of Hybrid
hybr I d Systems
Informatik 2

The present work was submitted to the LUFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

USING THE STAR SET REPRESENTATION FOR THE
ANALYSIS OF STOCHASTIC HYBRID AUTOMATA

Sinan David Lindemann

Communicated by
Prof. Dr. Dr.h.c. Erika Abrahdm

Examiners:)
Prof. Dr. Dr.h.c. Erika Abraham
Dr. -Ing. Andre Stollenwerk

Additional Advisor:
Jozsef Kovacs Aachen, 29.12.2025

Abstract

The analysis of stochastic hybrid automata is increasingly challenged by the
growing complexity of real-world processes, requiring efficient computational
methods. Star sets have been proposed as a representation capable of improving
computational efficiency, potentially enabling the analysis of larger and more
complex models. This work investigates whether the use of star sets can enhance
the efficiency of reachability analysis within RealysSt, a tool built on HyPro. To
this end, RealySt was templated and modified to allow the use of star sets. Two
stochastic hybrid automata models are analysed, comparing the performance of
star sets against two alternative state set representations, V-polytopes and H.-
polytopes. The results demonstrate that star sets can be applied within RealySt
for the analysis of stochastic hybrid automata, although current performance
is limited due to redundant conversions and the lack of optimisation for many
processes. These findings highlight both the feasibility of using star sets in this
context and the potential for significant efficiency improvements with further
development, offering insights for future research and practical use.

iv

Contents

pI

Hybrid Automatal. o

B2

Reachability]. oo

B3

Flowpipe Construction| 0oL

R.4

State Set Representation|.o oL

3.1 Important Implementations In HyPro|

4.1 Worktlow Of RealyStf.o oo o000

4.2 Implementation Of RealySt|

[Tmplementation|

B.1

Changes In RealySt| o o 00000

5.2 Changes In HyPro|

6 Benchmarks|

6.1

11
11
18
19
20

25
26

29
29
30

33
33
34

37
37
45

47
47
47
48

49

vi

Contents

Chapter 1

Introduction

Modern technical systems, industrial workflows, and automated production envi-
ronments are growing steadily in complexity. This development is driven not only
by increasing global demand, but also by the integration of advanced technologies,
interconnected components, and autonomously acting subsystems[Mon14] (as seen,
for example, for autonomous driving[ADI4][MHRI17] or highly automated production
lines]RRK10|[BBHMO3]). As a result, ensuring the safety and reliability of such sys-
tems has become a central challenge in both industry and research|[SAW*+24]. One
established approach to address this challenge is the modelling of system dynamics
as hybrid automata, which combine both discrete and continuous behaviour. When
uncertainties or probabilistic influences are present, these models are extended to
stochastic hybrid automata, allowing for a more realistic representation of real-world
processes.

The verification of hybrid[Sch19] and stochastic hybrid automata[HLS00] typically
relies on reachability analysisﬂ which aims to determine the probability with which
a system can reach unsafe states from a given initial configuration. However, as
models grow in dimension and complexity, the computations required for reachability
probability analysis become more demanding. In particular, operations such as
Minkowski sums can become computationally expensive when relying solely on classical
representations for state sets, such as H-polytopes and V-polytopes|[Tiw07]. This
has motivated the search for alternative state set representations that offer better
performance for operations required in reachability analysis.

Among these candidates, the star set representation has received increasing
attention|]AMA23|[BD17]. Star sets provide highly efficient ways to encode high-
dimensional sets while supporting operations that are fundamental to reachability
computations. Transformations and intersections with halfspaces are among the oper-
ations for which star sets are particularly advantageous. If star sets can accelerate the
underlying computations, larger and more complex models may become feasible for
reachability analysis, thereby increasing the practical relevance of formal verification
approaches for real-world systems.

The aim of this work is to investigate whether star sets constitute a suitable and
potentially more efficient alternative for the analysis of stochastic hybrid automata.
To assess this, the tool RealySt, which relies on the HyPro library for its state set
operations, was extended and templated to support additional set representations,

IThere are other interesting approaches, such as Monte Carlo based techniques[BEOBI4][EPO0S].

8 Introduction

thereby laying the foundation for further developments in the future. As part of this
work, star sets were integrated into the toolchain and adapted for use in the existing
workflow.

To evaluate the impact of this integration, the performance of star sets is compared
with that of H-polytopes and V-polytopes using two benchmark models. The first
benchmark is a small-scale example used to validate correctness and basic function-
ality, ensuring that the new representation integrates consistently with the existing
components. As a second benchmark, an electric car model presented in [DSAR23]| is
used. It models an electric vehicle with multiple charging modes and stochastic driving
times and, due to its larger size, serves as a more realistic benchmark. Although the
current implementation is not yet fully optimised, the evaluation provides insights
into the usability of star sets in this context. Overall, this work contributes an initial
investigation of star sets within RealySt for the verification of stochastic hybrid
automata. The results highlight both the current limitations arising from implementa-
tion overheads and the considerable potential for further optimisation. These findings
provide a basis for further improvements to star sets and RealySt.

1.1 Related Work

The analysis of hybrid and stochastic hybrid automata has been the subject of extensive
research, with various state set representations and tool implementations developed to
improve efficiency and robustness. Although none of the existing work employs star
sets in RealySt, three works are particularly noteworthy.

There are multiple approaches to reachability probability estimation for stochastic
hybrid systems. While this work focuses on estimations based on reachability analysis,
[IDDL™12| proposes a simulation-based approach in which the probability is estimated
from samples obtained through repeated representative runs.

The HyPro|SAMK17| library provides a comprehensive framework for reachability
analysis, supporting multiple state set representations, including H-polytopes and
V-polytopes. HyPro forms one of the foundational tools used in this thesis.

More recently, star sets were proposed for reachability analysis and implemented in
[Tam21] for HyPro. These implementations serve as the basis of the implementations
later introduced in this work in regards to star sets.

Star sets have previously been applied to reachability analysis in neural network
verification [Mas23|, demonstrating their suitability for efficient analysis.

Finally, RealysSt[DSSR23] is another notable tool that focuses on stochastic
hybrid systems, providing an analysis environment capable of handling probabilistic
behaviour in hybrid automata.

In contrast, this thesis introduces and evaluates the use of star sets within RealySt,
building on previous work while exploring their applicability in this context.

1.2 Outline

In chapter [2] the most important theoretical foundations of hybrid automata and
reachability analysis are introduced. Furthermore, the different relevant state set
representations for this thesis are briefly explained in that chapter. After a general
introduction to the theoretical aspects of the topic, chapter [|provides an overview of the
library HyPro, with a focus on the most important methods in relation to its adaptation

Outline 9

for compatibility with RealySt and star sets. Next, chapter [introduces the tool
RealysSt and outlines its general workflow. Subsequently, the new implementations
are presented in chapter [5 along with current challenges in the implementation and
some ideas for future projects. This is followed by a detailed presentation of two
benchmarks used to test the current implementation in chapter [6] Finally, the results
of this work are summarised, discussed, and various possible future improvements are
outlined in chapter [7]

10

Introduction

Chapter 2

Preliminaries

2.1 Hybrid Automata

A hybrid system is one that combines the behavioural characteristics of both discrete
and continuous systems. In discrete systems, changes occur instantaneously, while in
continuous systems, variable dynamics are described by ordinary differential equations
governing their evolution over time. Hybrid systems are capable of modelling a wide
range of processes found in the natural world. One important application is their use
in industrial settings, such as the modelling of steel plants [Feh99], where ensuring
correct functionality is of considerable importance [NDNT16].

To formally model and analyse such systems, hybrid automata are commonly
employed. For clarity, hybrid automata are first introduced in their general form,
followed by an important subclass and its stochastic extension.

2.1.1 General Hybrid Automata

The hybrid automaton consists of various interconnected parts. The set of locations
Loc represents the discrete control modes of the system, corresponding to different
operational states, such as heating or waiting. The set of variables Var describes
properties of the underlying system, whose values evolve continuously over time and
may also be subject to discrete updates, such as resets. The continuous evolution of
a variable v € Var is described by its first derivative, denoted as v, while the value
of v after a discrete change is denoted by v’. The labels Lab allow the automaton to
distinguish and synchronise discrete transitions by associating them with observable
events, while internal transitions may be represented by a special stutter label 7. In
each location, a predicate is assigned to define the continuous evolution (Flow), by
relating the variables to their derivatives, thereby inducing the corresponding system
of ordinary differential equations. This flow may continue as long as the invariant of
the location remains valid. The invariant of a location is given by a predicate ¢ € Inv,
which constrains the permitted values in that location. If the invariant is violated, the
automaton cannot remain in the current state and must undergo a discrete transition.
A jump (l,a,9,r,l') € Edge consists of a source location [€ Loc, a synchronization
label a € Lab, a guard g € Predyq,, a reset v € Predyqr,var, and a target location
" € Loc. The jump can only be taken if the guard is active (i.e. the predicate is
fulfilled) and if the valuation of the variables after applying the reset satisfies the

12 Preliminaries

invariant of {’. If the jump is taken, the automaton continues in the target location.
Init defines the initial states o; = (Loc x R%) of the automaton as a set of pairs
consisting of valid start locations and corresponding valuations of all variables. These
parts together as a tuple define the hybrid automata (Formal definition in [2.1.1)).

Definition 2.1.1 Hybrid Automata [Sch19]

The hybrid automaton, is defined by a tuple:

‘H = (Loc ,Var ,Lab ,Flow ,Inv ,Edge ,Init)
e Loc - a finite set of locations.

o Var - a vector of variables Var = (o, ...,z4-1),
d being the dimension of H. Var denotes the set of first derivatives of the
continuous change, while Var’ represents the set of values after discrete
changes.

e Lab - a finite set of labels, including the stutter label 7.

e Flow : Loc — Prede,UV-aﬂ - specifies the continuous evolution of the
variable values within a location according to differential equations.

e Inv: Loc — Predy,, - specifies the Invariant for each location.

o Edge C Locx Labx Predy o, X Predy qr,var % Loc - defines the transitions or
jumps ((L,a,g9,r,l') € Edge), with [€ Loc as its source location, a € Lab as the
synchronization label, g € Predy ., as the jumps guard, r € Predya-uvar
as the reset, and I’ € Loc as the target location.

e Init: Loc — Predy ., - defines the initial states.

