but rather the upper one-third of
the image. We can assume this does not hamper performance since the dominant cluster in
the upper one-third of the sky will still be sky if it is also the dominant cluster in the upper
half. We name this algorithm ”baseline-mean-shift-top-third”.
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Algorithm 2 baseline-mean-shift-augmented

Perform Mean-Shift Segmentation 1 on image X̂
Calculate the Mean R, G, B, X coordinate, Y coordinate, and Label of X
Assume optimal ranges are Rlower, Rupper, Glower, Gupper, Blower, Bupper, Xlower,
Xupper, Ylower, Yupper, Labellower, Labelupper
if (Rlower ≤ R ≤ Rupper) AND (Glower ≤ G ≤ Gupper) AND (Blower ≤ B ≤ Bupper)
AND (Xlower ≤ X ≤ Xupper) AND (Ylower ≤ Y ≤ Yupper) AND (Labellower ≤ Label ≤
Labelupper) then

Prediction = Sky
else

Prediction = Ground
end if

Mean Precision Median Precision Precision SD Mean Recall Median Recall Recall SD
baseline-mean-shift 0.959 0.983 0.095 0.894 0.982 0.197
baseline-mean-shift-augmented 0.913 0.969 0.143 0.946 0.994 0.150
baseline-mean-shift-top-third 0.964 0.983 0.070 0.896 0.982 0.193
baseline-mean-shift-augmented-top-third 0.920 0.971 0.132 0.968 0.997 0.109

Table 1: Performance Comparison of Variations of baseline-mean-shift

Performance comparison of different variations of baseline-mean-shift model in terms of Mean Precision,
Median Precision, Precision Standard Deviation, Mean Recall, Median Recall, and Recall Standard De-
viation. The variations include baseline-mean-shift, baseline-mean-shift-augemented, and baseline-

mean-shift-top-third. Note the abbreviation for Standard Deviation (SD).

The author ran the analysis of all the images on all three algorithms again and plotted the
outcomes in Table 1

From this table, we can infer that, out of the three methods, baseline-mean-shift-

top-third performs marginally better than the original baseline-mean-shift algorithm
in terms of precision, but performs similarly in terms of recall. On the other hand, our
baseline-mean-shift-augmented algorithm performs much better in terms of recall but
fails to perform well in terms of precision. We attribute this behavior to the ”conservative”
nature of the baseline-mean-shift-augmented algorithm since it correctly classifies the
ground but makes mistakes classifying the sky, hence being conservative towards classifying
the sky. The opposite is true when we look at the other two algorithms. The inferred reason
for this is that when we look at the ranges, the calculated range for the novel features provides
a good range of values for the cluster features, but not all values can be included (e.g. night
sky would have different features than the optimal range), hence it performs poorly in terms
of precision. We plot the precision and recall graphs for each of the algorithms in Figure 10

We finally combine the three approaches to try and incorporate two different kinds of
classifications: the largest cluster is classified as the sky on the top third of the image, while
in the region between the top third and bottom half, we can use the range method to classify
small regions as the sky that might be missed by the clustering algorithm. We can consider
there to be no explicit classification mechanism for the bottom half of the image, considering
most clusters to be of the ground class here. We name this algorithm baseline-mean-shift-

augmented-top-third.
Unfortunately, we see a decrease in the performance metric, as shown in table 1, with
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Figure 10: Distribution of metrics on original-dataset for variations of baseline-
mean-shift

A plot of precision and recall for each image in original-dataset, for each variation of the baseline-mean-
shift algorithm
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Figure 11: Distribution of metrics on original-dataset for baseline-mean-shift-
augmented-top-third

(left) Precision of the baseline-mean-shift-augmented-top-third for each image, (right) Recall of the
baseline-mean-shift-augmented-top-third for each image.

the mean precision being 0.920, the median precision being 0.971 and the precision standard
deviation being 0.132. On the other hand, our mean recall was 0.968, our median recall
was 0.997 and our Recall Standard Deviation was 0.109. We can see from the Figure 11
that we have precision lesser than baseline-mean-shift-top-third and recall lesser than
baseline-mean-shift-augmented. Based on Figure 11, we can see that the number of
images in the original-dataset that produce precision values lower than 0.9 increases
significantly, while the number of images with recall values below 0.9 decreases significantly.
This can be attributed to the fact that the false positive classifications in the middle one-
sixth region of the image produce significantly worse performance in terms of precision, but
the recall of the images improves since the number of clusters correctly classified as ground
increases in the same region.

The author recommends more investigation into improving the classification conditions in
future work regarding this algorithm. In the next section, we look at deep learning methods
to directly classify each pixel using image processing neural networks.

3 Deep Learning-based Sky Detection

In this section, we look at the same problem of detecting the sky, but with a different
approach. We can use deep learning methods, UNet models specifically, to segment an image
into sky and ground segments. We then look at the performance of this method, compare it
to the baseline-mean-shift method and its variants, and finally look at how this method
can solve the original problem.
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3.1 Deep Learning and U-Net Models

Deep learning techniques, particularly CNN [38], have revolutionized image segmentation[2]
by providing highly accurate and efficient solutions. Deep learning is a subset of machine
learning, which is a branch of artificial intelligence that configures computers to perform tasks
through experience. It is based on artificial neural networks with representation learning and
can be supervised, semi-supervised, or unsupervised. Deep learning algorithms use multiple
layers to progressively extract higher-level features from raw input. For example, in image
processing, lower layers may identify edges, while higher layers may identify concepts relevant
to a human such as digits, letters, or faces. Deep learning has been applied to various
fields including computer vision, speech recognition, natural language processing, machine
translation, bioinformatics, drug design, medical image analysis, and more. In many cases,
it has produced results comparable to and even surpassing human expert performance[19].

UNet[50] is a very common model architecture used for pix-to-pix tasks such as image
segmentation. The UNet architecture consists of a contracting path and an expansive path.
The contracting path follows the typical architecture of a convolutional network, with re-
peated application of convolutions, Rectified Linear Unit (ReLU)[1] activations, and max
pooling operations for downsampling. The expansive path consists of layers of upsampling
of the feature map followed by a convolution that halves the number of feature channels, a
concatenation with the correspondingly cropped feature map from the contracting path, and
two more convolutions each followed by a ReLU.

A key feature of the UNet architecture is that in the decoder part of the model, the inputs
are not only the feature map from the previous layer but also a ”sideways” input from the
encoder module. This allows the network to use information from high-level features, such
as edges, angles, etc., and low-level features, such as larger objects, to make more accurate
predictions. We can use this advantage to combine the utility of multiple features in an
image to create a mask, that separates the sky from the ground, directly by first decoding
the image into deeper layers, and then rebuilding the image as a mask separating the sky
from the ground. In the next section, we detail the architecture used and the mathematical
description of this method.

3.2 Architecture

The proposed UNet architecture consists of two main parts: the encoder (down-sampling
path) and the decoder (up-sampling path). The encoder extracts features from the input
image, while the decoder reconstructs the mask used to segment the image into sky and
ground regions, using the learned features.

1. Encoder (Down-sampling Path): The first stage of the UNet model is the encoder,
responsible for reducing the spatial dimensions of the input image. It comprises three
down-sampling blocks, each containing a 2D convolutional layer, batch normalization[29],
and ReLU activation. The number of filters in these blocks increases from filter to
filter*2 and then to filter*4, where filter is the number of filters of the first
convolution layer that is given as input. This allows the model to capture features
at different scales. Max-pooling[21] layers are employed to further down-sample the
feature maps. Additionally, the feature maps obtained at each down-sampling stage
are stored in the ”skips” list to be used during the up-sampling phase, which is the
”sideways” connection previously mentioned.
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Figure 12: Architecture of the U-Net model

A diagrammatic representation of the architecture of the UNet model. Skip connections have not been
visualized here due to limitations of visual-keras.

2. Bottleneck: Following the encoder, there is a bottleneck layer that aims to compress
and capture essential features from the down-sampled data. This layer is composed of
a single 2D convolutional layer with (filters * 8), enabling it to represent crucial
information in a more compact form.

