
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

A NOVEL QUANTIFIER ELIMINATION ALGORITHM

FOR A PSEUDO-LINEAR A*E FRAGMENT OF REAL

ALGEBRA

Kai Hilgers

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Thomas Noll

Additional Advisor:
Valentin Promies

Aachen, 27.11.2023

Abstract

To compute minimizing reachability probabilities in rectangular automata
with random clocks, one must compute solutions for formulas from a specific
fragment of real algebra. This fragment appears when computing the set of
initial states from which a set of goal stats is reached unavoidably, under any
possible non-deterministic choice of evolution options. In our work, we for-
malized this A∗E fragment and devised a quantifier elimination algorithm to
compute the solution as a single linear constraint system. Since this field is
still developing, no standardized benchmarks have been established yet. Con-
sequently, to quantify the performance of multiple different implementations of
such algorithms, we have developed a method to generate benchmarks auto-
matically. Upon evaluating our algorithm, the algorithm generates up to (m

2
)2

constraints, where m is the number of goal constraints. Additionally, based on
our benchmarks, the runtime of our best algorithm is mainly affected by the
number of goal constraints and is not directly influenced by the dimensionality
of the problem.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennze-
ichnet.

Kai Hilgers
Aachen, den 27. November 2023

vi

Contents

1 Introduction 9
1.1 Background and Motivation . 9
1.2 Problem Statement . 10
1.3 Research Objectives . 11
1.4 Thesis Organization . 11

2 Theoretical Framework 13
2.1 Theoretical Models and Algorithms . 13
2.2 Critical Analysis of Existing Solutions 16

3 Proposed Quantifier Elimination Algorithm 17
3.1 Initial Observations . 17
3.2 Basic Algorithm . 21
3.3 Proof of Correctness . 23
3.4 Improved Algorithm . 27
3.5 Example Computation . 36

4 Experimental Evaluation 41
4.1 Methodology . 41
4.2 Results . 44
4.3 Discussion . 44

5 Conclusion 51
5.1 Summary of Contributions . 51
5.2 Implications of Findings . 51
5.3 Suggestions for Future Work . 51

Bibliography 53

Appendix 55

A Graphs 55

viii Contents

Chapter 1

Introduction

1.1 Background and Motivation

Hybrid stochastic automata are a modeling formalism for systems with mixed discrete-
continuous behavior that is influenced by uncertainties. Examples are regulating
power plants, controlling robotics movements, managing aircraft control systems, and
operating medical systems (see for example [HKD98]; [PSR21]). Such an automaton
describes states that encapsulate the current values of all variables in the system. One
can then label some of these states as safe when they correspond to a safe state of
the underlying system. The state of the automaton evolves over time and the change
in each variable is described by the rates. These rates can either be a fixed value
or chosen non-deterministically. Additionally, one usually extends the automaton to
multiple location, that each have different rates, introducing guards, jumps and labels
to connect them. However, for our application, we will only require to analyse a
single location. A state is called reachable if there exists a run of the automaton that
reaches this state. This process of describing a (safety) property of the system and
then proving that the system indeed satisfies the property is called formal verification.
It is imperative to formally verify safety-critical systems. Failure states, such as an
aircraft stalling due to erroneous engine control or a radiology machine administering
lethal doses of radiation due to software errors, must be prevented. In addition to
avoiding such failure states, it is necessary to provide formal proof that the system
is safe. Therefore, we can no longer develop systems by just modeling the systems’
dynamics. Instead, we must additionally formalize and verify their safety-critical
properties. Hybrid (stochastic) automata have proven to be a suitable modeling
language for this verification (see [CABls]). Though restricting the expressivity of
the dynamics of the systems, they provide the necessary robustness to verify the
safety of the system. While previous work has already found practical solutions to
the reachability problem (see [ACH+95]) - i.e., deciding whether a given bad state
is reachable for some initial value with a suitable specific dynamic - the problem of
whether a given state is reachable for some initial value under any of the possible
dynamics is still under investigation. In particular, we would like to describe the set
of states that reach a specified goal under any possible rate by a preferably small set of
constraints. A satisfying solution to this fragment allows for two key concepts. First
of all, the fragment describes a kind of certainty. Executions that start at any state
inside this set will eventually reach the goal. One can leverage this fact to compute a

10 Introduction

(possibly restricted) set of initial values from which the system will ultimately reach
the goal regardless of the chosen actual dynamics. This way, we can greedily choose
initial values under some objective function while ensuring the system eventually
reaches the goal. Conversely, one can also specify a bad state as the goal and use the
solution to the fragment to compute all points that lead to this unsafe state. One
can then leverage this information to modify the system in a way that these points
are not reachable, as they would only lead to a bad state regardless. Concretely,
an algorithm for computing the maximal reachability probabilities (see [DSÁR23])
has been successfully developed. The sub-problem we solve in this thesis will be
required for the related problem of computing minimal reachability probabilities. We
are interested in a single location of the automaton, where the rates are specified by
a set of linear constraints, and a goal is defined similarly as a set of linear constraints.
The problem of this minimal reachability can then be expressed as a formula in real
algebra. However, this formula still contains quantifiers that need to be eliminated for
the next steps of the algorithm. Therefore, we aim to develop a quantifier-elimination
algorithm for this specific subset of formulas in Real Algebra.

1.2 Problem Statement
The current state of a hybrid automaton can be described by a point in p ∈ Rn, where
R denotes the real numbers and n is the number of variables of the automaton. Now in
a given location of the automaton, the possible change in p called flow is described by
the rectangular rates of the specific location. The suitable rates r ∈ Rn are described
by a formula B, consisting of a conjunction of linear constraints. Now we are given
some goal which we want to reach at some time point t ∈ R≥0, where R≥0 denotes the
non-negative real numbers. This goal has to be convex and is described by a formula
A. We aim to compute a set of linear equations that restrict all points p such that for
each of them, for any rate r that satisfies B, some timepoint t′ ∈ R≥0 exists, where
the goal is reached. Specifically, we aim to compute a representation for the set of
solution points for formulae of the following form:

ψ := ∀r.(Br ≤ b︸ ︷︷ ︸
B

=⇒ ∃t.0 ≤ t ∧A(x+ tr) ≤ c︸ ︷︷ ︸
A

)

with B ∈ Rm×n, b ∈ Rm, A ∈ Rj×n, x ∈ Rn and c ∈ Rj for some m,n,j ∈ N, where
N represents the natural numbers.

While this formula is not linear, its solution set is. We therefore call the problem
pseudo-linear. To find this representation, we need to eliminate the quantifiers ∃t and
∀r. This step is called quantifier elimination. We will need to eliminate ∃t once in
the beginning and then eliminate ∀r. Since r is a vector of n variables we will need
n steps to then eliminate each component of r. Therefore, our quantifier elimination
method handles a specific A∗E fragment of such formulas from real algebra.

An example input could look like this.

ψ = ∀r.(


1 0
−1 0
0 1
0 −1

 r ≤


2
−1
2
2

 =⇒ ∃t.0 ≤ t ∧


−1 0
0 1
−1 1
1 0
4 −1

 (x+ tr) ≤


−4
−2
6
6
18

).

Research Objectives 11

Figure 1.1: Introductory example depicting the goal as the intersection of five linear
goal constraints shaded in the striped area. Additionally, the rates for each dimension
are given as intervals.

Where the rates are given as intervals rx ∈ [1,2], ry ∈ [−2,2].The goal is specified
by a set of linear constraints depicted in Figure 1.1. We need to find all points that will
reach this goal for some later timepoint t, no matter which actual rates are selected
for rx,ry.

1.3 Research Objectives
The main objectives of this research are as follows:

1. To create a quantifier elimination algorithm designed explicitly for the pseudo-
linear A*E fragment of real algebra.

2. Implement the algorithm and assess its computational efficiency and complexity.

3. Provide a way to generate benchmarks to test the algorithm’s performance.

4. Evaluate the algorithm under the benchmarks and asses its performance criti-
cally.

1.4 Thesis Organization
The rest of the thesis is organized as follows:

• Chapter 2: Theoretical Framework introduces the theoretical models and
algorithms we will use in the development of our algorithm and introduces the

12 Introduction

main theoretical framework of linear arithmetic. Additionally, we will give a
brief overview of related work.

• Chapter 3: Proposed Quantifier Elimination Algorithm contains the
main part of the thesis. Our algorithm is introduced, and its correctness is
proven. Additional improvements and their foundations are given.

• Chapter 4: Experimental Evaluation explains how the benchmarks are
generated, which assumptions were made, and gives an overview of the experi-
mental setup. These results are then displayed, evaluated, and discussed.

• Chapter 5: Conclusion summarizes the thesis’s contributions, discusses the
findings’ implications, and discusses ideas for future work.

Chapter 2

Theoretical Framework

We begin by providing a brief overview of the notation, models, and algorithms used
in this thesis.

2.1 Theoretical Models and Algorithms
Our work focuses on a special fragment of Real Algebra.

Definition 1 (Real Algebra). Real Algebra is the first-order theory over the real
numbers R described by the following context-free grammar.

Terms t := 0 | 1 | x | t+ t | t− t | t ∗ t
Constraints c := t ≤ t

Formulas φ := c | ¬φ | φ ∧ φ | ∃x.φ

Real Algebra is also called non-linear real arithmetic as opposed to linear real
arithmetic that does not allow multiplication between terms.

The solutions or models of such formulas are defined as follows.

Definition 2 (Models). Let ϕ1,ϕ2 be two formulas. If the formula ϕ1 ∧ ¬ϕ2 is un-
satisfiable, we say that ϕ1 models ϕ2 written as ϕ1 |= ϕ2.

Definition 3 (Satisfying Set). Let ϕ(x) be a formula of Real Algebra with free vari-
ables x. Then

Sol(ϕ) := {x ∈ Rn | x |= ϕ}
is the set of all x that model ϕ.

This thesis will use a fragment of Real Algebra that only allows multiplication
between certain kinds of terms. Before we define this pseudo-linear fragment, we will
first focus on the linear fragment.

For this, we will make use of matrices and vectors. All matrices will be printed as
bold, capitalized letters such as A. Vectors such as b ∈ Rm are shorthand notations
for matrices with one column b ∈ Rm×1. We denote with Ai ∈ R1×n the ith row
vector of a matrix A ∈ Rm×n. Given such a row vector Ai ∈ R1×n and a column
vector x ∈ Rn Aix denotes the scalar product of the two vectors and therefore,
Aix ∈ R. This scalar product is computed as

∑n
j=1 ai,jxj , where ai,j is the entry

found in the ith row and jth column of A.

