
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

IMPLEMENTATION OF CYLINDRICAL ALGEBRAIC

COVERINGS FOR QUANTIFIER ELIMINATION

Philip Kroll

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Jasper Nalbach Aachen, 6. December 2023

Abstract

The Cylindrical Algebraic Coverings (CAlC) Algorithm was originally devel-
oped for solving the satisfiablity of conjunctions for the theory of Non-linear
Real Arithmetic (NRA) and implemented in the SMT-Solvers SMT-RAT and
CVC5. Later, it was generalized to solve the Quantifier Elimination (QE) Prob-
lem and general formulas directly, but not implemented yet. The QE problem
is concerned with eliminating all quantifiers, the universal quantifier ∀ and the
existential quantifier ∃, from a first-order logic formula and obtaining an equiva-
lent formula as the result. Further, the CAlC algorithm can be used as a decision
procedure in the context of Satisfiability Modulo Theories (SMT).

In this thesis, we present an implementation of the CAlC algorithm for quan-
tifiers in the SMT solver SMT-RAT suitable to produce a result for both the
QE problem and the decision problem for a general formula of the theory of
NRA. We also present a novel approach to split the formula of interest into
multiple different formulas that can be solved independently and whose results
can be combined to form the solution of the original formula. Additionally, we
present three different variable ordering heuristics that can be used to improve
the performance of the CAlC algorithm. Finally, we compare the performance
of our implementation to other programs that can solve the QE problem and
the decision problem for the theory of NRA.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennze-
ichnet.

Philip Kroll
Aachen, den 18. December 2023

vi

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Boolean Satisfiability Problem . 11
2.2 Non-Linear Real Arithmetic . 12
2.3 Cylindrical Algebraic Coverings . 14

3 Cylindrical Algebraic Covering for Quantifiers 19
3.1 Algorithms . 20
3.2 Quantifier Elimination . 26

4 Handling Constraints Independently 29
4.1 Adapting the Cylindrical Algebraic Coverings Algorithm 35

5 Variable Orderings 43
5.1 Variable Orderings in Literature . 44
5.2 Earliest Split Variable Ordering . 45

6 Prenex Normal Form 51

7 Discussion 55
7.1 Implementation . 55
7.2 Dealing with Polynomial Denominators 56
7.3 The Decision Problem . 57
7.4 The Quantifier Elimination Problem 60

8 Conclusion 65
8.1 Future Work . 66

Bibliography 69

viii Contents

Chapter 1

Introduction

Few technologies have had as profound of an impact on human life as modern com-
puter systems. Algorithms, which are systematic procedures for processing informa-
tion, have become increasingly crucial in modern society. They play an essential role
in every aspect of life. These algorithms are generally designed to solve specific prob-
lems and are highly efficient. However, guaranteeing the correctness of their solutions
is a significant challenge and can be just as important as their speed. As a result,
general frameworks have been established, allowing many problems to be described
without requiring the user to have any previous problem-solving knowledge. This task
is delegated to a solver, which assists in checking the correctness of problem-specific
algorithms and enables them to resolve logical problems through deduction. The
Boolean Satisfiability Problem (SAT) is a well-established and extensively researched
problem that was the first to be proven NP-complete [Coo71]. This means that a wide
range of problems in computer science can be reduced to this problem. The problem
statement of SAT has been extended for first-order logic, namely Satisfiability Mod-
ulo Theories (SMT) [BT18]. SMT formulas are Boolean combinations of constraints
from some background theory. The theory of interest in this thesis is Non-linear Real
Arithmetic (NRA). In this theory, variables may be universally or existentially quan-
tified, allowing for the creation of intricate formulas. Further, the theory of non-linear
real arithmetic has been shown to admit quantifier elimination [Tar51]. This means
that any formula of this theory can be transformed into an equivalent quantifier-free
formula. It is known that the complexity of real quantifier elimination is doubly
exponential in the number of quantifier alternations [DH88]. The first practically
used procedure for quantifier elimination is the Cylindrical Algebraic Decomposition
(CAD) [Col76]. The original algorithm has been improved with many enhancements,
including projection methods [McC98, Hon90], partially built CADs [CH91] and ef-
ficient projection orders [HEW+14, DSS04]. Based on CAD, specifically for the ex-
istential fragment of the theory, a conflict-driven approach, namely the Cylindrical
Algebraic Covering (CAlC) algorithm, has been developed [ÁDEK21]. Lately, this
conflict-driven approach has been extended for deciding the satisfiability of NRA for-
mulas and for real quantifier elimination [KN22]. This thesis will present this approach
in detail and a novel adaptation. This adaptation includes that the formula to solve
may be split into two or more subformulas given particular circumstances. These sub-
formulas can then be solved independently, giving the result for the original formula.
Further, this algorithm and its adaptation is implemented and the performance for

10 Introduction

both the decision problem and the quantifier elimination problem is evaluated and
compared with the results of other state-of-the-art solvers.

Chapter 2

Preliminaries

This chapter is an introduction to the theoretical knowledge required for the central
part of this thesis. It aims to clarify the fundamental concepts and principles that
form the basis of the algorithms presented in the following chapters. Firstly, we will
provide an explanation of the problem setting as well as the theory of interest. We will
introduce both the decision problem and the quantifier elimination problem for non-
linear real arithmetic. Additionally, we will briefly discuss the cylindrical algebraic
coverings method for solving the existential fragment of non-linear real arithmetic.
Furthermore, we will introduce several concepts necessary for the main part of this
thesis.

2.1 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is the problem of determining if a given
formula in propositional logic is satisfiable. A propositional logic formula is built by
a fixed set of atomic propositions to which the value of the Boolean constants {0, 1}
can be assigned. A propositional logic formula can then be constructed with atomic
propositions and the standard logical connectives with the usual semantics.

Definition 2.1.1 (Propositional Logic Formula).

φ := x | ¬x | φ ∧ φ | φ ∨ φ | φ⊕ φ | φ =⇒ φ | φ ⇐⇒ φ

where x is an atomic proposition.

A variable assignment assigns Boolean constants to variables in a logic formula,
which allows the formula to be evaluated. If a variable assignment exists such that
the formula evaluates to true, the formula is said to be satisfiable. If no such as-
signment exists, the formula is unsatisfiable. The concept of satisfiability can also be
extended to first-order logic through Satisfiability Modulo Theories (SMT) [BT18]. In
SMT, a Boolean combination of constraints from some background theory replaces the
Boolean combination of atomic propositions. This thesis focuses on the background
theory of Non-linear Real Arithmetic (NRA).

12 Preliminaries

2.2 Non-Linear Real Arithmetic
This section introduces the theory of non-linear real arithmetic, also called NRA. It
is a first-order theory over R, also called the reals. The theory enables equalities and
inequalities over real numbers.

Definition 2.2.1 (Polynomial Constraint).
A polynomial constraint is a multivariate polynomial compared to zero with a com-
parison predicate:

C :=

n∑
k=0

ak

m∏
j=0

x
ek,j

j ▷◁ 0

Where:

• ak ∈ Q are the coefficients

• xi are real-valued variables

• ek,j ∈ Z are the exponents

• ▷◁∈ {≤, <,=, ̸=, >,≥} is the comparison predicate

Since we do not deal with other theories in this thesis, the term constraint will be
used synonymously with polynomial constraint.

Definition 2.2.2 (NRA Formulas).
Let C be a constraint. A formula in non-linear real arithmetic φ may be of the
following form:

φ := C|∃x.φ|∀x.φ|φ ∨ φ|φ ∧ φ|φ⇒ φ|φ⇔ φ|φ⊕ φ

where x is a variable.

Further, we introduce the notation xi ∈ vars(φ) if the variable xi appears in any
constraints used in φ. If a variable is not specifically quantified, either existentially or
universally, it is denoted as a free variable. A formula φ is said to be quantifier-free
if for every variable x ∈ vars(φ), x is a free variable.

In this thesis, we are generally interested in a quantified logical expression involving
polynomial equalities and inequalities with real-valued variables. In the context of
SMT, such an expression is called a NRA Formula or Tarski Formula [Bro99]. From
now on, we will denote such expressions simply as a formula.

Definition 2.2.3 (Prenex Normal Form).
A formula φ is in prenex normal form if it has the form:

φ := Qk+1xk+1 . . . Qnxn.φ̄(x1, . . . , xn)

with quantifiers Qi ∈ {∀,∃} and φ̄ is quantifier-free. We call φ̄ the matrix of φ and
Qk+1xk+1 . . . Qnxn the prefix of φ.

If it holds that k ̸= 0, then φ has free variables that are not explicitly quan-
tified. Any given formula can be transformed to prenex normal form by applying

Non-Linear Real Arithmetic 13

the following rules [Hin18]. All quantifiers are to be the pushed front of the for-
mula while preserving the order of the quantifiers used. Further, one has to ensure
that variables are renamed when multiple quantifiers reference them and that the
quantifiers are properly changed when pushed over a negation. From now on, we
assume that the variables are ordered under the total ordering ≺ of their labels, i.e.,
{x0 ≺ x1 ≺ . . . ≺ xn}.

Definition 2.2.4 (Main Variable and Level).

• The main variable of a formula is the highest one in the ordering present in the
formula. The main variable of a formula φ is denoted as main(φ).

• The level of a polynomial is the position of the main variable in the variable
ordering x0 ≺ x1 ≺ . . . ≺ xn.

We denote the constraints in a formula φ by constraints(φ). Further, we de-
note the constraints with the main variable xi in a formula φ by constraintsi(φ).
Given a (partial) sample point s ∈ Rk we denote the extension of s to (s1, . . . , sk, sk+1) ∈
Rk+1 by s× sk+1.

Definition 2.2.5 ((Partial) Formula Evaluation).
Let φ be a formula of level n. Let s ∈ Rk with k ≤ n be a (partial) sample point. We
denote the (partial) evaluation up to level k of φ over s by φ[s]. That is, we substitute
s for the first k variables in the formula φ. Partial formula evaluation leads to the
following cases when evaluating a formula φ:

φ[s] = True: When substituting s into the constraints(φ) the Boolean
combination of the resulting constraints is True.

φ[s] = False: When substituting s into the constraints(φ) the Boolean
combination of the resulting constraints is False.

When for a given formula φ and (partial) sample point s it holds that φ[s] ̸∈
{True,False}, we say that the evaluation is inconclusive.

Example 2.2.1 ((Partial) formula evaluation).

• (x1 · x2 > 1)[(x1 = 1, x2 = 1)] = 1 > 1 = False

• (x1 · x2 > 1)[(x1 = 1, x2 = 2)] = 2 > 1 = True

Definition 2.2.6 (Quantifier Elimination Problem (QE)).
Given a formula φ with some quantified variables, produce a quantifier-free formula
equivalent to φ.

It has been shown that the theory of non-linear real arithmetic admits quantifier
elimination [Tar51]. In the quantifier elimination problem, the free variables of φ can
be understood as parameters. The existence of a quantifier-free equivalent is known
as the Tarski-Seidenberg Principle [Sei54, Tar51]. Tarski gave the first constructive
solution, but the complexity of his solution was indescribable, meaning no elementary
function could describe it [Tar51]. The quantifier elimination problem has been proven
to have a doubly exponential lower bound for complexity in the number of quantifier
alternations [DH88]. The first practically viable solution had to await the concept of
the Cylindrical Algebraic Decomposition (CAD) [Col76]. To produce a solution for

14 Preliminaries

the QE problem for a formula φ consisting of the variables {x1, . . . , xn}, we need to
produce a corresponding CAD of Rn. A CAD is a finite partitioning of Rn into cells,
such that the conjunction of polynomial equalities and inequalities defines each cell. A
cell is said to be sign-invariant for a set of polynomials if the sign of each polynomial
remains consistent over the cell, either positive, negative or zero. In a CAD, each cell
is sign-invariant for all polynomials that occur in the formula φ. This implies that
the formula φ has the same truth value over each cell, and thus the formula can be
evaluated over a representative sample point of each cell. Hence, it is only necessary
to consider the truth or falsity of φ at the finite number of sample points and query
their algebraic definitions to form the respective quantifier-free output formula. If
xi is existentially quantified, we require the truth of φ for at least one sample point
regarding that variable. However, If the variable xi is universally quantified, we
require the truth of φ for all representative sample points regarding that variable.
Note that such a CAD is finer than required for real quantifier elimination since, as
well as answering the QE question asked, it could also answer another that involved the
same polynomials but with possibly different comparison operators and even different
quantifiers, as long as the variables are still quantified in the same order. For a more
detailed introduction to CADs, we refer to [BDE+16, CJ12].

Definition 2.2.7 (Decision Problem).
Given a formula φ, decide whether this formula is satisfiable. That is, a variable
assignment exists for the free variables of φ, such that the formula evaluates to True.
If no such variable assignment exists, the given formula is unsatisfiable.

In the following, we may abbreviate the satisfiability of a given formula as SAT
and the unsatisfiability as UNSAT.

Example 2.2.2 (Decision Problem).

• φ := ∃x.x2 ≥ 0: φ is satisfiable since there exists a value for x such that x2 ≥ 0,
such as x := 0.

• φ := ∃x.x2 ≥ y, where y is a free variable. Now, φ is satisfiable given any
sample point s = (s1) ∈ R1.

• φ := ∀x.x ≥ y: where y is a free variable. This formula is unsatisfiable, as there
is no fixed value s ∈ R1 such that x ≥ s for all possible x ∈ R.

• φ := (∃x.x2 ≥ y) ∨ (∀x.x ≥ y), where y is a free variable. This formula is
satisfiable since the first part of the disjunction is satisfiable.

The decision problem is a special case of the quantifier elimination problem, where
the output is a binary answer. This results in the fact that any algorithm that solves
the quantifier elimination problem can be used to solve the decision problem. If
the formula φ has free variables, these can be considered to be implicitly quantified
existentially. As the formula φ has no free variables, the only possible equivalent
quantifier-free formulas ψ are either True or False. If ψ is True, then φ is satisfi-
able, otherwise it is unsatisfiable.

2.3 Cylindrical Algebraic Coverings
In the following, we briefly present the idea behind the Cylindrical Algebraic Cov-
erings(CAlC) method for checking the satisfiability of formulas of the existential

Cylindrical Algebraic Coverings 15

fragment of non-linear real arithmetic [ÁDEK21]. In the existential fragment, we
only allow existentially quantified variables. The fundamental idea is to recursively
construct a (partial) sample point and collect intervals that represent unsatisfiable
regions above this sample point. When a sample point can not be extended because
these unsatisfiable intervals form a covering of the real line in the current dimen-
sion, the covering is projected into the prevision dimension to refute the current
sample point of that dimension. We then backtrack and choose a different sample
value for the sample point of the highest level. Eventually, either a full sample point
is constructed such that the given formula of interest evaluates to True, and we
can conclude satisfiability and return SAT, or an unsatisfiable covering of the first
dimension is constructed, and we can conclude unsatisfiability and return UNSAT.
The algorithm starts by constructing unsatisfiable intervals for the first dimension
based on univariate polynomials with the main variable x1 and then tries to select
a value s1 for the variable x1 outside of these intervals. If such a value exists, the
algorithm is recursively called with the extended sample point (s1). The algorithm
continues by constructing unsatisfiable intervals for the second dimension based on
polynomials with the main variable x2. When substituting the sample point (s1) into
the constraints with the main variable x2, these become univariate and thus suitable
for identifying unsatisfiable intervals for x2. If a value s2 exists for the variable x2
outside of these intervals, the algorithm is recursively called, and the procedure con-
tinues. This process is continued until either a full sample point is constructed and all
constraints are satisfied, and we can return SAT, or for some dimension i, there exists
no value si for the variable xi outside of the unsatisfiable intervals for xi. In this case,
a set of unsatisfiable intervals for xi forms a covering of the real line. This covering
is generalized by projecting it to dimension i − 1. The tools for this projection step
are taken from the CAD algorithm. The sample point si−1 is refuted and general-
ized to an unsatisfiable interval for the same reasons. The algorithm then continues
by backtracking to the previous dimension and trying to choose a different value for
si−1. This process is continued until either a full sample point is constructed and all
constraints are satisfied, and we can return SAT, or we obtain a covering for the first
dimension and can conclude unsatisfiability and return UNSAT.

In contrast to cells created in a CAD, which form a disjoint partitioning of the real
space, the intervals created in the CAlC algorithm may overlap. To generalize intervals
over a partial sample point, we need to attach algebraic information in the form of sets
of polynomials whose order-invariance characterizes satisfiability-invariant regions of
a formula in multiple dimensions. It holds that order-invariance is a stronger property
than sign-invariance and is used in the McCallum projection operator [McC98]. The
property of sign-invariance is used in the McCallum projection operator to make the
set of polynomials resulting from the projection smaller. These are called algebraic
intervals and are defined in the following together with what information they contain.
A polynomial vanishes at a sample point if it evaluates to zero at that sample point.

Definition 2.3.1 (Algebraic Interval [ÁDEK21, KN22]).
An algebraic interval is represented as a tuple I = (Il, Iu, IL, IU , IPi

, I⊥), where:

• Il, Iu are algebraic numbers with Il ≤ Iu that represent an interval over an
(i− 1)-dimensional sample point.

• IL, IU are sets of polynomials with the main variable xi which vanish at (s1, . . . , si−1, Il)
and (s1, . . . , si−1, Iu) respectively.

16 Preliminaries

• IPi
is a set of polynomials with the main variable xi which should be order-

invariant in the constructed interval.

• I⊥ is a set of lower-lever polynomials that must also be order-invariant in the
underlying interval.

The bounds Il, Iu of an algebraic interval are constant, but potentially algebraic,
numbers. The sets of polynomials IL, IU define them in that they are multivariate
polynomials which when evaluated at the sample point s became univariate with the
bound as a real root.