®Predx denotes the set of all predicates over the set X.

With the formal definition of the automaton established, the behaviour of the
automaton also needs to be specified. For this, the operational semantics is introduced
in [2.1.2) which defines how states evolve through continuous flow and discrete jumps.

Hybrid Automata 13

Definition 2.1.2 Operational Semantics[Sch19]

One step of the hybrid automata H = (Loc, Var, Lab, Flow, Inv, Edge, Init) is
defined by the following operational semantics:

e The rule for the flow:

l€Loc v €R? f:[0,7] » R?
afjot=f:(0,7) =R f(0O)=v f(r)=1
Ve € (0,7).£(6), /() - Flow(l)

Ve € [0,7].f(e) = Inv(l)

(Iw) = (10"

e The rule for the jump:

e=(La,g,r,l') € Edge 1l' € Loc vp' € R?

viEg v Er v E Inv(l)
(Ly) = (' p)

Based on the operational semantics, which defines how individual states evolve
over time, it is now possible to describe complete system behaviours. For this the

definition of a path from [Sch19] is introduced in

Definition 2.1.3 Path[Sch19]

A path 7 of H is a sequence of states of H that are connected through alternating
flow and jump steps:

70 €1 T2 €3
=090 —> 01 —> 092 —> 03 —> ...

with o; = (I;,v;) € Loc x R? being states of H, 7; € R > 0,e; € Edge, and
vo = Inv(lp). A path is initial if additionally vy = Init(lp).

To illustrate the concept of hybrid automata, an explanatory hybrid automaton is
shown in and formally described as a tuple in [2:1.4] The hybrid automaton
models a water cistern that can be automatically filled over time and manually emptied
through human interaction. The initial state is labelled filling, and the variable w,
representing the water level, can take any value between 5 and 7 litres. In the filling
state, the water level gradually increases as time, denoted by ¢, passes. The system
can remain in this state only while w < 7. Once the value w = 2 is reached, the guard
for the transition to the flushing state, representing the release of water, is activated
and the transition may be taken. If this transition is taken, the water level decreases
until it reaches 0. Due to the state invariant and the existing transitions, the system
must then return to the filling state. If the cistern fills completely, the system may
instead take the transition to the waiting state, where the water level remains constant.
From the waiting state, a transition to the flushing state may be taken at any time.

14

Preliminaries

waiting

w=0
t=1

Figure 2.1: The example illustrates a typical water cistern, such as one commonly
found in most households.

Example 2.1.4 Formal Definition

Loc = {waiting, flushing, filling}
Var = {w, t}
Lab = {r, full, flush, empty}

Flow(waiting) = {(f : R>o — V|3c € R.Vs € R>o.f(s)(w) = ¢),
(f:RZ()—)VECGRVSERZO f()() _S+C))}

Flow(flushing) = {(f : R>¢ — V|3c € R.Vs € R>q.f(s)(w) = —2s + ¢),
(f :Rsg = V|Fc € RVs € Ryo.f(s)(t) =s+¢))}

Flow(filling) = {(f : R>g = V|3c € R.Vs € R>¢.f(s)(w) = 0,55 + ¢),
(f Ry = V|3c e RVs € Rxo.f(s)(t) =s+¢))}

Inv(flushing) = {v € V]v(w) > 0}
Inv(filling) = {v € V|v(w) < 7}
Edge = {

(waiting, flush,{(v, v) € V2|v(w) > 2Av(w) = v'(w)Av(t) = v'(t)},flushing),
(flushing, empty,{(v, v') € V2|v(w) = 0Av(w) = v'(w) Av(t) = v'(¢)},filling),
(filling, flush,{(v, v) € VZ|v(w) > 2 Av(w) = v'(w) Av(t) = v'(t)},flushing),
(filling, full,{(v, v") € V2|v(w) > 7 Av(w) = v'(w) A v(t) = v'(t)},waiting) }

Init = {(filling, v) € Z|v(w) € [5,7],v(t) = 0}

Hybrid Automata 15

2.1.2 Rectangular Automata

While the previous section introduced hybrid automata in their general form, many
analysis and verification techniques rely on restricted subclasses that ensure decidability,
as discussed in[HKPV95]. One such subclass is that of rectangular automata[KJ96].
The rectangular automaton is a hybrid automaton, "in which not only invariants
and guards, but also all assertion predicates, encode rectangular sets"[Schi9]. The
rectangular set is defined as a combination of constraints comparing a variable to
constants. The flow is now defined with a rectangular predicate in the form of & = [a,b)
with € Var and a,b € N. Similarly, the predicate for the jumps is now restricted
to ' = [a,b] and even guards or invariants can be written in the rectangular form
x € [a,b]. In the following the rectangular predicates of a set X will be written as
Pred%. Deﬁnition shows the formal definition of the rectangular automata, with
the changes highlighted.

Definition 2.1.5 Rectangular Automata[Sch19][KJ96]

The rectangular automaton, modelling a hybrid system, is defined by a tuple:

H = (Loc, Var, Lab, Flow, Inv, Edge, Init)

Loc - a finite set of locations.

e Var - a vector of variables Var = (zg, ..., 24-1),
d being the dimension of H. Var denotes the set of first derivatives of the
continuous change, while Var’ represents the set of values after discrete
changes.

Lab - a finite set of labels, including the stutter label 7.

Flow : Loc — Predgaruvdr - specifies the continuous rectangular evolution

e | of the variable values within a location by constraining the derivatives to a
rectangular set.

Inv: Loc — Predf - specifies the Invariant for each location in a rectan-
gular form.

Edge C Loc x Labx Predf}, x Predf % Loc- defines the transitions
or jumps ((1,a,g,r,l') € Edge), with | € Loc as its source location, a € Lab as
® | the synchronization label, g € Predf, as the jumps guard in a rectangular
form, r € Predf,,, as the rectangular reset, and I’ € Loc as the target

location.

Init : Loc — Pred¥, - defines the initial states with the corresponding
values as a rectangular set.

Predicates such as * = ¢, t =c¢, x < ¢, * > ¢ can remain unchanged, as they
already define rectangular sets by comparing a variable to a constant. Alternatively,
they could be rewritten to conform more closely to the expected form. For example,
x = ¢ can be transformed into x € [¢,c]. In the following, this transformation will not

16 Preliminaries

be applied, as it does not improve readability.

2.1.3 Stochastic Hybrid Automata

Although classical hybrid systems provide a powerful modelling framework for complex
systems that combine discrete logic with continuous dynamics, many real-world
applications are also affected by uncertainty and random influences, such as fluctuating
environments or measurement noise. To capture these aspects, stochastic hybrid
systems[HLS00| extend hybrid systems by incorporating stochastic behaviour into
their components, thereby enabling more realistic modelling for real-world problems.
As all benchmarks in chapter [6] involve rectangular automata, this chapter considers
only their stochastic extensions. For further details on stochastic singular automata,

refer to [DSAR23|, and for general stochastic hybrid automata, see [HHLS00).

Definition 2.1.6 Stochastic Rectangular Automata[DSAR23]

The rectangular automaton extended with random clocks is defined by its tuple:
H = (Loc, Var, Lab, Flow, Inv, Edge, Init, Varg, Flowg, Edgeg, Distrg)
(Loc, Var, Lab, Flow, Inv, Edge, Init) is unchanged as in
e Varg - a finite set Varg = {ry,...,rq} of random clocks.

e Flowg : Loc — {0,1}v 4y - specifies the flow of the random clocks, indicating
for each location whether a clock is active (1) or inactive (0).

e Edger C Locx Varg x Loc - defines the stochastic jumps e = (I,r,l'), where
[is the source location and !’ being the target location. For each set (1,l') a
different random clock r is used.

e Distrr : Varg — F. - assigns a continuous probability distribution to each
random clock r, defining a sequence S, o, ...,S; , of values over time that r
must reach in order for the corresponding jump to be taken.

The stochastic rectangular automata uses the added clocks to account for time
nondetermim’smﬂ This is achieved by associating each stochastic jump with a random
event governed by a continuous probability distribution F. and a random clock. While
a jump is active, the corresponding stochastic clock is activated and advances with
a constant rate of lEl The distribution is used to generate an expiration date for
the random clock to reach, at which point the jump is taken. Once the random
clock reaches expiration time, the jump occurs and the clock is reset to 0. The new
random value to be reached is generated from the distribution as the next expiration
timem. This forms a sequence S, o, ...,Sy, for each random clock r, whose
values are independent samples drawn from the underlying probability distribution.

IDefiniton
2And its derivative is 0 if the jump is not enabled.

Hybrid Automata 17

The rectangular automaton with random clocks [2.1.6] allows for four different types
of nondeterminism defined in 21,7

Definition 2.1.7 Types Of Nondeterminism[DSAR23]

o [nitial nondeterminism arises from the choice among multiple possible initial
states.

o Time nondeterminism occurs because time can progress in a location while
discrete transitions are enabled.

e Rate nondeterminism occurs because the continuous variables in a location
can change according to a range of possible rates, as allowed by the flow
conditions.

e Discrete nondeterminism arises when multiple jumps are enabled at the
same time.

The example in was modified to include two random clocks, in order to
capture stochastic flushing behaviour The first random clock 7 represents a
flush that may occur when the cistern is being filled, while the second clock ¢ models
a flush with a filled cistern. Each clock is only enabled in the locations where the
corresponding flushing behaviour is possible. The clock ¢ is governed by a stochastic
distribution of Distr. ~ Uniform[0,100], while the clock r follows an exponential
distribution Distr, ~ Exp(0.005). This reflects the fact that a flush occurring while
the cistern is being filled is highly unlikely, but may occur at any point over a long
time horizon, whereas a flush with a filled cistern is guaranteed to occur within finite
time, provided that the waiting state is eventually reached.

flushing

wE [-1,—2]

Figure 2.2: The Cistern automaton modified with random clocks r and c. Derivatives
equal to 0 are omitted for readability.