14 Theoretical Framework

Definition 4 (Linear Constraint System LCS). Given some matrix A ∈ Rm×n and
a vector b ∈ Rm, we write

Ax ≤ b

to denote the conjunction

A1x ≤ b1 ∧A2x ≤ b2 ∧ . . .Amx ≤ bm.

We call such a formula a linear constraint system (LCS) with free variables x.

Additionally, we refer to LCS as sets of linear constraints and to their solution
sets as polytopes. One such constraint of the form Aix ≤ bi is also called a half-space,
as it divides the solution space into the two areas that satisfy or do not satisfy the
constraint.

Solving LCS is a broad topic encapsulated by the field of linear programming.
We will only briefly sketch linear programs and assume that some black-box solver
exists that computes the correct solution. One such method is the Simplex algorithm
[Dan90], which we do not introduce here.

Definition 5 (Linear Programming LP). A linear program is given as.

minimize
x

aTx

subject to Bx ≤ b

Where one wants to find a vector x that minimizes the given target function aTx
under some set of linear constraints Bx ≤ b.

Definition 6 (Vertices of a LCS). In the n-dimensional space, the intersection of
n linearly independent halfspaces defines a point. If such a point satisfies all other
half-spaces of the LP, we say it is a vertex. We define the set of points x that satisfies
these two conditions to be vertices(Ax ≤ b).

When one is interested in the values obtainable by applying functions to intervals
of values, interval arithmetic can be used. For this thesis, we are primarily interested
in linear combinations of intervals.

Definition 7 (Interval Arithmetic). Given an interval x = [xl, xh] where xl,xh ∈ Q,
with xl ≤ xh and some real number a, the multiplication a ∗ x = a ∗ [xl, xh] is defined
as

a ∗ x = [min(a ∗ xl, a ∗ xh),max(a ∗ xl, a ∗ xh)].
Additionally, for some second interval y = [yl, yh] where yl, yh ∈ Q and yl ≤ yh their
addition is defined to be

[xl,xh] + [yl,yh] = [xl + yl, xh + yh].

For these simple operations, all values of the resulting interval are indeed obtain-
able, i.e., for all z ∈ R we have that z ∈ x + y ⇐⇒ ∃x′.∃y′.xl ≤ x′ ≤ xh ∧ yl ≤
y′ ≤ yh ∧ z = x′ + y′. The same holds for the multiplication with constant factors.
Extensions such as exponential function, logarithm, etc., exist; however, one might
over-approximate the solution in these cases.

As linear real arithmetic is not expressive enough for our problem, and non-linear
real arithmetic is too complex to solve as a whole, we investigate a certain pseudo-
linear A*E ragment. Such a fragment allows us to restrict real algebra to formulas for
which we can develop algorithms using the existing methods of linear real arithmetic.

Theoretical Models and Algorithms 15

Definition 8 (Pseudo-linear). Given some formula ϕ with free variables x we call ϕ
pseudo-linear if there exists a LCS Ax ≤ c such that Ax ≤ c ≡ ϕ. I.e., the solutions
to ϕ can be equivalently described by a set of linear constraints.

Definition 9 (Our Pseudo-linear A*E Fragment of Real Algebra). We say that a
formula is an instance of the pseudo-linear A*E fragment of Real Algebra if it can be
rewritten to have the form of

ψ := ∀r.(Br ≤ b︸ ︷︷ ︸
B

=⇒ ∃t.0 ≤ t ∧A(x+ tr) ≤ c︸ ︷︷ ︸
A

)

with B ∈ Rm×n, b ∈ Rm, A ∈ Rj×n, x ∈ Rn and c ∈ Rj for some m,n,j ∈
N>0. Additionally, we require that Br ≤ b be bounded in every direction. I.e.
∀x0.∀r.∃t.B(x0 + rt) ̸≤ b, with x0,r ∈ Rn and t ∈ R≥0.

Example 1. The formula

∀rx,∀ry(rx ≤ 2 ∧ ry ≤ 4 =⇒ ∃t.0 ≤ t ∧ (x1 + trx ≤ 10 ∧ x2 + try ≤ 20))

is an instance of this fragment.

This fragment allows multiplication only for the particular variable t and the rate
variables. We will show that such formulas are indeed pseudo-linear. Additionally,
after a simple transformation to prenex normal form, these formulas will have the
form of ∀∗ followed by a single ∃. Hence, the complete name of the pseudo-linear A*E
fragment of Real Algebra.

2.1.1 Algorithms
Due to the pseudo-linear nature of the given problem, we can adapt or outright use
some of the algorithms developed for linear real arithmetic. We will outline these
algorithms here and make extensive use of them in our algorithm.

Quantifier Elimination Quantifier elimination simplifies logical formulas by elimi-
nating quantifiers (∀ and ∃). It is a transformation of a formula with quantifiers
into one that is equivalent without quantifiers. Equivalent in this sense means
that both formulas have the same solution space, i.e., any valid solution to ei-
ther formula also satisfies the other. This is a necessary step in many algorithms
that can not directly work on formulas with quantifiers. In our case, we will
prove that the results of our problem will always be describable by a set of linear
constraints.

Fourier-Motzkin Elimination (FM) [Fou27] Given a set of linear constraints and
a target variable to eliminate, the FM approach first divides the constraint set
into lower and upper bounds on the variable. Given a single constraint Aix ≤ bi
we can rewrite this as

∑
j ai,jxj ≤ bi. If we now want to eliminate xk, we obtain

xk ≤
bi−

∑
j ̸=k ai,jxj

ai,k
for ai,k > 0 and xk ≥

bi−
∑

j ̸=k ai,jxj

ai,k
for ai,k < 0. In the

case of ai,k = 0, the constraint does not depend on the target variable we want
to eliminate. Finally, we combine every lower and upper bound pairwise to
obtain an equivalent formula. For xk ≤

bi−
∑

j ̸=k ai,jxj

ai,k
and xk ≥

bl−
∑

j ̸=k al,jxj

al,k

we obtain the combined formula to be
bl−

∑
j ̸=k al,jxj

al,k
≤ xk ≤

bi−
∑

j ̸=k ai,jxj

ai,k
and

16 Theoretical Framework

therefore also
bl−

∑
j ̸=k al,jxj

al,k
≤ bi−

∑
j ̸=k ai,jxj

ai,k
. While this does give the correct

result, the runtime is doubly exponential when eliminating multiple variables.
If we need to eliminate d variables in n constraints, we obtain at most 4(n/4)2

d

,
leading to a combinatorial blow-up. In our case, we will use the main ideas of
FM sparingly, using it only for a single elimination. This then only generates a
polynomial increase in constraints.

Virtual Substitution [CÁ11] As a quantifier elimination method, Virtual Substi-
tution introduces test candidates into the formulas to differentiate sign invari-
ant regions. By successively eliminating quantifiers, the result will eventually
be obtained as a large disjunction. However, this poses a disadvantage, as dis-
junctions are generally more costly to check for satisfiability. Additionally, we
want to receive a polytope as the solution for our application, which should be
a conjunction of half-spaces instead.

2.2 Critical Analysis of Existing Solutions
Since we do not have only linear constraints, but also allow multiplication with the
time variable t, we can not apply FM directly. However, as a Quantifier Elimination
Method, the Virtual Substitution algorithm is applicable to our problem. It can,
however, not leverage the structure of the problem to speed up the algorithm or
reduce the complexity of the solution. This becomes apparent in the first steps of
the algorithm. When eliminating the t variable, the Virtual Substitution algorithm
introduces a test case for each constraint of the goal. Therefore, even after only
eliminating t, the resulting formula will have grown to a factor of m2, where m is the
number of goal constraints. The elimination of the rate variables then increases the
size of the formula exponentially in the number of eliminated variables. Therefore,
using the Virtual Substitution approach on larger problem instances is not advisable.

Chapter 3

Proposed Quantifier
Elimination Algorithm

3.1 Initial Observations
Definition 10 (Problem Definition). Given a formula ψ of the form

ψ := ∀r.(Br ≤ b︸ ︷︷ ︸
B

=⇒ ∃t.0 ≤ t ∧A(x+ tr) ≤ c︸ ︷︷ ︸
A

)

where x ∈ Rn,B ∈ Rm×n,b ∈ Rn,A ∈ Rk×n, c ∈ Rk compute an equivalent LCS
Hx ≤ h such that Hx ≤ h ≡ ψ(x)

In this chapter, A, B, b, c, x, r and ψ(x) will always be defined according to the
previous definition. Therefore, A, c refer to the goal of the problem, B, b give the
restrictions on the rates r and lastly, x are the solution points that we are interested
in.

Additionally, A describes a formula, with a vector of free variables x′, such that
A(x′) holds, iff Ax′ ≤ c. Similarly, we define B to be a formula with exactly one
vector of free variables r′ such that B(r′) holds iff Br′ ≤ b

Finally, in the following sections, we refer to instantiated problems of this form as
problem instance.

We begin by proving that the quantifier elimination problem for our particular
fragment is worth investigating. We want to prove that the solution to our problem
will always be convex and, therefore, have a representation consisting of linear con-
straints - without any quantifiers. While this does not guarantee that we will find a
finite definition, it does prove to be a good starting point. We will later show that
using our algorithm will give a finite representation.

Lemma 1. The set {x ∈ Rn | ∀r.(Br ≤ b =⇒ ∃t.0 ≤ t∧A(x+ tr) ≤ c)} is convex.

Proof. Given a problem instance, as

ψ = ∀r.(Br ≤ b =⇒ ∃t.0 ≤ t ∧A(x+ tr) ≤ c).

If the problem is unsatisfiable, the solution will be empty and thus convex. Therefore,
assume two points p1,p2 ∈ Rn that satisfy ψ. To prove the statement, we have to
show, for any 0 < λ < 1 with λ ∈ R that λp1 + (1− λ)p2 satisfies ψ.

18 Proposed Quantifier Elimination Algorithm

Given a rate vector r ∈ Rn with Br ≤ b we define p′
1,p

′
2 ∈ Rn to be two arbitrary

points that satisfy Api
′ ≤ c and pi

′ = pi + tir for some ti ≥ 0 for i ∈ {1,2}. Since
p1,p2 are solutions to the instance, the existence of p′

1,p
′
2 is guaranteed.

We now need to show that there exists some t ∈ R≥0, such that

A(λp1 + (1− λ)p2 + tr) ≤ c.