Polynomials only matter so much as where they vanish. Based on this, we can
define simplifications for sets of polynomials that stem from this fact.

Definition 2.3.2 (Standard CAD Simplifications[ÁDEK21]).

• Remove any constants or other polynomials that can easily be concluded never
to equal zero.

• Normalize remaining polynomials, i.e., make the leading coefficient of each poly-
nomial equal to 1. This ensures that we avoid storing multiple polynomials
which define the same set of solutions over the real numbers.

• Store a square-free basis (a set of unique irreducible polynomials with distinct
roots) for the factors rather than the polynomials themselves.

An NRA formula may also be denoted as a Tarski Formula [Bro99]. Meaning a
Tarski formula is an integral polynomial constraint, i.e., a multivariate polynomial
that is compared to zero with some comparison predicate, a Boolean constant True,
False, a Boolean combination of Tarski formulas or a Tarski formula quantified via
∀ or ∃. An Extended Tarski Formula (ETF) is a Tarski formula with the addition of a
new type of atomic formula that allows reference to the indexed roots of polynomials,
which is defined in Definition 2.3.4.

Definition 2.3.3 (Indexed Root Expression [Bro99]).
Let α1 < . . . < αj be the distinct real roots of p ∈ R[x] in ascending order. We then
define the i−th root of p as rooti(p). If i > j or i < 1, then rooti(p) is undefined.
For p ∈ Z[x1, . . . ,xn] and i ∈ N with i ̸= 0, we define the Indexed Root Expression
(IRE) root(p,i,xk) at the point s = (s1, . . . ,sn) ∈ Rn as the i-th distinct real root
of p(s1, . . . ,sk−1,xk). The roots are ordered from smallest to largest. If the level of p
is not k, if p(s1, . . . ,sk−1,xk) is the zero-polynomial or if it has fewer than i distinct
real roots, then root(p,i,xk) is undefined.

Definition 2.3.4 (Extended Tarksi Formula (ETF) [Bro99]).
An ETF is a Tarski formula with the addition of atomic formulas of the form q ▷◁
root(p, i, xk) where p,q ∈ Z[x1, . . . ,xn], i ̸= 0, 0 < k ≤ n and ▷◁∈ {≤, <,=, ̸=, >,≥}.
At a point s = (s1, . . . , sn) ∈ Rn, the atomic formula q ▷◁ root(p,i,xk) evaluates to
True iff root(p,i,xk) with respect to s is defined and it holds that q(s1, . . . , sn) ▷◁
rooti(p(s1, . . . , sk−1,x,sj+1, . . . , sn)). Otherwise, it is False.

An ETF may be transformed into a Tarski formula, but it is, however, convenient
to have the ability to refer to the roots of polynomials [Bro99]. In the main part of
this thesis, we also need the concept of an implicant. An implicant ψ of a formula φ
is a formula that simplifies φ while still implying it.

Cylindrical Algebraic Coverings 17

Definition 2.3.5 (Implicant [KN22]).
The formula ψ is an implicant of the formula φ iff ψ ⇒ φ ∧ constraints(ψ) ⊆
constraints(φ). This concept can be extended to use a (partial) sample point
s ∈ Ri as follows.

If φ[s] = True, then ψ is an implication of φ with respect to s iff:

ψ[s] = True ∧ (ψ ⇒ φ) ∧ constraints(ψ) ⊆ constraintsi(φ)

If φ[s] = False, then ψ is an implication of φ with respect to s iff:

ψ[s] = True ∧ (ψ ⇒ ¬φ) ∧ constraints(ψ) ⊆ constraintsi(φ)

We call ψ a prime implicant of φ if constraints(ψ) is minimal among all impli-
cants of φ.

An implicant allows for the creation of a more concise formula that may be simpler
and more efficient to work with while preserving its logical meaning. Later, we are
interested in computing the implicant of a formula φ̄ with respect to a sample point
s× si. The implicant might include polynomials with the main variable xi or lower,
effectively constructing a characterization not only in the variable xi but also for
variables with a lower level. If φ̄[s× si] = False and φ̄ is a simple conjunction, then
it is easy to compute the prime implicant of φ̄ with respect to s × s as the negation
of a single conflicting constraint in constraints(φ̄). If φ̄[s× si] = True and φ̄ is
a simple conjunction, then φ̄ itself is its only prime implicant.

18 Preliminaries

Chapter 3

Cylindrical Algebraic Covering
for Quantifiers

In this chapter, we are presenting an algorithm that builds on the CAlC algorithm
for the existential fragment of non-linear real arithmetic, as presented in Section 2.3.
It extends its capabilities to solve the quantifier elimination problem and the deci-
sion problem for non-linear real arithmetic. All following algorithms and definitions
are taken from [KN22], where the CAlC algorithm for quantifiers was first described.
The algorithm adds the ability to process universally quantified variables. Handling
existentially quantified variables remains the same in that a sample point is guessed.
If the sample point cannot be extended to be a satisfying witness of the formula, it
is generalized to an algebraic interval that is unsatisfiable for the same reasons. The
next sample point is then picked outside of the collection of unsatisfiable cells. If the
sample point can be extended to a satisfying witness, we can conclude satisfiability
for the current dimension without guessing more points outside the collection of un-
satisfiable intervals. If the collection of the unsatisfiable intervals covers the whole
number line, and no new sample can be guessed, unsatisfiability can be concluded
for this dimension. The idea of handling universally quantified variables is similar.
A sample point is guessed, and if it can be extended to be a satisfying witness, it is
generalized to an interval that is satisfiable for the same reasons. It is added to a
collection of satisfiable intervals. Then, another sample point outside of the collected
satisfiable cells is picked. If the chosen sample point cannot be extended to be a sat-
isfying witness, the algorithm for a universally quantified variable can conclude the
unsatisfiability of this dimension without the need to pick more sample points in this
dimension. If the collection of satisfiable intervals covers the whole number line and
no new sample can be guessed, satisfiability is concluded for the current dimension.
The idea of handling parameters for the quantifier elimination problem is similar to
how universally or existentially quantified variables are handled. The difference is
that we collect both satisfiable and unsatisfiable intervals, and we do not stop pro-
cessing a dimension if a sample point can or cannot be extended to be a satisfying
witness. By doing this, we ensure that all satisfiable intervals are gathered. The
satisfiable intervals are then described using an indexed root expression, as defined
in Definition 2.3.3, and logically combined to form the respective result for the quan-
tifier elimination problem. In the following, we present all algorithms and necessary
sub-algorithms of the CAlC algorithm for quantifiers in detail.

20 Cylindrical Algebraic Covering for Quantifiers

3.1 Algorithms
This section focuses on the algorithms for the decision problem for formulas of non-
linear real arithmetic. Specifically, the algorithms for handling universally and exis-
tentially quantified variables and the required sub-algorithms are presented. In the
following, we assume that the input formula φ is in prenex normal form, as defined
in Definition 2.2.3. The prefix of the formula φ is denoted by Q1x1, . . . , Qnxn, and
the matrix of the formula φ is denoted by φ̄. Both of these are available globally in
all the following algorithms. Note that the order of the variables in the prefix gives
the variable ordering.

Algorithm 1: user_call() [KN22, Algorithm 1]
Data: Global prefix Q1x1, . . . , Qnxn and matrix φ̄
Output: Either SAT or UNSAT

1 (f,O) := recourse(()) // Algorithm 2

2 return f

Algorithm 2: recourse(s) [KN22, Algorithm 2]
Data: Global prefix Q1x1, . . . , Qnxn and matrix φ̄
Input: Sample point s = (s1, . . . , si−1) ∈ Ri−1

Output: (SAT, I) or (UNSAT, I) where s× I can or can not be extended to be
a satisfying model for φ̄ for any si ∈ I. In any case, the algebraic
information attached to I describes how s can be generalized.

1 if Qi = ∃ then
2 return exists(s) // Algorithm 3

3 else
4 return forall(s) // Algorithm 4

Firstly, in Algorithm 1, we present the user interface to the recursive Algorithm 2
with an empty sample point and extract the main return value. This value represents
the result of the decision problem. Algorithm 2 checks the current quantifier of the
variable of interest and calls out to Algorithm 3 or Algorithm 4 accordingly. We use
the global prefix Q1x1, . . . , Qnxn to determine the quantification. Meaning that given
the passed sample point s = (s1, . . . , si−1) ∈ Ri−1, the quantifier that determines
which algorithm to call is Qi.

Algorithms 21

Algorithm 3: exists(s) [KN22, Algorithm 3]
Data: Global prefix Q1x1, . . . , Qnxn and matrix φ̄
Input: Sample point s = (s1, . . . , si−1) ∈ Ri−1

Output: (SAT, I) or (UNSAT, I) where s× I can or can not be extended to be
a satisfying model for φ̄ for any si ∈ I. In any case, the algebraic
information attached to I describes how s can be generalized.

1 Iunsat := ∅
2 while

⋃
I∈Iunsat

I ̸= R do
3 si := sample_outside(Iunsat)
4 if φ̄[s× si] = False then
5 (f,O) := (UNSAT,get_enclosing_interval(s,si)) // Algorithm 5

6 else if φ̄[s× si] = True then
7 (f,O) := (SAT,get_enclosing_interval(s,si)) // Algorithm 5

8 else
9 (f,O) := recourse(s× si) // Algorithm 2, recursive call

10 if f = SAT then
11 R := characterize_interval(s,O) // Algorithm 6

12 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

13 return (SAT, I)
14 Iunsat := Iunsat ∪ {O} // f = UNSAT

15 R := characterize_covering(s, Iunsat) // Algorithm 7

16 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

17 return (UNSAT, I)

Algorithm 3 is called with a partial sample point. It implicitly holds that φ̄[s] ̸=
False. This algorithm always returns a satisfiability-invariant interval in the dimen-
sion of the caller. This is a change compared to the Coverings Algorithms presented
in [ÁDEK21], where the caller computes the characterization. In Line 1, we initialize
a collection Iunsat of unsatisfiable intervals. The central part of this algorithm is a
while-loop, which terminates when this collection of intervals forms a covering for
the whole number line. In Line 3, a point si is selected, which lays outside of the
partial covering formed by the collection Iunsat. Selecting a sample point si is always
possible; otherwise, the while-loop would have terminated.
Then, different actions are taken according to how the given formula φ evaluates un-
der the extended sample point s × si. Each of the following actions returns a tuple
(f,O), where f is either SAT or UNSAT and O is an algebraic interval, as defined in
Definition 2.3.1.

Line 6, φ[s × si] = True: The formula evaluates to True under the extended
sample point s× si, and thus the flag f is set to SAT. Algorithm 5 is called to
create an algebraic interval around si over s for φ̄ which is satisfiable for the
same reasons.

Line 4, φ[s×si] = False: The formula evaluates to False under the extended
sample point s× si, and thus the flag f is set to UNSAT. Algorithm 5 is called
to create an algebraic interval around si over s for φ̄ which is unsatisfiable for

22 Cylindrical Algebraic Covering for Quantifiers

the same reasons.

Line 9, φ[s× si] is inconclusive: The formula does not evaluate to a truth value
under the extended sample point s × si. It holds that i < n, where n is the
highest level of a polynomial appearing in φ̄. Thus, the sample point s × si is
not fully dimensional with respect to the formula φ̄. In this case, Algorithm 2
is recursively called with the extended sample point (s × si) to check whether
it can be further extended to be a satisfying witness. The return value of this
call is then returned.

Based on how the flag f is set, the information stored in the algebraic interval O is
handled differently.

f = SAT (Lines 10–13): The extended sample point s×si is a satisfying witness
for the formula φ̄. Thus, the requirements for the existential quantifier are met,
and the algorithm returns the tuple (SAT, I), where I is the interval created
from Algorithms 6 and 8.

f = UNSAT (Line 14): The extended sample point s × si is not a satisfying
witness for the formula φ̄. Thus, the requirements for the existential quantifier
are not met, and the intervalO is added to the collection of unsatisfiable intervals
Iunsat.

This is repeated in the while loop until either a satisfying witness is found or the col-
lection of unsatisfiable intervals Iunsat forms a covering for the whole number line. In
the latter case, the algorithm can conclude unsatisfiability for the current dimension.
That is because the collection of unsatisfiable intervals Iunsat forms a covering for the
whole number line, and thus, no new sample point si outside of the collection of un-
satisfiable intervals Iunsat can be guessed. Thus, the requirements for the existential
quantifier cannot be met. Then in Line 15, Algorithm 7 is called to create a set of
polynomials R which characterizes the unsatisfiability of the formula φ̄ over s. This
set of polynomials is then used to create an interval I in dimension i − 1, which is
unsatisfiable for the same reasons as the collection of unsatisfiable intervals Iunsat.
The tuple (UNSAT, I) is then returned.

Algorithms 23

Algorithm 4: forall(s) [KN22, Algorithm 4]
Data: Global prefix Q1x1, . . . , Qnxn and matrix φ̄
Input: Sample point s = (s1, . . . , si−1) ∈ Ri−1 such that φ̄[s] ̸= False
Output: (SAT, I) or (UNSAT, I) where s× I can or can not be extended to be

a satisfying model for φ̄ for any si ∈ I. In any case, the algebraic
information attached to I describes how s can be generalized.

1 Isat := ∅
2 while

⋃
I∈Isat

I ̸= R do
3 si := sample_outside(Isat)
4 if φ̄[s× si] = False then
5 (f,O) := (UNSAT,get_enclosing_interval(s,si)) // Algorithm 5

6 else if φ̄[s× si] = True then
7 (f,O) := (SAT,get_enclosing_interval(s,si)) // Algorithm 5

8 else
9 (f,O) := recourse(s× si) // Algorithm 2, recursive call

10 if f = UNSAT then
11 R := characterize_interval(s,O) // Algorithm 6

12 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

13 return (UNSAT, I)
14 Isat := Isat ∪ {O} // f = SAT

15 R := characterize_covering(s, Isat) // Algorithm 7

16 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

17 return (SAT, I)

Algorithm 4 is fundamentally similar to exists(s) and has identical structure.
In Algorithm 3, a collection of unsatisfiable intervals is stored, and we can determine
satisfiability by checking whether the extended sample point s × si is a satisfying
witness or the collection Iunsat forms a covering of the real number line. The idea of
the Algorithm 4 is analogous. A collection of satisfiable intervals is stored. We can
determine satisfiability by checking whether the extended sample point s × si is not
a satisfying witness or whether the collection of satisfying intervals covers the whole
number line. Firstly, in Line 1, we initialize a collection Isat of satisfiable intervals.
Just like in the exists(s), we enter a while loop that terminates when the collection
of intervals forms a covering for the whole number line. Then, different actions are
taken according to how the given formula φ evaluates under the extended sample
point s × si. This is done in the same way as in Algorithm 3, and we finally have a
tuple (f,O), where f is either SAT or UNSAT and O is an algebraic interval. Based
on how the flag f is set, the information stored in the algebraic interval O is handled
differently.

f = UNSAT (Lines 10–13): The extended sample point s×si can not be extended
to be a satisfying witness for the formula φ̄. Thus, the requirements for the
universal quantifier are violated, and the algorithm returns the tuple (UNSAT, I),
where I is the interval created from Algorithms 6 and 8.

f = SAT (Line 14): The extended sample point s× si is a satisfying witness for

24 Cylindrical Algebraic Covering for Quantifiers

the formula φ̄. Thus, the requirements for the universal quantifier are met, and
the interval O is added to the collection of satisfiable intervals Iunsat.

The while-loop terminates when the collection of intervals forms a covering for the
whole number line, and thus, no new sample point can be guessed. The algorithm
can conclude satisfiability for the current dimension. With the same reasoning as in
exists(s), we call Algorithms 7 and 8 to create an algebraic interval I in dimension
i− 1 which is satisfiable for the same reasons as the collection of satisfiable intervals
Isat. The tuple (SAT, I) is then returned. Both exists(s) and forall(s) compute
the characterization of a covering and the characterization of an interval in the di-
mension of the callee. This calculation of a characterization introduces a technical
problem for the very first dimension i = 1, as we refer in the arguments to the function
Algorithm 8 to the point si−1, which does not exist in this case. To solve this prob-
lem, we assume that a special placeholder value is returned in this case instead of an
interval. Now, we present some of the sub-algorithms used in detail in Algorithms 3
and 4.

Algorithm 5: get_enclosing_interval(s, si) [KN22, Algorithm 5]
Data: Global matrix φ̄
Output: A satisfiability-invariant algebraic interval I around si over s

1 P := implicant_polynomials(φ̄, s× si)
2 Perform standard CAD simplifications to P // Definition 2.3.2

3 I := interval_from_characterization(s, si, P) // Algorithm 8

4 return I

Algorithm 5 is used to create an algebraic interval I around a sample point si in
dimension i. This interval is satisfiability-invariant for the formula φ̄ over s. In detail
this means that if φ̄[s × si] = False then for all other points s′i ∈ I it holds that
φ̄[s× s′i] = False. Analogously, if φ̄[s× si] = True then for all other points s′i ∈ I
it holds that φ̄[s × s′i] = True. A core part of Algorithm 5 is Line 1, in which the
polynomials which are responsible for the truth value of the formula φ̄ over s × si
are extracted. This is done by computing the implicant, see Definition 2.3.5, of the
formula φ̄ over s × si. We assume that the algorithm implicant_polynomials
computes the (preferably prime) implicant ψ of the formula φ̄ over s× si and returns
all polynomials that occur in ψ.