18 Preliminaries

Stochastic hybrid automata allow the modelling of uncertainties, which is especially
beneficial when estimating the probability of events occurring in complex systems,
such as failures or delays, in a factory setting. By combining continuous dynamics
with probabilistic discrete transitions, these models capture both physical processes
and random events, such as external influences. This makes them a powerful tool for
analysing reliability and risk in real-world systems[LP10].

2.2 Reachability

The hybrid automaton shown in can now be analysed to make predictions
about the states the automaton may occupy at a given point in time. In general, the
goal is to determine whether an undesirable state or a desired state is reachable, i.e.
whether there exists any initial path that can lead the system into the given bad/good
state.

This process is known as reachability analysis. In simpler cases, such as the example
shown above, it is possible to determine all the potential states in which the system
may be at a given point in time. In other cases, the automaton may exhibit non-linear
behaviour, making predictions through simple calculations unfeasible[HKPV95]. In
such cases, the system’s behaviour may be abstracted through over- or underapprozi-
mation|Chel5|[Sch19).

These approximation techniques involve fitting the systems behaviour to more
easily calculable geometric formsE When underapproximation is employed, some
reachable states may be omitted due to the nature of the underlying computations.
Consequently, any state deemed reachable in the abstraction is also reachable in the
original system, whereas some states classified as non-reachable in the abstraction may,
in fact, be reachable in the original system. With overapproximation, the opposite
is true: a reached undesirable state in the abstraction may not be reachable in the
original system. However, if no undesirable states are reachable in the abstraction,
the system can be considered safeEI

Similarly, the automaton in can be analysed to estimate the probability of
reaching a specific state. One approach to estimating this probability is discussed in
chapter [

LState Sets Representations | more in section
2A system is considered safe if the intersection of the states reachable from the initial states and
the set of undesirable states is empty.

W @ a e o s W N e

11

12

Flowpipe Construction 19

2.3 Flowpipe Construction

An over-approximative forward approach is the flowpipe construction based reachability
algorithm[Sch19].

Only a high-level overview of the approach is provided here, while m LGO9|
present a more detailed explanation. For better understanding, pseudocode of a
reachability algorithm using this approach is provided in [2:3.3]

Algorithm 2.3.1 Forward Reachability Analysis[Kan24]

Input: Initial set Init
Output: Set R of reachable states

R := Init

R™Y .= Init

while R"™" # do
Let stateSet € R™"
R"*Y := R™"\{stateSet}
R’ := computeFlowPipe(stateSet)
if ljumpDepthReached() then

R™" .= R™" U computeJumpSucc(R')

end if
R:= RUR"™"

end while

return R

The timestep size (8) is used to divide the analysis of the automaton into equally
sized time intervals [0,6],[,2],.... These timesteps are then used to compute the
individual overapproximated segments of the flowpipe. By combining these segments,
the whole behaviour of the automaton gets approximated.

The first segment is created by transforming Init using the given flow for one
timestep. This transformation can be performed by applying the matriz exponential
e94 to X The matrix exponential represents the time evolution of a linear system
& = Az where § is the time interval. Afterwards the computed set €34 X is bloated by
taking its Minkowski sum with a box B to compensate for non-linear behaviour|[L.G09].
The union (or convex hulﬂ) of this set and the initial set then forms the first segment
of the flowpipe. This process is visualised in

Definition 2.3.2 Convex Set[Zie95]

A set of points K C R? is convex if with any two points z,y € K it also contains
the straight line segment [z,y] = {Az + (1 — A\)y : 0 < A < 1} between them.

Further segments are computed via a linear transformation of the prior segment.
Due to the over-approximation introduced in the first segment, all subsequent segments
remain over-approximative[Tse20).

n the following X denotes the initial states Init.
2The convex hull of a set is the smallest Convexm set that contains all points from the initial
set.

20 Preliminaries

When the guard of an edge or transition is satisfied, all sets that fulfil the guard
are transformed according to the jump’s reset, producing a new initial set from which
a new flowpipe is constructed. If the invariant is no longer satisfied, or if the flowpipe
intersects with an undesirable state, the analysis terminates.

) Y)

X5 Xs Q0

(a) (b) (c)

Figure 2.3: Computation of the first segment. In the initial set Xq is
illustrated together with its transformation under the matrix exponential. The dotted
lines represent the naive approach of constructing the first segment, by forming the
convex hull of Xy and X, whereas the dark arrow shows possible non linear behaviour
that the naive method would not capture. In X is bloated with a box to
include the non linear behaviour, forming the first segment g with the convex hull of
the union with X in[Fig. 2.3¢

2.4 State Set Representation

Each state of a hybrid automaton can be described by a geometric representation,
either through approximation or, in some cases, directly. These representations must
be convex in order to ensure the feasibility of various mathematical operations. The
choice of which representation to use depends on a range of factors. Each representation
offers different advantages and disadvantages for specific operations, and in some cases
must be transformed before it can be used effectively[Sch19]. In general, by using
more complex state set representations, it is possible to achieve a lower approximation
error at the cost of increased computational effort[Sch19].

2.4.1 Polytopes

Using the definition [2.3.2] it is now possible to define geometric objects based on
convexity. A convex polytope [Zie95] is a convex set that can be represented either by
a finite set of linear constraints, or by its extreme points [Sch19]. Accordingly, the
two important representations of polytopes considered in this work are V-polytopes
(vertez-polytopes) and H-polytopes (halfspace-polytopes).

State Set Representation 21

Definition 2.4.1 Polytopes [Sch19]

A V-polytope is given by a finite set Py = {vg,...,v,_1} of vertices v; € R? of
the convex hull of the polytope. A polytope and its set of points S is convez if
Va,y € SYA € [0,1] CR.(Az+ (1 — N)y) € S. Py is defined as

m—1 m—1
Py = {xa:: DXuiAY N=1ANE [0,1]}.
=0 =0

A d-dimensional convex H-polytope Py is given by a pair (N,c) with N € R™*x4
and ¢ € R™. This pair defines a convex set

m—1
Py = () hi
=0

where h; is a d-dimensional halfspace [7] with the i-th row of N as its normalvector
and ¢; as its offset.

@A d-dimensional halfspace h is defined as h = {x € R?|nT -z < ¢} for n € R (normalvector)
and ¢ € R (offset)

An explanatory V-polytopes can be seen in defined by its vertices:

PV = {(1,0.5),(2,0.5),(1.5,2),(0.5,1.5),(0.3,0.7)}

The H-polytope shown in represents the same polytope as before, expressed
equivalently by the following halfspaces:

0 -0.5 —0.25

0.4743 0.1561 1.0272

N =]-0.2236 04472 | with c= 0.559
—0.4848 0.1212 —0.0606

—0.1374 —0.4808 —0.3776

22 Preliminaries

y Yy
(1.5,2)
(0.5,1.5)
0.3.0.7) ds) (2,0.5) / /

(a) (b)
Figure 2.4: The same polytope represented either as a V-polytope or as an

‘H-polytope

While both representations describe the same geometric object, it becomes apparent
that they have different strengths and weaknesses. The calculation of the union is much
simpler with V-polytopes, as it is possible to extend the convex hull and remove the
unnecessary vertices. In contrast, for H-polytopes, the intersection can be computed
in polynomial time, as it reduces to solving a small system of linear equations. In
some cases, it can be beneficial to convert a polytope into the other representation
in order to perform a more efficient operatiorﬂ The efficiency of these operations is
also affected by redundant information. While V-polytopes can contain unnecessary
vertices, H-polytopes can contain redundant half-spaces, both types of redundancy
may arise during various operations[Ere05]. When these redundancies are removed,
the polytopes are referred to as reduced.

Converting an V-polytope into its H-representation is called facet enumeration.

In up to two dimensions, a variety of algorithms are available, such as Graham’ s
scan [Gra72]. For higher-dimensional polytopes, Quickhull [BDH96] is commonly
used. Although these algorithms are quite efficient, converting from V-polytopes to
‘H-polytopes still represents a considerable computational effort.
The reverse direction is known as vertex enumeration and can be carried out by
solving linear equations. For a d-dimensional H-polytope all intersection points of d
equations (halfspace boundariesﬂ) are computed and then verified by checking whether
they satisfy the remaining halfspace constraints. This also requires considerable
computational effort and can negatively impact the efficiency of the analysis.

2.4.2 Star Set

Generalised star sets|[DV16] are a more recently proposed and introduced state set
representation, which "turned out to be exceptionally good candidates"|[AMA23|, due
to their efficient handling of various operationsﬂ

IExample: The union of H-polytopes is usually calculated by first converting to V-polytopes.
2Analogous to definition of halfspaces in , using nT -z = c instead of nT -z < ¢
3Proofs of the properties that make star sets so efficient can be found in [AMA23|

State Set Representation 23

Definition 2.4.2 Generalised Star set|[BD17]

A generalised star set © is a tuple (¢,V,P) where ¢ € R™ is the centre,V € R"*™
is the generator matrix consisting of m vectors V = {vy,...,v,,} where v; in R™,
called the basis vectors, and P : R™ — {T, L} is a predicate. The basis vectors
are arranged to form the star’s n x m basis matrix. The set of states represented
by the star is given as:

[6] ={z|lx =c+ Zawi such that P(aq,...,am) =T}

=1

This current definition allows for non convex star sets such as the one formed by
the following tuple (c,V,P):
c= 0 V= L0 and P(aq,az) defined as
0 0 1
(a1 €[-1,—02] Aag € [-1,1)) V (a1 € [0.2,1] A g € [-1,1])

This star set is non convex due to its gap in the middle. Star sets such as these
are undesired in the context of this work. Using the restrictions from |[AMA23| the
predicate P is formed:

P={aeR"|Ca<d}withdeRPand C e RP xmforpeN

With this restriction P forms a convex polyhedron. shows an example of a
convex star set, defined by its centre, generator matrix, and predicate:

-1 0

o
|
—_
)

L 4
8
8

(a) (b)
Figure 2.5: A non-convex star set(Fig. 2.5a)) and a convex star set (Fig. 2.5b)).