For this, we use the convexity of the original constraints Ax ≤ c. We will show that
t := λt1 + (1 − λ)t2 is a valid choice. Since t1,t2 ≥ 0 and 0 < λ < 1 it holds that
λt1 + (1− λ)t2 ≥ 0

λp1 + (1− λ)p2 + tr = λp1 + (1− λ)p2 + (λt1 + (1− λ)t2)r
= λ(p1 + t1r) + (1− λ)(p2 + t2r)

= λp1
′ + (1− λ)p′

2

As our goal A is convex, and we have a linear combination of two solution points, the
resulting solution is valid - proving the statement.

There are some trivial cases we want to exclude from our future proofs, such as
when no valid rates exist or when the goal is unsatisfiable.

Lemma 2. If B is unsatisfiable then ψ ≡ True.

Therefore, we assume B to be satisfiable from now on.

Lemma 3. If A is unsatisfiable (and B is satisfiable) then ψ ≡ False.

Therefore, we assume A will also be satisfiable.

Lemma 4. Every solution to the goal A is already a solution to ψ: ∀x ∈ RnA(x) =⇒
ψ(x).

Proof.

Since A(x) holds, we can choose t = 0 to obtain
∃t.0 ≤ t ∧A(x+ tr) ≤ c,

=⇒ ∀r.(Br ≤ b =⇒ ∃t.0 ≤ t ∧A(x+ tr) ≤ c)

=⇒ ψ(x)

One last useful observation can be obtained when considering each constraint of
the goal. If it is possible to move away from every constraint (i.e. for each row i there
exists a rate r such that Air ≥ 0), then increasing t will not help in satisfying the
problem.

Lemma 5. If for each i ∈ {1, . . . ,m} there is r ∈ Rn with B(r) and Air ≥ 0, then
ψ(x) ≡ A(x).

Proof. A(x) |= ψ(x) follows from Lemma 4.
For the ψ(x) |= A(x) direction let us consider an arbitrary row Ai of A

Since Air ≥ 0, is satisfiable with some r′ such that B(r′) we can observe for this row of A
ψ |= ∃t.0 ≤ t ∧Ai(x+ tr′) ≤ ci

⇔ ψ |= ∃t.0 ≤ t ∧Aix+Aitr
′ ≤ ci

=⇒ ψ |= Aix ≤ ci
Since this holds for any row Ai it follows that ψ(x) =⇒ A(x)

Initial Observations 19

Figure 3.1: Goal with constraint 7 ≤ x+ y

3.1.1 Handling a Single Constraint

To understand the concept of the algorithm, let us first consider the case where the
goal is described by just one inequality 7 ≤ x+ y (see Figure 3.1).

We are now interested in finding all points x,y such that

∀r.(Br ≤ b =⇒ ∃t.0 ≤ t ∧ 7 ≤ x+ rxt+ y + ryt). (3.1)

We deliberately ignore the restriction of Br ≤ b for now, such that all possible cases
are generated. While the original constraint was a lower bound on x and y, it is not
necessarily a lower bound on t. Instead, after rewriting, we obtain

0 ≤ t ∧ 7− x− y ≤ t(rx + ry). (3.2)

Now, depending on the sign of rx + ry, we might obtain a lower or an upper bound
on t. Or if rx + ry = 0, then t appears only in 0 ≤ t, which is satisfiable by e.g. the
value 0 for t.

These are the three possible cases to consider (see Figure 3.2).

(a) (b) (c)

Figure 3.2: The three possible cases for a single constraint and some undetermined
rates. a) represents the case rx = −ry where the states evolve parallel to the goal
constraint. b) shows rates rx > −ry where every state evolve towards the goal. c)
shows the opposite case rx < −ry where the states evolve away from the goal.

20 Proposed Quantifier Elimination Algorithm

1. rx + ry = 0 (see Figure 3.2 a)

The simplest case is obtained when rx = −ry. This case corresponds to the
rate being parallel to the hyperplane of the goal constraint. Hence, when we
keep increasing t, we will move parallel to the goal. Therefore, we will only
reach the goal if we start within the goal. Moreover, neither will we leave the
goal if we start in the goal initially. The only solutions for x are those already
satisfying the goal constraint 7 ≤ x+ y. Inequality 3.2 also reflects this result,
as substituting rx = −ry returns the original constraint 7 ≤ x+ y.

2. rx + ry > 0 (see Figure 3.2 b)

Next is the intuitive case of the constraint being a lower bound for t. For this
to hold, we require rx > −ry. In the visual representation, this equates to all
directions that point toward the hyperplane of the given goal constraint. We
obtain 7−x−y

rx−ry
≤ t. Notice that, for only one constraint, this inequality will

always have a valid solution, as we can keep increasing the value of t until the
goal’s constraint is satisfied.

3. rx + ry < 0 (see Figure 3.2 b)

The last case is obtained for rx < −ry. The visual representation is that the rate
moves away from the hyperplane of the goal. Therefore, at some point, the goal
will not be satisfied anymore. However, this is not an issue since we only require
that the goal be reached at some point. Instead, the restrictive part becomes
that any point outside the goal will never reach the goal. Therefore, this case
also returns the original constraint. It is, however, computed differently. First,
the new case is generated: t ≤ 7−x−y

rx+ry
. Now, we use FM to combine this case

with the requirement of 0 ≤ t to obtain 0 ≤ y−x+7
rx−ry and after rewriting: 7 ≤ x+y.

In general, it will not always be necessary to generate all three of these cases.
Instead, the rate restrictions Br ≤ b that we ignored in this example will determine
which cases need to be considered.

3.1.2 Handling Pairs of Constraints

We will later show that the problem reduces to an intersection over solutions for pairs
of constraints. We will now use similar observations from the previous section to
combine two arbitrary constraints.

The FM approach already points us to the relevant cases, as in FM, we only
combine lower and upper bounds. Therefore, when handling two constraints, they
can only interact with each other if they form opposite bounds on t.

Let us focus on the ith row (Ai(x + tr) ≤ ci) of A and consider the second
constraint later. After distributing, we obtain Aix +Aitr ≤ ci. Now to apply FM,
we need to isolate t. This poses a problem since we need to know the sign of Air as
the inequality might flip when dividing by Air. Therefore, our single constraint can
pose different kinds of bounds (lower, upper, or both) depending on the sign of Air.
We introduce up to three new cases to distinguish these so-called precondition.

Case 1. Air > 0 we obtain an upper bound t ≤ ci−Aix
Air

.

Case 2. Air = 0 does not involve t and we obtain Aix ≤ ci.

Basic Algorithm 21

Case 3. Air < 0 we obtain a lower bound ci−Aix
Air

≤ t.

However, we need to generate only the cases where the precondition is achievable
under the given rate restriction B(r). In the general case, we will need to solve the
corresponding LCS to determine, if each of the preconditions is indeed obtainable.
However, for the common case, where the rate restrictions B(r) define a box (each
dimension does not depend on any other dimension and is given by an interval, for
example rx ∈ [−1,2], ry ∈ [1,2]), we can use interval arithmetic. We can obtain one
interval representing all possible values of Air by substituting the intervals for the
rates and adding their linear combinations. We can now test whether this interval
contains negative or positive values and check if 0 is contained.

In the second case, we notice that t is eliminated already. We can immediately
add the resulting inequality to our solution constraints. Again we observe that the
added constraint is indeed one of the original goal constraints.

We will now focus on the upper bounds on t, which we obtained from the first
case Air > 0 with t ≤ ci−Aix

Air
. Remember that 0 ≤ t is also one of our constraints.

By applying FM, we can obtain 0 ≤ ci−Aix
Air

. Making use of the case condition we
obtain 0 ≤ ci −Aix. Hence, we obtain the original constraint again:

Aix ≤ ci.

Finally, when considering the lower-bounds ci−Aix
Air

≤ t for Air < 0, we will have
to also consider all upper bounds on t. For this, we show the combination with a
second row of A, say Aj(x + tr ≤ cj) where Ajr > 0 and thus t ≤ cj−Ajx

Ajr
. We can

now combine the two results using FM to obtain

ci −Aix

Air
≤ cj −Ajx

Ajr
.

Using the respective case conditions, we can derive the following result

(cj −Ajx)Air ≤ (ci −Aix)Ajr. (3.3)

Additionally, it will also be useful to present the inequality in a slightly different form
of

Air

Ajr
(cj −Ajx) ≤ (ci −Aix). (3.4)

We have successfully eliminated all occurrences of t. However, we must still elim-
inate the rate variable r in the linear combinations Air and Ajr.

To obtain a first result, we will add the constraints Air < 0,Ajr > 0 to our
rate restriction B and add for each of the resulting vertices a new constraint to our
solution, where we substitute the values r with the corresponding vertex values. This
will add exponentially many constraints for each combination. In a later section, we
will discuss how to drastically lower this number. However, this can be the basis for
our correctness proof.

3.2 Basic Algorithm
We briefly sketch how this first version of our algorithm works. We get as input
B ∈ Rm×n,b ∈ Rn,A ∈ Rk×n, c ∈ Rk. We now compute for each pair of constraints

22 Proposed Quantifier Elimination Algorithm

Ai,Aj their combination as outlined by the previous two sections. We begin by
describing the combination of i = j. In this case, we combine the constraint with
the additional requirement of 0 ≤ t. Using our previous results, we add to our
computed result the constraint Aix ≤ ci, if Br ≤ b ∧ Air ≥ 0 is satisfiable. For
the pairs of constraints, where i ̸= j, we first check which cases are possible to be
generated for each constraint. Therefore, we test if B(r) ∧ Akr ∼ 0 is satisfiable,
for ∼∈ {< , = , >} and k ∈ {i,j}. In the common case, where our B(r) describes
rates obtained by intervals, we can use interval arithmetic to compute this efficiently.
Otherwise, we will have to solve the corresponding linear program. Now recall that
the Akr > 0 case induces an upper bound on t and the Akr < 0 case introduces a
lower bound on t. Finally, the Akr = 0 case gives us back the original constraint, so
we can add it to our solution. Now if Air < 0 and Ajr > 0 we obtain the constraint
(cj −Ajx)Air ≤ (ci −Aix)Ajr. We will then substitute the values of Air and Ajr
with every vertex of B(r) ∧Air ≤ 0 ∧Ajr ≥ 0 and add each of these constraints to
our solution. In our proof, we will argue why this is correct. Finally, we return the
conjunction of all the added constraints as our result.