3. Decoder (Up-sampling Path): The decoder stage is designed to recover the spatial
information lost during the down-sampling process. It consists of three up-sampling
blocks, with each block performing the reverse operation of the corresponding down-
sampling block. The filter sizes, or the number of filters, decrease in the opposite
manner (filter*4, filter*2, filter) as the decoder constructs the mask from
the feature maps. For this purpose, up-sampling is done by a factor of 2 using up-
sampling layers, and feature maps from the ”skips” list, containing the output of the
encoder ”sideways” connections, are concatenated to the current feature maps, facili-
tating the recovery of fine-grained details. Each up-sampling block also includes a 2D
convolutional layer, batch normalization, and ReLU activation.

4. Final Layer: The last part of the UNet model is the final layer, which produces the
segmentation mask. It is implemented as a 2D convolutional layer with a kernel size
of 1. The output of this layer undergoes a sigmoid activation function[46], generating
pixel-wise probabilities representing the likelihood of each pixel belonging to the target
class.

The diagrammatic representation of the architecture is depicted in Figure 12:
The optimal hyperparameter configuration for this UNet model was fine-tuned using the

results of an extensive hyperparameter grid search[39], which is detailed in the following sub-
section. The author chose grid search as it was the least resource-intensive for the architecture
used here. By systematically exploring various combinations of filters, kernel sizes, learning
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rates, loss functions, and optimizers, they identified the hyperparameters that yielded the
highest precision and recall.

3.3 Grid Search for Hyperparameter Tuning

3.3.1 Setup

Grid search in hyperparameter tuning is an exhaustive search technique used to find the op-
timal combination of hyperparameters for a machine learning model. It involves specifying a
range of values for each hyperparameter and systematically evaluating all possible combina-
tions. The approach aids in identifying the best configuration to enhance model performance
and generalization. The author used a Python library called Tensorcross[52] to perform a grid
search on the hyperparameters of the model, the results of which are presented as follows.

Following is a list of hyperparameters that affect the model performance:

1. Filters: Filters[38], or the filter size (filter as defined before) in a convolutional layer
determine the number of feature maps produced by each convolutional layer when the
kernel slides across the input image. Increasing the number of filters allows the model
to learn more complex and diverse patterns in the data, potentially improving its
ability to capture intricate features. However, a higher number of filters also increases
the computational cost. During testing, the author used two filter sizes, 32 and 64.

2. Kernel Sizes: Kernel sizes[38] define the size of the filter that slides over the input data
during the convolution operation. Larger kernel sizes can capture more global patterns,
while smaller kernel sizes focus on local features. The author uses multiple kernel sizes,
such as [3, 5, 7], that allow the model to learn from different scales of information.

3. Paddings: Padding[38] determines how the input data is padded with zeros around its
edges during convolution. ’Same’ padding ensures that the output size remains the
same as the input size, while ’valid’ padding reduces the output size. ’Same’ padding
can help retain more spatial information during convolution. During testing, the author
only used ’same’ since the decoder requires the size of the output to be the same at
each level.

4. Losses: Loss functions quantify the dissimilarity between predicted values and actual
labels during training. The two loss functions we shall use are:

• Binary Crossentropy (BC) Loss (LBCE)[64]:

The proposed Binary Crossentropy loss function is defined as follows:

LBCE = − 1

N

N∑
i=1

256∑
j=1

256∑
k=1

[yi,j,k log(pi,j,k) + (1− yi,j,k) log(1− pi,j,k)]

Where:

– N is the total number of samples in the dataset.

– yi,j,k represents the true binary label (0 or 1) for the i-th sample and spatial
position (j, k).
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– pi,j,k represents the predicted probability of the label of the pixel for the i-th
sample and spatial position (j, k).

The loss function computes the negative average log-likelihood of the true labels
under the predicted probabilities. It penalizes the model when the predicted
probability is far from the true label (i.e., pi,j,k close to 0 when yi,j,k = 1) and the
true negative class (i.e., pi,j,k close to 1 when yi,j,k = 0). This is possible since
the segmentation only provides us with two labels for each pixel.

• Mean Squared Error (MSE) Loss (LMSE)[61]:

The proposed Mean Squared Error loss function is defined as follows:

LMSE =
1

N

N∑
i=1

256∑
j=1

256∑
k=1

(yi,j,k − ŷi,j,k)2

Where:

– N is the total number of samples in the dataset.

– yi,j,k represents the true label for the i-th sample and spatial position (j, k).

– ŷi,j,k represents the predicted label for the i-th sample and spatial position
(j, k).

The loss function computes the squared difference between the true value yi,j,k
and the predicted value ŷi,j,k for each pixel position. It aims to minimize the
average number of misclassifications, encouraging the model to produce more
correct classification values.

5. Optimizers: The optimizer aims to find the optimal combination of model parameters
to minimize the chosen loss function and improve model performance. Two commonly
used optimizers are:

• Adam Optimizer[35]:

The Adam optimizer adapts the learning rate for each parameter based on the first
(mt,i,j,k) and second (vt,i,j,k) moments of the gradients for the model parameters
θi,j,k at position (i, j, k). The use of adaptive learning rates in the Adam optimizer
allows for faster convergence and more robust training, making it a popular choice
for deep learning tasks.

These moments are defined as follows:

mt,i,j,k = β1 ·mt−1,i,j,k + (1− β1) · ∇θi,j,k

vt,i,j,k = β2 · vt−1,i,j,k + (1− β2) · (∇θi,j,k)2

Where ∇θi,j,k represents the gradient of the loss with respect to the parameter
θi,j,k, and β1 and β2 are hyperparameters controlling the exponential decay rates
of the moment estimates. The Adam optimizer then uses these moment estimates
to update the learning rate for each parameter, resulting in efficient and adaptive
gradient-based optimization.
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The update rule for the model parameters using the Adam optimizer is defined
as follows:

θt+1,i,j,k = θt,i,j,k −
learning rate
√
vt,i,j,k + ϵ

mt,i,j,k

Where:

– mt,i,j,k represents the first moment of the gradient at time step t for the
model parameters θi,j,k.

– vt,i,j,k represents the second moment of the gradient at time step t for the
model parameters θi,j,k.

– θt,i,j,k are the model parameters at at time t.

– ϵ is a small constant for numerical stability.

The algorithm adapts the learning rate individually for each parameter, allowing
it to converge faster compared to traditional gradient descent methods.

• Stochastic Gradient Descent (SGD)[51]:

The Stochastic Gradient Descent optimizer updates model parameters based on
the average gradient of a small batch of data points. The learning rate, denoted
as learning rate, controls the step size during parameter updates.

The update rule for the model parameters using SGD is defined as follows:

θt+1,i,j,k = θt,i,j,k − learning rate · gradienti,j,k

Where gradienti,j,k represents the gradient of the loss with respect to the model
parameters θi,j,k at position (i, j, k).

SGD updates the parameters in the direction that reduces the loss, iteratively
moving towards the optimal solution. The learning rate learning rate controls
the step size, determining the magnitude of parameter updates at each iteration.

By systematically exploring the hyperparameter space, encompassing filters [32, 64], kernel
sizes [3, 5, 7], paddings [’same’], learning rates [0.001, 0.0001], losses [’binary crossentropy’,
’mean squared error’], and optimizers [Adam, SGD], we can ascertain the most effective
combination for optimizing model performance and generalization. The empirical evaluation
of the grid search algorithm gave the author the optimal configuration for the UNet model,
as presented in the following section.