24 Preliminaries

Star sets are more efficient than other representations when it comes to linear
tmnsformationsﬂ Intersections with half-spaces can also be computed easily by adding
the rewritten constraint to the predicate P, as introduced in [TMLM™19|. The
conversion between star sets and other state set representations is primarily realised
using the method proposed in [Tam21], which allows for transformations between star
sets and H—polytopeﬂ Conversions involving any other representation are performed
by first converting the star set to an H-polytope.

The strategy behind converting a star set into an H-polytope is to interpret the
star set as the result of a sequence of affine transformations. The generator matrix
describes the linear part of these transformations, while the centre represents the
offsets. An H-polytope is first created from the predicate and is then transformed
using the information provided by the centre and generator matrix. The resulting
‘H-polytope represents the same space as the original star set.

To derive a star set from an H-polytope, the centre c is assigned to be the origin,
represented by a zero vector of the appropriate dimension. The matrix V is set to the
standard basis of that dimension, and the predicate P is formed from the constraints
defining the polytope.

Hn star sets, affine transformations are used, which can be described as a linear transformation
followed by a translation[Tam21].
2Further details are provided in chapter

Chapter 3

HyPro

HyProf|hyp|, first introduced in [SAMK17], is a C++ programming library, designed
to support reachability analysis based on flowpipe construction. The central idea of
HyPro is to provide a unified and extensible library for representing and manipulating
geometric state sets that arise during the reachability analysis of hybrid automata.
Instead of focusing on a single state set representation, HyPro was conceived as a
flexible platform that accommodates a broad variety of geometric abstractions, each
with its own algorithmic strengths and weaknesses, as discussed in section [2.4]

At the time of its initial publication, HyPro already offered eight different state set
representations, including H-polytopes and V-polytopes. Each representation in HyPro
implements the full set of operations required for reachability computations, including
transformations, intersections, unions, and more. The state set representations are
implemented on top of a collection of geometric and algebraic data structures provided
directly by the library, such as points, vectors, half spaces, and formal hybrid automata.

An important and central feature of HyPro is its support for conversions between
different state set representations. Since no single representation is universally optimal
with respect to both efficiency and precision, switching between representations
during reachability analysis can be advantageous. To support such flexibility, HyPro
provides exact and over-approximating conversion routines for most included state set
representations. These conversions are implemented through a converter mechanism
that is fully templated, allowing users to replace the default conversion strategies with
specialised methods if required.

To support an easier empirical evaluation of the implemented state sets, HyPro also
includes a reachability algorithm, alongside benchmark examples. These enable users
to test and compare different state set representations in isolation, without relying
on external methods. However, [SAMK17| emphasises that users are encouraged to
replace generic methods with specialised algorithms that behave more efficiently in
the given cases.

All together, HyPro can be characterised as a versatile foundational library for
geometric representations and operations in reachability analysis. Its modular design
and broad support for different state set representations laid the foundation for later
extensions as described in |[SAE22|, where a new state set representation was introduced.
The star set was added in [Tam2I], together with a multitude of functionalities,
although not all conversion methods were implemented at that poiniﬂ

1This will be discussed later in section and chapter

26 HyPro
RAalgorithm?
f £
3l | [TR—
> 9 =
I &= g
5 [HPolytope b £ [LHA 1 |
[=T ==
SR C—
1 —_
- : : &
= |PPL—POlytOpe |> _____ PR
| g |Zonotope |»—-__| B)
B P . .
o = |Supp0rtFunction I» x VVVVV util
&] % GeometricObject
o <Interface>
= |Orthogonal polyhedra | ¢
|Taylor model | -
b # J
L
=i — linear optimization |
Cooes |
/5 A

| GLPK || SMT-RAT || 3 || SoPLEX |

J

Figure 3.1: The structure of HyPro from [m, with the newest additions at that
time highlighted in green.

3.1 Important Implementations In HyPro

Within the context of this thesis, the most significant functionalities are the star set
implementation and the associated conversion functions. Accordingly, the majority of
modifications introduced to HyPro during this project were focused on these areasﬂ

3.1.1 Implementation Of H-Polytopes

To provide a clearer understanding of the underlying concepts, the implementation
of the state set representation H-polytope will be discussed first as a representative
case. The implementation of the class HPolytopeT is one of the earliest and most
coherent implemented state set representations in HyPro. Over time, most extensions
of representations followed a similar design strategy. Thus, HPolytopeT is a good
illustration of the programming principles used throughout the project. Its structure
closely follows the theoretical description provided in section [2.4.1] where an H-
polytope is defined as an intersection of halfspaces. This notion is directly mirrored in
the implementation, which relies on a collection of halfspace objects to represent the
geometric structure.

All data structures in HyPro, including H-polytopes, employ extensive templating.
Templates are used not only for specifying the numerical type, but also for selecting
the appropriate converter and additional configuration parameter:

LA few minor changes were also made for V-polytopes and points. More on that in chapter
20nly the number template played an essential role in the later implementation.

Important Implementations In HyPro 27

The class HPolytopeT offers a wide variety of constructors in order to simplify
transitions between representation formats, most notably number types. When in-
voked, these constructors create a new H-polytope with the specified numerical type,
converting all numbers accordingly.

A further notable feature of the implementation is the integration of internal caching
mechanisms. These caches are designed to accelerate operations that are frequently
executed during the reachability analysis. For example, the cache of extremal points
(mVertices) stores the points obtained through the Quickhull algorithm. Since the
computation of vertices is comparatively expensive, caching them can yield substantial
performance gains for repeated queries, such as unions, and can also make subsequent
conversions computationally cheaper.

Although caching leads to a decreased computational cost in most cases, the effect
of caching can be diminished if conversions between different state set representations
occur frequently. Most conversions invalidate the caches, effectively requiring parts
of the computation to be performed from scratch. Keeping the caches for a new
representation can be harmful, since approximations may be used.

3.1.2 Implementation Of Star sets

Star sets are implemented in a similar manner to H-polytopes. Their design closely
follows the general theoretical description, with the restriction of the predicate to a
polytope. This polytope is represented through a set of linear constraints.

The current implementation of star sets encompasses all essential geometric op-
erations. However, many of these operations internally rely on a conversion to an
‘H-polytope representation. While this approach uses the efficiency of the already
introduced H-polytope operations, it also introduces substantial computational over-
head. To mitigate this potential inefficiency, star sets also employ an internal caching
mechanism that stores an alternative representation as an H-polytope. This cache
allows operations that depend on the H-polytope conversion to be executed without
redundant conversions, increasing the performance for repeated calls.

Several methods, including evaluation and intersection checks, rely heavily on
efficient linear programming procedures. The computational cost of these procedures
increases with the number of constraints defining the star set, which can become a
limiting factor for larger models. To address this challenge, reduction techm‘quesﬂ can
be applied to remove redundant constraints, thereby reducing the computational effort
of the linear programming procedures. In the current implementation, only a single
methO(ﬂ uses such reductions. More frequent use of reductions may lead to improved
performance.

The primary conversions implemented for star sets correspond to those described
in [2.4.2] These conversions enable the computation of an equivalent H-polytope
representation from a given star set, as well as the reverse transformation back to
a star set. Other types of conversions in the current implementation are performed
indirectly, via an intermediate H-polytope representation. This approach introduces
unnecessary overhead, as each conversion involves additional processing and potential
caching operations. In frequent or repeated transformations between representations,
this becomes a great source of inefficiency.

1A common method involves reducing the predicate of a star set to simplify its representation, as
demonstrated in [Sch19].
2The method unite

28 HyPro

It is therefore important to acknowledge that, although the current design is
functionally complete, it does not optimise a wide range of operations. As a result, the
efficiency of reachability analysis with star sets is reduced compared to what might be
expected based on the theoretical description of star sets.

Chapter 4

RealySt

The reachability analysis and state sets provided by HyPro are used in RealySt,
introduced in [DSSR23]. RealyStE| is a tool for stochastic reachability which also
serves as the main component of this work. It is an open source, C++ based tool
designed for the computation of optimal, time bounded reachability probabilities for
subclasses of stochastic hybrid automata. The subclasses of hybrid automata for which
RealySt was developed are singular automata with random clocks and rectangular
automata with random clocks. These automata are equipped with stochastic timing
behaviour. They combine continuous evolution and discrete transitions with stochastic
delays through random clocks. Nondeterminism may arise in initial states, flow rates,
or timing behaviour in both subclasses. Stochastic transitions correspond to the
expiration of random clocks. A more detailed explanation of these subclasses of
stochastic hybrid automata can be found in [PSR21| and [DSAR23].

The tool relies on flowpipe construction based reachability using convex sets and
integrates over these sets using the Monte Carlo VEGAS algorithm implemented
in GSLI|GDT™02|. In its original version, RealySt only supported H-polytopes as
its geometric backbone. This work extends its capabilities to additional state set
representations by restructuring the tool to be template based.

4.1 Workflow Of RealySt
The operational workflow of RealySt can be summarised as a six stage pipeline:

reachfree stochasticreach tree goal taces _.-~~~-~--- refined goal fraces sample domain

Autﬂmamn""+ re:’[‘;::z:gty H augur?;n;reach H find goal fraces ’—'—){ refinement H post processing H integration f----- pprobability

Figure 4.1: An illustration of the program flow of RealySt for a given automaton,
adapted from [DSSR23]|.