Algorithms 25

Algorithm 6: characterize_interval(s, I) [KN22, Algorithm 6]
Input: Sample point s ∈ Ri and single algebraic interval I over s in

dimension i+ 1
Output: Polynomials R ⊆ Q[x1, . . . , xi] that characterize a

satisfiability-invariant region around s
1 Extract: l = Il, u = Iu, L = IL, U = IU , Pi+1 = IPi+1 , P⊥ = IP⊥

2 R := P⊥ ∪ disc(Pi+1)
3 R := R ∪ {required_coefficients(p)|p ∈ Pi+1}

// [ÁDEK21, Algorithm 6]

4 R := R ∪ {res(p,q)|p ∈ L, q ∈ Pi+1, q(s× α) = 0 for some α ≤ l}
5 R := R ∪ {res(p,q)|p ∈ U, q ∈ Pi+1, q(s× α) = 0 for some α ≥ l}
6 Perform standard CAD simplifications to R // Definition 2.3.2

7 return R

Algorithm 7: characterize_covering(s, I) [KN22, Algorithm 7]
Input: Sample point s ∈ Ri and a covering of algebraic intervals I over s in

dimension i+ 1.
Output: Polynomials R ⊆ Q[x1, . . . , xi] characterizing a

satisfiability-invariant region around s.
1 I := compute_cover(I)
2 R :=

⋃
I∈I characterize_interval(s, I) // Algorithm 6

3 for j ∈ {1, . . . , |I| − 1} do
4 R := R ∪ {res(p, q)|p ∈ Uj , q ∈ Lj+1}
5 Perform standard CAD simplifications to R // Definition 2.3.2

6 return R

Algorithm 6 is used to create a set of polynomialsR which characterizes a satisfiability-
invariant region in dimension i around a sample point s for a given algebraic interval
I in dimension i + 1. Similarly, Algorithm 7 is used to create a set of polynomials
R which characterizes a satisfiability-invariant region in dimension i around a sample
point s for a given covering of algebraic intervals I in dimension i + 1. The sets of
polynomials created by that algorithm are pruned and simplified as defined in Defini-
tion 2.3.2. In Algorithm 7 and line 1, we refer to a sub-algorithm compute_cover
which is used to compute a covering based on the set of algebraic intervals I.

26 Cylindrical Algebraic Covering for Quantifiers

Algorithm 8: interval_from_characterization(s, si, P) [ÁDEK21,
Algorithm 5]
Input: Sample point s ∈ Ri−1, an extension si to the sample, and a set of

polynomials P in Q[x1, . . . , xi] that characterize why s× si can or
cannot be extended to be a satisfying witness.

Output: An Interval I around si such that on s× I the constraints are
equisatisfiable for the same reasons as on s× si.

1 P⊥ := {p ∈ R|p ∈ Q[x1, . . . , xi−1]}
2 Pi := R \ P⊥
3 Z := {−∞} ∪ real_roots_with_check(Pi, s) ∪ {∞}
4 l := max{z ∈ Z|z ≤ si}
5 u := min{z ∈ Z|z ≥ si}
6 L := {p ∈ Pi|p(s× l) = 0}
7 U := {p ∈ Pi|p(s× u) = 0}
8 Define new Interval I with Il = l, Iu = u, IL = L, IU = U, IPi

= Pi, IP⊥ = P⊥
9 return I

In Algorithm 8, we present how a characterization, given as a set of polynomi-
als P , is used to expand the sample point to an interval. This interval is equisat-
isfiable to the sample point for the same reasons as the sample point. Note that
interval_from_characterization(s, si, P) is called the same way for charac-
terizations created by a single algebraic interval, in Algorithm 6, and for characteri-
zations created by a covering of algebraic intervals, in Algorithm 7. For more details
about the presented sub-algorithms, we refer to [ÁDEK21].

3.2 Quantifier Elimination
In the following section, we present how the coverings method can be used for the
quantifier-elimination problem for non-linear real arithmetic, as defined in Defini-
tion 2.2.6. Given a formula φ in real arithmetic, we want to compute a quantifier-free
formula ψ, which is equivalent to φ. In the following, we assume that the formula
φ is given in prenex normal form, as defined in Definition 2.2.3. As presented in
Chapter 2, we can interpret the free variables as parameters for the resulting formula
when dealing with quantifier elimination. This means that the resulting formula is
a quantifier-free formula in the parameters. These parameters are the only variables
allowed to occur in the resulting formula. It is known that quantifier-elimination for
non-linear real arithmetic is decidable, and the lower bound for the complexity of this
problem is doubly exponential in the number of quantifier alternations [Tar51, DH88].

The main idea of the following algorithm is to consider the parameters first and
treat them similarly to existentially or universally quantified variables, with a few
differences. Instead of returning early, when a requirement for the quantifier is met
or violated, we collect both satisfiable and unsatisfiable intervals until the whole
number line is covered. This ensures that all satisfiable intervals in the parameter
space are constructed. Each interval is translated into a formula, built of constraints
over indexed-root expressions, as defined in Definition 2.3.3. The constructed formula
describes exactly the satisfying algebraic intervals in the parameter space.

Quantifier Elimination 27

Algorithm 9: parameter(s) [KN22, Algorithm 9]
Data: Global prefix Qk+1xk+1, . . . , Qnxn and matrix φ̄
Input: Sample point s = (s1, . . . , si−1) ∈ Ri−1

Output: (ψ, I) where ψ characterizes all satisfying intervals over s within
s× I

1 I := ∅
2 ψ := False
3 while

⋃
I∈Isat

I ̸= R do
4 si := sample_outside(Isat) if φ̄[s× si] = False then
5 (T,O) := (False,get_enclosing_interval(s,si)) // Algorithm 5

6 else if φ̄[s× si] = True then
7 (T,O) := (True,get_enclosing_interval(s,si)) // Algorithm 5

8 else if i < k then
9 (T,O) := parameter(s× si) // Algorithm 9, recursive call

10 else // It holds that k ≤ i < n

11 (f,O) := recourse(s× si) // Algorithm 2, recursive call

12 if f = SAT then
13 T := True
14 else
15 T := False
16 I := I ∪ {O}
17 ψ := ψ ∨ (indexed_root_formula(O, s) ∧ T)
18 R := characterize_covering(s, Isat) // Algorithm 7

19 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

20 return (ψ, I)

Given a formula φ := Qk+1xk+1, . . . , Qnxn.φ̄ in prenex normal form with k ̸= 0,
Algorithm 9 is called with an empty sample point. The return value of this initial call
is a tuple (ψ, I), where ψ is a quantifier-free formula in the parameters of φ, equiv-
alent to φ. Algorithm 9 is similar to Algorithm 3 and Algorithm 4, but with a few
differences. In Lines 1 and 2, a collection of algebraic intervals in the given dimension
and the respective output formula of the given dimension is initialized. The collection
of algebraic intervals I is used to collect all satisfiable and unsatisfiable cells in the
given dimension. This ensures that all satisfiable regions of the parameter space are
enumerated. The formula ψ describes all satisfiable regions in the given dimension.
The main part of the algorithm, a while-loop, terminates when the collection of alge-
braic intervals I forms a covering for the whole number line. In Line 4, a point si is
selected, outside the partial covering formed by the collection I. Afterward, similar
to Algorithms 3 and 4, the formula φ̄ is evaluated under the extended sample point
s× si. Different actions are taken depending on the result of this evaluation and the
current dimension i. Each of the following actions defines a tuple (T,O), where T is
the formula in the parameters and O is an algebraic interval.

φ̄[s× si] = True(Line 4); φ̄[s× si] = False(Line 6): The formula φ̄ evaluates
to a truth value under the extended sample point s× si, and thus the flag T is
set to respectively True or False. Algorithm 5 is called to create an algebraic
interval around si over s for φ̄ which is satisfiable or unsatisfiable for the same

28 Cylindrical Algebraic Covering for Quantifiers

reasons.

i < k(Line 8): It holds that φ̄[s×si] is inconclusive and i < k meaning that the
xi+1 is free. In this case, Algorithm 9 is called with the extended sample point
(s× si). The return value of this recursive call is exactly the tuple (T,O).

k ≤ i < n(Line 11): It holds that φ̄[s× si] is inconclusive and k ≤ i < n. This
means that the variable xi+1 is not a parameter but instead either universally
or existentially quantified. In this case, Algorithm 2 is called with the extended
sample point (s× si). The return value of this call is a tuple (f,O), where f is
either SAT or UNSAT and O is an algebraic interval. Depending on the value of
f , the flag T is set to True or False.

As I is a collection of both satisfiable and unsatisfiable cells, we add the algebraic
interval O to the collection I in any case. We add the newly gained information of
the algebraic interval O and the formula T to the formula ψ. To do this, we call
Algorithm 10 with the algebraic interval O, which outputs a formula describing the
bounds of the algebraic interval. This formula is then added to the formula T with a
conjunction. This conjunction is then added to the formula ψ with a disjunction.

The while-loop terminates when the collection of intervals forms a covering for the
whole number line. Equivalently to Algorithms 3 and 4, the collection of algebraic
intervals I used to create an algebraic interval in dimension i−1 by calling Algorithms 7
and 8. This interval is then returned as the second element of the tuple (ψ, I).

Algorithm 10: indexed_root_formula(O) [KN22, Chapter 4]
Input: Algebraic interval O, Sample point s = (s1, . . . , si−1) ∈ Ri−1

Output: Formula ψ describing the bounds of the algebraic interval O
symbolically using constraints over indexed-root expressions

1 ψ := True
2 foreach p ∈ IL do
3 Choose jp,l such that root[p, jp,l](s1, . . . , si−1) = Il
4 ψ := ψ ∧ root[p, jp,l] < xi
5 foreach p ∈ IU do
6 Choose jp,u such that root[p, jp,u](s1, . . . , si−1) = Iu
7 ψ := ψ ∧ xi < root[p, jp,u] < xi
8 return ψ

Algorithm 10 is used to translate an algebraic interval O into its respective for-
mula over indexed-root expressions (Definition 2.3.3). To do this, we use constraints
over indexed-root expressions to describe the bounds of the algebraic interval O sym-
bolically, as defined in Definition 2.3.3. These indexed-root expressions represent the
polynomial sets that describe the bounds of a satisfiable algebraic interval. When
combined using Boolean operators, the resulting formula is an ETF, as defined in
Definition 2.3.4.

Chapter 4

Handling Constraints
Independently

In the following chapter, we will present an extension to the cylindrical algebraic
coverings algorithm for quantifiers. This approach is strictly based on the algorithms
presented in Chapter 3. Likewise, as introduced in Chapter 3, we have an input
formula φ in prenex normal form. This results in the fact that when we need to
evaluate the formula φ at a sample point s, we continually evaluate the whole formula
φ at s. Similarly, when computing the implicant, we must compute the implicant of
the whole formula φ. Under certain circumstances, however, it is possible to split
the formula φ into two or more independent subformulas, which can be processed
separately. To illustrate this, consider the following example: Assume that we have
a formula φ := Q1x1.Q2x2.Q3x3.Q4x4.(φ1(x1,x4) σ φ2(x2, x3)) with σ ∈ {∨,∧} and
Qi ∈ {∃,∀} in prenex normal form and the variable ordering x1 ≺ x2 ≺ x3 ≺ x4.
Thus, it holds that the subformulas φ1 and φ2 are quantifier-free. Firstly, observe that
φ1 and φ2 do not share any variables. This has the effect that any assignment to x1 or
x4 will not affect the result when solving φ2. Analogously, any assignment to x2 or x3
will not affect the result when solving φ1. Thus, without any loss of information, we
can split the formula φ and process the subformulas φ1 and φ2 independently. This
has the effect that we can process the subformulas φ1 and φ2 separately using the
cylindrical algebraic coverings algorithm presented in Chapter 3. If we assume that
σ = ∨ and we can already determine the satisfiability of φ1, we can also determine
the satisfiability of the whole formula φ without having to process the subformula
φ2. Likewise, suppose we assume that σ = ∧ and we can already determine the
unsatisfiability of φ1. In that case, we can also determine the unsatisfiability of the
whole formula φ without having to process the subformula φ2. In other cases, however,
we must also process φ2. The results of processing φ1 and φ2 can then be combined.
To show a possible advantage of this approach, consider that the subformula φ2 is
highly complex and may require a lot of computational resources to be processed.
Then, if we can determine the satisfiability of φ1 without processing φ2, we can save
a lot of computational resources. This is the main idea behind the approach presented
in this chapter. In the example we presented above, the subformulas φ1 and φ2 do
not share any variables; however, this is not necessary, as we show later. It suffices
that the subformulas share at most one variable, the respectively next variable in the
variable ordering given a partial sample point s. In the following, we formally define

30 Handling Constraints Independently

what it means for two formulas to be independent with respect to a variable xi and
a (partial) sample point s.

Definition 4.0.1 (Independent Formulas).
We call two formulas φ,φ′ independent with respect to a variable xi and a (partial)
sample point s = (s1, . . . , si−1) ∈ Ri−1 if they do not share any variables except xi
when evaluated at s. Formally, that is φ and φ′ are independent with respect to xi
and s iff (vars(φ[s]) ∩ vars(φ′[s])) \ {xi} = ∅.

In Example 4.0.1, we show examples of independent formulas.

Example 4.0.1. Independent Formulas
Let φ1(x1,x2,x3) := x1 · x3 + x2 > 0 and φ2(x1,x2,x3) := x1 + x2 + x3 > 0.

s := () : We want to check if φ1, φ2 are independent with respect to variable
x1 and s. It holds that φ1[s] = x1 · x3 + x2 > 0 and φ2[s] = x1 + x2 + x3 > 0.
Thus (vars(φ1[s])∩ vars(φ2[s])) \ {x1} = ({x1, x2, x3} ∩ {x1,x2,x3}) \ {x1} =
{x2, x3} ≠ ∅ Thus, φ1 and φ2 are not independent with respect to x1 and s.

s := (x1 = 0) : We want to check if φ1, φ2 are independent with respect to
variable x2 and s. It holds that φ1[s] = x2 > 0 and φ2[s] = x2 + x3 > 0. Thus
(vars(φ1[s])∩vars(φ2[s])) \ {x2} = ({x2}∩ {x2,x3}) \ {x2} = ∅ Thus, φ1 and
φ2 are independent with respect to x2 and s.

Now that we have introduced the notion of independent formulas, we can formally
define what it means to split a formula. That is, we split the given formula into two
or more independent subformulas that are pairwise independent with respect to a
variable xi and a (partial) sample point s.

Definition 4.0.2 (Formula Split).
Given a set of formulas Φ := {φ1, . . . , φn}, a variable xi, a sample s = (s1, . . . , si−1) ∈
Ri−1 we can partition the sets as follows: Let split(Φ, xi, s) be the coarsest partition-
ing {A1, . . . , Aj} of Φ such that for all i ̸= j and φ ∈ Ai, φ

′ ∈ Aj it holds that φ and φ′

are independent with respect to xi and s. We can combine the sets in split(Φ, xi, s)
using a Boolean connective σ ∈ {∨,∧} as follows: split_formulas(Φ, xi, s, σ) :=
{σφ∈Φi(φ)|Φi ∈ split(Φ, xi, s)}

In Definition 4.0.2, we have formally defined how to split a set of formulas Φ
with respect to a variable xi and a (partial) sample point s. Now, let φ be a for-
mula in prenex normal form with the matrix φ̄ = φ1σ . . . σφn. Then, we denote
split_formulas({φ1, . . . , φn}, xi, s, σ) as the formula split of φ with respect to xi
and s. Now, we need to define another precondition for a formula split to be viable.
That is the quantification of the variable xi in combination with the used Boolean
connective σ. Only 2 combinations of variable quantification and Boolean connective
are possible. This is shown in Definition 4.0.3.

Definition 4.0.3 (Viable Quantification and Boolean Connective).
Given a set of formulas Φ := {φ1, . . . , φn}, a variable xi, its respective quantifier
Qi ∈ {∀,∃}, a sample s = (s1, . . . , si−1) ∈ Ri−1 and a Boolean connective σ ∈ {∨,∧}.
Then, a formula split is only possible for the following combinations of quantifier and
Boolean connective:

• Qi = ∃ and σ = ∨

31

• Qi = ∀ and σ = ∧

In the following, we will say that a split is viable if the combination of quantifier
and Boolean connectives are given according to Definition 4.0.3. If a split is not
viable, we set split(Φ, xi, s, σ) := {Φ}.

Example 4.0.2 (Formula Split).
Let φ := ∀x1.∃x2.∀x3. x1 · x3 + x2 > 0︸ ︷︷ ︸

:=φ1(x1,x2,x3)

∨x1 + x2 + x3 > 0︸ ︷︷ ︸
:=φ2(x1,x2,x3)

. The formula φ is in prenex

normal form, and we have σ = ∨. Note that φ1,φ2 are also used in Example 4.0.1.

s = () : According to Definition 4.0.3 this split is not viable, as we have
Q1 = ∀ and σ = ∨. Thus we have split({φ1, φ2}, x1, ()) = {{φ1, φ2}} and
split_formulas({φ1, φ2}, x1, (),∨) = {φ1 ∨ φ2}.

s = (x1 = 0) : According to Definition 4.0.3 this split is viable, as we have
Q1 = ∃ and σ = ∨. We have split({φ1, φ2}, x1, (x1 = 0)) = {{φ1}, {φ2}} and
split_formulas({φ1, φ2}, x1, (x1 = 0),∨) = {φ1, φ2}.

Theorem 4.0.1.
Let φ be a formula in prenex normal form with φ̄ = φ1σ . . . σφn, with σ ∈ {∨,∧}
and thus with the subformulas Φ := {φ1, . . . , φn}. Further, let xi ∈ vars(φ) and
let s = (s1, . . . si−1) ∈ Ri−1 be a partial sample point such that a split is viable,
according to Definition 4.0.3. Let split_formulas(Φ, xi, s, σ) = {φ′

1, . . . , φ
′
m} be

the formula split of Φ with respect to xi and s. Then the following holds:

Qi = ∃ : If and only if there exists a formula φ′
j ∈ {φ′

1, . . . , φ
′
m} such that φ′

j is
satisfiable, then φ is also satisfiable.