Algorithm 1 Basic Version of our Algorithm

procedure Solve(B,b,A,c)
result← True
for (i,j) ∈ {1, . . . ,m} × {1, . . . ,m} do

if i == j then
if Br ≤ b ∧Air ≥ 0 satisfiable then

result← result ∧Aix ≤ ci
end if

else
if Br ≤ b ∧Air < 0 ∧Ajr > 0 satisfiable then

for (vi,vj) ∈ vertices(Br ≤ b ∧Air ≤ 0 ∧Ajr ≥ 0) do
result← result ∧ (cj −Ajx)vi ≤ (ci −Aix)vj

end for
end if

end if
end for
return result

end procedure

Some key assumptions which still need to be substantiated during our proof of
correctness are the following:

1. It is admissible to consider only pairs of constraints.

2. Enumerating the vertices and adding a corresponding constraint gives the cor-
rect constraints for the combination.

3. We can add the generated constraint to our solution without requiring any
preconditions on the rates that define under which assumptions the constraint
was generated.

Proof of Correctness 23

3.3 Proof of Correctness
We will now show that the basic algorithm presented earlier is correct. This means
that the solutions which our algorithm produces, are exactly the solutions specified
by the given problem instance. We begin by defining this behavior formally and then
use these definitions in our proof.

Definition 11 (Solution Set). We define

SolB(A) := {x ∈ Rn | ∀r.(B(r) =⇒ ∃t.0 ≤ t ∧ A(x+ tr))}

and call it the solution set.

Notice that SolB(A) = Sol(ψ). However, the explicit dependency on the notion
of B and A will be useful for our proof.

Additionally, we are ultimately interested in obtaining the LCS that describes the
solution set. However, for the correctness proof it will be easier to represent the
solution as a set of points instead. We will later explain how to obtain the LCS
without any additional computations.

Definition 12 (Row Selection). Let i,j ∈ {1, . . . ,m}. We define

A[i,j] :=

[
Ai

Aj

]
x ≤

[
ci
cj

]
.

Additionally, we define A[i] := A[i,i].

Definition 13 (Vertex Enumeration). Given a formula ϕ(r) and an LCS B(r), where
r ∈ Rn is a vector of variable rates, we define the enumeration of B to be

SolB(ϕ,r) := Sol

 ∧
v∈vertices(B)

ϕ[r/v]


where ϕ[r/v] denotes the replacement of r in ϕ by v.

Definition 14 (Extended B). Given the original rate constraints B:

Br ≤ b

we define the extension of B with respect to the two additional rows Air < 0, 0 < Ajr
to be

B ∧Air < 0 ∧ 0 < Ajr :=

 B
Ai

−Aj

 r ≤

b0
0

 .
Notice that this definition is not just the straightforward process of adding two

rows to the constraint system. Initially, we are given strict inequalities and relax
these to be non-strict. In general, this is, of course, not equivalent. However, for
our problem, we can use the relaxed inequalities due to a particular property of the
system which we will explain shortly. This particular syntax will only be used in the
following definition.

We define the CombineB operator that combines a lower bound on t with an upper
bound. The motivation for this is explained in Subsection 3.1.2 and the particular
Equation 3.3.

24 Proposed Quantifier Elimination Algorithm

Definition 15 (Combination of two rows). We define

CombineB(Ai,Aj,ci,cj ,x,r) := SolB∧Air<0∧0<Ajr ((cj −Ajx)Air ≤ (ci −Aix)Ajr, r) .

Now, if in the relaxed problem Air = 0 is achievable, we obtain 0 ≤ (ci −Aix).
In the strict problem, however, we would only achieve infinitesimally small values.
However, in the limit, since we can keep decreasing Air (as otherwise, Air = 0 would
not be achievable in the relaxed problem) we will also reach 0 ≤ (ci − Aix) for
sufficiently small values. A similar argument holds for the Ajr = 0 case. Finally, in
the next lemma, we will show that if Akr = 0 for k ∈ {i,j} then we will generate
the corresponding constraint, where one side becomes 0 anyways. Ultimately, we will
show that we can even get rid of the CombineB cases that permit the Akr = 0 cases.
Therefore, this quirk in notation is only relevant for the initial proof.

The solution for a single row is the original constraint if a rate exists that does not
decrease the distance from the constraint in each time step t, or every point is valid
when no such rate exists. We also refer to this as the single-dimensional problem.

Lemma 6. Let i ∈ {1, . . . ,m}. The Solution to the single-dimensional Problem A[i]
is

SolB(A[i]) =

{
Sol(Aix ≤ ci) if B(r) ∧ 0 ≤ Air satisfiable
Rn otherwise

.

Proof. If there is r ∈ Rn such that B(r) holds and 0 ≤ Air then SolB(A[i]) =
Sol(Aix ≤ ci) immediately follows from Lemma 5.

Otherwise, for all r ∈ Rn with B(r) we have Air < 0 and thus

SolB(A[i, i]) = {x ∈ Rn | ∀r.B(r) =⇒ ∃t.0 ≤ t ∧ A[i](x+ tr)}
= {x ∈ Rn | ∀r.B(r) =⇒ ∃t.0 ≤ t ∧Ai(x+ tr) ≤ ci ∧Ai(x+ tr) ≤ ci}
= {x ∈ Rn | ∀r.B(r) =⇒ ∃t.0 ≤ t ∧Ai(x+ tr) ≤ ci}
= {x ∈ Rn | ∀r.B(r) =⇒ ∃t.0 ≤ t ∧Aix+ tAir ≤ ci}

=
⋂

r s.t B(r)

{x ∈ Rn | ∃t.0 ≤ t ∧Aix+ tAir ≤ ci}

=
⋂

r s.t B(r)

{x ∈ Rn | ∃t.0 ≤ t ∧ ci −Aix

Air
≤ t}

=
⋂

r s.t B(r)

Rn

Hence, we obtain

SolB(A[i]) =

{
Sol(Aix ≤ ci) if B(r) ∧ 0 ≤ Air satisfiable
Rn otherwise

The solution to a problem instance with two constraints has to satisfy both single-
dimensional instances independently, as well as satisfy the combine property, which
states that if it is possible to find a rate that increases the distance from one constraint
while decreasing the distance to the other, then the solution can only consist of those
points that satisfy the increasing constraint before violating the decreasing one.

Proof of Correctness 25

Theorem 1. Let

CombineB,i,j :=

{
CombineB(Ai,Aj,ci,cj ,x,r) if B(r) ∧Air < 0 ∧ 0 < Ajr satisfiable

Rn otherwise
.

Then

SolB(A)[i, j] = SolB(A[i]) ∩ SolB(A[j]) ∩ CombineB,i,j ∩ CombineB,j,i

Proof.

SolB(A[i, j])
Definition 11

= {x ∈ Rn | ∀r.B(r) =⇒ ∃t.0 ≤ t ∧ A[i, j](x+ tr)}
Definition 12

= {x ∈ Rn | ∀r.B(r) =⇒ ∃t.0 ≤ t ∧Ai(x+ tr) ≤ ci ∧Aj(x+ tr) ≤ cj)}

=
⋂

r s.t B(r)

{x ∈ Rn | ∃t.0 ≤ t ∧Ai(x+ tr) ≤ ci ∧Aj(x+ tr) ≤ cj}

When eliminating t, we must combine every lower bound with every upper bound.
The only way for the Ai and Aj row to interact with each other is therefore, when
either Air < 0 ∧ 0 < Ajr or Ajr < 0 ∧ 0 < Air. In all other cases, SolB(A[i, j]) =
SolB(A[i]) ∩ SolB(A[j]) Therefore, consider the cases

Case 1 Air < 0 ∧ 0 < Ajr

{x ∈ Rn | ∃t.0 ≤ t ∧Ai(x+ tr) ≤ ci ∧Aj(x+ tr) ≤ cj}

= {x ∈ Rn | ∃t.0 ≤ t ∧ ci −Aix

Air
≤ t ∧ t ≤ cj −Ajx

Ajr
} Air<0∧0<Ajr

= {x ∈ Rn | ci −Aix

Air
≤ cj −Ajx

Ajr
∧ 0 ≤ cj −Ajx

Ajr
} FM

= {x ∈ Rn | ci −Aix

Air
≤ cj −Ajx

Ajr
} ∩ SolB(A[j])

= {x ∈ Rn | (cj −Ajx)Air ≤ (ci −Aix)Ajr} ∩ SolB(A[j])

We can drop ∩SolB(A[j]) as we will compute the intersection with it anyway.
Hence, we are currently computing⋂

r∈Rn s.t. B(r)∧Air<0∧0<Ajr

{x ∈ Rn | (cj −Ajx)Air ≤ (ci −Aix)Ajr}

Since B(r) ∧ Air < 0 ∧ 0 < Ajr is convex, we will only be interested in the
vertices of the resulting polytope. The reason for this is as follows. Assume some
r′ that is not a vertex of the polytope. Then, since Ai ̸= Aj, a direction d′ exists
that does not change the value of one of the terms. I.e., either Ai(r

′+d′) = Air
′

or Aj(r
′ + d′) = Ajr

′. If we follow this direction in any way, either increasing
or decreasing one of the values, we will obtain a stronger inequality than what
we achieved with r′. We can repeat this until we hit one of the vertices in this
projection. Finally, the other dimensions not included in either Ai or Aj can be
chosen arbitrarily at a vertex since they do not influence the result. Therefore,

26 Proposed Quantifier Elimination Algorithm

it is sufficient to substitute the vertices of B(r) ∧Air < 0 ∧ 0 < Ajr.

Sol

 ∧
v∈vertices(B(r)∧Air<0∧0<Ajr)

(cj −Ajx)Aiv ≤ (ci −Aix)Ajv


= SolB∧Air<0∧0<Ajr ((cj −Ajx)Air ≤ (ci −Aix)Ajr, r) Definition 13

= CombineB(Ai,Aj,ci,cj ,x,r) Definition 15

Case 2 Air > 0 ∧ 0 > Ajr Same as Case 1, via substituting i with j and vice versa.

Therefore, we obtain

SolB(A)[i, j] = SolB(A[i]) ∩ SolB(A[j]) ∩ CombineB,i,j ∩ CombineB,j,i

So far we have shown how to compute the result for a single constraint and for
a pair of constraints. We now want to leverage this and show that it is sufficient
to consider only the intersection over all pairs of constraints instead of the whole
constraint set.

Theorem 2. SolB(A) =
⋂

i,j SolB(A[i, j])

Proof. We will show both inclusions to prove the claim.