The operational workflow of RealySt follows a structured sequence of transfor-
mations that connect reachability analysis with stochastic integration, as illustrated in
Starting from a stochastic hybrid automaton, RealySt first performs a time

L Available at [rea]

30 RealySt

bounded reachability analysis in which operations provided by HyPro are employed
for flowpipe construction, computing all reachable sets. This process generates a
reach treeﬂ In this process, the stochastic random clocks are treated as continuous
behaviour. In the next step, the reach tree is enriched with stochastic information
by annotating each node with the status of the random clocks along its path. Based
on this stochastically augmented reach tree, RealySt identifies all nodes whose as-
sociated state sets intersect the goal regiorﬂ The paths from the root of the tree to
the intersection of the goal region and the fulfilling node are called goal traces and
describe a symbolic execution path that may lead to a successful reachability event.
To eliminate errors, RealySt proceeds with a backward refinement step. Here, the
intersections are used to determine which regions can indeed reach the goal. The
outcome of this phase is a refined set of goal traces. After the backward refinement
has precisely identified the relevant parts of the state space and their trajectories that
lead to the goal, the workflow shifts to the probabilistic analysis required to compute
the actual reachability probability. The traces describe which behaviours may reach
the goal, while the final two steps compute how likely these behaviours are under the
given random delays. The first step prepares the integration by deriving a suitable
integration domain. Each refined trace imposes constraints on the evolution of the
random delays, and from these constraints, the corresponding region for the delays is
constructed. All regions are combined into a single integration domain that describes
the delay combinations that allow the system to reach the goal. In the final step,
RealySt performs the integration over this domain to determine the total probability
of reaching the goal. This is achieved by applying a Monte Carlo simulation[Wei00].
Monte Carlo integration estimates probabilities by randomly sampling points from
the underlying distribution and computing the fraction of samples that satisfy the
event of interest. Since a finite number of samples is used to estimate the probability,
the result is subject to sampling variability, which decreases as the number of samples
increases. This deviation from the exact result is called statistical error.

4.2 Implementation Of RealySt

Before introducing the extensions developed in this thesis, it is helpful to outline the
central implementation aspects of RealySt that are essential for understanding the
subsequent modifications. In its current form, RealySt is organized into several
stages, forming the overall workflow. Over time, certain parts of this workflow
have already been refactored to increase flexibility with respect to the state set
representations employed in the reachability analysis. As a consequence, a preliminary
templated architecture was introduced, enabling RealySt to support multiple state
set representations for performing the reachability computations. The next chapter
will delve deeper into the existing templating, exploring its limitations in more detail.

Since this thesis focuses primarily on extending the existing templating mechanisms
related to probabilistic integration, the most relevant components of the existing
implementation are located in the probability integration modules. These files contain
the routines responsible for estimating the probabilistic reachability results, and they
form the basis for the modifications developed in this work.

IReach trees are outside the scope of the present work. For a more comprehensive understanding,
the exemplary reach trees illustrated in [Hua2l] may be consulted.
2The goal region defines the set of states that the system aims to reach.

Implementation Of RealySt 31

A step preceding the probabilistic integration is the generation of the stochastic
reach tree, as mentioned previously. The computation of the nodes of the stochastic
reach tree is particularly important for this thesis. In the current implementation,
these nodes also lack compatibility with other state set representations. A more
detailed view of the implementation is available at [rea]. For the purposes of this work,
a general understanding of RealySt is sufficient without examining the code.

32

RealySt

Chapter 5

Implementation

The implementation work presented in this chapter constitutes the main contribution
of this thesis. It addresses several structural limitations in the original architectures of
RealySt and HyPro, and extends both to support additional state set representations
for reachability analysis with RealySt in stochastic hybrid automata. The following
sections first describe the modifications applied to RealySt, followed by the extensions
introduced in HyPro that were required to enable full compatibility.

5.1 Changes In RealySt

Although RealySt was partially extended with a templated architecture intended to
make the analysis independent of any particular state set representation, the practical
applicability of this design was limited by the absence of templating in the probabilistic
integration routines. These routinesﬂ were written with the implicit assumption that
all state sets are represented by H-polytopes.

This design became problematic when attempting to generalise RealySt to al-
ternative representations such as the star sets. In particular, one component of the
integration pipeline required the state set representation to use the numerical type
double. A straightforward replacement of the existing representation templates
with a double based version was infeasible. While integration requires double, the
reachability analysis itself depends on exact computations performed with rational
numbers using the mpq class|Gra96]. As a consequence, a unified template parameter
for both phases could not fulfil the differing numerical requirements.

To resolve this incompatibility, a third representation template was introduced. The
resulting templates are distinguished by their three roles. RepresentationHypro
is the template for the reachability operations in HyPro. Representation is the
main template for RealySt, and SRepresentation is the second template for the
integration part, which requires double as numerical type.

This separation makes it possible to use different numerical types in different stages
of the workflow. To ensure consistency between Representation and
SRepresentation, an additional assertion was added to common . h, where the state
set types are configured. This check ensures, at compile time, that Representation

Located in src/1ibRealySt/include/librealysr/probabilities/integration.tpp(and
integration.h)

34 Implementation

and SRepresentation refer to the same state set representation, differing only in
their underlying number type.

A second major limitation became apparent during the construction of the stochas-
tic reach tree. During runtime, RealySt always created stochastic reach tree nodes
using H-polytopes, regardless of which representation was actually selected for the
reachability analysis. This behaviour was rooted in the original design of the stochastic
reach tree node, which hard-coded the expectation that the underlying state set is
always an H-polytope. Consequently, if a differing state set representation was used for
the reachability analysis in HyPro, RealySt had to convert the representations from
the reach tree nodes to the new representation for the stochastic reach tree nodes. How-
ever, the original implementation of this conversion mechanism only supported the case,
in which the target representation was an H-polytope, due to the previously mentioned
assumption that the representation used for the integration is an H-polytope. To solve
this issue, the conversion procedure was abstracted into a lambda function. This
design allows the stochastic reach tree construction to dynamically adapt to the state
set representation actually used in the integration process. Currently, the lambda
supports H-polytope, V-polytope and star sets. Unsupported representations trigger
a dedicated error message, allowing users to immediately identify missing conversion
routines for the stochastic reach tree nodes and to extend the system accordingly. This
redesign ensures that the stochastic reach tree with its nodes remains compatible with
the integration process of RealySt.

5.2 Changes In HyPro

The initial phase of work on RealySt focused on refining the V-polytope and star set
representations to ensure that all necessary methods were present and behaving as
expected, both in terms of parameters and returned values. In the case of star sets,
this involved the implementation of the contains method, which determines if a given
point lies in a star set. For most other state set representations, it was also possible
to determine if a vector lies in the set. To maintain compatibility with the existing
codebase and avoid unnecessary rework, a second contains method was introduced for
star sets, overloading the original. As a result, the contains function may now be
called with either a vector or a point.

There were several additional minor inconsistencies, such as the
removeRedundancy function, which was implemented as a void method for V-
polytopes, whereas all other state set representations returned the modified repre-
sentation. To maintain consistency across the different state set representations, the
function was adapted so that it now behaves in the same manner as its counter-
parts. Moreover, both star sets and V-polytopes lacked an implementation of the
projectOutConservative function. This method can be used as an alternative
to the standard projectOut method to ensure that no reduction of the segment
dimension is performed. At present, the conservative version remains incomplete for
both star sets and V-polytopes. As a temporary measure, the existing projectOut
method is called instead. This workaround may lead to less accurate results than an-
ticipated, and further development of the projectOutConservative functionality
is therefore recommended for future work.

RealySt also relies on serialisation through the cereal library, which means that
every state set representation used within RealySt must support serialisation. To

Changes In HyPro 35

meet this requirement, both star sets and V-polytopes were extended with appropriate
serialisation routines that capture all essential information. In the case of V-polytopes,
this included the need to serialise the vertices themselves. As the underlying Point
class did not previously support serialisation, this functionality was added as well,
ensuring that all components of the representation can be correctly serialised.

As mentioned in section 3.1} the state set representations require a range of different

constructors to allow transformations between parameters, such as the numerical types.
The V-polytope implementation lacked a constructor for converting between number
types. This transformation is carried out by converting each vertex of the V-polytope
into the target numerical type.
A similar issue existed for star sets, which were also missing a suitable number
conversion constructor. In this case, the conversion process is somewhat more involved,
as it requires transforming the centre, the generators, and the constraints. Converting
the centre and the generators is relatively straightforward. However, the constraints
require more careful handling. Since the constraints of a star set can be represented by
an H-polytope, the conversion is achieved by applying the H-polytope’s own number
conversion constructor. The resulting star set then possesses the correct numerical
type throughout.

Once the modifications had been completed, it was possible to run the simple
exampleﬂ using RealySt. However, the analysis was returning empty state sets,
leading to a segmentation error, whenever the RepresentationHypro and the
other two representations did not align. Debugging revealed that, among various
potential issues, the primary problem stemmed from several methods that lacked
proper implementations. Instead of raising an error when invoked, these methods
simply returned empty state set representations, making the underlying issue difficult
to detect.

The converter from a star set to a carlpolytopeﬂ was corrected by first converting the
star set into an H-polytope and then transforming it into a carlpolytope. Likewise, the
reverse conversion, from a carlpolytope to a star set, was missing, along with several
other conversions involving star sets. Only the conversions required for this thesis
were fully implemented, using an intermediate transformation step to an H-polytope.
The remaining, unused conversion methods were modified to throw explicit errors,
informing the user that the function must be implemented before use. This ensures
that future development in this area can proceed more efficiently and with clearer
diagnostics.

With these modifications in place, RealySt is able to operate correctly using all
three state set representations considered in this thesis. In the following chapter, a
comparative analysis of these representations will be presented.

Hntroduced in sectionﬁ
2The internal details of this representation are not relevant for this thesis. It is only required for
the analysis, and therefore the corresponding conversion method must exist.

36

Implementation

Chapter 6

Benchmarks

To determine the practical viability of using star sets for stochastic reachability analysis
in RealySt, this chapter compares them with H-polytopes and V-polytopes using two
benchmarks. Throughout the chapter, H denotes H-polytopes, V denotes V-polytopes,
and S denotes star sets. Each benchmark is run nine times, testing all possible
combinations of the three state set representations. These combinations are denoted
in forms such as HHH or HSH. Here, the first and last letter indicate the Representation
and the SRepresentation, while the middle letter refers to the representation used for
HyPro.