Qi = ∀ : If and only if there exists a formulas φ′
j ∈ {φ′

1, . . . , φ
′
m} such that φ′

j

is unsatisfiable, then φ is also unsatisfiable.

Proof. To prove this theorem, we consider the cases separately.

• Let xi be existentially quantified. If there exists a formula φ′ ∈ split_formulas(Φ, xi, s, σ)
such that φ′ is satisfiable, then there exists an extension s′ to the sample point
s such that φ′[s′] = True. Because the split is viable it must hold that the
original function φ is a disjunction. It thus holds that φ[s′] = True and is
thus also satisfiable. The other direction is analogous. If φ is satisfiable, then
an extension to the sample point s, namely s′, exists, such that φ[s′] = True.
As φ is a disjunction, there must exist a formula φ′ ∈ {φ′

1, . . . , φ
′
m} such that

φ′[s′] = True. Thus, the reason why φ is satisfiable is the same as why φ′ is
satisfiable.

• Let xi be universally quantified. If there exists a formula φ′ ∈ split_formulas(Φ, xi, s, σ)
such that φ′ is unsatisfiable, then there does does not exist an extension s′ to
the sample point s such that φ′[s′] = True. Thus, for every fully dimensional
extension s′ of s it must holds that φ′[s′] = False. Because the split is viable
it must hold that the original function φ is a conjunction. It thus holds that
φ[s′] = False for all fully dimensional extension s′ of s and thus φ is also
unsatisfiable. The other direction is analogous. If φ is unsatisfiable, there does
not exist an extension s′ of the sample point s such that φ[s′] = True. Thus
for every fully dimensional extension s′ of s it must hold that φ[s′] = False.

32 Handling Constraints Independently

As φ is a conjunction, it must hold that there must exist φ′ ∈ {φ′
1, . . . , φ

′
m} for

which it holds that φ′[s′] = False. Thus, the reason why φ is unsatisfiable is
the same as why φ′ is unsatisfiable.

To see why any other combination of quantifier and σ are not viable, consider the
examples shown in Example 4.0.3.

Example 4.0.3 (Bad Formula Splits).

• Given a formula φ := ∃x.x = 0 ∧ x = 1. Thus, we have the set of formulas
Φ = {x = 0, x = 1}, the variable x, the sample point s = () and the Boolean
connective σ = ∧. According to Definition 4.0.2, we can split the set of formu-
las Φ with respect to x and s as follows: split_formulas(Φ, x, s) = {{x =
0}, {x = 1}}. This implies that we can solve ∃x.x = 0 and ∃x.x = 1 inde-
pendently and combine the results using the Boolean connective ∧. As both
∃x.x = 0 and ∃x.x = 1 are satisfiable, we would conclude that ∃x.x = 0∧ x = 1
is satisfiable, which is wrong.

• Given a formula φ := ∀x.x < 1 ∨ x > −1. Thus, we have the set of formula
Φ = {x < 1, x > −1}, the variable x, the sample point s = () and the Boolean
connective σ = ∨. According to Definition 4.0.2, we can split the set of formulas
Φ with respect to x1 and s as follows: split_formulas(Φ, x, s) = {{x <
1}, {x > −1}}. This implies that we can solve ∀x.x < 1 and ∀x.x > −1
independently and combine the results using the Boolean connective ∨. As
both ∀x.x < 1 and ∀x.x > −1 are unsatisfiable, we would conclude that ∀x.x <
1 ∨ x > −1 is unsatisfiable, which is wrong.

In the following, we are going to present Algorithm 11, which, given a set of formu-
las Φ, a variable xi, a sample point s ∈ Ri−1 returns exactly the result split(Φ, xi, s)
according to Definition 4.0.2. To do this, we will transform the problem into a graph
problem and then use a graph algorithm to find the connected components of the
given graph. A connected component of a given undirected graph is defined as a
connected subgraph that is not part of any larger connected subgraph. Every vertex
v ∈ V of a graph belongs to one and only one component, which may be found as the
induced subgraph of the set of vertices reachable from v [JA95].

Algorithm 11: split(Φ, xi, s)
Input: A set of formulas Φ, a variable xi and a sample point s ∈ Ri−1

Output: A set of sets of formulas representing exactly the formula split of Φ
with respect to xi and s

1 G := (V,E) // Initialize Graph

2 V := Φ // Vertices are exactly the formulas

3 foreach φi ∈ Φ do
4 for φj ∈ Φ such that j > i do
5 if φi is not independent of φj with respect to xi and s then
6 E := E ∪ {(φi, φj)}
7 Compute vertices C of the connected compontents of G
8 return C

33

Given a set of formulas Φ, a variable xi and a sample s = (s1, . . . , si−1) ∈ Ri−1,
the graph G we are going to use is defined as follows:

• The vertices of the graph are exactly the formulas in Φ.

• Edge between two vertices φ,φ′ iff φ and φ′ are not independent with respect
to xi and s.

The graph G is constructed in Lines 1–6. Then, in Line 7, the connected components
of G are computed. This can be done, for example, using a DFS-based approach
with a time complexity of O(|V |+ |E|) [JA95, Sch11]. The subgraphs resulting from
this computation are of interest only for the set of vertices they contain. We call
the set of vertices of the connected components C. Now, to show that C is exactly
split(Φ, xi, s), we need to show that for Ci, Cj ∈ C with i ̸= j it holds that φ ∈ Ci

and φ′ ∈ Cj are independent with respect to xi and s. To see this, let φ ∈ Ci and
φ′ ∈ Cj with i ̸= j be formulas from two different connected components. Then,
by definition of a connected component, no path exists from φ to φ′ in G. Thus,
there is no edge from φ to φ′ in G. By construction of G, this means that φ and
φ′ are independent with respect to xi and s. Thus, the vertices C of the connected
components of G are exactly split(Φ, xi, s). This set of vertices C is then returned
in Line 8.

Example 4.0.4 (Formula Split).
Let φ := x1 · x2 − x4 + 3 > 0 ∨ x2 − x3 > 0 ∧ x22 ̸= 0 ∨ 4 · x23 + x3 · x2 − 7 > 0 and we
have the variable ordering x1 ≺ x2 ≺ x3 ≺ x4 and the sample point s = (). Then we
can set:

φ1(x1, x2, x4) := x1 · x2 − x4 + 3 > 0

φ2(x2, x3) := x2 − x3 > 0 ∧ x22 ̸= 0

φ3(x2, x3) := 4 · x23 + x3 · x2 − 7 > 0

Thus, we have Φ = {φ1, φ2, φ3}, as s = () and x1 is the variable of interest. Thus,
we are interested in computing the formula split of Φ with respect to x1 and s,
or split_formulas(Φ, x1, (),∨). Then we can construct the graph G1 = (V,E)
according to Algorithm 11 as follows:

1. We set V := Φ = {φ1, φ2, φ3}.

2. Iterate over each pair of formulas φi, φj ∈ Φ with i < j and check if the for-
mulas are independent with respect to x1 and s. As s = (), the formulas are
independent with respect to x1 and s iff they do not share any variables except
x1.

• φ1(x1, x2, x4) and φ2(x2, x3) are not independent with respect to x1 and s
as they share the variable {x2}.

• φ1(x1, x2, x4) and φ3(x2, x3) are not independent with respect to x1 and s
as they share the variable {x2}.

• φ2(x2, x3) and φ3(x2, x3) are not independent with respect to x1 and s as
they share the variables {x2, x3}.

Thus, we have E = {(φ1, φ2), (φ1, φ3), (φ2, φ3)}. The resulting graph G1 =
(V,E) is shown in Figure 4.1a.

34 Handling Constraints Independently

φ1 φ2

φ3

(a) Graph G1

φ1 φ2

φ3

(b) Graph G2

Figure 4.1: Graphs G1 and G2 resulting from Example 4.0.4

3. Compute the connected components of G. As G is a complete graph, there is
only one connected component, which is C = {φ1, φ2, φ3}.

4. Combine the formulas in C using the Boolean connective ∨. This results in the
formula φ1 ∨ φ2 ∨ φ3.

In total, the formula could not be split into two or more independent subformulas.
Now, we consider the same formula φ and the same variable ordering x1 ≺ x2 ≺ x3 ≺
x4, but a different sample point s = (x1 = 1). Thus, we are now interested in comput-
ing the formula split of φ with respect to x2 and s, or split_formulas(Φ, x2, (x1 =
1),∨). Then we can construct the graph G2 = (V,E) according to Algorithm 11 as
follows:

1. Again we set V := Φ = {φ1, φ2, φ3}.

2. Iterate over each pair of formulas φi, φj ∈ Φ with i < j and check if the formulas
are independent with respect to x1 and s. As s = (x1 = 1), the formulas are
independent with respect to x1 and s iff they do not share any variables except
x2 when evaluated at s.

• φ1(1, x2, x4) and φ2(x2, x3) are independent with respect to x2 and s as
they only share the variable {x2}.

• φ1(1, x2, x4) and φ3(x2, x3) are independent with respect to x2 and s as
they only share the variable {x2}.

• φ2(x2, x3) and φ3(x2, x3) are not independent with respect to x2 and s as
they share the variables {x2, x3}.

Thus, we have E = {(φ2, φ3)}. The resulting graph G2 = (V,E) is shown in
Figure 4.1b.

3. Compute the connected components of G. Vertex φ1 is not connected to any
other vertices in G and thus forms a single connected component. Vertices φ2

and φ3 are connected and thus form a connected component. Thus, we have
C = {{φ1}, {φ2, φ3}}.

4. Combine the formulas in C using the Boolean connective ∨. This results in the
formulas {φ1, φ2 ∨ φ3}.

In total, the formula could be split into two independent subformulas, namely φ1 and
φ2 ∨φ3. Note that the actual formulas φ1, φ2, φ3 are not crucial for the computation
of the formula split, only the variables they contain.

Adapting the Cylindrical Algebraic Coverings Algorithm 35

4.1 Adapting the Cylindrical Algebraic Coverings Al-
gorithm

In the following, we will show how the cylindrical algebraic coverings method algo-
rithm, as presented in Chapter 3, can be adapted to handle the concept of formula
splits. The idea of the adaptions is to split the formula φ with respect to a variable
xi and a partial sample point s into two or more independent subformulas whenever
possible. These independent subformulas are then processed further using the cylin-
drical algebraic coverings algorithm. When the result of a formula from this split
determines the satisfiability of φ for the variable xi, we can return the result without
processing the other formulas from the split. If not, and we have processed all in-
dependent subformulas, we must combine the individual results. Intuitively, how to
handle the individual results of the independent subformulas depends on the Boolean
connective σ used to combine the subformulas. This is shown in Definition 4.1.1.

Definition 4.1.1 (Combining two independent formulas).
Let φ be a formula in prenex normal form, with φ̄ := φ1σφ2 and σ ∈ {∨,∧}. In the
following, assume that the formula split is viable for the respectively used Boolean
connective σ and that φ is split into the independent subformulas {φ1, φ2}. Further,
let I1 and I2 be the algebraic intervals resulting from processing the cylindrical alge-
braic coverings algorithm for φ1 and φ2, respectively. We denote the satisfiability of
an interval using T and likewise the unsatisfiability of an interval as F .

I1 I2 φ1 ∧ φ2

T T I1 ∩ I2
T F I2
F T I1
F F I1 ∪ I2

I1 I2 φ1 ∨ φ2

T T I1 ∪ I2
T F I2
F T I1
F F I1 ∩ I2

Definition 4.1.1 shows how the result of two independent subformulas can be com-
bined. This can naturally be extended when we have more than two independent
subformulas.

In the following, we will present the adapted version of the cylindrical algebraic
coverings algorithm. For this, we first must define how to compute the intersection
of two algebraic intervals when necessary. This is presented in Algorithm 12. We use
the notation

⋂
I∈A I := merge(A) to denote the computation of the intersection of

a set of intervals A. The algorithm merge(A) takes a set of algebraic intervals A
as input and returns another algebraic interval I, which is exactly the intersection of
all intervals in A. The lower and upper bounds Il and Iu of the resulting algebraic
interval I are computed as the minimum and maximum of the lower and upper bounds
of the intervals in A, respectively. The sets of polynomials IL and IU defining these
boundaries are the same as in the algebraic interval, with the smallest lower bound
and the largest upper bound, respectively. These sets are updated whenever a new
interval with a smaller lower bound or a larger upper bound is found. The sets IPi

and I⊥ are constructed as the union of the sets I ′Pi
and I ′⊥ of intervals I ′ ∈ A. This

ensures that the resulting interval I is as tight as possible and fully defined.

36 Handling Constraints Independently

Algorithm 12: merge(A)
Input: A set of algebraic intervals A
Output: An algebraic interval I, which is the intersection of all intervals in A

1 Initialize I := Il = ∞, Iu = −∞, IL = ∅, IU = ∅, IPi = ∅, I⊥ = ∅
2 foreach I ′ ∈ A do
3 Extract I ′l , I

′
u, I

′
L, I

′
U , I

′
Pi
, I ′⊥ from I ′

4 if I ′l < Il then
5 Il := I ′l
6 IL := I ′L
7 if I ′u > Iu then
8 Iu := I ′u
9 IU := I ′U

10 IPi := IPi ∪ I ′Pi

11 I⊥ := I⊥ ∪ I ′⊥
12 Define Interval I := (Il, Iu, IL, IU , IPi

, I⊥)
Output: I

As a counterpart to the merge operation, where we calculate the intersection of
a set of intervals, we also need to calculate the union of a set of intervals. We have
introduced the notation

⋃
I∈A I for this. Instead of merging the set of intervals into a

single one, we will view the intervals separately, adding each interval individually. To
define the union operation, we must make adaptions to Algorithms 1–4. The changes
are shown in Algorithms 13, 14, 16 and 17. One notable change is that the formula
φ is no longer global and is passed as an argument. By passing the formula φ as
an argument, we can change which formula to process by the respective algorithms.
The prefix Q1x1, . . . , Qnxn, which defines the variable ordering and quantification, is
still global. The return value of Algorithms 2–4, are tuples of the form (SAT, I) or
(UNSAT, I), where I is an algebraic interval. This is changed to (SAT, {I1, . . . Im})
or (UNSAT, {I1, . . . Im}) where for every I ∈ {I1, . . . Im} it holds that s × I can or
can not be extended to be a satisfying model for φ̄ for any si ∈ I. Thus, instead of
returning a single interval, we return a set of intervals. This is necessary because the
result of processing a split formula may be two or more intervals instead of just one.
In the following, we will present the adapted formulas in detail.

Algorithm 13: user_call_split(φ)

Input: A formula φ
Data: Global prefix Q1x1, . . . , Qnxn and a Boolean flag

early_return ∈ {True, False}
Output: Either SAT or UNSAT

1 (f,O) := recourse_split(φ, ()) // Algorithm 14

2 return f

Algorithm 13 is the user interface for the CAlC algorithms. The change to Al-
gorithm 1 is that the formula φ is not global anymore but passed as an argument.
Further, a Boolean flag early_return ∈ {True, False} is introduced. This flag is
used in later algorithms. In Line 1 Algorithm 14 is called, which is the adaption

Adapting the Cylindrical Algebraic Coverings Algorithm 37

of Algorithm 2. The formula φ and the Boolean flag early_return are passed as
arguments. The sample point s = () is also passed as an argument.

Algorithm 14: recourse_split(φ, s)
Data: Global prefix Q1x1, . . . , Qnxn and a Boolean flag

early_return ∈ {True, False}
Input: Formula φ, a sample point s = (s1, . . . , si−1) ∈ Ri−1

Output: Either (SAT, {I1, . . . Im}) or (UNSAT, {I1, . . . Im})
1 Let σ such that φ = φ1σ . . . σφm

2 Φsplit = {φ} // Init split value

3 if (σ = ∨ and Qi = ∃)or(σ = ∧ and Qi = ∀) then
4 Φsplit := formula_split({φ1, . . . , φm}, xi, s) // Algorithm 11

5 if |Φsplit| = 1 then // No split is possible

6 if Qi = ∃ then
7 return exists_split(φ, s) // Algorithm 16

8 else
9 return forall_split(φ, s) // Algorithm 17

10 // Formula is split in two or more independent subformulas

11 (Isat, Iunsat) := get_results(Φ, s, σ, return_early) // Algorithm 15

12 if σ = ∨ then
13 if Isat ̸= ∅ then // There are true results

14 return (SAT, Isat)
15 return (UNSAT, {merge(Iunsat)}) // Algorithm 12

16 else // σ = ∧
17 if Iunsat ̸= ∅ then // There are false results

18 return (UNSAT, Iunsat)
19 return (SAT, {merge(Isat)}) // Algorithm 12

In Line 1, we initialize σ with the Boolean connective of the formula φ, i.e. if
φ = φ1 ∧ . . . ∧ φm, then σ = ∧. With this information, together with the quantifier
Qi of the variable xi, which is currently of concern, we can determine if the split
of the current formula φ is viable. In any case, in Line 2, we initialize the set of
formulas Φsplit with {φ}. We do this to simplify the following lines of the algorithm
and to avoid redundancy. In Line 3, we check if a formula split is viable according to
Definition 4.0.3. If that is the case we call Algorithm 11 in Line 4 to calculate Φsplit :=
formula_split({φ1, . . . , φm}, xi, s) following Definition 4.0.2. After, in Line 5, we
check if the formula was split into two or more independent subformulas. If that is
not the case, i.e., |Φsplit| = 1, then the formula φ, for any reason, could not be split
into multiple independent subformulas. Then, in Lines 6–9 we call Algorithm 16 or
Algorithm 17 according to the quantifier Qi of the variable xi which is currently of
concern. If the formula φ is split into multiple independent subformulas, we handle
the two possible cases differently based on the logical connective σ. If σ = ∨, then
we handle the disjunction in Lines 12–15. If σ = ∧, then we handle the conjunction
in Lines 16–19. In any case, in Line 11, we call Algorithm 15 to obtain the sets
Isat and Iunsat which contain the resulting algebraic intervals of the satisfiable and
unsatisfiable formulas in Φ, respectively. Then, depending on the sets Isat and Iunsat,
the functions differ.