Case 1 SolB(A) ⊆
⋂

i,j SolB(A[i,j])

This direction immediately follows from the definition of SolB(A[i,j]), since we
obtain A[i,j] by selecting only two constraints from A it holds that A(x) =⇒
A[i,j](x). Hence, for any i,j SolB(A) ⊆ SolB(A[i,j]) and therefore also

SolB(A) ⊆
⋂
i,j

SolB(A[i,j])

Case 2 SolB(A) ⊇
⋂

i,j SolB(A[i,j])

Assume x ∈
⋂

i,j SolB(A[i,j]). We will now show that then also x ∈ SolB(A).
To demonstrate this, we will use a proof-by-contradiction.

Assume that x ̸∈ SolB(A) then x |= ¬ψ and

∃r.(Br ≤ b ∧ ∀t.(t < 0 ∨ ¬(A(x+ tr) ≤ c))) holds.

Let r′ be such a rate, then for all 0 ≤ t, we obtain ¬(A(x + tr′) ≤ c). Let us
consider how this can be the case. Consider an arbitrary index i of A. Since we
have a given r′, we can rewrite Ai into their possible cases.

Air
′ > 0 : t ≤ ci −Aix

Air′

Air
′ = 0 : Aix ≤ ci

Air
′ < 0 :

ci −Aix

Air′
≤ t

Improved Algorithm 27

We can exclude the case where all Air
′ = 0, because A would be unsatisfiable

then. In the other two cases, the variable t is the only one not fixed. This
is because ci, Ai, x, and r′ are either constant or given. Therefore, we can
derive numerical upper and lower limits for t. For ¬A to be true, there is only
one possible scenario: at least two of these bounds must conflict. Furthermore,
this can only be the case when there exist two rows, Ai,Aj with Ajr

′ > 0 and
Air

′ < 0 with cj−Ajx
Ajr′

< bi−Aix
Air′

After rewriting, we obtain

(cj −Ajx)Air > (ci −Aix)Ajr. (3.5)

But now we arrive at a contradiction, as x ∈
⋂

i,j SolB(A[i,j]) then also x ∈
SolB(A[i,j]) since i ̸= j and B(r′)∧Air

′ < 0∧ 0 < Ajr
′ is satisfiable, it follows

that
x ∈ CombineB(Ai,Aj,ci,cj ,x,r)

but then also

x ∈ SolB∧Air<0∧0<Ajr((cj −Ajx)Air ≤ (ci −Aix)Ajr))

which immediately contradicts Equation 3.5. Therefore, the assumption x ̸∈
SolB(A) leads to a contradiction proving the claim SolB(A) ⊇

⋂
i,j SolB(A[i,j])

and finally

SolB(A) =
⋂
i,j

SolB(A[i,j])

Notice that now the solution is described by the pairwise intersection over essen-
tially CombineB operations. Which themselves represent the solution of halfspace
constraints. Therefore, our algorithm indeed returns an LCS that corresponds to the
correct solution.

3.4 Improved Algorithm
A problem with the current implementation is that we generate a lot of constraints.
While it is possible to use algorithms that compute a minimal set of constraints that
still have the same solution, these algorithms work best on a small set of constraints.
Therefore, it is worth considering if we can lower the amount of generated constraints
by avoiding some calculations. Currently, in the worst case, we generate for each
pair of constraints up to k constraints, where k is the number of vertices defined by
our rate restriction B. Since the intersection of n hyperplanes defines a vertex, we
have, in the worst case

(
m+2
n

)
possible vertices to try. The first place to look for a

reduction in this amount is to consider if we need all of the k constraints for each pair
of constraints in the goal. Consider the following simple example (see Figure 3.3):

rx ∈ [1,2], ry ∈ [−2,2], 4 ≤ x, 2 ≤ y

Now following our algorithm we compute the following bounds: −4+x
−rx

≤ t (since
rx > 0 for all cases) and the case distinction for ry yields:

28 Proposed Quantifier Elimination Algorithm

Figure 3.3: Visual representation of a two-dimensional example problem. Given are
a set of two constraints and the corresponding rates of the dimensions.

ry > 0 causes −2+y
−rx

≤ t,

ry = 0 causes 2 ≤ y,

ry < 0 causes t ≤ −2+y
−ry

We will focus on the CombineB part for now, hence we only consider the pair −4+x
−rx

≤ t
and t ≤ −2+y

−ry
, where ry < 0. After combining them, we obtain - according to

Definition 15

SolB∧ry<0∧0<rx

(
−ry
−rx

(−4 + x) ≤ (−2 + y), r

)
.

Now, according to Definition 13, we obtain

Sol

 ∧
v∈vertices(B∧ry<0∧0<rx)

−vy
−vx

(−4 + x) ≤ (−2 + y)

 .

Notice that this is not well defined, for the case, where vx = 0. However, we will
handle such cases in a pre-computation, that we give as a further optimization step
later. Therefore, for now, assume that vx ̸= 0.

Computing vertices(B(r) ∧ ry < 0 ∧ 0 < rx) gives us the following vertices to
substitute: {(1,0),(1,− 2),(2,0),(2,− 2)}. After substituting, we obtain the following
set of constraints.

0

−1
(−4 + x) ≤ −2 + y

2

−1
(−4 + x) ≤ −2 + y

0

−2
(−4 + x) ≤ −2 + y

2

−2
(−4 + x) ≤ −2 + y

Improved Algorithm 29

Figure 3.4: Extension of Figure 3.3 with the added constraints of the CombineB
operation. The added constraints are denoted by C[rx,ry], where (rx,ry) is the corre-
sponding vertex that generated the constraint.

After simplifying, we obtain the following:

2 ≤ y
10 ≤ 2x+ y

2 ≤ y
6 ≤ x+ y

When closely inspecting the generated constraints (see Figure 3.4), we can notice
an interesting fact. In the region of x,y, where x ≤ 4 and 2 ≤ y, the constraint
10 ≤ 2x + y implies all other constraints, i.e., we would only require this constraint
in our solution - all other constraints are redundant. On the other hand, in the
4 ≤ x, y ≤ 2 region, the 10 ≤ 2x+y constraint is implied by all others, and one of the
2 ≤ y constraints dominates the rest. Finally, we can make two more observations
about the other two regions. In the x ≤ 4, y ≤ 2 region, every point is excluded
by some constraint, while in the 4 ≤ x, 2 ≤ y region, every point is included in
our solution (see Figure 3.5). However, when we also take into account the 0 ≤ t
constraint and combine it with t ≤ −2+y

−ry
from ry < 0 we obtain 2 ≤ y, which is

the dominating constraint in the 4 ≤ x, 2 ≤ y region. Therefore, we argue that
the CombineB operation should only require to return one constraint - in our case,
10 ≤ 2x+ y.

For the formal proofs, we will consider the slightly adapted CombineB operator.

CombineB(Ai,Aj,ci,cj ,x,r) = SolB(r)∧Air<0∧0<Ajr

(
Air

Ajr
(cj −Ajx) ≤ (ci −Aix), r

)

30 Proposed Quantifier Elimination Algorithm

Figure 3.5: Visual representation of the rx ∈ [1,2], ry ∈ [−2,2],4 ≤ x, 2 ≤ y problem,
highlighting the four specific regions. The dominating constraints are marked.

The following lemmas cover our observations about the four possible regions.
Starting with the region where every point gets excluded.

Lemma 7. Let x ∈ Rn with ci −Aix < 0 ∧ cj −Ajx < 0.
Then x ̸∈ CombineB(Ai,Aj,ci,cj ,x,r)

Proof. We consider the signs of individual terms in the constraint:

<0︷︸︸︷
Air

Ajr︸︷︷︸
>0

(cj −Ajx︸ ︷︷ ︸
<0

) ≤ (ci −Aix︸ ︷︷ ︸
<0

)

Hence, the left side is positive, while the right is negative. Therefore, the formula is
unsatisfiable - proving that x can not be a model of it.

Next, we consider the region where every point is included.

Lemma 8. Let x ∈ Rn with ci −Aix ≥ 0 ∧ cj −Ajx ≥ 0.
Then x ∈ CombineB(Ai,Aj,ci,cj ,x,r)

Proof. Again, considering the signs of the factors:

<0︷︸︸︷
Air

Ajr︸︷︷︸
>0

(cj −Ajx︸ ︷︷ ︸
≥0

) ≤ (ci −Aix︸ ︷︷ ︸
≥0

)

Improved Algorithm 31

The left side is non-positive, while the right is non-negative. Hence, the formula is a
tautology - proving that x is a model of it.

Next, we will deal with the region where the constraint that gives an upper bound
on t is already violated.

Lemma 9. Let x ∈ Rn with cj−Ajx < 0 and let B(r)∧0 ≤ Ajr be satisfiable. Then
x ̸∈ SolB(A)

Proof. We use a proof-by-contradiction. Assume x ∈ SolB(A) then also, using Theo-
rem 2, x ∈

⋂
i,j SolB(A[j, j]) and x ∈ SolB(A[j]) and therefore, using Lemma 6, x ∈

Sol(Ajx ≤ cj) since B(r)∧0 ≤ Ajr is satisfiable. This contradicts cj − Ajx < 0.

Finally, we prove that only one constraint is required. This constraint comes from
the region where the lower bound on t is not satisfied, and the upper bound on t is
satisfied. The generated constraint now represents the fact that we need to satisfy
the lower bound before we no longer satisfy the upper bound. We show that one
constraint is sufficient to cover this restriction.

Theorem 3. Let i,j ∈ {1, . . . ,m} with B(r) ∧Air ≤ 0 satisfiable then

CombineB(Ai,Aj,ci,cj ,x,r)

= Sol
(

min
B(v)∧Aiv<0∧0<Ajv)

[
Aiv

Ajv

]
(cj −Ajx) ≤ (ci −Aix)

)
∩ Sol(Ajx ≤ cj)

Proof. We consider the signs of each of the terms in

Sol

 ∧
v∈vertices(B(r)∧Air<0∧0<Aj)

(cj −Ajx)Air ≤ (ci −Aix)Ajr


>0︷︸︸︷
Ajr

Air︸︷︷︸
<0

(cj −Ajx) ≤ (ci −Aix)

Lemma 9 states that we can exclude any points x where cj −Ajx < 0, since there,
x ̸∈ SolB(A).

<0︷︸︸︷
Air

Ajr︸︷︷︸
>0

(cj −Ajx)︸ ︷︷ ︸
≥0

≤ ci −Aix

Since the left side of the inequality is now negative when ci − Aix ≥ 0 then the
inequality becomes true for any x. Hence, we can ignore this case, as the statement
holds trivially for any such x. Therefore, the only restrictive case is

φ(r) :=

<0︷︸︸︷
Air

Ajr︸︷︷︸
>0

(cj −Ajx)︸ ︷︷ ︸
≥0

≤ (ci −Aix)︸ ︷︷ ︸
≤0

32 Proposed Quantifier Elimination Algorithm

Finally, since r is the only free variable, we can only influence the fraction Air
Ajr

. For
any r1, r2

Air1
Ajr1

≥ Air2
Ajr2

implies that φ(r1) =⇒ φ(r2) (monotonicity). Since our
domain B∧Air < 0∧ 0 < Ajr is convex and bounded, the ≤ relation is well-founded
hence the maximal element exists

αi,j := max

{
Aiv

Ajv
| v ∈ Rn with B(r) ∧Aiv < 0 ∧ 0 < Ajv

}
and therefore

αi,j(cj −Ajx) ≤ (ci −Aix)

is the least element of the implication chain.
Combining this with our previous assumption of cj −Ajx ≥ 0 we obtain

Sol (αi,j(cj −Ajx) ≤ (ci −Aix) ∧ (Ajx ≤ cj))
= Sol (αi,j(cj −Ajx) ≤ (ci −Aix)) ∩ Sol(Ajx ≤ cj)

This is a great result, as it allows us to reduce the number of constraints gen-
erated for each pair down to one instead of generating one for each of the vertices
of (B(r) ∧ Air < 0 ∧ 0 < Ajr). However, it is not clear how to actually compute
max

{
Aiv
Ajv
| v ∈ Rn with B(r) ∧Aiv < 0 ∧ 0 < Ajv

}
. We can still enumerate all ver-

tices but only add a constraint, where Aiv
Ajv

is maximized. While this does compute
the correct result, the enumeration of all vertices, especially in larger dimensions,
becomes inefficient.

This enumeration of vertices and finding a point that minimizes some objective
function is eagerly similar to the use case of linear programming. However, our
objective function can not be represented by a linear combination and is instead given
as a fraction. If we could somehow transform it into a linear programming instance, we
could use the powerful solvers of this field to find our solution quicker while possibly
only visiting a fraction of the vertices. The Charnes-Cooper transformation we will
present next gives such a transformation of fractional linear programs to ones with a
linear objective function and allows us to use the linear solvers without much overhead.

3.4.1 Charnes-Cooper transformation
The Charnes-Cooper [CC62] transformation receives as input the following linear
program.

maximize
gTx+ α

hTx+ β

subject to Dx ≤ d

Where x ∈ Rn, g,h ∈ Rn, D ∈ Rm×n, d ∈ Rm, α,β ∈ R. Additionally, Dx ≤ d has
to ensure that hTx+ β > 0.

The transformation now gives us an equivalent linear program as follows:

maximize gTy + αz

subject to Dy ≤ dz

hTy + βz = 1

0 ≤ z

Improved Algorithm 33

The main idea is to scale the denominator by some scalar factor until it becomes one.
Then we can maximize the numerator. We can obtain back a solution for the original
problem in x via the following equation y = x

hTx+β
and z = 1

hTx+β
. Reverting the

scalar scaling.
Remember, the input for our problem is

max

{
Aiv

Ajv
| v ∈ Rn with B(v) ∧Aiv < 0 ∧ 0 < Ajv

}
. (3.6)

This can be stated as the following linear-fractional program.

maximize
Aiv

Ajv

subject to Bv ≤ b

Aiv < 0

Ajv > 0

We can now apply the transformation to obtain

maximize Aiy

subject to By ≤ bz

Ajy = 1

0 ≤ z
Aiy < 0

Ajy > 0

Therefore, we have obtained a linear problem that returns the optimal solution. Since,
in the worst case, the Simplex algorithm visits every vertex of the input problem, we
will never enumerate more vertices than before. However, with modern optimization
and heuristics, it is reasonable to assume that this worst case will not be reached, and
instead, fewer steps are required. Since our original algorithm still evaluates every
vertex, we can reasonably expect an increase in performance. This claim, however,
still needs to be evaluated with respect to actual benchmarks.

3.4.2 Reducing the number of combinations
So far, our efforts have focused solely on reducing the number of generated constraints
for each combination of a pair of constraints. Since we have reduced this number to
exactly one, we have achieved the optimum regarding the number of constraints gen-
erated. However, there is still an improvement in the number of generated constraints
to be made. A rather obvious observation is that SolB(A[i,j]) = SolB(A[j,i]). Hence,
when we compute SolB(A) =

⋂
i,j

SolB(A[i,j]), we only have to compute
⋂
i≤j

SolB(A[i,j]).

However, the main way to reduce the number of combinations is to consider the cases
where we obtain back the original goal constraint. If we can somehow show that we
have already obtained both goal constraints for a given pair to be combined, then we
do not need to combine them. We formulate this explicitly in the following lemma.

Lemma 10. If B(r) ∧ 0 ≤ Air ∧ 0 ≤ Ajr is satisfiable, then

SolB(A[i,j]) = Sol(Aix ≤ ci ∧Ajx ≤ cj)

34 Proposed Quantifier Elimination Algorithm

Proof. Recall Theorem 1 and Lemma 6:

SolB(A)[i, j] = SolB(A[i]) ∩ SolB(A[j]) ∩ CombineB,i,j ∩ CombineB,j,i

SolB(A[i]) =

{
Sol(Aix ≤ ci) if B(r) ∧ 0 ≤ Air satisfiable
Rn otherwise

Since B(r) ∧ 0 ≤ Air ∧ 0 ≤ Ajr is satisfiable

SolB(A[i, j]) = Sol(Aix ≤ ci) ∩ Sol(Ajx ≤ cj) ∩ CombineB,i,j ∩ CombineB,j,i

It remains to be shown that the last two intersections do not restrict the result
further. So far, x ∈ SolB(A[i,j]) =⇒ x ∈ Sol(Aix ≤ ci) ∩ Sol(Ajx ≤ cj).
Therefore, ci − Aix ≥ 0 ∧ cj − Ajx ≥ 0. Applying Lemma 8 immediately yields
x ∈ CombineB(Aj,Ai,cj ,ci,x,r). Due to symmetry reasons, this same argument
holds for the second intersection. Hence proving the statement.

This is actually a pretty decisive result, allowing us to reduce the number of combi-
nation computations drastically. The following table now shows when a computation
of combine is actually required.

Combine Ajr < 0 Ajr ≤ 0 Ajr = 0 Ajr ≥ 0 Ajr > 0 no restriction
Air < 0 ✓ × ✓ × ✓×
Air ≤ 0 × × ×
Air = 0 ×
Air ≥ 0 ✓ × × ×
Air > 0 ✓ × × ×

no restriction ✓× × × × × ×

Table 3.1: The possible computations that induced a Combine-computation. × in-
dicate pairs that previously required a computation, ✓ indicate the pairs that are
actually required to be computed

We can define the i,j that encode the required combinations defined in Table 3.1
to be the valid solutions of

ϕ(i,j) := (∀r.B(r) =⇒ Air < 0) ∧ (∃r′.B(r′) ∧Ajr
′ ≥ 0).

To fully update our computation of SolB(A[i,j]) we need to consider the compu-
tations of Sol(Aix ≤ ci) and Sol(Ajx ≤ cj) too. However, since these values do not
depend on each other, we can compute them once, in the beginning, to finally obtain.

3.4.3 Resulting improved algorithm

We will now summarize our previous improvements to the algorithm outlined in Sec-
tion 3.2 into our final algorithm. We begin by iterating over the rows Ai of our goal
constraint factors A and divide them into the three possibilities. We add Ai to the
"lower" bounds, if for all r such that B(r), Air < 0 holds. If instead Air ≥ 0 for
all such r, then we add it to the "upper" bounds. Finally, we add it to the "both"
bounds in all other cases. We then add for any Ak in the "upper" and "both" lists, the

Improved Algorithm 35

constraint Akx ≤ ck to our solution. Next, for any pair of Ai in the "lower" bounds
and Aj in the "upper" or "both" bounds, we compute the result of the following LP.

maximize Aiy

subject to By ≤ bz

Ajy = 1

0 ≤ z
Aiy < 0

It can be the case that this LP does not have any solution. This only happens, when
Aiy < 0 ∧Ajy > 0 is not satisfiable under By ≤ bz. Concretely this occurs, when
Air < 0 and Ajr > 0 are individually satisfiable, but no r exists which satisfies both
at the same time.

If the LP is unsatisfiable, we do nothing; otherwise, let α be the obtained optimum.
We add the constraint α(cj −Ajx) ≤ ci −Aix to our solution. We can also rewrite
this constraint in standard form to be

(−αAj +Ai)x ≤ ci − αcj . (3.7)

Before adding this constraint, we can quickly check if (−αAj+Ai) = 0, since then, the
constraint is trivially true. This is because we can not generate constraints that are
always false due to Lemma 4. Finally, we return the conjunction of all the generated
constraints as our solution.

Algorithm 2 Improved Version of our Algorithm (Solve LP Variant)

procedure Solve(B,b,A,c)
lower,upper,both← partitionRowsAccordingToSign(A,B,b)
result = True
for j ∈ upper ∪ both do

result← result ∧Ajx ≤ cj
end for
for i ∈ lower do

for j ∈ upper ∪ both do
maximum← charnesCooper(Air

Ajr
,Br ≤ b ∧Air < 0 ∧Ajr > 0)

result← result ∧ (−maximum Aj +Ai)x ≤ ci −maximum cj
end for

end for
return result

end procedure

We can also only implement the reduction in number of combinations without the
Charnes-Cooper transformation to update our vertex enumeration approach.

36 Proposed Quantifier Elimination Algorithm

Algorithm 3 Improved Version of our Algorithm (Enumerate Vertices Variant)

procedure Solve(B,b,A,c)
lower,upper,both← partitionRowsAccordingToSign(A,B,b)
result = True
for j ∈ upper ∪ both do

result← result ∧Ajx ≤ cj
end for
for i ∈ lower do

for j ∈ upper ∪ both do
maximum← max(

{
Air
Ajr
| r ∈ vertices(Br ≤ b ∧Air < 0 ∧Ajr > 0)

}
)

result← result ∧ (−maximum Aj +Ai)x ≤ ci −maximum cj
end for

end for
return result

end procedure

lower upper both
A1 A4 A2

A5 A3

Table 3.2: Partition the rows of our goal into the respective "lower," "upper," and
"both" cases as defined earlier.