The benchmarks were conducted on a machine equipped with an AMD Ryzen 7
7700X processor with 8 cores and 32 GB of RAM. The experiments were executed
inside a virtual machine running Ubunutu 25.04, configured with 4 allocated cores and
22 GB of RAM. The virtual environment was provided by Oracle VirtualBox version
7.2.2, running on a windows 11 host system.

6.1 Simple Running Example

The first benchmark examined is the simple running example provided by RealyStEl
This running example consists of five locations with three variables, two of which are
continuous, while the third is a stochastic clock. Owing to its relatively small size, the
example serves as an accessible test case for validating the correct functioning of the
different state set representations.

The first combination HHH, as seen in [Fig. 6.1] serving as the control run, resulted
in a probability of 0.842701368572847 with an approximate statistical error of 7.306e 6.
All other successful runs for this benchmark produced a similar or same probability
and similar statistical error. The entire computation required ~ 0.046 seconds, with
the majority of the time being consumed by the analysis phase. Most computational
steps were executed too quickly to be captured by the timers, causing the majority
of measurements to register as zero. This significantly complicates any attempt to
compare the individual steps in regards to their performance. For a more comprehensive
comparison, the second benchmark in section [6.2] was supposed to provide further
insight.

I[DSAR23|

38 Benchmarks

Probability: 0.842701369572847

Statistical error: 7.306200682064129e-06
Infinity error: O

[info] 0 Computation Time Complete: 0.0469973 s
[info] Counters and timers:

Counters:

Traces: 2

Timers:

Computation Time Complete: 0.0469973 s

Model creation: 0 s

Analysis: 0.0469973 s

Reachability Analysis: 0 s

Augment Reach Tree: 0 s

Filter Segments: 0 s

Initialize Trace Structure: 0 s

Refactor Forward Flowpipe (remove s=0 constraints): 0 s
Backwards Refinement: 0 s

.6.2 Compute Intermediate Goal Segment for Backwards Time-—
Closure for all Segments: 0 s

2.6.3 Compute Backwards Time Closure for all Segments: 0 s
2.6.4 Perform Backwards Jump for all Segments: 0 s

2.7 Collect segments: 0 s

3 Integration: 0 s

PROBABILITY_ INTEGRATION_DIRECT: 0 s
PROBABILITY_INTEGRATION_DIRECT_REMOVE_EMPTY: 0 s

DD DNDDNDNDNDDNDDND RO
o U b W N

Figure 6.1: The baseline run with H-polytopes as the state set representation for both
HyPro and RealySt.

To validate the initial run, HHH was executed multiple times afterwards. While the
results varied in terms of performance, the outputs remained consistent. The highest
observed computation time for HHH was approximately 1.5 seconds, whereas the lowest
was registered as 0 seconds. Since any comparison would heavily be influenced by
which particular run was selected, the comparison will instead use the average and
median runtime across ten successful runs. For HHH, this resulted in an average
computation time of ~ 0.35 seconds and a median of ~ 0.24 seconds. The difference
between the median and the average for HHH indicates that the average is influenced
by outliers with longer computation time. This has been done for every combination
and the results in Table [6.1] are illustrated in showing the average and median
total computation time. Each combination of state set representations had the same
or a similar probability and statistical error.

Simple Running Example 39

Total Computation Time | HyPro HPolytope | HyPro VPolytope | HyPro Starset

RealySt HPolytope

Average: ~ 0.35s | Average: ~ 0.60s | Average: ~ 0.32s
Median: ~ 0.23s Median: ~ 0.30s Median: =~ 0.35s

Average: =~ 20.96s | Average:

RealySt VPolytope Median: ~ 18.73s | Median: ~ 14.99s | Median: ~ 15.04s

14.07s | Average: ~ 15.77s

RealySt Starset

Average: ~ 46.90s | Average: ~ 55.74s | Average: ~ 47.61s
Median: =~ 48.29s | Median: ~ 63.55s | Median: ~ 48.74s

Table 6.1: The results of the average and median computation of 10 successful runs
for each combination.

Computation Time Complete - Average vs Median

. Average

60 Median
o)
T 50
c
o
o
Y 404
£
UJ 4
£ 30
=
5 20
3 201

N l l

1] u u ¥
o e o o o o) PR &5

Figure 6.2: The same data as in Table visualised.

These results already demonstrate that the current implementation of star sets
and V-polytopes are not yet efficient enough to outperform the H-polytopes. However,
several factors contribute to this outcome. HHH spent the majority of its execution time
in the analysis phase. Examining the data from the comparison of the analysis phase
in [Fig. 6.3 reveals that the median time required for the analysis steps is very similar
across all combinations, whereas the average varies significantly. The pronounced peek
for SHS is caused by a singular outlier, in which the analysis took 20 seconds. This
outlier can be seen in Although the result is the correct one, the computation
time is a lot higher than expected. This is partly due to the integration phase, which is
discussed in more detail later, and partly due to an abnormally high computation time
during the analysis phase. The relevant sub steps of the analysis took well under one
second. The irregularities of the analysis seem to come from an untraced step in the
reachability probability analysis, indicating that there might be a bug present in an
improperly measured part of the code. This abnormality has not been yet reproduced
and might require further investigation in future work.

40 Benchmarks

Analysis - Average vs Median

2.5 . Average
Median

Runtime in seconds
- -
° &
!

e
[

=4
5

L l H I H B H =
o a o N o

Ko o 5% 5

Figure 6.3: Visualisation of the average and median analysis time

Probability: 0.842701369572847

Statistical error: 7.306200682064129e-06

Infinity error: O

[info] O Computation Time Complete: 94.9336 s

[info] Counters and timers:
Counters:
Traces: 2

Computation Time Complete: 94.9336 s
Model creation: 0.000572309 s
Analysis: 21.087 s

1 Reachability Analysis: 0.0144846 s

2 Augment Reach Tree: 0 s

3 Filter Segments: 0.0230176 s

4 Initialize Trace Structure: 0 s

5 Refactor Forward Flowpipe (remove s=0 constraints): 0 s
.6 Backwards Refinement: 0 s

6.2 Compute Intermediate Goal Segment for Backwards Time-
losure for all Segments: 0 s

6.3 Compute Backwards Time Closure for all Segments: 0 s
6.4 Perform Backwards Jump for all Segments: 0 s

7 Collect segments: 0 s

3 Integration: 73.8459 s
PROBABILITY_ _INTEGRATION_DIRECT: 73.8459 s
PROBABILITY_ INTEGRATION_DIRECT_REMOVE_EMPTY: 0 s

NDNDNDDNDNODNDNDNDNDNDNDDNDDNDDNDDNDREREO

Figure 6.4: A run showing a very high computation time for the analysis without any
of the sub phases taking longer than usual.

Generally, there seem to be only small differences in regards to efficiency in the
analysis phase. Most differences here can be explained by less optimised operations
for the V-polytopes and star sets, including frequent conversions to H-polytopes.
RealySt’s integration process accounts for the main difference in time.

Simple Running Example 41

Integration - Average vs Median

m Average
Median

o s K e o ot° &°

Figure 6.5: Visualisation of the average and median integration time

Runtime in seconds
N ow s ow
5 8 & 8
" :

=
53
!

o

o o

In it can be seen that the new state set representations are an order of
magnitude slower during the integration process, particularly star sets. Moreover,
it becomes apparent that, in most casesEI, the homogeneous combination is faster
than the other configurations. HHH is the fastest of the combinations that use H-
polytopes for the integration, while VVV is the fastest among the V-polytope integration
combinations. This trend can be explained by the additional conversions required
during the construction of the stochastic reach tree. The slowdown of the integration
process is most likely due to less efficient methods for star sets and V-polytopes and
unnecessary conversion, which could be replaced by direct operations in future work.

To further validate this claim, Callgrind[Wei08] is used to compare the com-
putations of HHH and SSS in order to identify the major cost drivers for star sets.
Callgrind is a profiling tool that simulates programme execution on a virtual CPU,
tracking the number of instructions executed, memory access, cache hits, and more. By
collecting this detailed information, Callgrind enables developers to identify which
parts of the code contribute most to runtime and resource consumption. However,
because Callgrind emulates the programme execution, rather than running it, the
profiling process is considerably slower. For SSS, it took 74 times longer than a normal
run. For this reason, the analysis in this thesis is limited to HHH,VVV, and SSS as
representative examples using only the simple running example.

representations used | HHH VvV SSS
instruction count 1.752.936.905 | 204.207.778.886 | 909.205.850.960

Table 6.2: The number of instructions used for the probability computation calculated
by Callgrind

The profiling results show, as expected, that the HHH configuration spends the
overwhelming majority of its instructions within the reachability analysis itself. In
contrast, both Vvv and SSS exhibit a strikingly different performance profile. For
these configurations, almost the entire instruction count is consumed by the operations
related to the integration phase. These results align perfectly with the observed
computational times.

The observed discrepancy in instruction counts (Table between the three
configurations is considerably more pronounced than the difference in their measured

IEspecially for V-polytopes for the Integration task.

42 Benchmarks

computational times as seen in Table[6.1} Specifically, SSS executes roughly 519 times
more instructions than HHH, while VVV executes around 116 times more instructions
than HHH. In contrast, SSS is approximately 212 times slower than HHH, and VVV
is about 65 times slower than HHH'} showing that the raw instruction volume does
not translate linearly into the performance. This can be due to behaviour inside
Callgrinds virtual CPU, or due to efficiency of the specific operations used.

A closer inspection of the Callgrind execution graph in reveals that the
contains operation is the primary contributor to the excessive instruction count in
both VvV and SSS.

double librealyst:functionToDirectintegrate
MonteCarlo<>(double*, unsigned long, voi...
99.74 %

01 8686...

1280 1...

11868 6...

1280 1...

11 8686...