When handling the split subformulas of a disjunction, it suffices to check if there

38 Handling Constraints Independently

is at least one satisfiable subformula to determine the satisfiability of the formula φ
passed as input. If that is the case, then the whole disjunction is satisfiable. That
is the case, as the combined formula of Φ is of the form φ1 ∨ . . . ∨ φm with φi ∈ Φ.
Thus, if there exists at least one subformula φi ∈ Φ such that s can be extended to a
satisfying model for φi, this same model is also a satisfying model for the combined
formula φ1∨ . . .∨φm. This also implies that if we set the flag return_early to True,
then the algorithm already returns if there is at least one satisfiable subformula, which
can have the effect that some formulas in Φ do not have to be processed at all. Thus,
in Line 13, we check if Isat ̸= ∅. We return (SAT, Isat) if that is the case. This way, if
there is more than one calculated satisfiable result in Isat, we return all of them. This
means that the respective algebraic intervals are processed separately in the following
steps. Intuitively, this is because any of the satisfiable subformulas in Φ can be used
to extend s to a satisfying model for the combined formula φ1 ∨ . . .∨φm. Thus, they
can all be used to generalize s individually. If there are no satisfiable subformulas in
Φ, then we return (UNSAT, {merge(Iunsat)}). This means the whole disjunction is
unsatisfiable if there is no satisfiable subformula in Φ. In other words, if there does
not exist a subformula φi ∈ Φ such that s can be extended to a satisfying model
for φi, then s can not be extended to a satisfying model for the combined formula
φ1 ∨ . . . ∨ φm. We combine the resulting algebraic intervals in Iunsat into a single
algebraic interval using Algorithm 12 and return (UNSAT, {merge(Iunsat)}). This
way, the resulting generalization of s is as tight as possible.

The logic of processing the split subformulas of a conjunction is similar. There,
it suffices to check if there is at least one unsatisfiable subformula to determine the
satisfiability of the input formula φ. If that is the case, then the whole conjunction is
unsatisfiable. That is the case, as the combined formula of Φ is of the form φ1∧. . .∧φm

with φi ∈ Φ. Thus, if there exists at least one subformula φi ∈ Φ such that s can not
be extended to a satisfying model for φi, then s can not be extended to a satisfying
model for the combined formula φ1 ∧ . . . ∧ φm. This also implies that if we set the
flag return_early to True, then the algorithm already returns if there is at least one
unsatisfiable subformula, which can have the effect that some formulas in Φ do not
have to be processed at all. Thus, in Line 17, we check if Iunsat ̸= ∅. We return
(UNSAT, Iunsat) if that is the case. This way, we return all of them if there is more
than one calculated unsatisfiable result in Iunsat. This means that the respective
algebraic intervals are processed separately in the following steps. Intuitively, this is
because any of the unsatisfiable subformulas in Φ can be used to show that s can not
be extended to a satisfying model for the combined formula φ1∧ . . .∧φm. Thus, they
can all be used to generalize s individually. If there are no unsatisfiable subformulas
in Φ, then we return (SAT, {merge(Isat)}). If there is no unsatisfiable subformula in
Φ, then the whole conjunction is satisfiable. In other words, if there does not exist a
subformula φi ∈ Φ such that s can not be extended to a satisfying model for φi, then
s can be extended to a satisfying model for the combined formula φ1 ∧ . . . ∧ φm. We
combine the resulting algebraic intervals in Isat into a single algebraic interval using
Algorithm 12 and return (SAT, {merge(Isat)}). This way, the resulting generalization
of s is as tight as possible.

Adapting the Cylindrical Algebraic Coverings Algorithm 39

Algorithm 15: get_results(Φ, s, σ)
Data: Global prefix Q1x1, . . . , Qnxn and a Boolean flag

return_early ∈ {True, False}
Input: Set of formulas Φ, a sample point s = (s1, . . . , si−1) ∈ Ri−1 and

Boolean connective σ ∈ {∨,∧}
Output: Tuple of Sets (Isat, Iunsat)

1 Isat = ∅ // Initialize SAT results

2 Iunsat = ∅ // Initialize UNSAT results

3 foreach φ ∈ Φ do
4 if Qi = ∃ then
5 (f, I) := exists_split(φ, s, early_return) // Algorithm 16

6 else // Qi = ∀
7 (f, I) := forall_split(φ, s, early_return) // Algorithm 17

8 if f = SAT then
9 Isat = Isat ∪ I

10 if return_early and σ = ∨ then
11 return (Isat, Iunsat)
12 else
13 Iunsat = Iunsat ∪ I
14 if return_early and σ = ∧ then
15 return (Isat, Iunsat)
16 return (Isat, Iunsat)

In Algorithm 15 we initialize two sets Isat and Iunsat in Lines 1–2. These sets
are used to store the resulting algebraic intervals of the respectively satisfiable and
unsatisfiable formulas in Φ. Then, in Line 3, we iterate over the formulas φ ∈ Φ to
obtain the results. Depending on the quantifier Qi of the variable that is currently
of concern, we call either Algorithm 16 or Algorithm 17 in Lines 5–7. While the
variable xi itself is not given as an argument, one can deduce the index i from the
sample point s = (s1, . . . , si−1) ∈ Ri−1. The result of the call to either Algorithm 16
or Algorithm 17 is a tuple (f, I) where f is either SAT or UNSAT and I is a set
of algebraic intervals. Based on the value of f , we add the intervals in I to the
respective set Isat or Iunsat. Further, based on if the flag early_return is set to True
and the Boolean connective σ of the formula φ, we check if we can return early. If
return_early = True and σ = ∨ and there is a formula φ ∈ Φ such that s can
be extended to a satisfying model for the given φ, then the algorithm returns early.
Analogously, if return_early = True and σ = ∧ and there is a formula φ ∈ Φ such
that s can not be extended to a satisfying model for the given φ, then the algorithm
returns early. If return_early is set to False or any of the cases for an early return
does not happen, then we continue with the next formula in Φ. When either all
formulas in Φ are processed, or a case where we can return early occurs, we return the
tuple (Isat, Iunsat). Further, as the formulas in Φ are pairwise independent, the order
in which we process the formulas does not matter. Thus, one can sort the formulas
by complexity according to some metric or process them in parallel.

40 Handling Constraints Independently

Algorithm 16: exists_split(φ, s)
Data: Global prefix Q1x1, . . . , Qnxn and a Boolean flag

early_return ∈ {True, False}
Input: Formula φ currently of interest, sample point

s = (s1, . . . , si−1) ∈ Ri−1

Output: (SAT, {I1, . . . Im}) or (UNSAT, {I1, . . . Im}) where for every
I ∈ {I1, . . . Im} it holds that s× I can or can not be extended to be
a satisfying model for φ̄ for any si ∈ I. In any case, the algebraic
information attached to I describes how s can be generalized.

1 Iunsat := ∅
2 while

⋃
I∈Iunsat

I ̸= R do
3 si := sample_outside(Iunsat)
4 if φ̄[s× si] = False then
5 (f,O) := (UNSAT, {get_enclosing_interval(s,si)})

// Algorithm 5

6 else if φ̄[s× si] = True then
7 (f,O) := (SAT, {get_enclosing_interval(s,si)}) // Algorithm 5

8 else
9 (f,O) := recourse_split(φ, s× si)

// Algorithm 14, recursive call

10 if f = SAT then
11 Isat := ∅
12 foreach IO ∈ O do
13 R := characterize_interval(s, IO) // Algorithm 6

14 I :=
interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

15 Isat = Isat ∪ {I}
16 return (SAT, Isat)
17 Iunsat := Iunsat ∪O // f = UNSAT

18 R := characterize_covering(s, Iunsat) // Algorithm 7

19 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

20 return (UNSAT, {I})

Adapting the Cylindrical Algebraic Coverings Algorithm 41

Algorithm 17: forall_split(φ, s)
Data: Global prefix Q1x1, . . . , Qnxn and a Boolean flag

early_return ∈ {True, False}
Input: Formula φ currently of interest, sample point

s = (s1, . . . , si−1) ∈ Ri−1

Output: (SAT, {I1, . . . Im}) or (UNSAT, {I1, . . . Im}) where for every
I ∈ {I1, . . . Im} it holds that s× I can or can not be extended to be
a satisfying model for φ̄ for any si ∈ I. In any case, the algebraic
information attached to I describes how s can be generalized.

1 Isat := ∅
2 while

⋃
I∈Isat

I ̸= R do
3 si := sample_outside(Isat) if φ̄[s× si] = False then
4 (f,O) := (UNSAT, {get_enclosing_interval(s,si)})

// Algorithm 5

5 else if φ̄[s× si] = True then
6 (f,O) := (SAT, {get_enclosing_interval(s,si)}) // Algorithm 5

7 else
8 (f,O) := recourse_split(φ, s× si, early_return)

// Algorithm 14, recursive call

9 if f = UNSAT then
10 Iunsat = ∅
11 foreach IO ∈ O do
12 R := characterize_interval(s, IO) // Algorithm 6

13 I :=
interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

14 Iunsat = Iunsat ∪ {I}
15 return (UNSAT, Iunsat)
16 Isat := Isat ∪O // f = SAT

17 R := characterize_covering(s, Isat) // Algorithm 7

18 I := interval_from_characterization((s1, . . . , si−2), si−1, R)
// Algorithm 8

19 return (SAT, {I})

Now we will present the adapted versions of Algorithms 3 and 4. The changes
are shown in respectively Algorithms 16 and 17. Both algorithms are adapted in
the same way. Thus, we are going to go over the changes only once. The main
change is that the return value is now a tuple of the form (SAT, {I1, . . . Im}) or
(UNSAT, {I1, . . . Im}) where for every I ∈ {I1, . . . Im} it holds that s × I can or can
not be extended to be a satisfying model for φ̄ for any si ∈ I. In any case, the
algebraic information attached to I describes how s can be generalized. Further, the
formula φ is not global anymore but passed as an argument, enabling the processing
of each independent subformula individually. The formula prefix Q1x1, . . . , Qnxn,
which defines the variable ordering and quantification, is still global. Another change
is that a Boolean flag early_return ∈ {True, False} is also passed as an argument.
This flag indicates whether the algorithm should return early if a formula already
decides the result. Another change is that the tuple (f,O) no longer contains a single
interval I but a set of intervals O. That is, in both algorithms, in Lines 4 and 6 we

42 Handling Constraints Independently

call Algorithm 5 to compute the satisfiability invariant around s × si for the given
formula φ. The return value of Algorithm 5 is a single algebraic interval I, from which
we initialize a set of intervals O := {I}. This change is necessary as in Line 8, in
both Algorithm 16 and Algorithm 17, we call Algorithm 14 recursively. The return
value of Algorithm 14 is a tuple (f,O), where f is either SAT or UNSAT and O is a
set of intervals. So in total, we have the tuple (f,O) where f is either SAT or UNSAT
and O is a set of algebraic intervals in any case. As a consequence of this change, we
must also adapt how we handle these intervals in this tuple. This inherently is based
on f for the respective algorithm. In Algorithm 16, if f = SAT, then we need to
characterize the intervals in O and return them as a set of intervals Isat. In Line 11,
we initialize the set Isat with the empty set. Then, in Line 12, we iterate over the
intervals IO ∈ O and call Algorithm 6 and Algorithm 8 for each interval IO and add
the resulting algebraic interval I to Isat. Finally, in Line 16, we return (SAT, Isat).
Analogously, in Algorithm 17, if f = UNSAT, then we need to characterize the intervals
in O and return them as a set of intervals Iunsat. In Line 10, we initialize the set
Iunsat with the empty set. Then, in Line 11, we iterate over the intervals IO ∈ O and
call Algorithm 6 and Algorithm 8 for each interval IO and add the resulting algebraic
interval I to Iunsat. Finally, in Line 15, we return (UNSAT, Iunsat). In both cases, this
also ensures that the return value is of the form (f, {I1, . . . }) where f is either SAT
or UNSAT and I1, . . . are algebraic intervals. In the other case, for both algorithms,
meaning if f = SAT in Algorithm 16 or f = UNSAT in Algorithm 17, we need to add
the intervals in O to the set of intervals Iunsat or Isat, respectively.

Chapter 5

Variable Orderings

In the following section, we present how different variable orderings can be used to
improve the performance of the coverings method. It is a well-known fact that the
performance of the CAD algorithm and thus also of the CAlC algorithm is heavily
dependent on the variable ordering used [EF19, LXZZ21, HEW+14, DSS04]. The
underlying theory of this thesis is the theory of non-linear real arithmetic. In this
theory, the order of differently quantified variables is of importance for the semantics
of the formula. We can not arbitrarily change the order of the variables, as this would
inherently change the semantics and, thus, the result when solving the quantifier
elimination problem or the decision problem. In the following, we are going to define
the notion of admissible variable orderings, which are variable orderings that preserve
the semantics of the formula.

Definition 5.0.1 (Quantifier Block).
Let φ := Qk+1xk+1, . . . , Qnxn.φ̄ be a formula in prenex normal form with Qi ∈ {∀,∃}.
Then the variables {x1, xk} = B0 are the free variables. Without loss of generality,
we can rewrite the prefix of φ equivalently using quantifiers blocks by combining the
variables of identical subsequent quantifiers into sets. Thus, we can rewrite the prefix
of φ as B0.Q1B1. . . . QmBm. Where Bi are pairwise disjoint sets of variables and we
have Qi ̸= Qi+1 for all i ∈ {1, . . . ,m}. The sets QiBi are called quantifier blocks.

A quantifier block is a set of adjacent variables quantified by the same quantifier.
Thus, the variables inside a quantifier block are either existentially quantified, uni-
versally quantified, or free. We add the free variables to the first quantifier block B0.
This means the free variables are always at the beginning of any variable ordering.

Definition 5.0.2 (Admissible Ordering).
Let φ := B0.Q1B1. . . . QmBm.φ̄ be a formula in prenex normal form with quantifier
blocks as defined in Definition 5.0.1. Then a variable ordering ≺ is called admissible
for φ if it holds that xi ≺ xj =⇒ xi ∈ Ba ∧ xj ∈ Bb with a ≤ b.

We call a variable ordering admissible, as defined in Definition 5.0.2 if the order of
the variables is preserved among quantifier blocks. We observe that we can arbitrarily
reorder the variables within such a quantifier block without changing the semantics of
the formula. Thus, a variable ordering may change the ordering of variables within a
single quantifier block but not between quantifier blocks. In the following, all variable
orderings of interest are admissible. This means we always assume that the order of

44 Variable Orderings

quantifier blocks is preserved. The amount of admissible variable orderings is bound
by the size of the given quantifier blocks, as we can only change the order of variables
within a single quantifier block. The amount of possible variable orderings is given
by

∏m
i=0 max(1,|Bi|).

Example 5.0.1 (Admissible and non-admissible variable ordering).
Let φ := ∃x1.∀x2.∀x3.x1 + x2 = x3. This formula is unsatisfiable. Further, it is in
prenex normal form with quantifier blocks B0 = ∅, B1 = {x1} and B2 = {x2, x3}.
There are

∏2
i=0

∏m
i=0 max(1,|Bi|) = 1 ·1 ·2 = 2 possible admissible variable orderings.

The semantics of formula φ are given by the variable ordering x1 ≺ x2 ≺ x3. The
semantics remain the same for the admissible variable ordering x1 ≺ x3 ≺ x2. This
variable ordering is admissible, as only the order of x2 and x3 has changed within the
quantifier block B2.

Now, assume that the variable ordering x2 ≺ x1 ≺ x3 is used. This vari-
able ordering is non-admissible, as the order of the variables x1, x2 has changed
and these variables are in different quantifier blocks. The resulting formula φ′ :=
∃x2.∀x1.∀x3.x1 + x2 = x3 given by this variable ordering is satisfiable.

As shown in Example 5.0.1, the change in the order of quantification can impact
the satisfiability of the given formula. The formula semantics are thus preserved by
admissible variable orderings but not by non-admissible variable orderings.

5.1 Variable Orderings in Literature
In the following, we present two variable orderings that have been used in litera-
ture [HEW+14, DSS04, EBDW14]. Note that, in order to obtain admissible variable
orderings, as defined in Definition 5.0.2, the following orderings are restricted to the
variables in the quantifier blocks. This means that each quantifier block is ordered
separately according to the given criteria, but the order of quantifier blocks is pre-
served. By doing this, we ensure that the variable ordering does not change the
semantics of the formula.

Definition 5.1.1 (Triangular Variable Ordering [EBDW14]).
Let φ be a formula, P the set of polynomials defined by φ and V the set of variables
defined by φ. Then, the triangular variable ordering is defined as follows: The variable
ordering is chosen according to the following criteria, starting with the first and
breaking ties with successive ones:

1. Let v[1] = max {deg(f,v)|f ∈ P}. Then x ≺ y if y[1] < x[1].

2. Let v[2] = max {tdeg(lcoeff(f,v))|f ∈ P, f contains v}. Then x ≺ y if y[2] <
x[2].

3. Let v[3] =
∑

f∈P deg(f,v). Then x ≺ y if y[3] < x[3].