3.5 Example Computation
For our exemplary computation, we will use the example from the introduction. The
problem is formally stated as

ψ = ∀r.(


1 0
−1 0
0 1
0 −1

 r ≤


2
−1
2
2

 =⇒ ∃t.0 ≤ t ∧


−1 0
0 1
−1 1
1 0
4 −1

 (x+ tr) ≤


−4
−2
6
6
18

).
Since our rate restrictions are given as intervals, we can make use of interval

arithmetic to divide our constraints into the respective categories. For this, consider
the first row of the goal. We compute −1rx+0ry and can now substitute the intervals
to obtain −1[1,2]+0[−2,2] = [−2,−1]. Since the interval contains only negative values
A1r < 0 holds. We, therefore, label this constraint as "lower." Repeating this for the
other rows gives us Table 3.2.

According to our algorithm, we now add the original constraint for each of the
rows from the "upper" and "both" categories to our solution. Therefore, our initial
result is 

0 1
−1 1
1 0
4 −1

x ≤


−2
6
6
18

 .
As the last step, we need to combine each "lower" row with all of the "upper" and

"both" rows. We will give the computations for the A1,A4 combination. We need to

Example Computation 37

Figure 3.6: Visualization of the example problem. The half-spaces are colored, and
their normal vector is shown. Additionally, the resulting goal is depicted as the shaded
polytope. The dimensions are annotated with their corresponding rectangular rate
intervals.

solve the following LP.

maximize − y1

subject to


1 0
−1 0
0 1
0 −1

y ≤


2
−1
2
2

 z
y1 = 1

0 ≤ z

Which gives the optimum α = −1. We then substitute this value back to obtain the
constraint (−(−1)

[
−1 0

]
+

[
1 0

]
)x ≤ 6 − (−1)(−4) which simplifies to be 0 ≤ 2.

As outlined before, we do not add this constraint to our solution, as it is trivially
true.

38 Proposed Quantifier Elimination Algorithm

Next, we will combine A1,A5. We again solve an LP

maximize − y1

subject to


1 0
−1 0
0 1
0 −1

y ≤


2
−1
2
2

 z
4y1 − y2 = 1

0 ≤ z
− y1 ≤ 0

4y1 − y2 ≥ 0

Which gives the optimum α = −1
6 . Again substituting into Equation 3.7 gives us

(16 (4x1−x2)−x1 ≤ −4+
1
618 or simplified −1

3 x1+
1
6x2 ≤ −1. Finally, we also combine

this lower bound with every "both" bound. In the end, we obtain the following result.

0 1
−1 1
1 0
4 −1
−1
3

−1
6

−1 −1
2

−2 1


x ≤



−2
6
6
18
−1
−5
2


.

As we can see in Figure 3.7, most of these constraints are actually required. We
only generate one redundant constraint. However, we expect the amount of redundant
constraints to increase for more complex goals. Finally, Lemma 4 states that each
point of the goal will also be a valid solution to our result. We can see this visually,
as the blue-shaded area covers the striped goal.

Example Computation 39

Figure 3.7: Visualization of the solution to the example problem. The goal is shaded
in a striped pattern, while the resulting solution is shaded in blue. The constraints
for the solution are given and labeled with the corresponding halfspace equation.

40 Proposed Quantifier Elimination Algorithm

Chapter 4

Experimental Evaluation

4.1 Methodology

In this chapter, we will discuss how our algorithm was evaluated. We will demon-
strate which benchmarks were used, and their advantages and disadvantages will be
analyzed. Ideally, we would like to investigate the performance of our algorithm on
a suite of standardized benchmarks and case studies. However, since this field is
still developing, no suitable benchmarks exist for our fragment. Nevertheless, we
must still rely on practical test cases to substantiate our claims about the algorithm’s
performance, capabilities, and limitations. Therefore, we developed an algorithm to
generate benchmarks.

4.1.1 Benchmark generation

To generate our benchmarks, we will first define the dimension of the benchmark that
we are interested in. This way, we can test how more complex problems affect the
number of constraints generated and the algorithm’s runtime. Since we want to test
how more complicated goal representations affect these metrics, we would also like
to influence the number of goal constraints. Our generation algorithm then works as
follows. Given some dimension d and number of points n

1. Sample d rate-intervals, ensuring that at least one of these intervals is either
strictly positive or negative.

2. Sample d points uniformly from [0,100]d

3. Add up to 5 + 2d additional points from [0,100]d

4. Compute the convex hull of the sampled points as an LCS

We hope to capture the whole range of possible problem inputs in this way. However,
there are, of course, limitations to this approach. The advantages of this approach
are:

• Fast generation

• Diversity in number of goal constraints

42 Experimental Evaluation

• Few assumptions about the problem input

• Reduction in the number of trivial cases

• Diverse mix of lower and upper bounds in the goal

The downsides are:

• No representation of highly complex goals

• No guarantee that the problem has a solution that differs from the goal

• Not founded in real-world problems - there might be aspects to actual case
studies that are not represented in this approach

4.1.2 Benchmark Analysis
To ensure that our benchmarks are relevant to the problem, we will visualize some
sampled problems and make statements about the whole benchmark suite. As can be
seen in Figure 4.1, our benchmarks cover a broad range of goal constraints. Our bench-
marks consist of many problems with few constraints, mainly in the lower dimensional
problems. These help to detect any overheads in the algorithm. Additionally, more
complex goals in higher dimensions allow for analysis of the algorithm’s asymptotic
behavior.

Figure 4.1: Stacked bar plot displaying the number of benchmarks with a given
amount of goal constraints. Colored by the dimension of the problem.

The generated problems are non-trivial and instead pose interesting structures as
for example shown in Figure 4.2.

Our set of benchmarks was generated for up to 5 dimensions, with a set of 250
problems generated for each dimension. All 1250 benchmarks were run sequentially
on an Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz on our Python implementation.
Additionally, no timeout was used. Hence, all benchmarks successfully terminated.

Methodology 43

(a)

(b)

Figure 4.2: Presented are two problem instances selected from our set of benchmarks.
The goal is highlighted in yellow, while the corresponding solution is depicted in blue.
Panel a) presents a two-dimensional problem instance, whereas panel b) showcases a
three-dimensional one. The actual constraints and rates required for computation are
not shown.

44 Experimental Evaluation

4.2 Results

4.2.1 Presentation of Results
The key metrics that we recorded for each benchmark are

• Dimension of the problem

• Number of goal constraints

• Number of resulting constraints

• Runtime (s)

These metrics were chosen for their relevance to actual problem instances. Ad-
ditional metrics such as peak memory usage, number of redundant constraints, and
memory size of the result were considered but ultimately proved to be beyond the
scope of this thesis.

Figure 4.3: Scatter plot of the number of resulting constraints in the solution vs. the
number of goal constraints of the problem for the 5-dimensional benchmarks. The
plots for the lower dimension can be found in Figure A.1.

4.3 Discussion

4.3.1 Interpretation of Results
When interpreting the data of the number of generated constraints against the number
of goal constraints (see Figure A.1), we notice that each previous dimension graph
seems contained in the higher dimensional graphs. We therefore only consider the
5-dimensional case in this section. When considering Figure 4.3 we notice an explicit
upper bound of roughly

Number of Resulting Constraints ⪅
Number of Goal Constraints

2

2

.

Discussion 45

Figure 4.4: Comparison of the runtime of both the enumerate vertices and solve LP
variants of our algorithm against the number of goal constraints in the 5-dimensional
benchmarks. Apparent are the similar shapes of the graphs. However, the runtimes
of the enumerate vertices variant seem to be lower by a considerable margin. The
graphs for the lower dimension can be found in Figure A.2 and Figure A.3 for the
enumerate vertices and solve LP variant respectively.

46 Experimental Evaluation

Additionally, we observe a distinct lower bound

Number of Resulting Constraints ⪆ Number of Goal Constraints.

Rather than observing different behavior for higher dimensions, our results suggest
that the number of resulting constraints depends not on the problem’s dimensionality
but on the number of goal constraints. The graph of the runtime against the number
of goal constraints appears similar to the previous findings for both versions of the
algorithm. This suggests that the runtime and number of resulting constraints are
tightly related. Moreover, the problem’s dimensionality does not considerably impact
the runtime. However, the runtime of the vertex enumeration seems to be much faster
as compared to the variant where we solve the LP.

4.3.2 Analysis of Findings
To support the findings of the strict upper and lower bound, we proposed two poly-
nomials f(x) = x, g(x) = (x2)

2 as the respective bounds. We can use a log-log plot
to verify these claims and fit the respective functions. Since log(f(x)) = log(x) for
the lower bound, we expect a linear function of the form f ′(x′) = x′ in the log-log
plot. For the upper bound x

2
2 we expect log(g(x)) = log(x2

2) = log(x2) + log(1/4) =
2log(x)− log(4). Hence, we expect a linear function of the form g′(x′) = 2x− log(4)
in the log-log plot. These results are depicted in Figure 4.5. We only provide one such
graph, as both algorithm variants compute the same result. In the graph, the lower
bound is a perfect fit; the upper bound, on the other hand, only approximates the real
upper bound for a higher number of goal constraints. We can relate these findings
to our algorithm’s complexity as follows. Reminder: the result we are computing is
given as.

SolB(A) =
⋂

i s.t. ∃r.B(r)∧Air≥0

Sol(Aix ≤ ci) ∩

⋂
i,j s.t. ϕ(i,j)

Sol (αi,j(cj −Ajx) ≤ (ci −Aix))

Closely inspecting the formula, we can observe that we obtain precisely nu constraints
for the first intersection, where u is the number of upper bounds on t that we can
obtain. We will compute nl∗u constraints for the second intersection, where l is the
number of lower bounds on t. Since every constraint is either a lower bound, an upper
bound, or both a lower and upper bound on t, we will obtain at least u+ l constraints.

For the upper bound, we can give a similar argument. We want to maximize
nu + nl∗u with l + u = g where g is the number of goal constraints. Therefore,
we maximize u(l + 1) with respect to l + u = g. This maximum is obtained for l =
⌊ g−1

2 ⌋, u = l+1 leading to the maximum of ⌊ g−1
2 ⌋(⌊

g−1
2 ⌋+1) which approximates (g2)

2

for larger g. This explains why our linear bound for the maximum only approximates
the actual maximum for goals with more constraints. This approximation is suitable
since we are primarily concerned with the algorithm’s asymptotic behavior.

When investigating the runtimes of our two variants, we can observe that they
behave similarly. However, the runtime of the vertex enumeration seems to be signif-
icantly shorter compared to the linear programming variant.

We can see this trend when compared to the dimension in Figure 4.6 and when
plotting against the number of resulting constraints in Figure 4.7. This is a surprising

Discussion 47

Figure 4.5: Log-log plot of the resulting constraints of goal constraints against the
number of goal constraints. Additionally, our two hypotheses of the upper and lower
bound as their respective transformed linear functions are plotted. The samples are
colored by the dimensionality of the benchmark that the sample was computed from.

result, as we expected that solving the LP is quicker than iterating over all vertices.
Since, for the vertex iteration, we first need to compute all the vertices in the first
place. We believe the LP approach provides a significant overhead, slowing down
the computations. Additionally, the vertex enumeration might be more optimized for
parallel computing. Further research is needed to verify if this is an anomaly for our
benchmarks or if the LP transformation is too costly to provide any benefit.

Lastly, we want to substantiate the claim that the runtime mostly depends on
the number of resulting constraints and not on the problem’s dimensionality. We will
only investigate the quicker algorithm using the vertex enumeration. We can plot
the runtime against the number of resulting constraints for this. We expect a mostly
linear correlation between these points. We can see a clear linear relationship between
the two measurements in Figure 4.8. Based on this, we can conclude that the vertex
enumeration, while costly in higher dimensions, does not influence the runtime as
drastically as the number of goal constraints does. As a result, the runtime of our
algorithm is dominated by the number of resulting constraints, which is determined
solely by the number of goal constraints. We investigated the apparent skewed "V"
shape but could not find any particular reason for it. The shape could either be caused
by random noise in the data, a lack of representation of certain types of problems
(bias) in the benchmarks, or a lack of data for the highly complex problems.

48 Experimental Evaluation

Figure 4.6: Log runtime of both variants plotted against the dimension of the bench-
marks. The solve LP variant consistently displays are slower runtime. Only for some
small subset of the benchmarks do both variants perform similarly and terminate
after a fraction of a second

4.3.3 Limitations and Challenges
We are currently limited to a relatively small dimension of the problems. This is,
however, somewhat an indirect consequence of the fact that goals of higher dimen-
sions tend to require more constraints. Therefore, if a smaller set of constraints still
describes the problem, we should be able to handle large domains. This is particularly
of interest when considering hybrid automata. The problems there are usually highly
dimensional because of the introduction of random clocks. Each clock introduces a
new dimension to the problem. However, since these clocks are either running or
stopped, they tend not to influence the goal by adding new constraints but rather
by adapting them. Therefore, we should be able to handle many clocks if the goals
do not become too complex. A particular challenge of this research was finding suit-
able benchmarks to test all these claims on. Without substantiating these claims,
we can only speculate on the performance in the use-case of actual hybrid stochastic
automata. Indeed, the only claims we can definitely make are about the upper bound
on the constraints generated and the correlation between the number of resulting
constraints and the runtime.

Discussion 49

Figure 4.7: Runtime in seconds against the number of resulting constraints for both
variants of our algorithm. Both variants appear to scale linearly with the number
of resulting constraints. Tthe runtime of the solve LP approach indicates a slower
performance.

Figure 4.8: Plot of the runtime of each benchmark against the number of resulting
constraints for the vertex enumeration variant. We can observe a linear trend that
appears to become more noisy for a larger number of resulting constraints. Interesting
to note is the apparent lack of points between two mostly linear bands.

50 Experimental Evaluation

Chapter 5

Conclusion

5.1 Summary of Contributions

We have developed a sound quantifier elimination algorithm to solve the fragment we
are interested in. Additionally, we proved a lower and upper bound on the number
of constraints generated. These serve as a baseline to further improve the algorithm
or develop new approaches. To evaluate the performance of our algorithm, we have
provided a basic set of benchmarks and outlined their strengths and weaknesses.
Finally, our source code is integrated into the HyPro tool [S22] and evaluated on the
benchmarks.

5.2 Implications of Findings

Our research has yielded significant findings in the field of rectangular stochastic
automata and their probabilistic minimization. Developing an algorithm to solve this
sub-problem has laid the necessary groundwork for further analysis and exploration
of minimal probabilities. By developing a suite of benchmarks, we are able to make
claims about the performance on real applications of the algorithm.

5.3 Suggestions for Future Work

As mentioned, this algorithm is used as a sub-procedure to compute the minimal
reachability probabilities in rectangular automata with random clocks. A second
algorithm is being developed that will then make use of our algorithm. This idea was
developed as the opposite (minimizing) approach to the one presented in "Maximizing
Reachability Probabilities in Rectangular Automata with Random Clocks" [DSÁR23].
We suggest the following areas for future work.

Investigate the vertex enumeration vs. solving the LP By providing both im-
plementations of our algorithm, we could test both approaches’ performance.
Surprising to us, the vertex enumeration was the faster method. Future work
should investigate whether this holds in general or whether the set of bench-
marks, the low dimensionality, or our implementation led to this result. Addi-
tionally, incremental SMT solvers could limit the overhead of solving the LP.

52 Conclusion

Since our problem will always contain the base rate constraints B with two
additional constraints, we might be able to leverage the incremental approach
to keep the original constraints while only adding two new constraints and an
adapted optimization function. This way, we might be able to avoid the over-
head of adding the individual rate constraints for each combination.

Develop case studies to evaluate the performance Since no standardized
benchmarks or case studies exist that are suitable for testing the performance of
our algorithm, we had to resort to developing our own suite of benchmarks. This
comes with a disadvantage, as we have to make assumptions about the structure
of real-world applications. Once the minimizing algorithm is finished, we can
adapt the case studies from the maximizing algorithm [DSÁR23] to generate a
case study for our algorithm. Of course, developing a new case study directly
applicable to the minimization would be desirable. Since our algorithm is only
used as a sub-routine, we require the whole minimization algorithm in order to
adapt the case study. To generate benchmarks from the case study, we will then
record each call to our algorithm as a single benchmark.

Reduction in number of generated constraints We currently generate a signif-
icant amount of redundant constraints. As we have demonstrated, more com-
plex goals tend to lead to more complex results. We would prefer a minimal
representation since we want to apply our algorithm successively, i.e., use the
previous result as a new goal. Our current approach for this is to apply a second
algorithm that can eliminate redundant constraints to our result. However, it
might be possible to use insights from such algorithms to adapt our algorithm
to further reduce the number of generated constraints in the first place.

Possibly eliminate the linear optimization problem During our research, we
went from enumerating all constraints to enumerating all vertices and generating
one constraint to finally solving a small linear optimization problem to find the
correct constraint. While we have shown for lower dimensions that the linear
optimization problems can indeed be solved efficiently and tend not to have
a major influence on the runtime, for larger problems, this might no longer
hold. It might be possible to eliminate the linear optimization problem as a
whole and instead find some closed-form solution for the minimal values we
are interested in. The main motivation why we believe this to be possible is
that each combination of two constraints, no matter the number of dimensions,
can be projected onto a simple two-dimensional problem, where a closed-form
solution might be more simple to find.

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

[CÁ11] Florian Corzilius and Erika Ábrahám. Virtual substitution for SMT-
solving. In Fundamentals of Computation Theory, pages 360–371. Springer
Berlin Heidelberg, 2011.

[CABls] G A Pérez Castañeda, J-F Aubry, and N Brinzei. Stochastic hybrid au-
tomata model for dynamic reliability assessment. Proceedings of the Insti-
tution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
225(1):28–41, 2011. Sage Journals.

[CC62] A. Charnes and W. W. Cooper. Programming with linear fractional func-
tionals. Naval Research Logistics Quarterly, 9(3-4):181–186, 1962.

[Dan90] George B. Dantzig. Origins of the simplex method. In A history of sci-
entific computing, pages 141–151. Association for Computing Machinery,
1990.

[DSÁR23] Joanna Delicaris, Stefan Schupp, Erika Ábrahám, and Anne Remke. Max-
imizing reachability probabilities in rectangular automata with random
clocks. In Theoretical Aspects of Software Engineering, pages 164–182,
Cham, 2023. Springer Nature Switzerland.

[Fou27] Joseph Fourier. Analyse des travaux de l’académie royale des sciences
pendant l’année 1824, partie mathématique, 1827. engl. transl. (partially)
in: D.A. Kohler, translation of a report by Fourier on his work on linear
inequalities. 1827.

[HKD98] George Hassapis, Isabella Kotini, and Zoe Doulgeri. Validation of a SFC
software specification by using hybrid automata. IFAC Proceedings Vol-
umes, 31(15):107–112, 1998. Proceedings of the 9th IFAC Symposium on
Information Control in Manufacturing (INCOM ’98) 1998. Elsevier Sci-
ence.

[PSR21] Carina Pilch, Stefan Schupp, and Anne Remke. Optimizing reachabil-
ity probabilities for a restricted class of stochastic hybrid automata via
flowpipe-construction. In Quantitative Evaluation of Systems, pages 435–
456. Springer International Publishing, 2021.

54 Bibliography

[S22] Stefan Schupp, Erika Ábrahám, and Tristan Ebert. Recent developments
in theory and tool support for hybrid systems verification with HyPro.
Information and Computation, 289:104945, 2022.

Appendix A

Graphs

56 Graphs

(a)

(b)

(c)

(d)

Figure A.1: The graphs show the resulting constraints for a given number of goal
constraints. They illustrate the 2-dimensional problems (a), 3-dimensional problems
(b), 4-dimensional problems (c), and 5-dimensional problems (d).

57

(a)

(b)

(c)

(d)

Figure A.2: The graphs show the runtime for a given number of goal constraints
in the enumerate vertices approach. They illustrate the 2-dimensional problems (a),
3-dimensional problems (b), 4-dimensional problems (c), and 5-dimensional problems
(d).

58 Graphs

(a)

(b)

(c)

(d)

Figure A.3: The graphs show the runtime for a given number of goal constraints when
applying the LP-solving approach. They illustrate the 2-dimensional problems (a),
3-dimensional problems (b), 4-dimensional problems (c), and 5-dimensional problems
(d).

	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives
	Thesis Organization

	Theoretical Framework
	Theoretical Models and Algorithms
	Critical Analysis of Existing Solutions

	Proposed Quantifier Elimination Algorithm
	Initial Observations
	Basic Algorithm
	Proof of Correctness
	Improved Algorithm
	Example Computation

	Experimental Evaluation
	Methodology
	Results
	Discussion

	Conclusion
	Summary of Contributions
	Implications of Findings
	Suggestions for Future Work

	Bibliography
	Appendix
	Graphs