12801... 012801...

hypro::Optimize dundantConstraints()

112801... 112801,

(a) (b)

Figure 6.6: A snippet of the Callgrind graph, demonstrating the inefficiency of the

current integration for SSS and for vvv

For star sets, the current implementation of the containsEl operation proceeds by
first converting the star set into an H-polytope and then solving the resulting linear
programme. In [Tam21], the proposed implementation strategy differs substantially
from the approach adopted in this work. Rather than applying an affine transformation
to the star set itself, the method transforms the point and subsequently uses the
predicate of the star set to formulate the corresponding linear programme. This
approach could lead to improved efficiency, as it reduces the number of required
transformations.

IThe median was used for this estimation due to its robustness against outliers.
2As provided in

Simple Running Fxample 43

Implementation 6.1.1 Contains For Star Sets

1| template <typename Number, typename Converter, typename Setting>
2| bool StarsetT<Number, Converter, Setting>::contains(const Point<
Number>& point) const {

3 HPolytopeT<Number, Converter, HPolytopeOptimizerCaching>
transformedStar = this->constraints().
affineTransformation (mGenerator, mCenter);

4 hypro: :0Optimizer<Number> optimizer (transformedStar.matrix(),
transformedStar.vector());
5 return optimizer.checkPoint (point);

A potential issue with both approaches is the dimensionality of the star set, as
noted in [Vkh24|, since the efficiency of linear programmes deteriorates significantly
as the dimension increases. While this could, in principle, be mitigated through more
extensive use of existing reduction techniques, the current implementation applies
reductions each time an H-polytope is created via the contains method, as illustrated
in Consequently, when multiple containment checks are performed for a
single star set, the resulting polytope is reduced repeatedly, which incurs substantial
computational overhead. Simply deactivating the reduction for H-polytopes in the
settings does not change anything since the reductions used are hardcoded in the
constructors. After manually removing these reductions, the results prove that one
major slowdown was due to the reductions. As shown in the total runtime
for all configurations employing star sets during integration is significantly reduced
compared to the results presented in [Fig. 6.2

Computation Time Complete - Average vs Median

20.04 EEm Average
' Median
17.5 1
15.0 4
12.5 1
10.0 A
7.5 4
5.0
N l l
0.0 -
o o & o o o' «® 5 =2

Figure 6.7: Comparison of the last three configurations with reductions manually
deactivated.

Runtime in seconds

Further improvements could be made by changing the strategyEl of the contains
function or by incorporating reduction steps prior to invoking the contains method.
As shown in most of the computation time is now spent on solving linear
programmes, since, without reductions, these may grow considerably in size.

Hnstead, a strategy such as the one presented in [Tam21] can be used.

44 Benchmarks

118686.. W18686.. C18686..

" W11 8686... 182110..
‘ W118686.. 116422,
v

/)

m_118684... L_129156...

Figure 6.8: A snippet of the Callgrind graph generated after removing all reductions.

For V-polytopes, the containment problem is reduced to a linear programme that
determines whether a given point can be expressed as a convex combination of the
vertices. In this case, applying reduction techniques may likewise be beneficial in
alleviating the computational burden of the linear programme. However, since V-
polytopes are not the focus of this work, no improvements to their computational
efficiency were pursued.

During testing, occasional segmentation faults prevented some runs from completing
successfully. Initially, the error was observed in six out of the nine tested combinations.
Notably, no failures were observed in runs using star sets in RealySt, even after more
than 45 executions. This led to the hypothesis that star sets exhibit greater robustness
against this error. However, subsequent tests revealed that, although seemingly less
frequent, the error also occurs when using star sets in Realyst. Tests using older
versions of both RealySt and HyPro also exhibited rare occurrences of the error,
leading to the conclusion that it was not introduced by the work carried out in this
thesis. Further investigation into the segmentation faults showed that the error occurs
during memory reallocation. It may be influenced by the size of the representation
used, as well as by the amount of available RAM. This would also explain why the
error has not been reported previously, as most researchers are likely to have access to
around 32 GB of RAM, rather than the 22 GB allocated to the virtual machine in
this setup.

The observed error is not addressed within the scope of this work. Investigations
show that it was not introduced by the modifications presented here, as it also occurs
in older versions of RealySt and HyPro. Moreover, the error manifests only very
rarely, which makes reliable reproduction difficult and substantially hinders systematic
debugging. For these reasons, a thorough analysis and resolution of the issue is beyond
the practical scope of this work.

The simple benchmark model shows that, although star sets appeared efficient,
their current implementation is not yet sufficient to outperform #H-polytopes. However,
in isolated analysis steps performed by RealySt, star sets seem to demonstrate
significant potential in their observed robustness, and even narrowly outperforming
‘H-polytopes in the analysis phase. To investigate this potential further, a second
benchmark model was used, in which the analysis phase is significantly more time
consuming for all state set representations.

Car Benchmark 45

6.2 Car Benchmark

The car benchmark model provided by RealySt|DSAR23| is substantially larger and
more complex than the simple running example. The hybrid system models an electric
vehicle that initially starts in a charging state. Multiple charging modes are available,
depending on the current state of charge of the batteryﬂ After the expiration of a
random clock, charging terminates and the vehicle begins to drive, even if the battery
has not reached full capacity. If a random clock expires while driving, the vehicle
arrives at its destination, whereas battery depletion leads to a transition into the
empty-battery state. Alternatively, the expiration of another random clock triggers
a detour, during which the vehicle may reach a new charging point or deplete its
battery. Although the benchmark supports multiple detours, only a single detour
is considered in this work, as additional detours incur a substantial computational
cost. Furthermore, the system can be modelled either as a singular or a rectangular
automaton; in this work, the rectangular automaton is used.

In this setting, the reachability probability computation required, on average,
95.87s for HHH, 137.64s for HVH, and 94.69s for HSH. In this larger model, star sets in
HyPro again slightly outperformed H-polytopes during the reachability analysis. In
all cases, the estimated probability was approximately 0.582, with a statistical error
of around 0.00102, which is consistent with the results reported in [DSAR23].

However, the same drawback observed in section persists. Using any repre-
sentation other than H-polytopes for the integration phase results in a significant
slowdown. For instance, when employing V-polytopes for integration, the expected
runtime, under the assumption that the slowdown is linear, is around three hours,
compared to the approximately 100 seconds when using H-polytopes. After removing
the reductions for star sets, as mentioned in section [6.1] it becomes feasible to at
least run the benchmark with star sets for RealySt. As shown in the
overall efficiency of both state set representations is very similar for the larger car
benchmark model. While the current implementation of star sets continues to exhibit
considerable inefficiency during the integration phase, as illustrated in they
remain competitive due to their efficiency in the analysis phase, as shown in
This demonstrates that star sets are relevant for future work, especially with larger
models. If the inefficiencies of the contains method discussed in section [6.1] are
addressed, star sets are expected to outperform H-polytopes.

Computation Time Complete - Average vs Median

e - o «® 5t

&>

N Average
Median

Runtime in seconds
o e

Fy [~ =] =3 N E

& 3 8 8 8 &

~
=)

o

Figure 6.9: A comparison of the use of star sets and H-polytopes in RealySt for a
larger model.

1For this thesis, only two of the three available charging modes are used

46 Benchmarks

Integration - Average vs Median

m Average
354 Median

Runtime in seconds
s
s

ey - 2 o 42 &5

Figure 6.10: Visualisation of the average and median integration time for a larger
benchmark.

Analysis - Average vs Median

1404 N Average

Median
120 A

o o & o 5© «

<2

Runtime in seconds
=
& 3 8 8

™
=}

o

Figure 6.11: Visualisation of the average and median analysis time for a larger
benchmark.

Furthermore, out of five runs, HHH failed in two cases, HVH in one, while HSH
completed all five successfully. This matches with the prior observation that star
sets seem to demonstrate more robustness against the segmentation error found
in section The higher failure rate of approximately 20% observed for the car
benchmark, compared with an estimated 4% for the simple running example, supports
the hypothesis that the reallocation error is related to the size of the state set
representations and/or the amount of available RAM.

Chapter 7

Conclusion

7.1 Summary

This work has explored the application of star sets as a state set representation
for the analysis of stochastic hybrid automata. Theoretical foundations, including
hybrid automata, stochastic hybrid automata, reachability, flowpipe construction,
and the three state set representations H-polytopes, V-polytopes, and star sets, were
introduced. The HyPro library and the RealySt tool were presented, and their
implementations adapted to enable compatibility, allowing RealySt to utilise V-
polytopes and star sets. The adaptations were evaluated using two benchmark models
provided by RealySt, and profiling with Callgrind. The results indicate that star
sets have considerable potential, performing comparably to H-polytopes for larger
models due to their efficiency for the analysis. However, the current implementation
still exhibits significant inefficiencies, which limit the practicality of star sets during
the integration phase.

7.2 Discussion

Despite their promising reputation, the current implementation of star sets faces
limitations. While they seem to exhibit robustness against an reallocation error (likely
due to a smaller memory footprint) and occasionally outperform H-polytopes in the
reachability analysis phase in HyPro, their integration performance is an order of
magnitude slower than the one of H-polytopes, due to unnecessary reductions. This
renders them impractical for larger models, when reductions are applied to H-polytopes.
However, after removing these reductions, star sets perform similarly to H-polytopes
for the overall probability estimation.

In contrast, V-polytopes face the same issues without offering the corresponding
benefits. The evaluation revealed significant variability in runtime, as well as occasional
failures, indicating that further optimisation and a more thorough investigation of the
implementation are required.

48 Conclusion

7.3 Future Work

Future research should prioritise improving the efficiency of star set operations, par-
ticularly those involved in the integration phase, and those that currently rely on
repeated conversions to and from H-polytopes. These conversions impose substantial
overhead and prevent star sets from being useful for larger models. The present
implementation of contains operation exemplifies this problem. Star sets are first
converted into H-polytopes and the containment check is then solved as a linear
programme. Linear programmes can become highly inefficient, especially with a large
amount of constraints. Currently, a reduction for the constraints of H-polytopes is
used every time the contains operation is called. This is highly inefficient and
removal of these reductions brings great improvements. In the future, these reductions
should be deactivated for the use of star sets, and instead a dedicated redundancy
remover for star sets, which is currently only used for the method unite, should
be used before containment checks. Furthermore, the strategy to convert the point
instead of the star set for the contains function, introduced in [Tam21] could be
reconsidered and improved upon. Extended benchmarking and profiling could provide
deeper insights into the observed failures and runtime variability, enabling targeted op-
timisations and the fixture of the reallocation error. Finally, exploring alternative state
set representations is now feasible and could lead to an improved overall performance
and reliability of reachability analysis for stochastic hybrid automata.