Definition 5.1.2 (Brown Variable Ordering [HEW+14]).
Let φ be a formula, P the set of polynomials defined by φ and V the set of variables
defined by φ. Then, the brown variable ordering is defined as follows: The variable
ordering is chosen according to the following criteria, starting with the first and
breaking ties with successive ones:

1. Then set x ≺ y if y[1] < x[1].

Earliest Split Variable Ordering 45

2. Let v[4] = max {tdeg(t)|t is monomial from f ∈ P, t contains v}. Then x ≺ y if
y[4] < x[4].

3. Let v[5] = #{t|t is monomial from f ∈ P, t contains v}. Then x ≺ y if y[5] <
x[5].

5.2 Earliest Split Variable Ordering

In the following, we are going to present a heuristical approach to split a given formula
φ into independent subformulas with as few variables assigned as possible. To see any
difference between the different variable orderings, we refer to Example 5.2.1, where
we show that the variable ordering impacts the resulting split.

Example 5.2.1 (Formula splits for different variable orderings).
Assume that the formula φ has the subformulas Φ := {φ1(x5,x6), φ2(x1, x2, x3),
φ3(x1, x2, x3, x4, x5), φ4(x1, x2, x3, x4, x5)}. Further we assume that σ := ∧, but
the same holds for σ := ∨. For simplicity, we assume that no unassigned variable
vanishes when evaluating a formula φi at a sample point s. First, we assume we
have the variable ordering x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5. We will now show the different
Graphs built by Algorithm 11 for different sample points s. For an explanation of
how to build these Graphs, we refer to Algorithm 11 and Example 4.0.4.

φ1 φ2

φ3

φ4

(a) Graph for s = ()

φ1 φ2

φ3

φ4

(b) Graph for s = (x1 = 0)

φ1 φ2

φ3

φ4

(c) Graph for s = (x1 = 0, x2 = 0)

Figure 5.1: Graphs for different sample points s for the variable ordering x1 ≺ x2 ≺
x3 ≺ x4 ≺ x5

We can see that for s = () and s = (x1 = 0), the Graphs are the same, and
there is exactly one connected component in the Graphs as shown in Figures 5.1a
and 5.1b. Thus, the given formula set φ can not be split into two or more independent
subformulas for these sample points. However, for s = (x1 = 0, x2 = 0) the Graph
has two connected components as shown in Figure 5.1c. Thus, the given formula set
φ can be split into two independent subformulas for this sample point. Thus, we must
assign at least two variables to obtain two independent subformulas.

46 Variable Orderings

φ1 φ2

φ3

φ4

Figure 5.2: Graph for s = (), for the variable ordering x5 ≺ x1 ≺ x2 ≺ x3 ≺ x4

Now, consider the same formula set φ but with the variable ordering x5 ≺ x1 ≺
x2 ≺ x3 ≺ x4. For s = (), the graph has two connected components as shown
in Figure 5.2. Thus, the given formula set φ can be split into two independent
subformulas for this sample point. Accordingly, we do not need to assign a single
variable to obtain two independent subformulas.

For an unspecified formula, we show that the first possibility to split the formula
into two or more independent subformulas occurs at different sample points for two
different variable orderings. The first possibility for a split for one variable ordering
happens when 3 variables are assigned in s. For the other variable ordering, it happens
when no variable is assigned in s.

In the following, we are interested in a heuristical algorithm to choose the variable
ordering, such that the split of the original formula φ into two or more indepen-
dent subformulas happens with the least amount of assigned variables possible. To
do this, we will extend and adapt the definition of the graph G = (V,E) as in-
troduced for Algorithm 11. Given a set of formulas Φ, a variable xi and a sample
s = (s1, . . . , si−1) ∈ Ri−1 we define the graph G as follows:

• The vertices of the graph are exactly the formulas in Φ.

• Edge between two vertices φ,φ′ iff φ and φ′ are not independent with respect
to xi and s.

We extend this definition by adding a labeling function l : V × V → P(X) to the
graph G. Where X :=

⋃
φ∈Φ vars(φ) is the set of all used variables in the formulas

in Φ and P denotes the powerset. The labeling function l is defined as follows:

• l(φi[s], φj [s]) = vars(φj)∩ vars(φj), where vars(φi) denotes the set of vari-
ables used in φi and s is a (partial) sample point.

Further, we are going to introduce the following invariant that holds for the graph G:

• For any two vertices φi, φj ∈ V there exists an edge (φi, φj) ∈ E iff l(φi, φj) ̸= ∅.

Example 5.2.2 (Formula Split Graph with edge labeling function).
Assume that the formula φ has the subformulas Φ := {φ1(x5,x6), φ2(x1, x2, x3),
φ3(x1, x2, x3, x4, x5), φ4(x1, x2, x3, x4, x5)}. For simplicity, we assume that no unas-
signed variable vanishes when evaluating a formula φi at a sample point s. Let
σ ∈ {∧,∨} be an Boolean connective and s = (). Then, the graph G = (V,E) and the
edge labeling function l is defined as follows:

• V = {φ1, φ2, φ3, φ4}

Earliest Split Variable Ordering 47

• l(φ1, φ2) = ∅

• l(φ1, φ3) = {x5}

• l(φ1, φ4) = {x5}

• l(φ2, φ3) = {x1, x2, x3}

• l(φ2, φ4) = {x1, x2, x3}

• l(φ3, φ4) = {x1, x2, x3, x4, x5}

• E = {(φ1, φ3), (φ1, φ4), (φ2, φ3), (φ2, φ4), (φ3, φ4)}

Which results in the graph G as shown in Figure 5.3.

φ1 φ2

φ3

φ4

{x5}

{x5}

{x1, x2, x3}

{x1, x2, x3}

{x1, x2,x3,
x4, x5}

Figure 5.3: Graph G = (V,E) for s = () and the labeling function l

And for s = (x1 = 0, x2 = 0) the graph G = (V,E) and the edge labeling function
l is defined as follows:

• V = {φ1, φ2, φ3, φ4}

• l(φ1, φ2) = ∅

• l(φ1, φ3) = {x5}

• l(φ1, φ4) = {x5}

• l(φ2, φ3) = {x3}

• l(φ2, φ4) = {x3}

• l(φ3, φ4) = {x3, x4, x5}

• E = {(φ1, φ3), (φ1, φ4), (φ2, φ3), (φ2, φ4), (φ3, φ4)}

Which results in the graph G as shown in Figure 5.4.

48 Variable Orderings

φ1 φ2

φ3

φ4

{x5}

{x5}

{x3}

{x3}

{x3, x4, x5}

Figure 5.4: Graph G = (V,E) for s = (x1 = 0, x2 = 0) and the labeling function l

Now we are interested in a variable ordering heuristic, with restrain to the given
global quantifier blocks, as defined in Definition 5.0.2, that results in a variable order-
ing such that a formula split into two or more independent subformulas is achieved
with the least amount of variables assigned as possible. From the definition of the
graph G and with the same arguments as presented in Algorithm 11, we know that
the connected components exactly correspond to the independent subformulas of Φ.
Given the graph G and the labeling function l as defined above for a given formula
φ and we want to assign the variable xi, then we need to remove any occurance of
xi from the sets of variables of the labeling function l. If, after removing the variable
xi from the labeling function, and it holds that l(φi, φj) = ∅ then we need to remove
the edge (φi, φj) from the set of edges in G if it exists. Formally, we want to create
a variable ordering, such that when the variables are assigned in that given order,
the graph G contains two or more connected components with the least amount of
assigned variables possible. Visually, when inspecting the graph shown in Figure 5.3
we can see that an optimal strategy is to assign x5 first because then the graph al-
ready forms two connected components. However, this decision is constrained by the
quantifier blocks of the given formula. Meaning that if we have ∃{x1,x2}.∀{x3, x4, x5}
as the quantifier blocks, then we can not assign x5 first, because x5 is not in the first
quantifier block. Thus, we need to assign the variables x1, x2 first in any case. Instead
of computing the optimal variable ordering for a given formula φ, we will present a
heuristic to compute a variable ordering in Algorithm 18.

Earliest Split Variable Ordering 49

Algorithm 18: early_split_var_order(φ)
Data: Global prefix Q1x1, . . . , Qnxn
Input: Formula φ.
Output: A list variable of variables representing the ordering xi ≺ . . . ≺ xj

1 Qblocks := Q1{x1, . . . ,xi}.Q2{xi+1, . . . }. . . .
// Quantifier blocks Definition 5.0.1

2 Ordering = [] // Initialize empty list

3 Compute G = (V,E) and labeling function l
4 foreach Qblock in Qblocks do // Iterate over quantifier blocks in order

5 V arblock := {x ∈ Qblock | x ∈ vars(φ)} // Variables in block

6 while V arblock ̸= ∅ do
7 varposs := argmaxx∈V arblock

∑
φi,φj∈Φ |l(φi, φj) ∩ {x}|

// Choose variable occurring the most often in l(φi, φj)

8 if |varposs| > 1 then
9 varposs := argminx∈varposs

∑
φi,φj∈Φ |l(φi, φj) ∩ {x}|

// Choose variable occurring in the smallest l(φi, φj)

10 if |varposs| > 1 then
11 varposs := varposs[0] // Choose arbitrarily

12 Ordering := Ordering + varposs // Append variable to Ordering

13 V arblock := V arblock \ {varposs} // Remove variable from V arblock

14 Remove varposs from l

15 return Ordering

The main goal of the algorithm is to increase the chance to split the formula φ
into two or more independent subformulas which is equivalent to the fact that the
graph G contains two or more connected components. We do this by removing as
many edges as possible with the least amount of variables assigned as possible. To
achieve this, the algorithm performs the following steps:

1. The algorithm chooses variables in the order of the quantifier blocks. It selects
variables in the first quantifier block until no more variables are left in it. Then,
it moves on to select variables in the second quantifier block until no more
variables are left in it, and so on.

2. In each quantifier block, the algorithm selects the variable that occurs the most
in the edge labeling function l. It then removes this variable from the maximum
number of edges in l.

3. If there is a tie between two or more variables, the algorithm chooses the variable
that occurs in the smallest set of variables of the edge labeling function l. By
doing this, the algorithm prioritizes variables that might remove edges in G,
which generally increases the chance of achieving that G contains two or more
connected components.

4. If there is still a tie between two or more variables, we resolve it arbitrarily.

5. The resulting variable is appended to the variable ordering. This variable is
then removed from the set of variables of the current quantifier block. The
variable must then also be removed from every set of variables of the edge
labeling function l too.

50 Variable Orderings

Chapter 6

Prenex Normal Form

An input formula φ, defined in Definition 2.2.2, may be of an arbitrary structure.
In particular, the given formula may not be in prenex normal form, as defined in
Definition 2.2.3. This is problematic, as the input formula for both the decision
problem meaning Algorithm 1 or Algorithm 13 and the quantifier elimination problem
is expected to be in prenex normal form. To solve this problem, we need to transform
any given formula into its semantically equivalent prenex normal form. Without
loss of generality, it can be shown that for every first-order formula there exists an
equivalent formula in prenex normal form [Hin18]. In the following, we will describe
a practical approach for the transformation of an arbitrary first-order formula into its
respective prenex normal form.

Algorithm 19: to_pnf(φ)
Input: A formula φ
Output: Tuple (q, f) where q is a list of quantifier blocks and f is a

quantifier-free formula
1 if φ is a constraint then // Type Atom

2 return ([], φ)
3 if φ is a negation then // Type Negation

4 (q, f) := to_pnf(φ)
5 return (invert(q),¬f)
6 if φ has form Qx.φ1 then // Type Quantifier

7 (q, f) := to_pnf(φ1)
8 return (q + [Qx], f)

9 φ has form φ1σ . . . σφn, σ ∈ {∨,∧} // Type Connective

10 Resolve name conflicts in {φ1, . . . ,φn}
11 (q, f) := to_pnf(φ1)
12 for i in 2, . . . , n do
13 (qi, fi) := to_pnf(φi)
14 q := q + qi
15 f := fσfi
16 return (q, f)

52 Prenex Normal Form

Algorithm 19 takes a formula as input and returns a tuple (q, f) where q is a
list of quantifier blocks and f is a quantifier-free formula. When calling Algorithm 19
with an arbitrary formula φ, the resulting tuple (q, f) represents exactly an equivalent
formula in prenex normal form. The element q of the tuple (q, f) is a list of quantifier
blocks, as defined in Definition 5.0.1, which represents the prefix of the formula in
prenex normal form. The element f of the tuple (q, f) is a quantifier-free formula,
which represents the matrix of the formula in prenex normal form. Algorithm 19
is a recursive algorithm that breaks down the formula into all possible subformulas
and then constructs an equivalent formula in prenex normal form step by step. In
the following, we are going to describe how, for each type of a formula, we calculate
the respective tuple (q, f), based on the tuples (q1, f1), . . . , (qn, fn) we obtain from
processing the subformulas of the given formula. Each type of a formula is handled
differently.

Atom (Line 1): The input formula φ is a constraint and is thus an atom. This
formula has no further subformulas. Per construction, a constraint is quantifier-
free, and thus, the resulting tuple (q, f) is ([], φ).

Negation (Line 3): The input formula is of the form φ := ¬φ1. In this case,
the given formula has one child, the formula φ1. The result of recursively calling
to_pnf(φ1) in stored in the tuple (qchild, fchild). The resulting tuple (q, f) for
the original formula is then (invert(qchild),¬fchild). The function invert is
used to swap each quantifier used in qchild with its respective counterpart, i.e.
∀ is swapped with ∃ and vice versa. This corresponds to pulling the negation
symbol from in front of the quantifiers inside.

Quantifier (Line 6): The input formula is of the form φ := QB.φ1 where B
is a set of variables and Q ∈ {∀,∃} is the respective quantifier. Thus QB is a
quantifier block as defined in Definition 5.0.1. This type of formula has exactly
one child, the formula φ1. The result of recursively calling to_pnf(φ1) is stored
in the tuple (qchild, fchild). The resulting tuple (q, f) for the original formula is
then (QB + qchild, fchild), where the operator + is used to denote the insertion
of the quantifier block QB at the beginning of the list of quantifier blocks qchild.

Connective (Line 9): The input formula has the form φ := φ1σ . . . σφn.
This formula has at least two subformulas, namely φ1, . . . , φn. Here, we first
have to resolve name conflicts in the subformulas. This is done by renaming
the variables in the quantifier blocks of each subformula and in the respective
formulas such that no quantified variable with a given name occurs in more than
one resulting tuple. This ensures that the variables used in the quantifier blocks
of the tuples are unique, and thus, when combining the quantifier blocks, no
name conflicts occur. We then iterate over each subformula φi and recursively
call to_pnf(φi):= (qi, fi) We combine the resulting lists of quantifier blocks
q1, . . . , qn into a single list of quantifier blocks q. Similarly, we combine the
quantifier-free formulas f1, . . . , fn into a single quantifier-free formula f using
the given connective σ. Note that the order of the quantifier-free formulas is of
importance, as the given connective is not necessarily commutative. The tuple
(q, f) is then returned.

An example of the conversion of a first-order formula into prenex normal form is
shown in Example 6.0.1.

53

Example 6.0.1 (Prenex normal form conversion).
Let φ := ¬(∀x1.∃x2.(φ1(x1, x2)∨(∃x3.(φ2(x1, x2, x3))))), where φ1(x1, x2) and φ2(x1, x2, x3)
are arbitrary constraints.

¬

∀x1

∃x2

∨

φ1(x1, x2) ∃x3

φ2(x1, x2, x3)

Figure 6.1: Structure of the formula φ

The structure of φ is presented in Figure 6.1. We obtain the following results when
processing formula φ as input in Algorithm 19. We will present the results obtained
from calling to_pnf for each subformula of φ.

• to_pnf(φ2(x1, x2, x3)) → ([], φ2(x1, x2, x3)), as the given input formula is a
constraint and thus an atom.

• to_pnf(∃x3.φ2(x1, x2, x3)). The given formula has one subformula, which has
been processed above. We add the given quantifier block of the formula to
the beginning of the list of quantifier blocks of the result of processing the
subformula φ1. This results in the tuple ([∃x3], φ2(x1, x2, x3)).

• to_pnf(φ1(x1, x2)) → ([], φ1(x1, x2)), as the given input formula is a constraint
and thus an atom.

• to_pnf((φ1(x1, x2)∨ (∃x3.(φ2(x1, x2, x3))))). This formula has two subformu-
las with the results ([∃x3], φ2(x1, x2, x3)) and ([], φ1(x1, x2)) as presented above.
The input formula is of the connective type and thus we must first resolve the
name conflicts in the list of subformula results. As the variables used in the
quantifier blocks of the subformula results are pairwise disjoint, no name con-
flicts occur. Thus, we append the quantifier blocks of the subformula results to
each other, resulting in the list of quantifier blocks [∃x3]. We then combine the
quantifier-free formulas of the child results with the given boolean connective,
resulting in the quantifier-free formula φ1(x1, x2) ∨ φ2(x1, x2, x3). This results
in the tuple ([∃x3], φ1(x1, x2) ∨ φ2(x1, x2, x3)).

• to_pnf(∃x2.(φ1(x1, x2) ∨ (∃x3.(φ2(x1, x2, x3))))). This formula has exactly
one subformula, that has the result shown above. This formula is of the type
quantifier and thus we add the outmost quantifier of the original formula to the
beginning of the list of quantifier blocks of the subformula result. This results
in the tuple ([∃{x2, x3}], φ1(x1, x2) ∨ φ2(x1, x2, x3)).

54 Prenex Normal Form

• to_pnf(∀x1.∃x2.(φ1(x1, x2)∨(∃x3.(φ2(x1, x2, x3))))). This formula has exactly
one subformula, that has the result shown above. As this formula has the type
quantifier, we add the outmost quantifier of the original formula to the beginning
of the list of quantifier blocks of the subformula result. This results in the tuple
([∀{x1},∃{x2, x3}], φ1(x1, x2) ∨ φ2(x1, x2, x3)).

• to_pnf(¬(∀x1.∃x2.(φ1(x1, x2)∨(∃x3.(φ2(x1, x2, x3)))))). This formula has one
subformula, that has the result shown above. As this formula has the type nega-
tion, we invert the quantifier blocks of the subformula result, resulting in the
list of quantifier blocks [∃{x1},∀{x2,∃x3}]. We further negate the quantifier-free
formula of the child result. This results in the tuple ([∃{x1},∀{x2, x3}],¬(φ1(x1, x2)∨
φ2(x1, x2, x3))). This tuple represents a formula in a prenex normal form equiv-
alent to the formula φ.

Chapter 7

Discussion

In this chapter, we will discuss the implementation of the presented algorithms and
evaluate their respective performance for solving quantifier-free non-linear real arith-
metic formulas. This includes both the decision problem, where we are interested in
the satisfiability of a given formula, as defined in Definition 2.2.7 and the quantifier-
elimination problem, as defined in Definition 2.2.6. To evaluate the performance of
the algorithms, we are going to compare them to state-of-the-art solver implementa-
tions. Namely, for the decision problem, we will compare our implementation to the
SMT solver Z3 [DMB08] and the SMT solver CVC5 [BBB+22]. For the quantifier-
elimination problem, we will compare our implementation to the QEPCAD B [Bro03]
implementation of the CAD algorithm and Reduce/Redlog [DS97]. In the follow-
ing, we will denote the algorithms presented in Chapter 3 as the No Split variant of
the CAlC algorithm for quantifiers. Likewise, we are going to denote the algorithms
presented in Chapter 4 as the Split variant of the algorithm.

7.1 Implementation

Satisfiability-Modulo-Theories Real Arithmetic Toolbox (SMT-RAT) [CKJ+15] is an
open-source toolbox for strategic SMT solving written in C++. The Theory of Hybrid
Systems research group maintains the solver at the RWTH Aachen University. The
program has a modular structure and is designed to be easily extensible. In particular,
it is possible to extend SMT-RAT to support the decision problem for non-linear real
arithmetic and the quantifier-elimination problem. Over the course of this thesis,
all presented algorithms have been implemented in SMT-RAT. We have based our
implementation on the proof system as presented in [NÁS+22]. As a consequence, we
have extended SMT-RAT by the following two modules:

• CoveringModuleDecision: This module implements all algorithms concern-
ing the decision problem for non-linear real arithmetic formulas. This includes
the conversion of any given input formula into a formula in prenex normal form,
as presented in Chapter 6. Furthermore, both the No Split variant of the CAlC
algorithm as presented in Chapter 3 and the Split variant of the CAlC algorithm
as presented in Chapter 4 are included. This module contains a settings file,
that allows for multiple specifications of parameters for the different algorithms.
These settings include the following possible parameters:

56 Discussion

– The variable ordering heuristic to be used. These include the variable
ordering heuristics presented in Chapter 5. The resulting variable ordering
is always admissible, as defined in Definition 5.0.2.

– A Boolean flag to choose the variant of the algorithm. This is done such
that when the flag is enabled the Split variant of the algorithm is used. If
the flag is not enabled the No Split variant is used.

– A Boolean flag to set the early_return. This corresponds to the flag with
the same name as used in the algorithms presented in Chapter 4. It only
takes effect if the Split variant is chosen.

• CoveringModuleQE: This module implements all algorithms concerning the
quantifier elimination problem for non-linear real arithmetic formulas. This in-
cludes Algorithm 9 and the creation of the output formula using Algorithm 10.
This module contains a settings file with the same contents as in the
CoveringModuleDecision. In Algorithm 9, either Algorithm 2 or Algo-
rithm 14 is called depending on which variant of the algorithm is chosen in the
settings file. It also includes simple formula simplifications for the generated
output formula.

SMT-RAT uses Computer ARithmetic Library(CArL) [NÁ23], an open-source C++
library for arithmetic computations and logic, as a dependency. CArL is maintained
by the Theory of Hybrid Systems research group at the RWTH Aachen University.
CArL implements many sub-algorithms used in the presented algorithms, such as
real root isolation, the computation of resultants and discriminants and more. Fur-
ther dependencies of SMT-RAT and CArL are Boost [Sch11], Libpoly [JD17], and
CoCoALib [AB10]. SMT-RAT also provides other tools for debugging, preprocessing
and benchmarking. Benchmax is a tool for automated benchmarking and gathering
statistics, which are defined by the used module. It also allows specifying a time and
memory limit for each solver execution. Further, we extended the previously imple-
mented parser in SMT-RAT to support the NRA logic. I.e., we extended the parser
to support the assert command for non-linear real arithmetic formulas by adding
the corresponding parser rules for existentially and universally quantified variables
as defined in the SMT-LIB standard [BST+10]. Another addition to the parser is
that fractions, with a polynomial as the denominator, may occur in the input for-
mula. This is not supported by SMT-RAT or CArL but is allowed in the SMT-LIB
standard [Ini23b]. In Section 7.2, we will discuss how we deal with this problem.

7.2 Dealing with Polynomial Denominators
As described, the SMT-LIB standard for the NRA logic allows for fractions with a
polynomial as the denominator. In the theory of the reals, as defined by SMT-LIB,
the division operator ÷ is allowed to be used in the input formula [Ini23b]. The
division operator ÷ is defined as a function that coincides with the natural division
function for all inputs x and y where y is non-zero. However, since in SMT-LIB
Logic, all function symbols are interpreted as total functions, terms of the form (t0)
are allowed and meaningful in every instance. The declaration of such a division
operator imposes no constraints on their value. In particular, this means that there
is a model in the reals that satisfies the formula (v = t

0). Thus, constraints that allow
the second argument of the division operator to be 0 can still be satisfiable when

The Decision Problem 57

there are interpretations of the functions at 0 that satisfy the constraints. This fact
poses a problem for the algorithms presented in Chapter 3 and Chapter 4 since they
rely on the fact that the input formula does not contain any division by a polynomial.
This further poses a technical problem in the implementations in both SMT-RAT
and CArL. To address this problem, we have implemented a preprocessing step that
eliminates all divisions by polynomials in the input formula. This proprocessing step
is taken from the preprocessing done in the NRA solver of Z3 [DMB08]. This is done
during the parsing of an input formula in SMT-RAT.

• For each p
q , where q is a polynomial, we introduce a fresh variable divpq and

replace every occurance of p
q with divpq. Further, we add the constraint q ̸=

0 ⇒ divpq · q = p to the input formula.

• For each p
q ,

p′

q′ where q, q′ are polynomials, we add the constraint (p = p′ ∧ q =
q′) ⇒ divpq = divp′q′ .

This preprocessing step ensures that the input formula does not contain any divisions
by polynomials at the cost of introducing auxiliary variables and constraints. Further,
this transformation of the input formula does not change the semantics of the formula.
This is due to how the division operator is defined in SMT-LIB [Ini23b]. That is,
if the division is non-zero, the semantics of the division operator coincide with the
semantics of the actual division function. This preprocessing step is implemented in
SMT-RAT and is used in all benchmarks when necessary.

7.3 The Decision Problem

In this section, we will discuss and evaluate the performance of the presented algo-
rithms for the decision problem. In particular, we are going to evaluate the perfor-
mance of the algorithms presented in Chapter 3 and Chapter 4. As above, we are
going to denote the use of the algorithms presented in Chapter 3 as No Split and the
use of the algorithms presented in Chapter 4 as Split. These algorithms have been
implemented in SMT-RAT. As noted before, the input formula may be of an arbitrary
structure and, in particular, may not be in prenex normal form. To transform any
given parsed formula φ into an equivalent formula in prenex normal form when needed,
we have implemented the algorithm described in Chapter 6 in SMT-RAT. The output
of this algorithm is a tuple ((Q1x1, . . . , Qnxn), φ̄), with Qi ∈ {∀,∃} where Q1, . . . , Qn

is the prefix and φ̄ is a quantifier-free formula. It holds that φ ≡ (Q1x1, . . . , Qnxn)φ̄.
For both the Split and No Split approach of the cylindrical algebraic coverings meth-
ods of quantifiers, we are going to evaluate the performance of the different variable
ordering heuristics presented in Chapter 5. In particular, we are interested in the
runtime of the algorithms and the amount of benchmarks that the algorithms have
solved. To further compare the performance of our implementation, we use the SMT
solvers Z3 [DMB08] and CVC5 [BBB+22]. We have used the CVC5 version 1.0.8 and
the Z3 version 4.12.2. As the basis of our evaluation, we are using the SMT-LIB
benchmark library [Ini23a] for the logic NRA. This benchmark library provides 3819
different benchmark files. We will use a time limit of 60 seconds and a memory limit
of 4 GB for each benchmark on an Intel Xeon Platinum 8160 CPU with 2.1 GHz and
48 threads. To evaluate the implementation of the algorithms presented here, we fur-
ther introduce another variable ordering. The Lexicographic Variable Ordering sorts

58 Discussion

No Split Split Extra
Brown Tri. Lex. Brown Tri. Lex. E.S. Z3 CVC5

SAT 3 3 2 3 3 2 3 3 3
UNSAT 3784 3793 3750 3784 3793 3750 3770 3806 3801
Unknown 30 21 63 30 21 63 44 0 0
Timeout 2 2 4 2 2 2 4 10 15
Memout 0 0 0 0 0 0 0 0 0
Avg[s] 0.023 0.023 0.023 0.022 0.022 0.022 0.021 0.033 0.029

Table 7.1: We divide the solvers into 3 categories. The first category No Split includes
the algorithm presented in Chapter 3 i.e., the covering algorithm without a formula
split in any case. The second category Split includes the algorithm presented in
Chapter 4 i.e., the covering algorithm that includes a formula split. This category
consists of 4 solvers, one for each variable ordering and one for the earliest split
heuristic as presented in Algorithm 18. We further divide these two categories into the
presented variable ordering heuristics. Note that we abbreviate the variable orderings
as follows: Brown for Brown’s variable ordering, Tri. for the triangular variable
ordering and Lex. for the lexicographic variable ordering. Further, E.S. stands for
the earliest split heuristic. The last category Extra consists of the solvers Z3 and
CVC5. For each of the given solvers, we present the number of benchmark files
that have returned the given result. The results are divided into the categories SAT,
UNSAT, Unknown and Timeout. Further, in Avg[s], the average runtime of the
given solver for a solved benchmark is given in seconds.

the variables in the respective quantifier blocks lexicographically. This ordering has
no practical use but is used to evaluate the impact of the variable ordering heuristics
presented in Chapter 5.

In Table 7.1, we present the results of the solvers. It can be seen that both the
Split and No Split implementations in SMT-RAT using the different variable order-
ing heuristics perform very similarly. None of the presented solvers reach the defined
memory limit of 4 GB. The most significant difference in the solvers implemented in
SMT-RAT can be seen in the number of benchmarks that have returned Unknown.
These results can happen due to the use of the McCallum projection operator in the
implementation of SMT-RAT [McC98]. The McCallum projection operator might
fail on specific inputs, which results in the solver returning Unknown. This is depen-
dent on the used variable ordering for the given input. For further detail, we refer
to [McC98]. Further, we claim that the set of benchmarks does not allow for a sen-
sible evaluation of the performance of the different variable ordering heuristics. To
underline this, we also present the average time to solve a given benchmark for each
solver in Table 7.1. The average runtime of any solver presented and evaluated is far
below 0.1 seconds, which leaves very little information about the performance of the
different solvers.

The Decision Problem 59

Figure 7.1: The performance profile of the solvers. The y-axis shows the runtime
of the given solver, and the x-axis shows the amount of benchmarks solved by the
solvers. The solvers are divided into two subplots No Split and Split. Further, each
variable ordering heuristic is represented by a different color.

This fact is further illustrated in Figure 7.1. There, we visually present the per-
formance of the solvers. The y-axis shows the runtime of the given solver, and the
x-axis shows the amount of benchmarks solved by the solvers. The vast majority of
benchmarks are solved in less than 0.1 seconds. This fact remains for any variable
ordering heuristic implemented in SMT-RAT for both algorithms with and without
formula split. When creating a formula object in SMT-RAT, some trivial simplifi-
cations are performed. This includes simplifications of the form 2 = 0 ≡ False
and φ(x) ∨ True ≡ True. Using these trivial simplifications, which are done im-
plicitly when parsing any formula, 2241 formulas out of the 3819 input formulas of
the used benchmarks are simplified to be trivially satisfiable or unsatisfiable. That
is, satisfiability could be decided without any further computation necessary other
than the parsing of the input formula. While we argue that we can not evaluate the
performance of the different solvers implemented in SMT-RAT, we can still compare
the performance of the solvers implemented in SMT-RAT to the performance of the
solvers Z3 and CVC5 for the given benchmarks that are not trivial. For this com-
parison, it is sensible to use the variable ordering heuristic that produced the least
amount of Unknown results. That is the triangular variable ordering heuristic, as
defined in Definition 5.1.1 for both of the variants of the algorithm, with and without
formula split. These solvers can solve 2 benchmarks, where the Z3 solver reached the
time limit of 60 seconds and 12 benchmarks, where the CVC5 solver reached the time
limit of 60 seconds. On the other hand, both Z3 and CVC5 cannot solve any of the
benchmarks where the solvers implemented in SMT-RAT reach the time limit of 60
seconds.

60 Discussion

7.4 The Quantifier Elimination Problem

In the following section, we will discuss the implementation of the cylindrical algebraic
coverings method for quantifiers to solve the quantifier elimination problem. Further,
we will compare the performance of the presented algorithms for the quantifier elimi-
nation problem to the performance of QEPCAD B [Bro03] and Reduce/Redlog [DS97].
We have used QEPCAD B version 1.69 and Reduce rev. 6339 with the shipped ver-
sion of the Redlog package. In the evaluation of the decision problem, we focus on
the performance regarding runtime and memory usage. To evaluate the solvers for
the quantifier elimination problem, we will also evaluate the performance of the given
algorithms regarding the produced output formula. In particular, we will evaluate
the size of the output formula in terms of the amount of used atoms. As already
described, we have implemented Algorithm 9 and the creation of the output formula
using Algorithm 10 in SMT-RAT. When in Algorithm 9 the respective next variable
in the given variable ordering is quantified, we can call either Algorithm 2 or Algo-
rithm 14 in a recursive manner. This means we can use the algorithms presented in
Chapter 4 and the algorithms presented in Chapter 3. Similarly to the evaluation
of the decision problem, we are going to denote the use of the algorithms presented
in Chapter 3 as No Split and the use of the algorithms presented in Chapter 4 as
Split. As described in Chapter 5, different variable ordering heuristics can change
the performance of the used algorithms. In particular, the variable ordering heuristic
might also influence the created output formula. Although the used variable order-
ing heuristic may influence the created output formula, we will fix the used variable
order heuristic to be Brown’s variable ordering, as defined in Definition 5.1.2. This
variable ordering heuristic is used for both the No Split and the Split variant of the
algorithm. We do this to simplify the evaluation of the different algorithms since the
different variable ordering heuristics are not the focus of this thesis. QEPCAD B, Re-
duce/Redlog and SMT-RAT require vastly different input formats. SMT-RAT takes
a file in SMT-LIB format as input. When in the given file, the (eliminate-quantifiers
. . .) or the (apply qe) instruction is used, SMT-RAT will eliminate all specified quan-
tified variables in the given formula. This contrasts QEPCAD B and Reduce/Redlog,
which are accessed via a command line interface and define their respective input
formats. We have implemented a script to simplify the evaluation of the different
algorithms, which is available at following repository: [Kro23]. This script enables us
to use the same input file on all different programs. When specified, a given input
file in SMT-LIB format, suitable as an input for the quantifier elimination problem
in SMT-RAT, is parsed and transformed to be a suitable input for QEPCAD B and
Reduce/Redlog. Notably, this includes the transformation of the input formula to
be in prenex normal form for both the transformation of the inputs for QEPCAD
B and Reduce/Redlog. The input file for SMT-RAT is not transformed in any way.
Further, the script calls the different programs and inputs the transformed input file.
It also enables setting a time limit for each program. Then, the output of the different
programs is parsed and presented. When specified, the respective output formula of
the programs is also stored in a file for further evaluation. For further details, we refer
to the documentation, which is included in the repository of the script. All statistics
presented in the following section are gathered using this script. All programs are
run on an AMD Ryzen 7 5800X CPU with a time limit of 60 seconds and a memory
limit of 16 GB. As a basis for the evaluation of the different algorithms, we are using
exemplary quantifed formulas collected by John Wilson [Wil13]. The files themselves

The Quantifier Elimination Problem 61

are available here1. There are 30 different files, each containing a single quantified
formula. For all given files, the memory limit of 16 GB is not reached by any of the
given programs. The output formula produced by SMT-RAT and QEPCAD B is
an ETF, which is an extension to Tarski Formulas, which are Boolean combinations
of polynomial equalities and inequalities [Bro99], as defined in Definition 2.3.4. The
extension is that in an ETF indexed root expressions as atoms are allowed, as defined
in Definition 2.3.3. In any case, a formula in ETF can be transformed into a Tarski
Formula [Bro99]. The output formula produced by Reduce/Redlog is already a Tarski
Formula [DS97].

(a) Runtime of the different variable or-
dering heuristics for the No Split variant
of the algorithm.

(b) Runtime of the different variable or-
dering heuristics for the Split variant of
the algorithm.

(c) Comparison of the Brown variable ordering heuristic for the No Split and Split variant
of the algorithm, together with the QEPCAD B and Reduce/Redlog implementation.

In Figures 7.2a and 7.2b, we present the runtime of the different variable ordering
heuristics for the No Split and Split variant of the algorithm. On the x-axis, we present
the different input files; on the y-axis, we present the runtime of the different variable
ordering heuristics in milliseconds. Note that the y-axis is logarithmic. Further, we
have chosen to present a subset of the benchmark files. This subset of the benchmarks
is chosen such that the McCallum projection operator used in SMT-RAT does not fail
on any of the given benchmarks. Therefore, when a given result is not shown in these
plots, the used solver with the respective variable ordering heuristic has reached the
time limit of 60 seconds. The runtime of the different variable ordering heuristics is
very similar. This holds for both the No Split and the Split variant of the algorithm.

1https://git.rwth-aachen.de/ths/smt/benchmarks

https://git.rwth-aachen.de/ths/smt/benchmarks

62 Discussion

Further, it can be seen that the runtime of the No Split variant and the Split variant
of the algorithm is very similar when the same variable ordering heuristic is used.
This holds for all files except the file 20.smt2. For this file, we can observe that
the No Split variant of the algorithm reached the timeout of 60 seconds for all used
variable ordering heuristics, while the Split variant of the algorithm did not reach the
timeout for any of the used variable ordering heuristics. In Figure 7.2c, we present
the runtime of the Brown variable ordering heuristic for the No Split and Split variant
of the algorithm, together with the QEPCAD B and Reduce/Redlog implementation.
Further, we present all benchmark files. We can observe that for select files, such
as 5.smt2, 6.smt2 or 28.smt2, our implementation in SMT-RAT outperforms the
QEPCAD B and Reduce/Redlog implementation. We can even observe that for the
files 26.smt2 and 29.smt2, our implementation can solve the given benchmark while
the QEPCAD B and Reduce/Redlog reach the timeout of 60 seconds. On the other
hand, we can observe that QEPCAD B and Reduce/Redlog can solve more files in
total in the given time and memory limit. This includes the files where the McCallum
projection operator used in SMT-RAT fails.

(a) Amount of atoms in the produced out-
put formula of the different variable or-
dering heuristics for the No Split variant
of the algorithm.

(b) Amount of atoms in the produced out-
put formula of the different variable or-
dering heuristics for the Split variant of
the algorithm.

(c) Comparison of the Brown variable ordering heuristic for the No Split and Split variant
of the algorithm, together with the QEPCAD B and Reduce/Redlog implementation.

In Figures 7.3a and 7.3b, we present the number of atoms in the produced output
formula of the different variable ordering heuristics for the No Split and Split variant
of the algorithm. On the x-axis, we present the different input files; on the y-axis, we
present the number of atoms in the produced output formula of the different variable
ordering heuristics. Analogously to Section 7.4, the y-axis is logarithmic, and we have
chosen to present a subset of the benchmark files in which the McCallum operator

The Quantifier Elimination Problem 63

implemented in SMT-RAT does not fail. Interestingly, the used variable ordering
heuristic generally does not affect the number of atoms in the produced output for-
mula, except in one case, namely the file 26.smt2. Here, for both the No Split and
the Split variant of the algorithm, the lexicographic variable ordering heuristic pro-
duces an output formula with fewer atoms than the other variable ordering heuristics.
In Figure 7.3c, we present the number of atoms in the produced output formula of
the Brown variable ordering heuristic for the No Split and Split variant of the algo-
rithm, together with the QEPCAD B and Reduce/Redlog implementation. Further,
we present all benchmark files. Firstly, we observe that Reduce/Redlog produces
large output formulas in two of the given benchmark files, while the other solvers can
produce a significantly smaller output formula. Here, we note again that SMT-RAT
and QEPCAD B produce an ETF, while Reduce/Redlog produces a Tarski Formula.
We further observe that the number of atoms in the output formula produced by the
QEPCAD B implementation is generally smaller than that produced by the SMT-
RAT implementation. Based on the presented data, we conclude that QEPCAD B is
better at producing smaller output formulas than the implementation of the presented
algorithms in SMT-RAT.

64 Discussion

Chapter 8

Conclusion

In this thesis, we have introduced the quantifier elimination problem and the decision
problem for non-linear real arithmetic, a first-order theory of multivariate polynomial
constraints over real numbers. The quantifier elimination problem involves finding
an equivalent quantifier-free formula for a given formula. The decision problem only
requires determining whether a given formula is satisfiable. We have presented the
Cylindrical Algebraic Covering algorithm for quantifiers, which is a conflict-driven
approach for deciding the satisfiability of a formula. This method can solve both the
decision problem and the quantifier elimination problem. Further, we have presented
a novel adaptation of this algorithm, which allows for the split of the input formula
into two or more independent subformulas. These subformulas can then be solved
independently, giving the result for the original formula. We have implemented the
original algorithm and the novel adaptation in the SMT solver SMT-RAT. Further,
we have introduced different variable ordering heuristics, two of which have been
shown to be effective in literature. Additionally, we have presented a novel variable
ordering heuristic, which aims to achieve the split of the input formula into two or
more independent subformulas with the least amount of assigned variables. We have
evaluated the performance of the original algorithm and the novel adaptation for both
the decision problem and the quantifier elimination problem. Further, we have com-
pared these results with other state-of-the-art solvers, namely Z3 and CVC5 for the
decision problem and QEPCAD B and Reduce/Redlog for the quantifier elimination
problem. We have shown that our implementations are competitive with the other
solvers for the decision problem for the used NRA benchmarks, consisting of 3819
files, and even outperform Z3 and CVC5 on specific files. We can further observe that
our implementation of the adaptation of the formula split achieves neither a gain nor
a loss in performance for the used benchmarks. That may be due to the fact that
the used benchmarks are not complicated enough to benefit from the input split of
the formula into independent subformulas. The implementations in SMT-RAT can
solve 2 benchmarks the Z3 solver could not solve and 12 benchmarks the CVC5 solver
could not solve within the given resource limits. On the other hand, the other solvers
cannot solve any benchmarks for which the SMT-RAT implementations reach the
resource limits. The biggest downfall of our implementation is the use of the McCal-
lum projection operator, due to which an inconclusive result for up to 63 benchmarks
is returned. In our implementation for the quantifier elimination problem, we can
reuse the same procedures as in the decision problem, which further allows the novel

66 Conclusion

adaptation of the split of the formula into two or more independent subformulas when
suitable. When evaluating the performance of the presented algorithms for the quan-
tifier elimination problem, we are interested in the resource usage of the solver and
also the quality of the produced formula, for which we count the number of atoms.
The presented algorithms in SMT-RAT have shown competitive performance com-
pared to the QEPCAD B and Reduce/Redlog implementations in solving benchmark
files within the given time and memory limit. We observe that neither the choice of
variable ordering heuristic nor the use of the split of the formula into independent
subformulas majorly influences the performance of the presented algorithms for the
used test files. Further, we observe that our implementations can outperform both
QEPCAD B and Reduce/Redlog for specific files regarding running time. On the
other hand, we can observe that QEPCAD B and Reduce/Redlog can solve more files
in total in the given time and memory limit. This includes the files where the McCal-
lum projection operator used in SMT-RAT fails. However, QEPCAD B has shown
to be more efficient in producing smaller output formulas than our implementations.

8.1 Future Work
In this section, we present some ideas for future work which could improve the per-
formance of the presented algorithms.

• Implementing a new projection operator: As we have seen in the eval-
uation of the presented algorithms, the McCallum projection operator is the
biggest downfall of our implementation. Therefore, it would be interesting to
implement a new projection operator that does not have the same drawbacks as
the McCallum projection operator. One possible candidate for such a projection
operator is the Lazard projection operator presented in [Laz94].

• Heuristic for when to split: In our current implementation, we split the
formula whenever possible or not at all. For this, it would be interesting to
develop a heuristic that decides when to split the formula and when not to split
the formula. This might include that the formula is only split given a certain
threshold of the number of variables in the formula or similar. This may reduce
the overhead of the split of the formula into independent subformulas when
there is no potential gain in performance.

• Implementing a new variable ordering heuristic: We have presented a
variable ordering heuristic that aims to achieve the split of the formula into two
or more independent subformulas with the least amount of assigned variables.
However, this variable ordering heuristic may not achieve the optimal variable
ordering for this goal. Therefore, it would be interesting to develop an exact
algorithm that produces the optimal variable ordering for achieving the split
of the input formula into two or more independent subformulas with the least
amount of assigned variables possible.

• Proof of Concept Formula Evaluation: When checking if two subformulas
are independent with respect to a variable and a partial sample point, we need to
evaluate the subformulas over the sample point and calculate the variables that
are present in both subformulas. In the current implementation, we evaluate
the subformulas over the sample point and then calculate the intersection of

Future Work 67

the variables without storing intermediate information. However, storing this
information for later use might be sensible to check if two subformulas are
independent with respect to some other variable and an extension of the sample
point. Further, the implementation of this formula evaluation is completely
separate from the partial formula evaluation done in the forall or exists
algorithm of the CAlC algorithm and could be unified for further perfomance
gain.

• Individual Variable Ordering for each Branch: In the current implemen-
tation, we calculate the variable ordering before the start of the CAlC algorithm.
This variable ordering is then used for all branches of the CAlC algorithm and
never changed. However, it has been shown that the variable ordering may be
changed for each branch of the CAlC algorithm to improve performance [DSS04].
Thus, adjusting the implementation such that after each split of a given formula,
a new variable ordering is calculated for each subformula, might improve the
performance of the presented algorithm.

68 Conclusion

Bibliography

[AB10] John Abbott and Anna M Bigatti. Cocoalib: A c++ library for
computations in commutative algebra... and beyond. In Mathemati-
cal Software–ICMS 2010: Third International Congress on Mathemati-
cal Software, Kobe, Japan, September 13-17, 2010. Proceedings 3, pages
73–76. Springer, 2010.

[ÁDEK21] Erika Ábrahám, James H Davenport, Matthew England, and Gereon Kre-
mer. Deciding the consistency of non-linear real arithmetic constraints
with a conflict driven search using cylindrical algebraic coverings. Jour-
nal of Logical and Algebraic Methods in Programming, 119:100633, 2021.

[BBB+22] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, et al. cvc5: A versatile and industrial-
strength smt solver. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 415–442. Springer,
2022.

[BDE+16] Russell Bradford, James H Davenport, Matthew England, Scott McCal-
lum, and David Wilson. Truth table invariant cylindrical algebraic de-
composition. Journal of Symbolic Computation, 76:1–35, 2016.

[Bro99] Christopher W Brown. Solution formula construction for truth invariant
CAD’s. University of Delaware, 1999.

[Bro03] Christopher W Brown. Qepcad b: a program for computing with semi-
algebraic sets using cads. ACM Sigsam Bulletin, 37(4):97–108, 2003.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib stan-
dard: Version 2.0. In Proceedings of the 8th international workshop on
satisfiability modulo theories (Edinburgh, UK), volume 13, page 14, 2010.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Springer,
2018.

[CH91] George E Collins and Hoon Hong. Partial cylindrical algebraic decom-
position for quantifier elimination. Journal of Symbolic Computation,
12(3):299–328, 1991.

[CJ12] Bob F Caviness and Jeremy R Johnson. Quantifier elimination and cylin-
drical algebraic decomposition. Springer Science & Business Media, 2012.

70 Bibliography

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: an open source C++ toolbox for strategic
and parallel SMT solving. In Marijn Heule and Sean A. Weaver, editors,
Theory and Applications of Satisfiability Testing - SAT 2015 - 18th Inter-
national Conference, Austin, TX, USA, September 24-27, 2015, Proceed-
ings, volume 9340 of Lecture Notes in Computer Science, pages 360–368.
Springer, 2015.

[Col76] George E Collins. Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition: a synopsis. ACM SIGSAM Bulletin,
10(1):10–12, 1976.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, STOC ’71, page 151–158, New York, NY, USA, 1971. Association for
Computing Machinery.

[DH88] James H Davenport and Joos Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Computation, 5(1-2):29–35, 1988.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[DS97] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets
computer logic. Acm Sigsam Bulletin, 31(2):2–9, 1997.

[DSS04] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Efficient projec-
tion orders for cad. In Proceedings of the 2004 international symposium
on Symbolic and algebraic computation, pages 111–118, 2004.

[EBDW14] Matthew England, Russell Bradford, James H Davenport, and David Wil-
son. Choosing a variable ordering for truth-table invariant cylindrical al-
gebraic decomposition by incremental triangular decomposition. In Math-
ematical Software–ICMS 2014: 4th International Congress, Seoul, South
Korea, August 5-9, 2014. Proceedings 4, pages 450–457. Springer, 2014.

[EF19] Matthew England and Dorian Florescu. Comparing machine learning
models to choose the variable ordering for cylindrical algebraic decompo-
sition. In Intelligent Computer Mathematics: 12th International Confer-
ence, CICM 2019, Prague, Czech Republic, July 8–12, 2019, Proceedings
12, pages 93–108. Springer, 2019.

[HEW+14] Zongyan Huang, Matthew England, David Wilson, James H Davenport,
Lawrence C Paulson, and James Bridge. Applying machine learning to
the problem of choosing a heuristic to select the variable ordering for
cylindrical algebraic decomposition. In Intelligent Computer Mathemat-
ics: International Conference, CICM 2014, Coimbra, Portugal, July 7-11,
2014. Proceedings, pages 92–107. Springer, 2014.

[Hin18] Peter G Hinman. Fundamentals of mathematical logic. CRC Press, 2018.

Bibliography 71

[Hon90] Hoon Hong. An improvement of the projection operator in cylindrical
algebraic decomposition. In Proceedings of the international symposium
on Symbolic and algebraic computation, pages 261–264, 1990.

[Ini23a] The SMT-LIB Initiative. Smt-lib nra benchmarks, October 2023. https:
//clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/NR
A.

[Ini23b] The SMT-LIB Initiative. Smt-lib nra theory, October 2023. https:
//smtlib.cs.uiowa.edu/theories-Reals.shtml.

[JA95] Clark John and Holton Derek Allan. A first look at graph theory. Allied
Publishers, 1995.

[JD17] Dejan Jovanovic and Bruno Dutertre. Libpoly: A library for reasoning
about polynomials. In SMT, pages 28–39, 2017.

[KN22] Gereon Kremer and Jasper Nalbach. Cylindrical algebraic coverings for
quantifiers. 2022.

[Kro23] Philip Kroll. Quantifier benchmark, November 2023. https://zenodo
.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJ
pZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGI
wMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA
5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQk
ceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxU
uP6vby8w.

[Laz94] Daniel Lazard. An improved projection for cylindrical algebraic decom-
position. In Algebraic geometry and its applications: collections of papers
from Shreeram S. Abhyankar’s 60th birthday conference, pages 467–476.
Springer, 1994.

[LXZZ21] Haokun Li, Bican Xia, Huiying Zhang, and Tao Zheng. Choosing the
variable ordering for cylindrical algebraic decomposition via exploiting
chordal structure. In Proceedings of the 2021 on International Symposium
on Symbolic and Algebraic Computation, pages 281–288, 2021.

[McC98] Scott McCallum. An improved projection operation for cylindrical alge-
braic decomposition. In Quantifier Elimination and Cylindrical Algebraic
Decomposition, pages 242–268. Springer, 1998.

[NÁ23] Florian Corzilius Gereon Kremer Sebastian Junges Stefan Schupp Jasper
Nalbach and Erika Ábrahám. Computer ARithmetic Library CArL, Oc-
tober 2023. https://github.com/ths-rwth/carl.

[NÁS+22] Jasper Nalbach, Erika Ábrahám, Philippe Specht, Christopher W Brown,
James H Davenport, and Matthew England. Levelwise construction of a
single cylindrical algebraic cell. arXiv preprint arXiv:2212.09309, 2022.

[Sch11] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[Sei54] Abraham Seidenberg. A new decision method for elementary algebra.
Annals of Mathematics, pages 365–374, 1954.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/NRA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/NRA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/NRA
https://smtlib.cs.uiowa.edu/theories-Reals.shtml
https://smtlib.cs.uiowa.edu/theories-Reals.shtml
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://zenodo.org/records/10221072?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjMzODIwM2FiLWUyZTAtNDkxNy04NWJhLTczZjNkZmU5ZGIwMiIsImRhdGEiOnt9LCJyYW5kb20iOiI0NGQyYTk5NDNlNTk0ZjA5ZjY0ZmMxZjg3OTk3OWJiYyJ9.f4KsnV7mTORq28C8dTRQhPdfQkceJltszX6eDgrUFQZ6jveJJJv5pC1YP_A6zrBpwovq1r-ILf2MxUuP6vby8w
https://github.com/ths-rwth/carl

72 Bibliography

[Tar51] Alfred Tarski. A decision method for elementary algebra and geometry.
In Quantifier elimination and cylindrical algebraic decomposition, pages
24–84. Springer, 1951.

[Wil13] David Wilson. Real geometry and connectedness via triangular descrip-
tion: Cad example bank, April 2013. Each example is given as a Tarski
formula or list of polynomials followed by a list of free variables, a list of
quantified variables, the suggested variable order given from the source
(if any), the minimal number of cells achieved in a full CAD (with details
of how to reproduce), notes on the problem, and the source.

	Introduction
	Preliminaries
	Boolean Satisfiability Problem
	Non-Linear Real Arithmetic
	Cylindrical Algebraic Coverings

	Cylindrical Algebraic Covering for Quantifiers
	Algorithms
	Quantifier Elimination

	Handling Constraints Independently
	Adapting the Cylindrical Algebraic Coverings Algorithm

	Variable Orderings
	Variable Orderings in Literature
	Earliest Split Variable Ordering

	Prenex Normal Form
	Discussion
	Implementation
	Dealing with Polynomial Denominators
	The Decision Problem
	The Quantifier Elimination Problem

	Conclusion
	Future Work

	Bibliography