3.3.2 Results

The author varied the hyperparameters, including filters, kernel sizes, learning rates, loss
functions, and optimizers, to identify the optimal configuration for model performance. Due
to resource constraints, they only tested for one epoch with 10,000 shuffled images from
the original-dataset. The images were kept the same for each iteration of the grid search
algorithm. Since the comparison for each configuration was performed with the same samples,
we can compare the metrics for each configuration. We can skip the padding parameter since
all test instances utilize the same padding parameter, owing to the fact that other padding
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Filters Kernel Size LR Loss Function Optimizer Loss Precision Recall

32 7 10−3 BC SGD 0.117 0.979 0.929
64 5 10−4 MSE Adam 0.019 0.977 0.971
64 3 10−3 BC Adam 0.104 0.971 0.955
32 3 10−3 BC Adam 0.097 0.971 0.960
64 3 10−3 MSE Adam 0.025 0.971 0.960
64 7 10−4 BC Adam 0.078 0.969 0.973
32 7 10−3 MSE Adam 0.032 0.968 0.942
64 5 10−3 BC SGD 0.090 0.967 0.967
64 5 10−3 BC Adam 0.173 0.967 0.898
32 5 10−4 MSE Adam 0.018 0.967 0.984

Table 2: Results of Hyperparameter Grid Search

Performance comparison of various hyperparameter configurations of the UNet model. The table highlights
the influence of filters, kernel sizes, learning rates, loss functions, and optimizers on key metrics, including
loss, precision, and recall. Bold values in ’Loss,’ ’Precision,’ and ’Recall’ represent the highest performance
in each respective column. Note the abbreviation Learning Rate (LR).

types interfere with the skip connections during execution. The results are presented in table
2

From the results, we observe that the configuration with 32 filters, a kernel size of 7, and
a learning rate of 0.001 achieved the highest precision of 0.979 and a recall of 0.929. On the
other hand, the configuration with 64 filters, a kernel size of 5, and a learning rate of 0.0001
achieved the highest recall of 0.973. The loss function and optimizer choice also influenced
the model’s performance, with binary cross-entropy and SGD leading to the highest loss
value. At the same time, ”mean squared error” and Adam optimizer resulted in a lower loss
and better precision and recall. We can take the configuration with the higher precision value
since the original problem of sky segmentation requires precisely classifying the sky pixels
and reducing the false positive numbers.

In the next section, we look at using the gained insights ascertained from the optimal
hyperparameters for the training of the UNet model and the final results for the sky segmen-
tation problem.

3.4 Training

During the training process, the author used the original-dataset of 38,000 samples to
train a deep learning model for sky segmentation[43]. The original-dataset was divided
into three subsets: a training set containing 30,000 samples, a validation set with 2,000
samples, and a test set with 6,000 samples. We assume the objective to be the same as
before: we feed an input image to a model that produces an output 2D mask where 1
corresponds to a sky pixel and 0 corresponds to a ground pixel. We define the precision and
recall for an image as described in the previous section.

The model was trained using the fit method from Keras, with a total of 5 epochs. These
particular number of epochs were chosen after some trial-and-error runs, showing that beyond
5 epochs, the model tends to overfit. After each epoch, the model’s progress was saved using
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a callback (ModelCheckpoint) to ensure that the best-performing model was retained. The
training process took advantage of multiprocessing by setting use_multiprocessing=True

and employing four workers for enhanced efficiency. Finally, the author utilized the Keras
GPU training methods to train the model on an RTX3070 GPU with CUDA[45] and CuDNN[13]
for faster train times.

Throughout the training, the model’s performance was evaluated on both the training and
validation datasets. During the first epoch, the model achieved a training loss of 0.0467, a
precision of 0.9787, and a recall of 0.9851. On the validation set, the corresponding metrics
were 0.0867 for loss, 0.9665 for precision, and 0.9776 for recall. Over subsequent epochs,
the model continued to improve its performance, reducing the training loss to a minimum
value of 0.0063, achieving a maximum training precision of 0.9972, and a maximum recall of
0.9976. However, it is worth noting that the validation loss increased slightly to 0.1391, with
precision at 0.9512 and recall at 0.9865 during the final epoch, indicating slight overfitting.

The results indicate that the model exhibits strong predictive capabilities, as evidenced
by high precision and recall values on both training and validation datasets. However, the
increasing validation loss during the training process may indicate the potential for over-
fitting. This occurs since the dataset being used is a repeated set of images of the same
location and perspective during different times, creating less variation, which reduces the
overall information the model can infer from the images.

3.5 Testing

The author tested the model on a dataset of 6000 images that were a subset of the original-
dataset, where they achieved a mean precision of 0.964 and a mean recall of 0.987. The
mean time taken for each image to process through the model was 0.072 seconds on the same
hardware2, and the number of images with either very low precision or very low recall was
only 6. The author also tested the same test set on the baseline-mean-shift-top-third

algorithm to compare the results, which give us a mean precision of 0.962, a mean recall of
0.899, and a mean time taken of 0.72 as well. We infer from this that the model performs
similarly in terms of precision but significantly better in terms of recall. We can see the plot
of the distribution of precision and recall for both, the UNet model and the baseline-mean-

shift-top-third algorithm on the same test dataset to compare their performance. The
plotted results are present in Figure 13 and table 3.

We look at some real-world examples and compare the two algorithms visually in order
to see how well they perform side-by-side in Figure 14. Since the images being used for this
result are not part of the original training or test dataset, we can say that the model can
perform well on completely unknown data as well.

We also look at the 6 failure cases, i.e., where the recall values are below 0.2, in order to
visually explore the reasons for the low performance. We infer from Figure 15 that the failure
cases consist of images that are either extremely noisy, are of nighttime, or do not contain a
clearly defined sky region for the model to classify.

2AMD Ryzen 9 5900HX, RTX3070 Mobile GPU, 16GB of DDR4 RAM and 1TB of NVMe SSD,
using Windows 11 64-bit

28



Figure 13: Comparison of metrics between baseline-mean-shift-top-third and
UNet

Distribution of precision and recall for UNet model and baseline-mean-shift-top-third algorithm for 6000
images testing sample of original-dataset. The X-axis represents the metric and the Y-axis represents
the number of values in a bin of width 0.005.

Figure 14: Comparison of Segmentation Output of baseline-mean-shift-top-third
and UNet

Three examples of mask generation by the baseline-mean-shift-top-third algorithm and the UNet model.
Note that these images are not part of original-dataset and were captured by the author.
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Figure 15: Failure Cases for UNet Model

All failure cases that give recall values below 0.2, tested on a 6000 sample from original-dataset. Note
that both these images are extremely noisy and do not contain a clearly defined sky region.
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Mean Precision Mean Recall
baseline-mean-shift 0.955 0.891
baseline-mean-shift-augmented 0.911 0.940
baseline-mean-shift-top-third 0.962 0.899
baseline-mean-shift-augmented-top-third 0.919 0.961
UNet Model 0.964 0.987

Table 3: Comparison of Variations of baseline-mean-shift Algorithm with UNet
Model

Performance comparison of different variations of the baseline-mean-shift segmentation algorithm with
the UNet model on 6000 images from original-dataset in terms of Mean Precision and Mean Re-
call. The variations include ”baseline-mean-shift,” ”baseline-mean-shift-augmented”, ”baseline-mean-
shift-top-third”, and ”UNet Model”

Figure 16: UNet Model and baseline-mean-shift-top-third on trees

Comparison of UNet model and baseline-mean-shift-top-third on images that have trees in them.

3.6 Fine Tuning

We now have a model that generalizes well on landscape data to segment the sky from
the ground. However, upon further analysis of original-dataset, we can see that the
dataset lacked samples that represent certain objects that people encounter in their daily
lives, particularly trees. This can be seen in Figure 16. Since trees possess minute details
and are intricate in design, the model is unable to differentiate well between the sky and
ground pixels. Another reason for this is that the original-dataset does not contain any
trees in its images, hence the trained model does not understand the representation of trees.
To solve this problem, the author looked at previous work done on this topic by Geuenich et
al. [20]. In particular, they borrowed the dataset from their work, which contains 62 labeled
images of landscapes around Aachen, Germany, and contains trees as part of the landscape.
We shall name this dataset bachelor-dataset, as mentioned in Section 2.3.2, since this
dataset belongs to the work done during their bachelor thesis.

Since the amount of data available to the author was small compared to the 38,000 images
of original-dataset, the author decided to use Fine Tuning[4] as a method to introduce
this data into the pre-trained model. In particular, they took the entire network and trained
it on this new dataset for multiple epochs to fine-tune the model toward samples that were
missing in the original-dataset.

We look at three different epoch levels for training the model, starting from 1, 5, and then
10. We can use the model that was pre-trained using the optimized hyperparameters. The
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results of this training give us a training loss of 0.351, a mean training precision of 0.934,
and a mean training recall of 0.910 for the 1 epoch variant.

Due to the paucity of data in this case, the author chose to feed the entire dataset to the
model instead, without separating any training, validation, or test sets. They re-evaluated
the 6000 image dataset to be able to compare our results with the original non-fine-tuned
models, in order to compare the difference between the mask generation capabilities of both
models. We also look at a comparison of the performance of the non-fine-tuned model, as
well as the fine-tuned models on the bachelor-dataset. The results of the 1, 5, and 10
epoch variants on the 6000 image testing sample of original-dataset are plotted in Figure
17 and table 4. The table also contains a comparison of the variants of the fine-tuned model
with the original non-fine-tuned model. A visual example is also available in Figure 18. It
can be observed that the model still makes some errors in the images, particularly in the
bottom region of the image.

Model original-dataset 6000 bachelor-dataset
Mean Precision Mean Recall Mean Precision Mean Recall

1 Epoch Fine-Tuned 0.868 0.994 0.930 0.860
5 Epoch Fine-Tuned 0.853 0.989 0.934 0.928
10 Epoch Fine-Tuned 0.862 0.988 0.941 0.937

non-fine-tuned 0.964 0.987 0.925 0.680

Table 4: Mean Precision and Recall for Fine-Tuned Model using 1, 5 and 10 Epochs
along with non-fine-tuned model

Mean Precision and Mean Recall for Fine-Tuned Models for 1, 5, and 10 Epochs on the 6000 image test set
of original-dataset and complete bachelor-dataset

Inferring from the data, it’s clearly visible that a degree of Catastrophic Forgetting[33]
takes place on the pre-trained neural network. The network weights change beyond the
capacity of the original network to understand the original-dataset, creating an overall
worse solution. However, it can be noted that the fine-tuned network does perform well on
the task of segmented images with trees, as seen in Figure 18. In this scenario, the author
chose to keep the network as it is, since the overall metrics were better without the new
dataset. Although the models presented in this section can be switched later depending on
the task at hand, the author recommends future investigation for better fine-tuning methods
for improved performance.
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Figure 17: Comparison of Distribution of Precision and Recall for Fine-Tuned Model
using 1, 5 and 10 Epochs

Distribution of precision and recall for fine-tuned UNet model for 1, 5, and 10 epochs of training on the
6000 image test dataset of original-dataset. The X-Axis represents the metric and the Y-Axis represents
the number of values in a bin of width 0.005.

Figure 18: Example of UNet Model after Fine-Tuning

An example of the UNet model trained for 1 epoch on the bachelor-dataset.
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4 Depth Estimation

In this section, we look into the depth estimation problem to produce a depth map to combine
with the initial sky segmentation approaches. We can consider the two sub-types of depth
estimation, that is, absolute depth estimation and relative depth estimation. We respectively
look at these two subtypes and then try to solve the challenge in the context of the occlusion
map creation. Since we have already looked at solutions for the sky segmentation, in this
section we look at the remaining ”ground” image in order to provide the aforementioned
occlusion map. The author asserts that the sky region that was computed in the previous
sections will always be behind any object placed in the viewfinder of a device, hence we now
only consider the differentiation of the ground pixels into foreground and background with
respect to the placed virtual object. In this sense, we can use depth estimation to calculate
the depth of each pixel in the ground region, which we can use to estimate the position
of these pixels with respect to the virtual object, thereby producing the occlusion map by
simply labeling the image’s foreground or background relative to the said object. We first
start by looking at absolute depth estimation and then move on to relative depth estimation.

4.1 Absolute Depth Estimation

Absolute depth estimation involves the precise determination of distances from the camera to
objects in a scene. Absolute depth estimation necessitates establishing real-world measure-
ments, which inherently encapsulate challenges arising from scene scale, camera calibration,
and varying lighting conditions[3]. This complex problem is compounded by the fact that
images alone lack sufficient cues for direct depth inference, leading to an ill-posed and highly
under-constrained task.

Monocular Absolute depth estimation is exceedingly intricate due to its reliance on es-
tablishing physical measurements from singular 2D images. Numerous factors, including
occlusions, ambiguous textures, and perspective variations, contribute to the inherent diffi-
culty of this problem, which are hard to resolve without additional information in the form
of binocular images or non-image distance measure. Since our original problem statement
must deal with deriving occlusion maps using edge devices, particularly smartphones, we
are constrained to only have monocular images. Traditional methodologies, while valuable,
struggle to capture the nuanced relationships between image features and depth information
using singular images.[47].

For our problem of providing an occlusion map, we have an even more specific set of
constraints we must look at, namely outdoor landscape absolute depth estimation. This
provides more challenges since depth information at a distance can become inaccurate[47].
This poses problems for any network to accurately estimate the depth for all distances.
At the time of writing, most available solutions to the problem implement absolute depth
estimation for indoor scenes[63], [31] or short distance (distance less than 400m) absolute
depth estimation [41].

One of the solutions for long-range monocular absolute depth estimation was proposed by
Polasek et al [47], which uses a mix of 10 datasets containing 1 million images to train a
modified Vision Transformer[15] to predict the absolute depth of long-distance images. Due
to the sheer size of the dataset and computational resource requirements stated in the original
paper, the author of this thesis was unable to replicate their solution on a local machine and
hence leaves the application of their model as a future task. At the time of writing, the author
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was also unable to contact Polasek et al. for requisitioning their model for the purposes of
this thesis.

Since direct absolute depth estimation can be challenging, as described above, we rather
move towards producing the occlusion map using a different method: we first produce a rela-
tive depth map and try to infer the absolute depth of the objects using additional knowledge.
The concept, implementation, and results are explained in the following sections.

4.2 Relative Depth Estimation

We move on to solve the problem of monocular relative depth estimation instead, which has
a wider variety and quantity of literature and contains more data to work with. Relative
Depth Estimation is the problem of producing pixel-level depth information for an image
based on either just the image or additional information, where the pixels are ranked based
on their relative distance to each other[34]. Monocular Relative Depth Estimation introduces
the challenge of doing relative depth estimation using single images, thereby reducing the
amount of information at hand to calculate the relative distances.

We look at relative depth estimation as a solution to providing the occlusion map since we
are trying to solve the problem of computing which pixels are foreground and which ones are
background. We assume that if we can obtain the relation between pixels, and then obtain the
absolute measure for certain pixels, we can combine this information to produce an absolute
depth map. This assumption comes from the work done by Masoumian et al[41] who also
look at producing relative depth maps and then estimating the position of objects using deep
learning-based object detection, and then combining this information to provide absolute
distance measure. They performed this task for indoor or short-distance scenes, hence this
approach for longer distances is still unproven. The author of this thesis only looked at the
relative depth estimation part of this problem, leaving the absolute distance of objects as a
future proposed task for further investigation. To solve the problem of depth predictions, we
look at a pre-existing solution called Depth Prediction Transformer (DPT) which uses vision
transformer[15] to predict the relative depth map. We can utilize an existing solution since
the computational constraints of training a similar model yielded no immediate benefits over
the use of pre-trained work in this case. We first start by explaining transformers, and then
look at it’s usage in the context of depth prediction.

4.3 Depth Prediction using Transformers

In this section, we look at a pre-packaged solution to the depth estimation problem using
Depth Prediction Transformers[49]. We first start with explaining transformers, then pro-
cessing to vision transformers, and finally how we can use vision transformers for depth
estimation using DPT.

4.3.1 Transformers

The Transformer[57] architecture, initially introduced in the context of natural language pro-
cessing, has garnered widespread recognition as a pivotal milestone in representation learning.
Since natural language processing requires sequences of words, these models can be referred
to as sequence-to-X, where X can be any desired outcome. In the context of transform-
ers, we want the outcome to be another sequence, since we are trying to generate output
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that is similar to input or trained data[56], which are traditionally computed using recurrent
layers[54]. The architectural paradigm of transformers, founded on the self-attention mecha-
nism, fundamentally diverges from conventional sequence-to-sequence models by dispensing
with recurrent or convolutional layers. In our case, we are interested in utilizing the approach
of transformers by using patches of a single image as the input sequence, while producing an
output sequence to solve the desired task.

At the heart of the Transformer are Multi-Headed Self-Attention (MHSA) modules[57],
which serve as the core part of the approach for capturing relationships between elements
within a sequence. We look at the computation at the self-attention layer in the following
paragraphs. We can then use this information to understand how transformers work in the
later context of images and then combine this approach with the sky segmentation algorithms.
We shall start by looking at the explanation of MHSA using the general term ”token” first.

Let X be a sequence of tokens (which are later replaced with patches of an image), where
each token is represented as a vector. Therefore, the shape of X is (n, d), where: Let n be
the number of tokens in the sequence. Let d be the dimensionality of each token vector.

The self-attention mechanism computes a weighted sum of values based on attention scores.
Given an input sequence X = (x1, x2, . . . , xn), where the shape of X is (n, d), n is the number
of tokens in the sequence, d is the dimensionality of each token vector. the self-attention
mechanism computes attended output Y based on attention scores A.
Linear projections yield Q, K, and V , which are obtained by projecting the input sequence
X using learnable weight matrices WQ, WK , and WV :

Q = XWQ, K = XWK , V = XWV

Where the shape of each element is as follows: WQ: (d, dq), Q: (n, dq), WK : (d, dk), K:
(n, dk), WV : (d, dv), and V : (n, dv). The specific values of dq, dk, and dv depend on the
design of the self-attention mechanism and the model architecture.

(dq, dk, dv) refer to the dimensions of the transformed representations of tokens within
the input sequence. These dimensions play a crucial role in determining how the attention
mechanism operates and captures relationships between tokens.

1. Query: The query Q is a transformed representation of an element in the input se-
quence. Informally, it’s used to compare against the other elements to assess their
relevance, and in simpler terms, it provides weight to tokens that might be ”relevant”.
dq represents the dimensionality of the transformed query representations. When the
input tokens X are projected using the weight matrix WQ, the resulting Q matrix has
a shape of (n, dq), where n is the number of tokens in the sequence.

2. Key: The key K is another transformed representation of an element in the input
sequence. Informally, it’s used to determine the similarity or compatibility between
elements, and in simpler terms, it provides information on the salience of a token. dk
denotes the dimensionality of the transformed key representations. After projecting
the input tokens X using the weight matrix WK , the resulting K matrix has a shape
of (n, dk).

3. Value: The value V is yet another transformed representation of an element in the input
sequence. Informally, it holds the information that we want to use when combining
elements based on their attention scores, and in simpler terms, it contains the semantic

36



information about the query against the keys. dv represents the dimensionality of the
transformed value representations. Projecting the input tokens X using the weight
matrix WV yields the V matrix with a shape of (n, dv).

This mechanism allows the transformer to map the queries to the corresponding values
based on the keys provided. Hyperparameter tuning techniques can be employed to find
optimal values of (dq, dk, dv) that yield the best performance on a validation set.
Attention scores A are derived from the dot product of Q and K, scaled by the reciprocal
of the square root of the dimension of key vectors dk:

A = softmax

(
QKT

√
dk

)
Here, QKT represents the dot product between Q and the transpose of K, and the shape

of A is (n, n).
Attended output Y is obtained by taking the weighted sum of values V , where the weights
are determined by the attention scores A:

Y = AV

This operation computes a weighted average of values, where the weights are determined
by the attention scores. The resulting Y , of shape (n, dv), encodes contextual information
from the entire input sequence, facilitating the model’s ability to capture relationships and
dependencies.

The final training optimization equation for the attention layer comes out to be:

minimize
1

N

N∑
i=1

L(A,V ,Y )

Where L(A,V ,Y ) is the task-specific loss function, comparing the attended output AV
to the ground truth label Y . Finally, the concatenation layer in the multi-headed attention
module is defined as:

MultiHead(Q,K,V ) = Concat(H1,H2, . . . ,Hh)×Wo

Where the shape of the final output is of the (n, n), Wo is the weight matrix for the final
linear layer of shape (hdv, n), Hj is the output of the scaled dot-product attention for the
jth layer, and the shape of the final output MultiHead(Q,K,V ) is (n, n).

The overall structure of the Transformer can be described in Figure 19, where each com-
ponent is described as follows: Inputs consist of sequences of data, patches of images in our
case, represented as tokens. Input embeddings convert these tokens into continuous vectors
to capture semantic relationships. Positional embeddings are added to account for token po-
sitions. The Add & Norm operation, applied after sub-layers, adds residual connections and
normalizes intermediate values. Feed-forward networks capture complex token interactions.
Multi-Head Attention allows simultaneous focus on different parts of the input sequence.
Masked Multi-Head Attention prevents attending to future positions during training. Out-
put embeddings transform decoder outputs into the input embedding dimension. During
training, outputs are shifted right to predict the next token based on previous ones. Softmax
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Figure 19: Diagrammatic Explanation of Transformer Attention Mechanism

(Left) The architecture of a single transformer layer, (middle) Scaled Dot-Product Attention Mechanism,
(Right) Multi-Head Attention [57]. Note, that N is the number of transformer modules, and h is the number
of layers.

computes token probabilities, forming a distribution. The output probabilities assign likeli-
hoods to each token in the vocabulary, with the highest probability indicating the predicted
next token.

Additionally, we can also see from Figure 19 that multi-head attention is comprised of h
layers of scaled-dot product attention, which has been defined as the attention mechanism.
Here, h is the number of Scaled-Dot-Product attention layers in a Multi-head Attention layer.

In summary, the Transformer architecture is made up of encoder and decoder components,
each containing multiple self-attention layers. These layers include position-wise feedforward
neural networks and layer normalization. Importantly, the Transformer allows each token to
have a wide context range across the entire input sequence. The decoder adds masked self-
attention for autoregressive generation during inference. This explanation is brief, and the
author would recommend the original work for a more detailed explanation of the workings
of a transformer.

4.3.2 Vision Transformers

The application of Transformers in computer vision has resulted in the Vision Transformer
(ViT) [15]. ViT converts 2D image data into sequences of ”visual tokens,”providing tokenized
representations for image patches. These representations are projected into embeddings and
processed through self-attention layers. ViT uses patch embeddings to organize images into
structured visual tokens. Importantly, ViT maintains token counts across transformations,
preserving spatial information across layers. This leads to a wide-reaching global perspective,
allowing ViT to understand the context better.

Additionally, ViT incorporates position embeddings, combined with image embeddings,
enhancing token representations with spatial awareness. This combined embedding imparts
positional understanding to tokens, enabling the model to perceive spatial relationships in
images. The overview of the architecture can be seen in Figure 20
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Figure 20: Diagrammatic Explanation of the Vision Transformer

Model overview of the ViT architecture as described by the paper by Dosovitskiy et al [15]. The transformer
encoder works the same as the original transformer[57] encoder.

We shall keep this explanation brief since the core concepts of Vision Transformers work
on the original Transformer are explained in detail in the previous section. We look at a
pre-trained ViT model in the next section, since our final approach uses DPT directly.

4.3.3 Depth Prediction Transformer

The Depth Prediction Transformer (DPT) [49] offers a solution for relative depth estimation
in computer vision. It builds upon the dense vision transformer framework, incorporating
both encoders and decoders to achieve accurate dense predictions in a pix-to-pix methodology.

DPT relies on a vision transformer (ViT) at its core, which processes structured image
segments, similar to how words are handled in text. These segments, whether individual
patches or deep features are transformed into a feature space, resembling the meanings of
words. Through sequential multi-headed self-attention (MHSA) operations [57], the relation-
ships between these segments are clarified, turning image patches into geometrically intuitive
representations suitable for relative depth estimation. Unlike traditional convolutional archi-
tectures, where receptive fields grow hierarchically through the layers, transformers maintain
a consistent way of understanding tokens, preserving spatial information.

ViT’s essence lies in its embedding of discerned image patches, projecting them into essen-
tial ”tokens.” This procedure maintains spatial resolvability over epochs, which is crucial for
precise depth estimation. The global MHSA mechanism extends the receptive field beyond
spatial limits. DPT’s architecture draws heavily from ViT’s but diverges at a crucial point
since it must produce a depth map, which is also an image. Hence, it uses the encoder-decoder
structure similar to that of a UNet.

• Transformer Encoder: The core of DPT’s architecture is the Transformer Encoder.
It employs the ViT framework to process input image data. ViT transforms im-
age patches into structured ”visual tokens” through linear embeddings, allowing them
to be treated as sequential data. The process involves projecting input sequences
X = (x1, x2, . . . , xn) into query (Q), key (K), and value (V ) matrices using linear
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transformations WQ, WK , and WV . Attention scores (A) are then calculated based
on the dot product of Q and K, normalized by 1√

dk
where dk is the dimension of

the key vectors. These scores guide the weighted aggregation of values, resulting in
attended outputs (Y ) for each example.

After each transformer stage, the (n, n) input is flattened and then processed by the
transformer encoder. Each transformer layer produces ”readout tokens” which serve
as distinct tokens that are not grounded in the input image data but are added as an
integral part of the Transformer Encoder. This token passes through the transformer
layers, passing information from the upper layers to the lower layers. Its purpose is
to capture and distribute global contextual information across different parts of the
sequence. More information can be seen in the original work by Ranftl et al. [49]

• Reassemble: The Reassemble step bridges the Transformer Encoder to the Convolu-
tional Decoder. It involves assembling tokens (not the readout tokens) into contiguous
image-like features. This is achieved through a series of operations, including concate-
nation of token outputs (Concat), linear transformations (Linear), and resampling
(Resamples). These operations culminate in refined feature representations that
retain spatial and contextual information.

1. Resample Operation (Resamples):

The Resample operation involves spatially resizing the tokenized representations
to match the desired output resolution. It is a combination of convolutional
operations that involve down-sampling or up-sampling the feature maps. Math-
ematically, the Resamples operation can be defined as:

Resamples : RHp×Wp×D → RHs×Ws×D′

Here, Hp ×Wp represents the input spatial resolution, Hs ×Ws represents the
output spatial resolution, and D and D′ represent the feature dimensions before
and after resampling.

2. Concatenate Operation (Concatenate):

The Concatenate operation combines token representations H1,H2, . . . ,Hh from
different layers of the Transformer Encoder into a single tensor. This tensor is
then transformed using linear projections and activation functions to enhance its
expressiveness.

3. Read Operation (Read):

The Read operation involves mapping the concatenated tensor into a tensor
amenable to spatial concatenation, and then reshaping it to match the spatial
layout of the original input image. This operation ensures that the tokenized
representations are correctly positioned in the final image-like feature represen-
tation.

Mathematically, the Reassemble operation can be described as follows:

Reassemble(H1,H2, . . . ,Hh) = Resamples(Concatenate(H1,H2, . . . ,Hh))
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Figure 21: Depth Prediction Transformer Architecture

Model overview of the DPT architecture as described by the paper by Ranft et al [49]. (Left) The complete
overview of the architecture, where the image patches are converted into embeddings by either flattening
or a ResNet50 feature extractor[25]. A readout token is added, shown in red. Multiple transfer layers are
used, the tokens being fed to the reassemble layer, which produces an image-like representation. Finally,
fusion layers add the reassembled features and upsampled features from the previous layer using residual
convolutional units[40]. (top-right) Reassemble operation. (bottom-right) Fusion operation, the convolu-
tional decoder.

The token representations H1,H2, . . . ,Hh from each layer of the Transformer
Encoder are concatenated, linearly transformed, and then spatially resampled to
form a coherent image-like feature representation. This representation serves as
the input to the Convolutional Decoder for generating final predictions.

• Convolutional Decoder: The Convolutional Decoder integrates the refined feature rep-
resentations from the Reassemble stage. It fuses these features using a RefineNet-based
feature fusion block[40], gradually upsampling the representation. A task-specific out-
put head is attached to produce the final dense prediction. This decoder architecture
ensures that the information captured by the Transformer Encoder is effectively trans-
formed into accurate predictions.

A detailed overview of the architecture is described in Figure 21
DPT utilizes convolutional decoder principles, computing dense predictions using up-

sampling. The Reassemble operation—Resamples, Concatenate, and Read—rebuilds to-
kens into coherent image-like features. Hierarchical concatenation with readout tokens en-
sures spatial coherence while resampling strategies control geometric shifts. By merging
transformer-encoded nuances with convolutional syntax, DPT performs well for depth esti-
mation tasks[49].
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4.3.4 DPT Implementation and Final Occlusion Map

We can incorporate the DPT mechanism into the final occlusion task by using the following
hybrid system:

1. Sky Segmentation: By using the previously described sky segmentation algorithm,
either the mean-shift-top-third algorithm or the UNet operation, we can segregate the
sky efficiently. This helps us provide a concrete background value for the mask.

2. Depth estimation for Ground: By using the DPT algorithm, we can provide a relative
depth estimation value of the ground, giving up a rough idea of the distances between
objects.

In this section, we look at the implementation and results of using the DPT model. We
use the pre-trained model provided by HuggingFace called Intel/dpt-large. We use the
DPTForDepthEstimation class from the HuggingFace python library as the model. A key
thing to note is that the author did not train the model further for downstream tasks.

The author provided the previously trained DPT model with the original image and also
provided the same image to the baseline-mean-shift-top-third algorithm and the UNet
model to compute the sky mask. The output of the DPT model assigns each pixel a value
using a complex mechanism that is described in the work of Ranft et al. [48] and is out of
the scope of this thesis. In short, the output of the DPT model contains 0.0 as the value for
the furthest pixel (sky pixel in our case) and an arbitrary floating point value for all other
pixels, with higher values assigned to closer pixels.

Since we are interested in the relative depth values, we modify the final output such that
the furthest pixel, i.e. the sky, is assigned the value of 0.0, and the closest pixel is assigned
the value of 1.0, as described by the official HuggingFace documentation given here3. In
short, the entire output image is scaled by the maximum value in terms of pixels in the
depth image using depth scaled(i,j) = depth(i,j)/max(depth) where depth(i,j) is the depth
value at the (i, j)th position in the matrix, depth is the matrix containing the depth values
outputted by the DPT model, max(·) is the maximum function, and depth scaled(i,j) is the
scaled depth value at (i, j)th position.

Next, we will multiply the pixels in both, the sky segmentation output and the DPT
output, for which, we need to invert the sky mask generated by both the sky segmentation
models (Previously, 1 represented sky and 0 represented ground, but we must invert the mask
such that 0 represents the sky and 1 represents the ground, in order to align with the DPT
output). After getting the depth map from the DPT model and sky mask from both the
baseline-mean-shift-top-third algorithm and the UNet Model, they combined the final
output by pixel-wise multiplication (multiplying the pixels in the same position in both the
depth map and the sky mask) to give a final image that can be seen in Figure 22. In Figure
23 we can see the plot of some examples that the author considered challenging for both the
DPT and Sky Segmentation algorithms to figure out.

4.3.5 Evaluation on EDEN Dataset

In this section, we look at the statistical evaluation of the two final approaches, DPT
+ baseline-mean-shift-top-third and DPT + UNet model on the Enclosed garDEN

3https://huggingface.co/Intel/dpt-large
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dataset[37]. We first look at the dataset structure, and then at the evaluation results.
EDEN dataset (further referred to as eden) is a dataset comprising synthetic images taken

from various angles of a 3D rendered garden, which are considered photorealistic by the
author of the original work. An example of the dataset is presented in Figure 24. We take
a 12,520 image sample of this dataset, consisting of RGB feature images, and equivalent
validation matrices consisting of the metric depth of each pixel in the garden scene. The
validation images are encoded as follows: 0.0 is assigned to sky pixels, while all other pixels
that are not the sky (i.e. objects on the ground) contain floating-point values of metric depth
from the camera. The author of this thesis performed two modifications to scale the final
validation matrices between 0.0, representing the furthest object, or the sky, and from the
camera 1.0, representing the closest pixel to the camera, since this aligns with the output of
the DPT model.

This modification first follows the same procedure mentioned in Section 4.3.4, i.e., scaling
the entire depth matrix with the maximum value of elements of the matrix. After the scaling,
since the highest value of 1.0 is assigned to the pixels belonging to objects furthest from the
camera which are not the sky (i.e. objects that are on the ground, and are furthest away
from the camera), we first set all values that are 0.0 (i.e. the sky pixels) as 1.0, and invert the
entire matrix such that 0.0 represents the further pixel and 1.0 represents the closest pixel
by subtracting each pixel in the depth matrix from 1.0. We can see that this creates some
inconsistencies since the sky pixels are assigned the same value as the furthest ground pixel,
but since our objective is to find the change in error between DPT and DPT + baseline-

mean-shift-top-third and UNet, we consider this change irrelevant to the final evaluation,
considering all three models will be evaluated against images having the same artifacts.

This was done in order to align the output of the DPT model with that of the EDEN
dataset and fit the dataset for the task of relative depth estimation. To the best of the
author’s knowledge, the original DPT model used in this thesis has not been trained on eden

dataset, hence this dataset is completely novel and suitable for an independent evaluation.
To evaluate the dataset, the author first restructured the dataset into two directories, ”im-

ages” containing the RGB images and ”labels” containing the depth matrices, and compared
the final output of the three models in question, namely DPT, DPT + baseline-mean-

shift-top-third, and DPT + UNet, using the RGB images as the input. The output was
compared to the validation images present in the eden dataset, where the evaluation metric
used to compare the outputs with the three approaches and the validation images was Mean
Squared Error, as mentioned in Section 3.3. The author took the root of this metric, ap-
propriately named as Root Mean Squared Error (RMSE). They collected data for the three
models, namely: RMSEDPT which was used to describe the RMSE between the validation
images and the original DPT model output, RMSEBaseline which was used to describe the
RMSE between the validation images and the DPT + baseline-mean-shift-top-third

model output, and finally RMSEUNet which was used to describe the RMSE between the
validation images and the DPT + UNet model output. Finally, the author noted the ab-
solute and percentage change in RMSE value between RMSEDPT and RMSEBaseline, and
RMSEDPT and RMSEUNet. We can see the result of this evaluation in Table 5.

In conclusion, we can clearly see that the combined models (DPT + baseline-mean-

shift-top-third and DPT + UNet) give us some percentage points of improved results
over using the original DPT model, which is shown by the fact that the DPT + baseline-

mean-shift-top-third model has a decreased mean RMSE value of 0.0067 and a decreased
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Mean Median
RMSEDPT 0.1929 0.1864

RMSEBaseline 0.1862 0.1801
RMSEUNet 0.1892 0.1825

RMSEBaseline −RMSEDPT -0.0067 -0.0063
RMSEUNet −RMSEDPT -0.0037 -0.0039

Table 5: Evaluation of DPT, DPT + baseline-mean-shift-top-third and DPT +
UNet on eden dataset (Lower is better)

The evaluation was done on a sample of eden dataset containing 12,520 images. The RMSE was calculated
for each model between their respective output and the validation images. The last two rows show the
difference in RMSE values.

median RMSE value of 0.0063. At the same time, the DPT + UNet model shows a decreased
mean RMSE value of 0.0037 and a decreased median RMSE value of 0.0039. In terms of
percentages, we can say that the DPT + baseline-mean-shift-top-third model performs
3.47% better in terms of mean RMSE and 3.37% in terms of median RMSE, while the DPT
+ UNet model performs 1.92% in terms of mean RMSE and 2.10% in terms of median RMSE
against the original model.

From these results, we can infer that the combination of DPT + baseline-mean-shift-

top-third performs better than the DPT + UNet model when evaluated on the eden dataset.
We can also infer that both approaches show some improvement over the original DPT model.
In the next section, we will look at visually analyzing the results of both approaches and finally
infer whether the problem of occlusion map computation can be solved using the proposed
methods.

4.3.6 Visual Results and Inference

In this section, we look at visually evaluating the output of both DPT + baseline-mean-

shift-top-third and DPT + UNet model and intuitively try to ascertain the performance
by looking at some examples produced by both approaches, also comparing them to the
output of the original DPT model.

In Figure 22, we see the five examples that the author considered to be regular cases, which
include (starting from the top):

1. A regular evening with a blue sky and a well-defined border between the ground and
the sky. We can see that both baseline-mean-shift-top-third and the UNet model
perform well on the sky segmentation, but the DPT model fails to predict depth on
the top half. We also observe that the baseline-mean-shift-top-third segments
the sky incorrectly. Hence, the combination of UNet and DPT provides a better depth
result than just using DPT.

2. A brightly lit pasture, with blue sky and clouds. Here, the DPT model fails to provide
proper depth for the sky, and the baseline-mean-shift-top-third fails as well, due
to clouds, but the UNet model gives much better results and the overall depth map is
much better with the combination.

3. A similar picture as the one before, but with shrubbery in the middle. We can see that
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the DPT model provides good depth cues for this image, but the sky segmentation
algorithms fail to add to this. The UNet model does perform decently, but the overall
image is not any better.

4. Here we have an image of a bright sky and a well-defined border between houses. In
this case, the DPT model gives erroneous depth for the sky, the but baseline-mean-
shift-top-third algorithm corrects this, while the UNet model has some artifacts at
the bottom of the picture. Both algorithms improve the overall output.

5. An evening picture with less defined sky colors and a close object. The DPT model
produces a good depth map, and both the sky segmentation approaches give good
results, which leads to no change in the final output.

Overall, these examples suggest that the combination of DPT with either of the sky seg-
mentation methods produces better results than using just DPT to derive the depth map.
The UNet model is more reliable in this case since it learns both the low and high-level
features, while the baseline-mean-shift-top-third algorithm fails whenever the cluster-
ing algorithm makes a mistake in segmenting the sky properly. The DPT model produces
depth maps that contain certain artifacts in the sky region that can be countered by the
segmentation algorithms, thereby improving the overall quality of the map produced.

Upon looking at the challenging cases (starting from top to bottom) in Figure 22, we find
the following:

1. The first image is that of a tree against the sky. As previously mentioned, trees are
a vulnerable point for the UNet and baseline-mean-shift-top-third is also unable
to segment these images properly. We see that the DPT model also produces artifacts
between the leaves of the trees. Upon combining as well, the final output is still not
very good, suggesting that this example is a hard problem for all three.

2. This image looks at a blue sky with a blue ocean. This image is challenging since the
colors can be confusing for the model. The DPT output is very good, apart from some
artifacts in the top region, while baseline-mean-shift-top-third fails to segment
the image properly, and the UNet model also has some artifacts in the top region. The
combination, however, yields a slightly better result than just the DPT model.

3. This image is challenging because it deals with a night sky and ground lights. We
see that DPT still produces good results on this, but baseline-mean-shift-top-

third and the UNet fail the segment the image properly, thereby producing low-quality
results.

4. This image is originally blurry, is during the night and contains clouds and trees,
which combines all challenging environments together. In this case, the DPT and the
baseline-mean-shift-top-third algorithm combined produce very good results, and
also good results just by themselves.

5. This image contains snow and a grey sky, where colors can be deceptive. The DPT
model still produces a good depth map, while the baseline-mean-shift-top-third

and UNet Model produce decent results, each having some artifacts in the form of
patches or problem segmenting trees. The combined results are, however, similar to the
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original DPT result, which we can infer as being just good, and the two segmentation
algorithms do not contribute to the overall outcome.

We can infer from these challenging images that under certain conditions, the three al-
gorithms can perform well, but their combination can still provide a better occlusion result
than just using either of the individual algorithms.

With this statement, we can say that for the occlusion problem, a combination of DPT
and UNet could produce good results when compared to pure depth prediction models, or
sky segmentation models. We can also reiterate the solution presented by Masoumian et
al[41], and suggest a similar application for solving the absolute depth estimation problem
for producing an occlusion map.

The only downside to this approach is the time taken for one image to be processed by DPT,
which can average around 3.7 seconds. Due to these limitations, implementing this method
might not be feasible, and further improvements can be made to increase the speed. The
baseline-mean-shift-top-third algorithm and the UNet model, both take significantly
less time than DPT, hence the author suggests some modifications for implementing this
setup in the conclusion.
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Figure 22: Comparison of DPT + baseline-mean-shift-top-third and UNet Model
Sky Segmentation, Regular Cases

Final Depth Image using the hybrid approach of adding DPT depth map predictions to the sky segmentation
results using both the baseline-mean-shift-top-third algorithm and the UNet model. These images are
considered regular cases that are easier to predict for the model, due to good camera conditions and
distinguishable objects.
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Figure 23: Comparison of DPT + baseline-mean-shift-top-third and UNet Model
Sky Segmentation, Challenging Cases

Final Depth Image using the hybrid approach of adding DPT depth map predictions to the sky segmentation
results using both the baseline-mean-shift-top-third algorithm and the UNet model. These cases are
considered challenging to predict for the model, due to poor camera conditions and not distinguishable
objects.

Figure 24: Example of eden dataset, RGB Image and Depth Image

(top-row)A random sample taken from the eden dataset, where the Features Image is an RGB image, and
the final Validation Image is a depth matrix containing values between 0 and 1, shown as an image here.
(bottom-row) The output of DPT, baseline-mean-shift-top-third, DPT + baseline-mean-shift-top-

third, UNet, and DPT + UNet respectively, where the input is a sample image from the eden dataset

.
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5 Conclusion

This thesis deals with multiple solutions to the problem of providing good occlusion in AR.
We subdivided the problem into two parts: detecting the sky region, and providing depth
for the ground region, and tackled each individual problem, before finally combining our
approaches to give an occlusion map.

5.1 Summary

First, we looked at how to efficiently segment the sky from the rest of the image and compared
using data analysis, what was going wrong with the images. We used a baseline algorithm
that was based on mean-shift-clustering algorithm, and then we modified it with a clas-
sification condition that assigned the sky region based on the largest cluster in the upper
half of the image. We named this algorithm baseline-mean-shift and considered it to be a
baseline for more advanced solutions. Based on the analysis results, we created two variants
of the algorithm, baseline-mean-shift-augmented and baseline-mean-shift-top-third

which used ranges of features of clusters and the top-third of the image instead of the top
half respectively. We found that baseline-mean-shift-top-third performs the best out of
all variations in terms of mean precision and recall.

We then looked at a deep learning method using UNets to segment the images in order to
resolve some of the issues that were inherently present due to the clustering approach, such
as classifying the wrong cluster as the sky and misclassifying clusters representing clouds as
non-sky, after which we looked at a robust comparison of both methods. We showed that
the UNet approach yields even better results than baseline-mean-shift-top-third since
it directly learns the structure of the image.

Since the original-dataset did not contain any representation of trees, we then fine-
tuned the UNet model using a small dataset (bachelor-dataset) to cover up for this.
We then compared this fine-tuned model to our original model and saw that the overall
performance on the original-dataset dropped, but the fine-tuned models did learn the
representation of the smaller dataset.

We then looked at how to estimate the depth of the ground, stating that the problem has
a harder version called Absolute Depth Estimation, and choosing to solve the easier version
first, namely Relative Depth Estimation. Since pre-trained models performed exceptionally
well, and due to paucity of time and resources, we looked at a pre-trained vision transformer
model called Depth Prediction Transformer, which performed well on outdoor images when
visually compared.

We finally combined the results from both these subtasks, using baseline-mean-shift-

top-third and UNet for sky segmentation, and DPT for depth prediction on the ground
images, and provided a mask for occlusion that can be used to solve the original problem, if
given some more information on the depth. We compared the results of our two approaches,
DPT + baseline-mean-shift-top-third and DPT + UNet against the original DPT model
on a depth dataset known as eden and inferred that the former model performs better
than the latter, and both approaches perform better than the original DPT mode. Upon
visually inspecting the final results, the author also stated that the use of DPT with a sky
segmentation algorithm yields better results than using pure DPT or pure sky segmentation
results since the artifacts produced by DPT can be improved upon using the sky-segmentation
methods.
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In the next section, we look at some of the limitations of this work.

5.2 Limitations and Future Outlook

The biggest drawback of this method is the inability to resolve the actual depth of pixels in
the image. We can ascertain the relative depth of each pixel, but to place the final object,
we require more information to be able to provide a relationship between the pixels. The
author assumes that the given depth map can be used in conjunction with another method
to finally give a binary occlusion map, based on the work by Masoumian et al. [41]. The
author recommends using object detection to certain the distance of certain pixels or objects
in an image and extrapolate it to find out the absolute depth from the relative depth map.
This is left as future work.

Considering the intended use case of an AR experience on a tablet or smartphone, an-
other problem identified in this approach pertains to the time of processing each frame. No
experiments were done to actually see what the performance would be on an edge device,
like a smartphone. The author assumes that the change in performance may render this
method inefficient unless it is further optimized or its complexity reduced. Another viable
option might be using a hybrid server-local setup where some computation can be done on
the local device, while some in a networked location. Further investigation is needed to back
this claim as well.

The author hopes to be able to fix these issues in a future endeavor, in order to finally solve
the problem of occlusion in AR for virtual object placement on edge devices like smartphones.
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[22] Stephanie Halbrügge, Hans Ulrich Buhl, Gilbert Fridgen, Paul Schott, Martin
Weibelzahl, and Jan Weissflog. How germany achieved a record share of renewables
during the covid-19 pandemic while relying on the european interconnected power net-
work. Energy, 246:123303, 2022. doi: 10.1016/j.energy.2022.123303.

[23] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice Horaud. Time-of-flight
cameras: principles, methods and applications. Springer Science & Business Media,
2012. doi: 10.1007/978-1-4471-4658-2.

[24] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003. doi: 10.1017/CBO9780511811685.

52

https://ths.rwth-aachen.de/wp-content/uploads/sites/4/Thesis_Geuenich.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/Thesis_Geuenich.pdf


[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[26] David Held and Gal Levin. Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(5):1151–1165, 2018. doi: 10.48550/arXiv.1609.05158.

[27] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. doi: 10.1109/CVPR.2017.243.

[28] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(03):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[29] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. pmlr, 2015.

[30] Frédéric Jean. Pymeanshift. https://github.com/fjean/pymeanshift, 2012.

[31] Dongki Jung, Jaehoon Choi, Yonghan Lee, Deokhwa Kim, Changick Kim, Dinesh
Manocha, and Donghwan Lee. Dnd: Dense depth estimation in crowded dynamic indoor
scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 12797–12807, 2021. doi: 10.1109/ICCV48922.2021.01256.

[32] Hirokazu Kato and Mark Billinghurst. Markerless tracking for augmented reality. Com-
munications of the ACM, 42(8):36–42, 1999. doi: 10.1007/978-1-4614-0064-6 11.

[33] Prakhar Kaushik, Alex Gain, Adam Kortylewski, and Alan Yuille. Understanding catas-
trophic forgetting and remembering in continual learning with optimal relevance map-
ping. arXiv preprint arXiv:2102.11343, 2021. doi: 10.48550/arXiv:2102.11343.

[34] Faisal Khan, Saqib Salahuddin, and Hossein Javidnia. Deep learning-based monocular
depth estimation methods—a state-of-the-art review. Sensors, 20(8):2272, 2020. doi:
10.3390/s20082272.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. doi: 10.48550/arXiv:1412.6980.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in Neural Information Processing Sys-
tems, 25:1097–1105, 2012. doi: 10.1145/3065386.

[37] Hoang-An Le, Thomas Mensink, Partha Das, Sezer Karaoglu, and Theo Gevers.
Eden: Multimodal synthetic dataset of enclosed garden scenes. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1579–1589,
2021. doi: 10.1109/WACV48630.2021.00162.

53

https://github.com/fjean/pymeanshift
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