Bibliography

[AD14]

[AMA23]

[BBHMO5|

[BD17]

[BDH6]

[BEOB14]

[Chel5]

[DDL*12]

[DSAR23]

[DSSR23)

Matthias Althoff and John M Dolan. Online verification of automated
road vehicles using reachability analysis. IEEE Transactions on Robotics,
30(4):903-918, 2014.

Laszlo6 Antal, Hana Masara, and Erika Abraham. Extending neural
network verification to a larger family of piece-wise linear activation
functions. arXiv preprint arXiv:2811.10780, 2023.

Gerd Behrmann, Ed Brinksma, Martijn Hendriks, and Angelika Mader.
Production scheduling by reachability analysis-a case study. In 19th IEEE

International Parallel and Distributed Processing Symposium, pages 8-pp.
IEEE, 2005.

Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent
reachability of large linear systems with inputs. In International Confer-
ence on Computer Aided Verification, pages 401-420. Springer, 2017.

C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Transactions on Mathematical
Software (TOMS), 22(4):469-483, 1996.

Marc Bouissou, Hilding Elmqvist, Martin Otter, and Albert Benveniste.
Efficient monte carlo simulation of stochastic hybrid systems. In The
10th International Modelica Conference 2014, 2014.

Xin Chen. Reachability analysis of non-linear hybrid systems using taylor
models. PhD thesis, Fachgruppe Informatik, RWTH Aachen University,
2015.

Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius Mikuéio-
nis, Danny Bggsted Poulsen, and Sean Sedwards. Statistical model
checking for stochastic hybrid systems. arXiv preprint arXiv:1208.3856,
2012.

Joanna Delicaris, Stefan Schupp, Erika Abraham, and Anne Remke. Max-
imizing reachability probabilities in rectangular automata with random
clocks. In International Symposium on Theoretical Aspects of Software
Engineering, pages 164—182. Springer, 2023.

Joanna Delicaris, Jonas Stiibbe, Stefan Schupp, and Anne Remke. Rea-
lyst: A c++ tool for optimizing reachability probabilities in stochastic

50

Bibliography

[DV16]

[EPOS]

[Feh99)

[Fre05]

[GDT*02]

[GraT2]

[Gra96]

[HKPV95]

[HLS00]

[Hua21]

[hyp]

[Kan24|

[KJ96]

[LGOY]

hybrid systems. In FAI International Conference on Performance Eval-
uation Methodologies and Tools, pages 170-182. Springer, 2023.

Parasara Sridhar Duggirala and Mahesh Viswanathan. Parsimonious,
simulation based verification of linear systems. In International confer-
ence on computer aided verification, pages 477-494. Springer, 2016.

Andreas Eidehall and Lars Petersson. Statistical threat assessment for
general road scenes using monte carlo sampling. IEEE Transactions on
intelligent transportation systems, 9(1):137-147, 2008.

Ansgar Fehnker. Scheduling a steel plant with timed automata. In
Proceedings Sixth International Conference on Real-Time Computing
Systems and Applications. RTCSA’99 (Cat. No. PR00306), pages 280—
286. IEEE, 1999.

Goran Frehse. Phaver: Algorithmic verification of hybrid systems past
hytech. In International workshop on hybrid systems: computation and
control, pages 258-273. Springer, 2005.

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman,
Patrick Alken, Michael Booth, Fabrice Rossi, and Rhys Ulerich. GNU
scientific library. Network Theory Limited Godalming, 2002.

R.L. Graham. An efficient algorith for determining the convex hull of a
finite planar set. Information Processing Letters, 1(4):132-133, 1972.

Torbjorn Granlund. Gnu mp. The GNU Multiple Precision Arithmetic
Library, 2(2), 1996.

Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing, pages 373-382,
1995.

Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of
stochastic hybrid systems. In International Workshop on Hybrid Systems:
Computation and Control, pages 160-173. Springer, 2000.

Mengzhe Hua. Approximate model checking for probabilistic rectangular
automata with continuous-time probability distributions on jumps, 2021.
Bachelor’s thesis, RWTH Aachen University, Aachen, Germany.

Hypro. https://github.com/hypro/hypro. Accessed: 12.12.2025.

Maria Kanzantzi. Reachability analysis for hybrid automata with urgent
jumps. Master’s thesis, RWTH Aachen University, 2024.

Peter William Kopke Jr. The theory of rectangular hybrid automata.
PhD thesis, Cornell University, 1996.

Colas Le Guernic. Reachability analysis of hybrid systems with linear
continuous dynamics. PhD thesis, Université Joseph-Fourier-Grenoble I,
2009.

https://github.com/hypro/hypro

Bibliography

51

[LP10]

[Mas23]

[MHR17]

[Mon14]

[NDN+16]

[PSR21]

[real

[RRK10]

[SAE22]

[SAMK17]

[SAW+24]

[Sch19]

[SNA17]

John Lygeros and Maria Prandini. Stochastic hybrid systems: a powerful
framework for complex, large scale applications. Furopean Journal of
Control, 16(6):583-594, 2010.

Hana Masara. Star set-based reachability analysis of neural networks
with differing layers and activation functions, 2023. Bachelor’s thesis,
RWTH Aachen University, Aachen, Germany.

Eike M6hlmann, Willem Hagemann, and Astrid Rakow. Verifying a pi
controller using soapbox and stabhyli. In Goran Frehse and Matthias
Althoff, editors, ARCH16. 3rd International Workshop on Applied Veri-
fication for Continuous and Hybrid Systems, volume 43 of EPiC Series
in Computing, pages 115-125. EasyChair, 2017.

Laszl6 Monostori. Cyber-physical production systems: Roots, expecta-
tions and r&d challenges. Procedia cirp, 17:9-13, 2014.

Johanna Nellen, Kai Driessen, Martin Neuh#ufer, Erika Abraham, and
Benedikt Wolters. Two cegar-based approaches for the safety verification
of plc-controlled plants. Information Systems Frontiers, 18, 07 2016.

Carina Pilch, Stefan Schupp, and Anne Remke. Optimizing reacha-
bility probabilities for a restricted class of stochastic hybrid automata
via flowpipe-construction. In International Conference on Quantitative
Evaluation of Systems, pages 435-456. Springer, 2021.

Realyst. https://go.unims.de/RealySt. Accessed: 12.12.2025.

Derek Riley, Kasandra Riley, and Xenofon Koutsoukos. Reachability
analysis of stochastic hybrid systems: A biodiesel production system.
European Journal of Control, 16(6):609-623, 2010.

Stefan Schupp, Erika Abraham, and Tristan Ebert. Recent developments
in theory and tool support for hybrid systems verification with hypro.
Information and Computation, 289:104945, 2022.

Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. Hypro: A c++ library of state set representations for hybrid
systems reachability analysis. In NASA Formal Methods Symposium,
pages 288-294. Springer, 2017.

Stefan Schupp, Erika Abrahdam, Md Tawhid Bin Waez, Thomas Rambow,
and Zeng Qiu. On the applicability of hybrid systems safety verification
tools from the automotive perspective. International Journal on Software
Tools for Technology Transfer, 26(1):49-78, 2024.

Stefan Schupp. State set representations and their usage in the reacha-
bility analysis of hybrid systems. PhD thesis, RWTH Aachen University,
2019, 2019.

Stefan Schupp, Johanna Nellen, and Erika Abraham. Divide and conquer:
variable set separation in hybrid systems reachability analysis. arXiv
preprint arXiw:1707.04851, 2017.

https://go.unims.de/RealySt

52

Bibliography

[Tam21]

[Tiw07]

[TMLM*19]

[Tse20]

[Vkh24]

[Wei00]

[Wei08]

[Zie95]

Dogu Tamgac. Star set representations in the reachability analysis of
hybrid systems, 2021. Bachelor’s thesis, RWTH Aachen University,
Aachen, Germany.

Hans Raj Tiwary. On the hardness of minkowski addition and related
operations. In Proceedings of the twenty-third annual symposium on
Computational geometry, pages 306-309, 2007.

Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong
Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T. Johnson. Star-
based reachability analysis of deep neural networks. In Maurice H. ter
Beek, Annabelle Mclver, and José N. Oliveira, editors, Formal Methods —
The Next 30 Years, pages 670—686, Cham, 2019. Springer International
Publishing.

Phillip Tse. Efficient polyhedral state set representations for hybrid
systems reachability analysis. Master’s thesis, RWTH Aachen University,
Aachen, Germany, 2020.

Vahe Vkhkryan. A novel reduction method for star sets and its application
in neural network verification, 2024. Bachelor’s thesis, RWTH Aachen
University, Aachen, Germany.

Stefan Weinzierl. Introduction to monte carlo methods. arXiv preprint
hep-ph,/0006269, 2000.

Josef Weidendorfer. Sequential performance analysis with callgrind and
kcachegrind. In Tools for High Performance Computing: Proceedings of
the 2nd International Workshop on Parallel Tools for High Performance
Computing, July 2008, HLRS, Stuttgart, pages 93-113. Springer, 2008.

Giinter M Ziegler. Lectures on polytopes. Graduate texts in mathematics,
152:87-100, 1995.

	Introduction
	Related Work
	Outline

	Preliminaries
	Hybrid Automata
	Reachability
	Flowpipe Construction
	State Set Representation

	HyPro
	Important Implementations In HyPro

	RealySt
	Workflow Of RealySt
	Implementation Of RealySt

	Implementation
	Changes In RealySt
	Changes In HyPro

	Benchmarks
	Simple Running Example
	Car Benchmark

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography

