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Abstract

Feedforward neural networks (FNNs) are an important and widely used method
to solve problems in many areas. For the verification of the correct behavior
of FNNs, multiple approaches exist including verification based on exact or
over-approximate reachability analysis using star sets as state set representation.
In this work, we present a complete verification method for FNNs based on
counterexample-guided abstraction refinement (CEGAR) that combines both
types of this star-based reachability analysis and can be faster than only ap-
plying the exact analysis. This method conducts reachability analysis with
over-approximation and replaces over-approximations with exact computation
if unsafety and thus counterexamples are introduced by an over-approximate
computation. With each replacement, the abstract reachability analysis is refined.
After the presentation of an implementation of this verification method including
a variety of heuristics for five common activation functions (ReLU, LeakyReLU,
UnitStep, HardTanh, HardSigmoid), we test this method on different benchmarks
and neural networks and compare it to the purely exact and over-approximate
verification methods.
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Chapter 1

Introduction

Artificial neural networks are widely used to solve problems in a variety of different areas.
An important subcategory of artificial neural networks is feedforward neural network
(FNN). This type of neural network, corresponds to sequences of affine mappings and
the application of non-linear functions called activation functions. FNNs are thus
complex algorithms often meant to approximate highly non-linear functions otherwise
hard to compute or specify.

The verification that an FNN behaves according to its intended function is hard
to perform by hand due to this complexity. In this work, we focus on verification
based on reachability analysis using star sets (stars) [DV16, TMLM+19] as a state
set representation. This means, that for an input set in this representation the
corresponding output is computed and verified according to a given specification. For
the reachability analysis of FNNs using a specific activation function, two algorithms are
presented in [TMLM+19]. In [AMÁ23], the activation functions to which reachability
analysis can be applied are extended from only the ReLU activation function to also
include the LeakyReLU, HardTanh, HardSigmoid, and UnitStep activation functions.

These reachability algorithms compute either a representation of the exact output
for the given input or an over-approximation of it. The exact method is thus complete
and sound while the over-approximated reachability analysis can only verify safety
but not unsafety (i.e., it is only sound). The advantage of completeness of the exact
method comes with a reduction in performance compared to the over-approximated
method. Thus, the existing methods are either complete but comparatively slow, or
fast, but only lead to conclusive results in some cases.

We propose a new verification method based on counterexample-guided abstraction
refinement (CEGAR) and both types of reachability analysis. We implement this
method in the open-source C++ tool HyPro1 [SÁMK17] for the aforementioned
activation functions. Our method aims to be a complete alternative to verification with
the exact reachability analysis with better performance. To this end, the verification
method combines both the exact and over-approximated approaches.

Because over-approximation has better performance, as many computations as
possible are performed with this method for an initial reachability analysis. This
analysis corresponds to the abstraction in CEGAR which is then refined by exchanging
over-approximated steps with exact computation. An over-approximated computation
is replaced if it introduces a spurious counterexample. Such a counterexample does

1https://github.com/hypro/hypro

https://github.com/hypro/hypro
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not correspond to any element of the input and does thus not imply incorrect behavior
of the FNN. Both the identification of counterexamples and the identification of an
operation introducing a counterexample require feasability checks. These checks are
performed using the solver Z3 1 [dMB08].

1.1 Related Work

Stars were originally introduced as state set representation for the simulation of linear
systems in [DV16, BD17]. This star-based simulation allows for efficient verification
of such systems. Based on this initial definition, stars were adapted for exact and
over-approximated reachability analysis of FNNs using the ReLU activation function
in [TMLM+19]. This representation enables efficient computation of affine mappings
and halfspace intersections. These properties allow efficient reachability analysis and
thus verification in many practical cases.

In [Mas23, AMÁ23] the usable activation functions with both methods were
extended to include LeakyReLU, HardTanh, HardSigmoid, and UnitStep. We use the
reachability analysis with these activation functions and ReLU as the basis for our
verification method. In [AÁM25], this method is further expanded to allow star-based
reachability analysis of FNNs using any piecewise linear activation functions. Our
method is only adapted for the specified activation functions and not all piecewise
linear activation functions.

An extension to the reachability analysis of FNNs using ReLU proposed the
application of zonotope pre-filters [TPL+21]. These zonotopes allow for fast estimation
of the bounds of stars, which are essential of both exact and over-approximated
reachability analysis. These pre-filters thus allow for an increased verification speed
compared to the reachability analysis without them or other methods like Reluplex
[KBD+17]. Note, that this performance already occurs comparing Reluplex to the
method without the pre-filter. Reluplex verifies the full FNNs based on an adaption
of the simplex method to handle the ReLU activation functions.

As mentioned before, the reachability analysis is refined based on counterexamples
during verification with our method. Another approach also uses refinement to improve
the performance of verification based on reachability analysis [Bak21]. Instead of using
counterexamples to identify a relevant over-approximation, the first over-approximated
computation is replaced.

HyPro [SÁMK17] is an open-source C++ library containing many common state
set representations including stars. Originally, this tool was intended for reachability
analysis of hybrid systems. This functionality has been extended to include stars-based
reachability analysis of FNNs using the previously mentioned activation function. This
library thus provides the foundations for the implement of our verification method.

1.2 Outline

In Chapter 2, the theoretical foundations for verification of FNN with CEGAR are
introduced. This starts with FNNs and the activation functions that are supported by
our verification method. Afterwards, the state set representation, stars, is introduced
and used for the following section in which the exact and over-approximated reachability

1https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3
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analysis are explained. This section additionally contains an introduction to safety
checking which enables the verification with the reachability methods. The chapter is
finished with a brief introduction to Z3 and the types of formulae used in the following
chapter.

In Chapter 3, our verification method using CEGAR including the implementation
is introduced. This begins with the data structure of reachability trees used to represent
an abstraction of reachability analysis. Afterwards, the algorithms for the identification
of counterexamples and the operations introducing them are presented. Finally, these
algorithms are combined into our verification in the last section of this chapter. Note,
that for all these algorithms, multiple methods and heuristics are introduced. For
some of these, the advantage gained by a heuristic relies on the algorithms introduced
in a later section.

After the introduction of our verification method in the form of multiple heuristics,
the fastest combination for the verification with CEGAR is determined in Chapter 4.
First this combination is determined based on one benchmark. Then the performance
of our new verification method is compared to the existing exact and over-approximated
verification methods.

Finally, the results of this work are summaries and discussed in Chapter 5. In
addition, further improvements to our method are listed in this chapter.
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Chapter 2

Preliminaries

In this chapter, the foundations for the verification of FNN using CEGAR will be
introduced. After a brief introduction to the notation, a formal definition of FNNs
with a variety of activation functions will be provided in Section 2.1. Subsequently,
the state set representation for the reachability analysis of FNNs will be introduced in
Section 2.2. We use this state set representation to store sets of values (reachable sets)
corresponding to the full or partial computation of an FNN.

This computation corresponds to the reachability analysis of the FNN for which
two methods are introduced in Section 2.3. One of these methods is complete and
sound, but slow. The other approach is fast and still sound, but no longer complete.
We conclude this section by presenting a verification method for FNNs based on
reachability analysis.

For this verification, the feasibility of formulas needs to be checked. We do this
with the solver Z3 which is introduced in Section 2.4 alongside a brief overview of
the arithmetic formulas we use. These formulas are also the basis for the verification
method using CEGAR introduced in the next chapter.

For this thesis, the real numbers R, rational numbers Q, integers Z, and natural
numbers N are relevant. N is defined to include 0. To represent relevant subsets of the
natural numbers, N◦x for ◦ ∈ {≥, >} and x ∈ N is used to describe all values n ∈ N
with n ◦ x. Additionally, N+ := N≥1 is used to describe all positive natural numbers.

Vectors v ∈ Rn will be written as lower-case, bold letters and refer to column
vectors. Thus, Rn = Rn×1 is implied. If we require a row vector we apply transposition
vT to a column vector v. The entry corresponding to dimension i of v is vi. Matrices
M ∈ Rn×m will be written as upper-case, bold letters. The i-th row of a matrix M
is the row vector Mi ∈ R1×m. Similarly, column j of M corresponds to the column
vector M-,j ∈ Rn. The value at position (i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m in the
matrix M will be referred to as mi,j ∈ R. Note, that we typically write the k-th
matrix or vector in a sequence as M (k) or v(k) with entries m(k)

i,j and v(k)i .
In general, standard matrix multiplication and scalar multiplication can be assumed

for all vectors and matrices. This also holds, if the multiplication symbol is omitted.
Thus, vM = v ·M . The identity matrix I(n) ∈ Rn×n for any n ∈ N+ is the matrix
with i

(n)
j,k = 1 with j = k and entry i

(n)
j,k = 0 otherwise for j, k ∈ {1, . . . , n}. The

standard unit vector e
(n)
i refers to the i-th column of I(n). If the dimension n of

this vector is implied by the context, we sometimes write ei. Finally, the null matrix
0(n×m) ∈ Rn×m refers to a matrix where every entry is 0. We abbreviate the notation
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Figure 2.1: FNN with 3 layers of size 2 each

for a null vector 0(n×1) to 0(n).
For any two sets A and B we define the union as A ∪ B := {x | x ∈ A ∨ x ∈ B}, the

intersection as A∩B := {x | x ∈ A ∧ x ∈ B}, the difference as A\B := {x ∈ A | x /∈ B},
and the Cartesian product as A × B := {(a, b) | a ∈ A ∧ b ∈ B}. The definitions for
union, intersection, and the Cartesian product can be naturally extended to sequences
of sets for which corresponding larger symbols are used similar to sum and product
notation for numbers.

2.1 Feedforward Neural Networks

A feedforward neural network (FNN) [TMLM+19, AMÁ23] computes an output vector
based on an input vector of potentially different dimension by propagating it forward
through the FNN. This computation consists of the application of multiple affine
mappings and so-called activation functions and is structured into layers. Each layer
consists of an affine mapping followed by the application of an activation function.
An exception to this structure is the first layer which is called input layer due to
its correspondence to the input vector. This input layer is followed by an arbitrary
number of hidden layers and a single output layer. This last layer corresponds to the
output vector. Figure 2.1 is a graphic representation of this structure as well as the
additional details explained in the following.

There are two ways to consider FNNs formally. Firstly, an FNN can be understood
as a directed graph (V,E) [AMÁ23] composed of L ∈ N≥2 layers where the affine
mapping and activation function is applied between each consecutive layer. These
layers l1, . . . , lL are disjoint, ordered sets of so-called neurons forming the set of vertices
V =

⋃L
i=1 li. In general, the notation li =

{
ni,1, . . . , ni,⟨i⟩

}
is used to describe a

layer and its neurons. For this, ⟨i⟩ is the number of neurons in the layer which is
also called the size of layer i. Each neuron ni,j for j ∈ {1, . . . , ⟨i⟩} and layer li with
i ∈ {1, . . . , L− 1} is connected to all neurons of the next layer li+1. Thus, the set of
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edges is defined as follows:

E =

L−1⋃
i=1

li × li+1.

For the affine mapping, a weight which acts as a linear factor is added to each
edge. These weights are grouped into weight matrices W (i) ∈ R⟨i⟩×⟨i−1⟩ for each
non-input layer li with i ∈ {2, . . . , L}. A weight w(i)

r,s with r ∈ {1, . . . , ⟨i⟩} and
s ∈ {1, . . . , ⟨i− 1⟩} of a weight matrix W (i) is added to the edge from neuron ni−1,s

to neuron ni,r. Additionally, a bias b(i)j ∈ R for j ∈ {1, . . . , ⟨i⟩} is added to each
neuron ni,j . These values are grouped into a bias vector b(i) ∈ R⟨i⟩ for each non-input
layer li with i ∈ {2, . . . , L}. Thus, the value y(i)j of neuron ni,j before activation
function application is the bias value added to the linear combination of the values
x
(i−1)
k of the neurons of the previous layer using the weights as coefficients:

y
(i)
j = b

(i)
j +

⟨i−1⟩∑
k=1

w
(i)
j,kx

(i−1)
k .

This calculation on individual neurons corresponds to the affine mapping applied
between layer li−1 and li. This computes the value y(i) of the whole layer before
activation function application using the vector x(i−1) of values in layer li−1 as follows:

y(i) = b(i) +W (i)x(i−1).

The activation function is applied to each neuron independently of the values of the
other neurons. Thus, the final value x(i)j of neuron ni,j in a layer li for i ∈ {2, . . . , L}
and j ∈ {1, . . . , ⟨i⟩} is the application of the activation function:

x
(i)
j = acti,j(y

(i)
j ).

For the application of the activation function on the whole layer x(i) = acti(y(i)),
the function is split into iterative applications of activation functions acti,j that only
effect neuron ni,j for j ∈ {1, . . . , ⟨i⟩}:

acti : R⟨i⟩ → R⟨i⟩,y 7→ acti,⟨i⟩(acti,⟨i⟩−1(· · ·acti,1(y) · · · )),

acti,j : R⟨i⟩ → R⟨i⟩,y 7→



y1
...

acti,j(yj)
...
y⟨i⟩

 .

For an input x(1) ∈ R⟨1⟩, the output of an FNN x(L) ∈ R⟨L⟩ is therefore the forward
propagation of the input through this graph. Thus, the second way to interpret an
FNN is as a function [SGPV19]

F : R⟨1⟩ → R⟨L⟩,x(1) 7→ fL(fL−1(· · · f2(x(1)) · · · ))

composed of multiple functions fi corresponding to non-input layers li for i ∈
{2, . . . , L}. Each of these functions fi is thus the application of the affine map-
ping and the activation function during the transition from layer li−1 to layer li:

fi : R⟨i−1⟩ → R⟨i⟩,x(i−1) 7→ acti(W (i)x(i−1) + b(i)).
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x

y

Figure 2.2: ReLU

x

y

Figure 2.3: LeakyReLU

The size ⟨i⟩ of a layer and thus the number of neurons in a layer corresponds to the
dimension of the intermediate values x(i) ∈ R⟨i⟩ of the layer.

In the following, the activation functions [Mei72] relevant to this thesis will be
introduced. All of them are piecewise linear functions of the form:

act : R→ R, x 7→


a1x+ b1 , if x ∈ X1

...
anx+ bn , if x ∈ Xn.

A piecewise linear function is a function that is constructed from a finite number
n ∈ N≥2 of affine functions (aix+ bi) which domains are intervals that form a partition
of the real numbers. These domains X1, . . . ,Xn are called segments or subregions of
the piecewise linear function. The following commonly used activation functions have
been generalized for reachability analysis in [AMÁ23].

The rectified linear unit (ReLU) [Gus22] is one of the most common activation
functions. It combines a low cost of computation with a solution to the problem
of vanishing gradients [Gus22, YAT+20] which appears during training when the
gradients approach 0 and reduces the learning efficiency.

Definition 2.1.1 (ReLU). The ReLU activation function represented in Figure 2.2 is
defined as follows:

ReLU : R→ R, x 7→ max(0, x) =

{
0 , if x < 0

x , otherwise.

Despite this advantage of ReLU, its first segment setting values to 0 causes the
dead neuron problem. This problem also reduces learning efficiency and appears in
gradient-based optimization, because weights are not adjusted during learning, if the
value of a neuron is 0 [Maa13]. A solution to this problem is the leaky rectified linear
unit (LeakyReLU) [Gus22]. This activation function adds a non-zero factor to the
input in case it is negative instead of projecting to 0. This solves the dead neuron
problem of ReLU, but once more introduces the vanishing gradient problem. Despite
this, the LeakyReLU activation function performs satisfactory in many cases though
not in all [XLD+20].
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Figure 2.4: HardTanh
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Figure 2.5: HardSigmoid

Definition 2.1.2 (LeakyReLU). The LeakyReLU activation function represented in
Figure 2.3 is defined for a constant γ ∈ (0, 1) ⊆ R as follows:

LeakyReLU : R→ R, x 7→ max(γx, x) =

{
γx , if x < 0

x , otherwise.

The hard hyperbolic tangent (HardTanh) activation function is a linearization of
the hyperbolic tangent function that has been further generalized by exchanging the
constant upper and lower bounds with corresponding variables.

Definition 2.1.3 (HardTanh). For Vmin, Vmax ∈ R with Vmin ≤ Vmax, the HardTanh
activation function represented in Figure 2.4 is defined as follows:

HardTanh : R→ R, x 7→


Vmin , if x < Vmin

x , if Vmin ≤ x ≤ Vmax

Vmax , if Vmax < x.

The hard sigmoid (HardSigmoid) activation function is, similarly to HardTanh, a
generalization of the linearization of the sigmoid activation function.

Definition 2.1.4 (HardSigmoid). For Vmin, Vmax ∈ R with Vmin < Vmax, the Hard-
Sigmoid activation function represented in Figure 2.5 is defined as follows:

HardSigmoid : R→ R, x 7→


0 , if x ≤ Vmin

x−Vmin

Vmax−Vmin
, if Vmin < x < Vmax

1 , if Vmax ≤ x.

The heaviside step (UnitStep) activation function is an activation function that
originally mapped an input to 0 or 1 depending on a comparison to a value [LMSR08].

Definition 2.1.5 (UnitStep). For Rmin, Rmax, v ∈ R, the UnitStep activation function
represented in Figure 2.6 is defined as follows:

UnitStep : R→ R, x 7→

{
Rmin , if x < v

Rmax , if v ≤ x.
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Figure 2.6: UnitStep

2.2 Star Sets
For a single input vector, the output of an FNN can be verified by propagating the input
through the network and checking if the output fulfills our requirements. To facilitate
the verification of FNNs for sets of input values, we require a state set representation
that allows efficient propagation of all initial values through the network. This process
is called reachability analysis and is the topic of the next section (Section 2.3). To
perform this analysis, input, output, as well as intermediate sets which represent the
set of values of a partial propagation though the network need to be representable.
All of these sets are called reachable sets.

Based on the layered structure of FNNs, reachable sets need to allow efficient
computation of the operations defining an FNN. These operations are affine mappings
and activation function applications. A representation fulfilling these requirements
is the star [BD17, DV16]. In the following, we will introduce this representation.
Afterwards, we present the underlying properties that allow for the efficient performance
of the aforementioned operations.

Definition 2.2.1 (Star Sets [BD17, AMÁ23]). For any n,m ∈ N+, an (n,m)-
dimensional star set (star) is a tuple Θ = ⟨c,V ,P⟩ with a center c ∈ Rn, a generator
matrix V ∈ Rn×m, which columns V-,1, . . . ,V-,m are called generators or basis vectors,
and a predicate P ⊆ Rm.
A star Θ represents the set JΘK := {V α+ c | α ∈ P}.

Note, that with the unrestricted predicates P ⊆ Rm of this definition, a star may
represent a non-convex set.

Example 2.2.1. Consider the (2, 2)-dimensional star Θ = ⟨c,V ,P⟩ where the center
c is the origin, the generator matrix V is the identity matrix I(2) ∈ R2×2, and the
predicate is P =

{
e
(2)
1 , e

(2)
2

}
⊆ R2 where e

(2)
i is the standard unit vector. Since for

example
(
0.5 0.5

)T
/∈ JΘK, JΘK =

{
e
(2)
1 , e

(2)
2

}
is non-convex.

For computing the bounds of stars during the reachability analysis (see Section 2.3),
the definition of stars is further restricted to only allow the representation of convex
sets. Additionally, the algorithms for reachability analysis presented in this thesis
require boundedness. In general, this second constraint can be lifted as presented in
[AMÁ23]. With this restriction, the predicate may only appear as a bounded convex
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x1

x2

Θ

α1

α2

P

Figure 2.7: The representation of the polytope P in green (right) and the representation
of the corresponding star in blue (left).

polytope P = {α ∈ Rm | Aα ≤ d} for a matrix A ∈ Rp×m and a vector d ∈ Rp with
p ∈ N+. Equivalently, a polytope P = {α ∈ Rm | ψP(α)} may be represented by
the solution set of a conjunction of p linear constraints ψP(α) =

∧p
i=1 φi(α) where

φi(α) =
∑m

j=1 ai,jαj ≤ di is a linear constraint over the variables α1, . . . , αm for
each i ∈ {1, . . . , p}. A deeper and more general explanation of this formula is given
in Section 2.4. Note, that these convex predicates are written as P, while general
predicates P ⊆ Rm are written in a non-calligraphic style.

The following properties of stars correspond to the operations used in the star-based
reachability analysis and verification of FNNs. A proof for each of the following propo-
sitions and all other proposition presented in this thesis can be found in Appendix A.

Proposition 2.2.1 (Emptiness [TMLM+19]). A star Θ = ⟨c,V ,P⟩ is empty if and
only if P is empty.

Thus, checking the emptiness of a star is equivalent to checking the emptiness of a
convex bounded polytope or checking the unsatisfiability of a conjunction of linear
constraints.

Proposition 2.2.2 (Representing Polyhedra with Star Sets [BD17]). Any bounded,
convex polytope P = {x ∈ Rn | Ax ≤ d} for n ∈ N+ can be represented by the (n, n)-
dimensional star Θ =

〈
0(n), I(n),P

〉
with 0(n) ∈ Rn the origin and I(n) ∈ Rn×n the

identity matrix.

Example 2.2.2. Consider the polytope P =
{
x ∈ R2

∣∣ Ax ≤ d
}

representing a box
around the origin in R2 represented on the right in green in Figure 2.7 with:

A =


1 0
−1 0
0 1
0 −1

 and d =


1
1
1
1


Since P ⊆ R2, the (2, 2)-dimensional star

Θ =
〈
0(2), I(2),P

〉
=

〈(
0
0

)
,

(
1 0
0 1

)
,P
〉

represents the same set of values as P. This is graphically represented on the left in
blue in Figure 2.7.
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Figure 2.8: The star Θ′ resulting from the application of the affine mapping to Θ is
represented in blue (left). The representation of the predicate P of Θ′ is given in green
(right).

Proposition 2.2.3 (Affine Mapping [TMLM+19]). Let k,m, n ∈ N+. For any matrix
W ∈ Rk×n and any vector b ∈ Rk the affine mapping {Wx+ b | x ∈ JΘK} of a
(n,m)-dimensional star Θ = ⟨c,V ,P⟩, can be represented by a (k,m)-dimensional
star Θ′ = ⟨c′,V ′,P⟩ where c′ = Wc+ b and V ′ = WV .

Example 2.2.3. Using the star Θ =
〈
0(2), I(2),P

〉
introduced in the prior Exam-

ple 2.2.2, the (2, 2)-dimensional star Θ′ representing the affine mapping JΘ′K =
{Wx+ b | x ∈ JΘK} for

W =

(
2 1
1 3

)
and b =

(
1
−1

)
can be calculated based on the proposition. Thus, Θ′ = ⟨c′,V ′,P⟩ for the center

c′ = Wc+ b =

(
2 1
1 3

)(
0
0

)
+

(
1
−1

)
=

(
1
−1

)
and the generator matrix

V ′ = WV =

(
2 1
1 3

)(
1 0
0 1

)
=

(
2 1
1 3

)
represents the affine mapping. The values of Θ′ are represented in Figure 2.8 on left.
The predicate, which has remained unchanged, is represented on the right in this figure.
Note, that the predicate does not change when applying an affine mapping to a star.

Proposition 2.2.4 (Intersection with a Halfspace [TMLM+19]). Assume n,m ∈ N+

for a (n,m)-dimensional star Θ = ⟨c,V ,P⟩ and a halfspace H =
{
x ∈ Rn

∣∣ hTx ≤ g
}

defined by h ∈ Rn and g ∈ R. Then, the intersection H ∩ JΘK can be represented by
the (n,m)-dimensional star Θ′ = ⟨c,V ,P ∩ P ′⟩ with

P ′ =
{
α ∈ Rm

∣∣ (hTV )α ≤ g − hT c
}

Example 2.2.4. Consider the star Θ′ = ⟨c′,V ′,P⟩ obtained in Example 2.2.3 and a
halfspace H =

{
x ∈ R2

∣∣ hTx ≤ g
}

of all non-negative values in the first dimension
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x1

x2

Θ′′

H

α1

α2

P ′′

P ′

Figure 2.9: The star Θ′′ resulting from intersection with halfspace H is represented in
blue (left) as well as the halfspace in red. The representation of the predicate P ′′ of
Θ′′ is given in green (right). Additionally, the new constraint P ′ resulting from the
halfspace is represented on the right side in red.

(x1 ≥ 0) with hT =
(
−1 0

)
and g = 0. This halfspace is represented in red in

Figure 2.9 on the left. The (2, 2)-dimensional star Θ′′ = ⟨c′,V ′,P ′′⟩ representing the
intersection JΘ′′K = H∩ JΘ′K, which is represented in the same coordinate system, can
now be calculated based on the new predicate P ′′ = P ∩ P ′. Based on the proposition,
the addition to the predicate P ′ is defined as follows:

P ′ =
{
α ∈ R2

∣∣ (hTV ′)α ≤ g − hT c′
}

=

{
α ∈ R2

∣∣∣∣ ((−1 0
)(2 1

1 3

))
α ≤ 0−

(
−1 0

)( 1
−1

)}
=

{
α ∈ R2

∣∣ (−2 −1
)
α ≤ 1

}
P ′′ is represented in green and P ′ in red in the right coordinate system of Figure 2.9.
Due to the restriction of the predicate to bounded convex polyhedra, the intersection
P ∩ P ′ can be represented as follows:

P ′′ =

α ∈ R2

∣∣∣∣∣∣∣∣∣∣


1 0
−1 0
0 1
0 −1
−2 −1

α ≤


1
1
1
1
1




Proposition 2.2.5 (Bounds [AMÁ23]). For n,m ∈ N+ and any (n,m)-dimensional
star Θ = ⟨c,V ,P⟩, the upper and lower bounds of the set in dimension i ∈ {1, . . . , n}
can be calculated by:

• Lower bound: li := ci + min {Viα | α ∈ P}

• Upper bound: ui := ci +max {Viα | α ∈ P}

2.3 Reachability Analysis
As mentioned in the previous section, the reachable set of an FNN is defined as the set
of all values that can be obtained by propagating each value in an input set through
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the network. For this, reachability is defined based on the reachable sets of each layer
as follows.

Definition 2.3.1 (Reachability [TMLM+19]). For an FNN F with L ∈ N≥2 layers,
weight matrices W (i), bias vectors b(i) and, activation function acti for all non-input
layers i ∈ {2, . . . , L} and an input set I ⊆ R⟨1⟩, the reachable set of layer li of F
given input set I is defined inductively as R1 := I and for 1 < i as follows:

Ri :=
{
acti(W (i)x+ b(i))

∣∣∣ x ∈ Ri−1

}
The reachable set of an FNN F given an input set I is then defined as the reachable
set of the output layer:

F (I) := RL

In general, the input set could be represented by a convex bounded polytope. Using
Proposition 2.2.2, such an input set can be transformed into a star efficiently. For our
reachability algorithms, the input set, and all other reachable sets are represented by
stars, due to this transformation.

The computation of the reachable sets of an FNN is performed layer-by-layer. For
each layer, we first compute an affine mapping. This computation can be performed
efficiently on stars according to Proposition 2.2.3. Afterwards, an activation function is
applied dimension-wise (i.e., for each neuron in the layer). For stars, this is not straight
forward, because convexness is not necessarily preserved. Due to our restrictions to
their predicates, stars always represent convex sets.

The application of a piecewise linear activation function to one dimension of a set
preserves convexness, if the set of all values in the respective dimension is a subset
of exactly one segment. In this case, an affine mapping x 7→ ax + b for a, b ∈ R
corresponding to the segment of the activation functions is applied to the values in this
dimension. For an application to dimension j, this corresponds to the affine mapping

x 7→M
(n)
[a] x+ v

(n)
[b]

for x ∈ Rn, M (n)
[a] ∈ Rn×n, v(n)

[b] ∈ Rn with the following definition:

M
(n)
[a] =

(
e
(n)
1 · · · ae

(n)
j · · · e

(n)
n

)
v
(n)
[b] =

(
0 · · · b · · · 0

)T
.

Based on Proposition 2.2.3, this affine mapping and thus the activation function can
be applied to a (n,m)-dimensional star.

We present two methods for the application of the activation function, if convexness
is not inherently preserved. The first method applies the activation function in an
exact but computationally expensive manner via case-splitting. The other approach is
a less expensive but over-approximates the application of the activation function. This
over-approximation sacrifices the completeness of the safety verification introduced at
the end of this section, but preserves its soundness.

The exact approach splits a given input star into multiple stars such that the
activation function can be applied with the previous method. A star is thus split
according to the segments of the activation function. This is done by intersecting the
star with halfspaces based on Proposition 2.2.4. To each resulting star, the activation
function can be applied directly. The union of these stars after application of the
activation function is then equal to the direct application of the activation function
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Algorithm 1:
Exact Reachability Analysis
input : Star Θ,

FNN F with L layers
output :List of stars R

1 R ← [Θ]
2 for i← 2 to L do
3 R′ ← []
4 for ⟨c,V ,P⟩ ∈ R do
5 Θ′ ←

〈
W (i)c+ b(i),W (i)V ,P

〉
6 T ← [Θ′]
7 for j ← 1 to ⟨i⟩ do
8 T ′ ← []
9 for Θ′′ ∈ T do

10 T ′.append(
exactAct(Θ′′, j))

11 T ← T ′

12 R′.append(T)
13 R ← R′

Algorithm 2:
Approximate Reachability Analysis

input : Star Θ = ⟨c,V ,P⟩,
FNN F with L layers

output : Star R = Θ′

1

2 for i← 2 to L do
3

4

5 Θ′ ←
〈
W (i)c+ b(i),W (i)V ,P

〉
6

7 for j ← 1 to ⟨i⟩ do
8

9

10
Θ′ ←approximateAct(Θ′, j)

11

12

13

to the original set. Note, that splitting does not necessarily result in a partition of
the original star. It still ensures that the union of the resulting stars is equal to the
original set.

Therefore, the exact application outputs a union or list of (generally) multiple
stars with each application. Further calculations of the reachability algorithm are then
performed on each of the stars in the list. This process is described algorithmically by
Algorithm 1 where lists are represented with square brackets. The method append
adds a new item to a list. exactAct refers to the exact application of a specific
activation function. This process is described later in this section. Note, that the
execution of the loop starting in line 4 can be parallelized as the computation relies
only on the selected star. Besides this option, parallelization is not further explored in
this thesis.

The over-approximating approach to this calculation instead over-approximates an
activation function with a convex relaxation and thereby ensures the convexness of
the result. The convex relaxation used for this purpose is as tight as possible, when
only considering the output and input domains of a single neuron [TAH+20]. For the
application of the relaxation to dimension j, all values xj of an (n,m)-dimensional star
Θ = ⟨c,V ,P⟩ with x ∈ JΘK are represented by a new variable αm+1 of the predicate.
The relaxation is then applied to the star in the form of constraints on αm+1. These
constraints depend on the star and the specific activation function. They fully define
the value xj . A detailed explanation of the constraints for each activation function
follows later in this section.

A value xj corresponds to a vector α ∈ P with xj = cj +
∑m

i=1 vi,jαi. To represent
the values xj with the new variable αm+1, the values vi,j for all j ∈ {1, . . . ,m} and cj
are set to 0. This is equivalent to the application of the affine mapping with matrix
M

(n)
[0] and vector 0(n) to the star Θ. Afterwards, the unit vector e

(n)
j is added to the

generator. The star

Θ′ =
〈
M

(n)
[0] c,

(
M

(n)
[0] V e

(n)
j

)
,P ′
〉
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Algorithm 3:
Exact Activation Function Application
input : Star Θ = ⟨c,V ,P⟩,

Dimension j,
List of cases C

output :List of stars R

1 lj ← cj +min {Vjα | α ∈ P}
2 uj ← cj +max {Vjα | α ∈ P}
3 for (P, splits) ∈ C do
4 if P(lj , uj) = ⊤ then
5 R← []
6 for (A, b, halfspaces) ∈ splits do
7 Θ′ ← ⟨Ac+ b,AV ,P⟩
8 for H ∈ halfspaces do
9 Θ′ ← Θ′ ∩H

10 R.append(Θ′)

Algorithm 4:
Approximate Activation Function Application

input : Star Θ = ⟨c,V ,P⟩,
Dimension j,
List of cases C

output : Star Θ′

1 lj ← cj +min {Vjα | α ∈ P}
2 uj ← cj +max {Vjα | α ∈ P}
3 for (P,B, info) ∈ C do
4 if P(lj , uj) = ⊤ then
5 if B = ⊤ then

// Exact computation
6 (A, b)← info
7 Θ′ ← ⟨Ac+ b,AV ,P⟩
8 else

// Approximation
9 P ′ ← P

10 for φ ∈ info do
11 P ′ ← P ′ ∧ φ
12 Θ′ ←

〈
M

(n)
[0] c,

(
M

(n)
[0] V e

(n)
j

)
,P ′
〉

is the result of this process with Θ as input. For all x ∈ JΘ′K, the value xj is fully
represented by αm+1 of the corresponding predicate variable α ∈ P ′. Thus, xj = αm+1.
Note, that the constraints describing P are also part of P ′. The additional variable
αm+1 of P ′ only appears in the new constraints describing the relaxation of the
activation function.

This over-approximation is only applied, if the direct application of the activation
function does not preserve convexness. Otherwise, the over-approximating approach
computes with the exact method. This means that the over-approximating approach
always produces a single star instead of the list in the exact calculation. This process
is described in Algorithm 2 using the same notation as before and approximateAct
for the approximating application of a specific activation function.

The way a specific activation function is applied to a dimension depends on the
set of values represented by a star in this dimension. More specifically, the segments
of the activation function these values are elements of. Depending on these segments
the exact approach applies splits and the over-approximation adds constraints. To
determine the relevant segments, it is sufficient to check the upper and lower bounds of
the dimension the activation function is applied to. This follows from the convexness
of stars. The bounds can be computed as presented in Proposition 2.2.5.

The exact and over-approximating algorithms for the reachability analysis of
FNN presented in Algorithms 1 to 4 are aggregations of the algorithms for specific
activation functions presented in [TMLM+19, AMÁ23]. For these aggregations, the
relevant information for the application of the activation functions is represented
as a list of cases C. These cases correspond to splits and constraints for exact or
over-approximated approach. For the exact approach, a case in C has the form

(P, [(A(1), b(1), [H1,1, . . . ,H1,k1
]), . . . , (A(k), b(k), [Hk,1, . . . ,Hkk

])]).

P : R2 → {⊤,⊥} is a predicate indicating the segments of the activation function. The
intended input for P are thus the lower bound lj and upper bound uj in dimension j
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of the star. P maps to ⊤, if the bounds correspond to the case, and false otherwise.
Note, that for lj , uj exactly one predicate in the list of cases is satisfied.

If the bounds of a star satisfy a predicate, the activation function is applied
according each element of the list that is the second entry of the case. Each of
these elements corresponds to a split and subsequent activation function application.
Thus, an additional star represents the reachable set after the application of the
activation function for each element (A, b, [H1, . . . ,Hk]) in this list. For a given
(n,m)-dimensional star Θ = ⟨c,V ,P⟩, the star resulting from this element has the
form

Θ′ = ⟨Ac+ b,AV ,P⟩ ∩
k⋂

i=1

Hi

with A ∈ Rn×n, b ∈ Rn, and halfspaces Hi ⊆ Rn for i ∈ {1, . . . ,k} and k ∈ {0, 1, 2}.
Note, that the restriction of k is solely based on the activation functions we used. If
k ∈ {1, 2} then the exact computation splits the star. If otherwise k = 0, the bounds
of the star fall within one segment of the activation function definition.

For the over-approximating method, a case in C has the following form

(P,B, info)

where P is the same as before and B ∈ {⊤,⊥} indicates the information contained in
info. As explained before, the over-approximating approach applies exact computation,
if no splitting is required. Otherwise, the activation function is applied in the form of a
convex relaxation. If B = ⊤, info contains information to apply the exact reachability
method. Thus, info = (A, b) for a matrix A ∈ Rn×n and a vector b ∈ Rn. The
resulting star Θ′ = ⟨Ac+ b,AV ,P⟩ has therefore the same form as in the exact
computation if no halfspace intersection is necessary.

If otherwise B = ⊥ over-approximation is used. To this end, the information
has the form info = [φ1, . . . , φk] for k ∈ {2, 3, 4} where each φi corresponds to a
constraint for the convex relaxation. For an (n,m)-dimensional star Θ as before, the
resulting (n,m+ 1)-dimension star has the following form

Θ′ =

〈
M

(n)
[0] c,

(
M

(n)
[0] V e

(n)
j

)
,P ∧

k∧
i=1

φi

〉
.

In Algorithms 1 and 2 exactAct and approximateAct refer to the exact and
over-approximating algorithms in Algorithms 3 and 4. For these function calls, the list
of cases C is implicitly replaced by the information corresponding to the application
of a specific activation function to dimension j. The information for these lists is
given in Tables 2.1 to 2.5. In these tables, the new constraints for the approximate
case often contain a variable xj . This variable refers to all values xj of dimension
j represented by an input star Θ = ⟨c,V ,P⟩. As mentioned before xj can be
represented as cj +

∑m
i=1 vi,jαi based the variables of the predicate P . Additionally, a

halfspace
{
x ∈ Rn

∣∣ hTx ≤ g
}

is represented by the linear constraint
∑n

i=1 hixi ≤ g
corresponding to hTx ≤ g.

For the ReLU activation function, the three cases for splitting and approximation
are presented in Table 2.1. In the first case, all values represented by a star in
dimension j are non-negative. The second case essentially represents the opposite. All
values have to be negative except for the upper bound which can 0. The reason for
this upper is the definition of the ReLU activation function. It is arbitrary in which
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P(lj , uj) Exact Approximate

lj uj Θi A b Halfspaces B Constraints

[0,∞) [0,∞) Θ1 I(n) 0(n) - ⊤ -

(−∞, 0) (−∞, 0] Θ1 M
(n)
[0] 0(n) - ⊤ -

(−∞, 0) (0,∞) Θ1 I(n) 0(n) H1 : (0 ≤ xj) ⊥ φ1 = 0 ≤ αm+1

Θ2 M
(n)
[0] 0(n) H1 : (xj ≤ 0) φ2 = xj ≤ αm+1

φ3 = αm+1 ≤ uj(xj−lj)
uj−lj

Table 2.1: Cases for the reachability algorithms for the ReLU activation function.
In the column labeled P(lj , uj), the predicate corresponds to lj ∈ Il ∧ uj ∈ Iu for Il
the interval below lj and Iu the interval below uj . Note, that the columns A and b
under Exact are also used for the exact computation in over-approximate reachability
algorithms.

segment 0 is included as both segments map it to 0 again. In the third case, values
included in both subregions are represented by the star.

Example 2.3.1. Based on Table 2.1, the exact and over-approximating reachability
algorithms for the ReLU activation function can be rewritten as presented in Algo-
rithms 5 and 6. For this, we first extract the lists of cases from Table 2.1. For the
exact algorithm, the list contains the following tuples describing the cases as defined
before:

• ((0 ≤ lj ∧ 0 ≤ uj), [(I(n),0(n), [])])

• ((lj < 0 ∧ uj ≤ 0), [(M
(n)
[0] ,0

(n), [])])

• ((lj < 0 ∧ 0 < uj), [(I
(n),0(n), [(0 ≤ xj)]), (M (n)

[0] ,0
(n), [(xj ≤ 0)])])

Analogously, the list of cases for the over-approximating approach can be extracted as
follows:

• ((0 ≤ lj ∧ 0 ≤ uj),⊤, (I(n),0(n)))

• ((lj < 0 ∧ uj ≤ 0),⊤, (M (n)
[0] ,0

(n)))

• ((lj < 0 ∧ 0 < uj),⊥, [0 ≤ αm+1, xj ≤ αm+1, αm+1 ≤ uj(xj−lj)
uj−lj

])

Instead of looping through all the cases in these list to apply the one with a satisfied
predicate (first element), we can write these cases as a sequence of if-cases. In
both the exact and over-approximating algorithm, the if-cases in lines 3, 6 and 9
correspond to the cases in the list in the same order. Since the first two cases of the
ReLU activation function do not require a split, both algorithms perform the same
actions in the if-cases starting in lines 3 and 6, besides the difference in output
representation. Regarding the last case, the exact and over-approximating algorithm
differ.
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Algorithm 5:
Exact ReLU Application
input : Star Θ = ⟨c,V ,P⟩,

Dimension j

output :List of stars R

1 lj ← cj +min {Vjα | α ∈ P}
2 uj ← cj +max {Vjα | α ∈ P}
3 if 0 ≤ lj then
4 Θ← ⟨c,V ,P⟩
5 R← [Θ]

6 if lj < 0 ∧ uj ≤ 0 then
7 Θ←

〈
M

(n)
[0] c,M

(n)
[0] V ,P

〉
8 R← [Θ]

9 if lj < 0 ∧ 0 < uj then
10 Θ′ ← ⟨c,V ,P⟩ ∩ (0 ≤ xj)
11 Θ′′ ← ⟨c,V ,P⟩ ∩ (xj ≤ 0)

12 Θ′′ ←
〈
M

(n)
[0] c,M

(n)
[0] V ,P

′
〉

13 R← [Θ′,Θ′′]

Algorithm 6:
Approximate ReLU Application

input : Star Θ = ⟨c,V ,P⟩ with
Predicate P = {α | Aα ≤ d}
Dimension j

output : Star Θ′

1 lj ← cj +min {Vjα | α ∈ P}
2 uj ← cj +max {Vjα | α ∈ P}
3 if 0 ≤ lj then
4 Θ′ ← ⟨c,V ,P⟩
5

6 if 0 < lj ∧ uj ≤ 0 then
7 Θ′ ←

〈
M

(n)
[0] c,M

(n)
[0] V ,P

〉
8

9 if lj < 0 ∧ 0 < uj then

10 A′ ←



0

A
...
0

0 · · · 0 −1
Vj −1

− uj

uj−lj
Vj 1


11 α′ ←

(
α

αm+1

)

12 d′ ←


d
0
−cj

uj ·(cj−lj)
uj−lj


13 c′ ←M

(n)
[0] c

14 V ′ ←
(
M

(n)
[0] V e

(n)
j

)
15 Θ′ ← ⟨c′,V ′, {α′ | A′α′ ≤ d′}⟩

Figure 2.10: Algorithms for the reachability analysis for FNN using only ReLU
activation functions.

In Algorithm 5 the star is split into two according to the halfspaces in the second
element of the list. Afterwards, the activation function can be applied in the same
way as the previous two cases. In Algorithm 6, the convex relaxation of the ReLU
activation function is applied by adding the three constraints from the list in the third
element of the tuple. These constraints are added to the predicate of the input star.
Afterwards the center and generator matrix are changed as described before including
the addition of a new column to the generator. For this new column, a new constraint
variables is added in line 11. The constraints correspond to the changes to the predicate
in lines 10 and 12. For this, the constraints from the list are first transformed such
that A′ contains the factors for the constraint variables in α′ in the last three rows.
Thus, d′ contains the remaining constants. For the transformation, xj = Vjα+ cj is
used.
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x1

x2

Θ1

Θ2

Figure 2.11: Result of the application
of the exact ReLU to the first dimen-
sion.

x1

x2
Θ3

Θ4

Θ5

Θ6

Figure 2.12: Result of the application
of the exact ReLU to the second dimen-
sion.

Example 2.3.2. Assume the same star Θ derived from a polytope P introduced in
Example 2.2.2 and a two layer FNN F . The first layer of an FNN always corresponds
to the input. Thus, only the second layer, which is the output layer in this case, applies
any operations to the input. Assume that the affine mapping of this layer is applied
with the weight matrix W (2) = W and bias vector b(2) = b as introduced for the affine
mapping in Example 2.2.3. Also, assume that this layer applies the ReLU activation
function.

In the following, Algorithm 1 using Algorithm 5 for exactAct will be applied to
the input star Θ for the FNN F focusing on the representation of the stars computed.
The first change to Θ is the application of the affine mapping with matrix W and
vector b in line 5 of Algorithm 1 which is explained in Example 2.2.3 in detail. On the
result Θ′ of this, Algorithm 5 is applied for dimension j = 1. Based on the lower bound
l1 = −2 and the upper bound u1 = 4, the third case of the exact ReLU application is
executed. This results in the following two stars represented in Figure 2.11:

Θ1 =

〈(
1
−1

)
,

(
2 1
1 3

)
,


1 0
−1 0
0 1
0 −1
−2 −1

 ·
(
α1

α2

)
≤


1
1
1
1
1


〉

Θ2 =

〈(
0
−1

)
,

(
0 0
1 3

)
,


1 0
−1 0
0 1
0 −1
2 1

 ·
(
α1

α2

)
≤


1
1
1
1
−1


〉

Note that the calculation for Θ1 is presented in detail in Example 2.2.4.
Since F has only two layers, the missing steps in calculating the reachable set of F

with the exact algorithm is the application of ReLU to the second dimension for both
stars Θ1 and Θ2. Based on the bounds of both Θ1 and Θ2 this results in computation
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x1

x2

Θ′
1

Figure 2.13: Result of the application
of the over-approximating ReLU to the
first dimension.

x1

x2

Θ′
2

Figure 2.14: Result of the application
of the over-approximating ReLU to the
second dimension.

of the third case. The following stars result from Θ1:

Θ3 =

〈(
1
−1

)
,

(
2 1
1 3

)
,


1 0
−1 0
0 1
0 −1
−2 −1
−1 −3

 ·
(
α1

α2

)
≤


1
1
1
1
1
−1


〉

Θ4 =

〈(
1
0

)
,

(
2 1
0 0

)
,


1 0
−1 0
0 1
0 −1
−2 −1
1 3

 ·
(
α1

α2

)
≤


1
1
1
1
1
1


〉

and the following stars from Θ2:

Θ5 =

〈(
0
−1

)
,

(
0 0
1 3

)
,


1 0
−1 0
0 1
0 −1
2 1
−1 −3

 ·
(
α1

α2

)
≤


1
1
1
1
−1
−1


〉

Θ6 =

〈(
0
0

)
,

(
0 0
0 0

)
,


1 0
−1 0
0 1
0 −1
2 1
1 3

 ·
(
α1

α2

)
≤


1
1
1
1
−1
1


〉

All of these are represented in Figure 2.12.
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Example 2.3.3. Assume the same star Θ and two-layer FNN F introduced in the
previous Example 2.3.2.

In the following, Algorithm 2 using Algorithm 6 for approximateAct will be
applied to the input star Θ for the FNN F focusing on the representation of the
stars computed. Thus, similar to the previous example applying the exact reachability
analysis, the approximate reachability analysis for ReLU is performed. The first step
is the application of the same affine mapping as before. On the result Θ′ of this,
Algorithm 6 is applied for dimension j = 1 and the third case is applied as to before.

Using the lower bound l1 = −2 and upper bound u1 = 4, this results in the following
star represented in Figure 2.13:

Θ′
1 =

〈(
0
−1

)
,

(
0 0 1
1 3 0

)
,



1 0 0
−1 0 0
0 1 0
0 −1 0
−2 −1 0
0 0 −1
2 1 −1
− 4

3 − 2
3 1


·

α1

α2

α3

 ≤


1
1
1
1
0
−1
2


〉

Like before, the missing step in the calculation of the reachable set with the approximate
algorithm is the application of ReLU to the second dimension of Θ′

1. Since Θ′
1 has a

lower bound l2 = −5 and an upper bound u2 = 3 the computation of the third case is
performed once more resulting in the following star:

Θ′
2 =

〈(
0
0

)
,

(
0 0 1 0
0 0 0 1

)
,



1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
−2 −1 0 0
0 0 −1 0
2 1 −1 0
− 4

3 − 2
3 1 0

0 0 0 −1
1 3 0 −1
− 3

8 − 9
8 0 1


·


α1

α2

α3

α4

 ≤



1
1
1
1
0
−1
2
0
1
3
2



〉

The LeakyReLU activation function can be applied using the splitting and approx-
imation presented in Table 2.2 for any constant γ ∈ (0, 1). Besides the additional
constant, this activation function behaves the same way as ReLU.

The UnitStep activation function introduces three constants Rmin, Rmax, v ∈ R.
The Table 2.3 describing the corresponding cases for the algorithms uses Rmin = p
and Rmax = q for better readability. This activation function appears similar to ReLU
and LeakyReLU at first as all of them have a definition with two segments. This
similarity appears for the exact computation as there are only three real cases. The
third and fourth rows in the table define the same split. Both cases are still necessary
due to the definition of the constraints for the over-approximating algorithm in the
third case. These require division by uj − v which can become 0 if uj = v is not
excluded. The last case dealing with this would require a third constraint xj ≤ v
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P(lj , uj) Exact Approximate

lj uj Θi A b Halfspaces B Constraints

[0,∞) [0,∞) Θ1 I(n) 0(n) - ⊤ -

(−∞, 0) (−∞, 0] Θ1 M
(n)
[γ] 0(n) - ⊤ -

(−∞, 0) (0,∞) Θ1 I(n) 0(n) H1 : (0 ≤ xj) ⊥ φ1 = γxj ≤ αm+1

Θ2 M
(n)
[γ] 0(n) H1 : (xj ≤ 0) φ2 = xj ≤ αm+1

φ3 = αm+1 ≤ xj(uj−γlj)+uj lj(γ−1)
uj−lj

Table 2.2: Cases for the reachability algorithms for the LeakyReLU activation function.
In the column labeled P(lj , uj), the predicate corresponds to lj ∈ Il ∧ uj ∈ Iu for Il
the interval below lj and Iu the interval below uj . Note, that the columns A and b
under Exact are also used for the exact computation in over-approximate reachability
algorithms.

to define a bounded over-approximation. It is not necessary to add this additional
constraint because v = uj already implies it. Note, that cases three and four for the
over-approximation in Table 2.3 only apply if p < q. For p > q the direction of all
inequalities needs to be inverted. If otherwise p = q, the first or second case fully
define the exact and over-approximate computation.

P(lj , uj) Exact Approximate

lj uj Θi A b Halfspaces B Constraints

[v,∞) [v,∞) Θ1 M
(n)
[0] v

(n)
[p] - ⊤ -

(−∞, v) (−∞, v) Θ1 M
(n)
[0] v

(n)
[q] - ⊤ -

(−∞, v) (v,∞) Θ1 M
(n)
[0] v

(n)
[p] H1 : (xj ≤ v) ⊥ φ1 = p ≤ αm+1

Θ2 M
(n)
[0] v

(n)
[q] H1 : (v ≤ xj) φ2 = αm+1 ≤ q

φ3 =
(q−p)xj+ujp−vq

uj−v ≤ αm+1

φ4 = αm+1 ≤ (q−p)xj+vp−ljq
v−lj

(−∞, v) [v, v] Θ1 M
(n)
[0] v

(n)
[p] H1 : (xj ≤ v) ⊥ φ1 = p ≤ αm+1

Θ2 M
(n)
[0] v

(n)
[q] H1 : (v ≤ xj) φ2 = αm+1 ≤ (q−p)xj+vp−ljq

v−lj

Table 2.3: Cases for the reachability algorithms for the UnitStep activation function.
In the column labeled P(lj , uj), the predicate corresponds to lj ∈ Il ∧ uj ∈ Iu for Il
the interval below lj and Iu the interval below uj . Note, that the columns A and b
under Exact are also used for the exact computation in over-approximate reachability
algorithms.
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P(lj , uj) Exact Approximate

lj uj Θi A b Halfspaces B Constraints

(−∞, p) (−∞, p) Θ1 M
(n)
[0] v

(n)
[p] - ⊤ -

[p, q] [p, q] Θ1 I(n) 0(n) - ⊤ -

(q,∞) (q,∞] Θ1 M
(n)
[0] v

(n)
[q] - ⊤ -

(−∞, p) [p, q] Θ1 M
(n)
[0] v

(n)
[p] H1 : (xj ≤ p) ⊥ φ1 = xj ≤ αm+1

Θ2 I(n) 0(n) H1 : (p ≤ xj) φ2 = p ≤ αm+1

φ3 = αm+1 ≤ (uj−p)xj−(lj−p)uj

uj−lj

[p, q] (q,∞] Θ1 I(n) 0(n) H1 : (xj ≤ q) ⊥ φ1 = αm+1 ≤ q

Θ2 M
(n)
[0] v

(n)
[q] H1 : (q ≤ xj) φ2 = αm+1 ≤ xj

φ3 =
(lj−p)xj−(q−uj)lj

uj−lj
≤ αm+1

(−∞, p) (q,∞) Θ1 M
(n)
[0] v

(n)
[p] H1 : (xj ≤ p) ⊥ φ1 = p ≤ αm+1

Θ2 I(n) 0(n) H1 : (p ≤ xj) φ2 = αm+1 ≤ q

H2 : (xj ≤ q) φ3 =
(p−q)xj−(q−uj)p

p−uj
≤ αm+1

Θ3 M
(n)
[0] v

(n)
[q] H1 : (q ≤ xj) φ4 = αm+1 ≤ (p−q)xj−(lj−p)q

q−lj

Table 2.4: Cases for the reachability algorithms for the HardTanh activation function.
In the column labeled P(lj , uj), the predicate corresponds to lj ∈ Il ∧ uj ∈ Iu for Il
the interval below lj and Iu the interval below uj . Note, that the columns A and b
under Exact are also used for the exact computation in over-approximate reachability
algorithms.

In the definition of the HardTanh activation function two values Vmin ≤ Vmax ∈ R
are introduced. For the purpose of readability, Table 2.4 describing the operations for
the HardTanh activation functions use Vmin = p and Vmax = q, similarly to UnitStep.
Since this activation function is defined over three segments, the application of the
reachability algorithm has to differentiate between six cases. In the first three cases,
the representation of the star is a subset of one of the subregions. The representation
of the star is subset of two of the segments in the fourth and fifth cases and subset of
all in the last one. Due to the convexness of stars, an additional seventh case in which
a set is included in the two not connected subregions can be disregarded.

The HardSigmoid activation function behaves similarly to HardTanh and also uses
values Vmin ≤ Vmax ∈ R once again written as p and q in Table 2.5. Additionally, we
set s = 1

q−p and t = p
p−q .

Based on these tables, the complexity of the exact and over-approximating al-
gorithms can be discussed. The worst-case runtime of reachability algorithms and
consecutive verification of an FNN depend on the FNN itself and the constructed stars.
More specifically, the number of neurons N in the FNN and the amount of generators
and constraints of the predicate of the input star influence the runtime. The specific
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P(lj , uj) Exact Approximate

lj uj Θi A b Halfspaces B Constraints

(−∞, p] (−∞, p] Θ1 M
(n)
[0] 0(n) - ⊤ -

(p, q) (p, q) Θ1 M
(n)
[s] v

(n)
[t] - ⊤ -

[q,∞) [q,∞] Θ1 M
(n)
[0] 0(n) - ⊤ -

(−∞, p] (p, q) Θ1 M
(n)
[0] 0(n) H1 : (xj ≤ p) ⊥ φ1 = 0 ≤ αm+1

Θ2 M
(n)
[s] v

(n)
[t] H1 : (p ≤ xj) φ2 =

xj+p
q−p ≤ αm+1

φ3 = αm+1 ≤ (uj−p)(xj−lj)
(q−p)(uj−lj)

(p, q) [q,∞] Θ1 M
(n)
[s] v

(n)
[t] H1 : (xj ≤ q) ⊥ φ1 = αm+1 ≤ 1

Θ2 M
(n)
[0] 0(n) H1 : (q ≤ xj) φ2 = αm+1 ≤ xj−p

q−p

φ3 = 1 +
(q−lj)(xj−uj)
(q−p)(uj−lj)

≤ αm+1

(−∞, p) (q,∞) Θ1 M
(n)
[0] 0(n) H1 : (xj ≤ p) ⊥ φ1 = 0 ≤ αm+1

Θ2 M
(n)
[s] v

(n)
[t] H1 : (p ≤ xj) φ2 = αm+1 ≤ 1

H2 : (xj ≤ q) φ3 =
xj−lj
q−lj

≤ αm+1

Θ3 M
(n)
[0] 0(n) H1 : (q ≤ xj) φ4 = αm+1 ≤ xj−p

uj−p

Table 2.5: Cases for the reachability algorithms for the HardSigmoid activation function.
In the column labeled P(lj , uj), the predicate corresponds to lj ∈ Il ∧ uj ∈ Iu for Il
the interval below lj and Iu the interval below uj . Note, that the columns A and b
under Exact are also used for the exact computation in over-approximate reachability
algorithms.

worst-case values for these metrics depend on the activation function used and can be
found in Table 2.6 which is based on [TMLM+19, Mas23].

In general, the amount of stars representing the reachable set using the exact
algorithm is exponential in regard to N in the worst-case, because the exact algorithm
can split an input star into multiple stars for each neuron regardless of the specific
activation function. Despite this exponential worst-case number of stars, this number
is often significantly lower in practice which allows the exact algorithm to be used.

At the same time, the amount of constraints only grows linearly regarding N
and the dimension of the stars remains unchanged. The clear advantage of the over-
approximating method lies in the representation of the reachable set of an FNN with
only one star. To facilitate this, the dimension, specifically the amount of generators m,
increases by a linear amount regarding N . The worst-case amount of added constraints
also grows linearly regarding N with the over-approximating algorithm.

The last topic of this section is the verification and thus safety of FNNs based on
reachability analysis. For this a safety specification or property is used. This safety
specification has to be satisfied by the reachable set of an FNN for a given input set.
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x1

x2

S

(a) Safety specification

x1

x2

Θ3

Θ4

Θ5

Θ6¬S

(b) Exact computation

x1

x2

Θ′
2

¬S

(c) Over-approximation

Figure 2.15: Figure 2.15a illustrates the safety specification of Example 2.3.4. Fig-
ure 2.15b shows the exact reachable set computed in Example 2.3.2 and unsafe set
of Example 2.3.4 with an empty intersection. The over-approximated reachable set
computed in Example 2.3.3 is presented in Figure 2.15c intersecting the unsafe set of
Example 2.3.4.

Considering the reachability algorithms described before, the safety specification has
to hold for all stars representing the reachable set. For the purpose of this thesis,
safety is defined in the following way:

Definition 2.3.2 (Safety [TMLM+19]). Assume an FNN F with L ∈ N≥2 layers and
an input set I ⊆ R⟨1⟩ for F .
A safety specification or property S for F is a union of k ∈ N+ convex polytopes with
A(i) ∈ Rsi×⟨L⟩ and d(i) ∈ Rsi for some si ∈ N≥1 and all i ∈ {1, . . . , k}:

S =

k⋃
i=1

{
y ∈ R⟨L⟩

∣∣∣ A(i)y ≤ d(i)
}

The unsafe set ¬S is defined as ¬S := R⟨L⟩ \ S.
F is called safe regarding an input set I ⊆ R⟨1⟩ if and only if the intersection with the
unsafe set is empty:

¬S ∩RL = ∅

Example 2.3.4. Consider the reachable sets computed in Examples 2.3.2 and 2.3.3
and the following safety specification represented in Figure 2.15a:

S =
{
y ∈ R2

∣∣ (−1 2
)
y ≤ 3

}
Using the exact algorithm and checking the safety with the resulting reachable set
represented by stars, requires checking the emptiness of four intersections with the
unsafe set. All of these are empty as represented in Figure 2.15b. Thus, the FNN is
safe regarding the input set.

Despite this actual safety, when using the over-approximated reachable set to check
the safety of the FNN, the intersection is non-empty and thus the FNN would be falsely
regarded as unsafe. This is represented in Figure 2.15c and shows the incompleteness
of the over-approximating method.

If an FNN is unsafe, then the intersection of the unsafe set and the reachable
set of the FNN is nonempty. The elements z ∈ ¬S ∩ RL in this intersection are
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Exact Approximate

Stars Constraints Variables Stars Constraints Variables

ReLU O(2N ) O(p+N) m 1 O(p+ 3N) O(m+N)

LeakyReLU O(2N ) O(p+N) m 1 O(p+ 3N) O(m+N)

HardTanh O(3N ) O(p+ 2N) m 1 O(p+ 4N) O(m+N)

HardSigmoid O(3N ) O(p+ 2N) m 1 O(p+ 4N) O(m+N)

UnitStep O(2N ) O(p+N) m 1 O(p+ 4N) O(m+N)

Table 2.6: The table contains worst-case amounts of stars, constraints of these and
variables of the predicate. For these an FNN with N neurons and an (n,m)-dimensional
input star with a predicate containing p linear constraints is assumed. The amounts
for the application of the exact reachability algorithm is provided in the three columns
labeled with Exact. The corresponding amounts for the over-approximating reachability
algorithm is given under Approximate.

called counterexamples and establish the starting point for our reachability method
introduced in the following chapter. All counterexamples z originate from the input
set I when the exact method is used to compute the reachable set of an FNN F . This
means that for all elements z ∈ ¬S ∩RL an element x ∈ I exists such that F (x) = z.

Counterexample of this kind also appear using the over-approximating method.
In addition, spurious counterexamples may be introduced by an over-approximated
activation function application. In this case, the counterexample does not originate
from the input set. Therefore, finding a spurious counterexample neither implies the
unsafety of the FNN nor its safety.

For the over-approximating computation it is not easy to differentiate a spurious
from a non-spurious counterexample. For the exact method on the other hand, an
input resulting in the counterexample can be computed based on the predicates of
the stars representing the reachable set of the FNN. This is possible because the only
modifications of the predicate of the input star are additional constraints. Thus, the
predicates of stars representing reachable sets are always subsets of the predicate of
the input star.

Proposition 2.3.1 (Counter Input [TMLM+19]). Assume an FNN F with L ∈ N≥2

layers, an input set I ⊆ R⟨1⟩ with I = J⟨c,V ,P⟩K and a safety specification S ⊆ R⟨L⟩.
Let Θ′ = ⟨c′,V ′,P ′⟩ represent a reachable set of F with input set I computed using
the exact algorithm and let z ∈ ¬S ∩ JΘ′K be a counterexample. Then z = c′ + V ′α
for some α ∈ P ′ and F (x) = z for the counter input x = c+ V α.

Based on the safety definition, the complexity of the verification of FNNs based
on reachability analysis can be discussed. For a safety specification S defined by k
polytopes with s = max {si | i ∈ {1, . . . , k}} it is necessary to check the safety of each
star representing a reachable set of an FNN F . This requires checking k feasibility
problems [TMLM+19]. Assume F has N neurons and the input for the reachability
analysis is a star with a predicate with p linear constraints. If the stars representing
reachable sets are (n,m)-dimensional, these feasibility problems have a linear amount
of constraints dependent on N , p, and s. The amount of variables is linear dependent
on m. Note, that the k feasibility problem for all sets defining the safety specification
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can be combined into one check for each star.
A more refined description of the amount of linear constraints can be derived from

Table 2.6 based on the amount of constraints appearing in the worst-case for a specific
activation function. The same holds for the amounts of variables for the feasibility
problems and the amount of variables described in the table. Due to the need of
solving the feasibility problem for each star in the reachable set, an exponential amount
of these problems has to be solved in the worst-case when using the exact reachability
algorithm for safety verification. This exponential amount of feasibility problems is
the reason for using the over-approximating approach despite the incompleteness of
the resulting verification, since the reachable set is fully represented by one star with
a convex representation containing the exact solution.

2.4 Solver Z3
Z3 [dMB08] is the solver we use to solve the feasibility problems in the context of
stars and the refinement algorithms introduced in the next chapter. This solver is
more specifically a satisfiability modulo theory (SMT) solver made for the verification
and analysis of software. This means that Z3 is capable of checking the feasibility of
first-order logic formulas over a variety of theories. Of these theories, we only use real
arithmetic fragments. In most cases, linear real arithmetic formulas are sufficient for
our requirements.

Definition 2.4.1 (Linear Arithmetic Formulas [DdM06]). Let n ∈ N+. A linear
arithmetic formula is a boolean combination of atoms or constraints of the following
form (

n∑
i=1

aixi

)
◦ d

for constants a1, . . . , an, d ∈ Q, variables x1, . . . , xn, and ◦ ∈ {≤, <,=, >,≥}. A
linear arithmetic formula is a linear real arithmetic formulas if the domains for the
assignments of all variables are the real numbers. Analogously, a linear arithmetic
formula is a linear integer arithmetic formula, if the domains for the assignments of
all variables are the integers.

A linear real arithmetic formula can be used to represent any polytopes P =
{α ∈ Rm | Aα ≤ d} for m, p ∈ N+, A ∈ Rp×m, and d ∈ Rp. The corresponding
formula consists of p constraints. Each constraint matches a row in the matrix A
and vector d. To derive constraint i ∈ {1, . . . , p}, the calculation Aα is performed
symbolically and represented by an atom. Thus,

∑m
j=1 ai,jαj ≤ di describes the i-th

constraint defining P . Since an element of P needs to satisfy Aα ≤ d for all dimensions
i ∈ {1, . . . , p}, the conjunction ψP :=

∧p
i=1

∑m
j=1 aijαj ≤ di of all constraints needs

to be satisfied by elements of P. In the following, ψP describes this formula for
any polytope P. Note, that this formula is also used for the predicates of stars in
Section 2.2 and can be used to describe a singular polytope in the union defining a
safety specification.

In addition to linear arithmetic formulas, we require non-linear integer arithmetic
formulas for the method described in Section 3.2.2 in the following chapter.

Definition 2.4.2 (Non-Linear Arithmetic Formulas [CGI+18]). Let n,m ∈ N. For
constants a1, . . . , an, d ∈ Q as well as b1,1, . . . , b1,m, · · · , bn,m ∈ N, relation ◦ ∈
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{≤, <,=, >,≥}, and variables x1, . . . , xm a non-linear arithmetic formula is a boolean
combination of atoms or constraints of the following form n∑

i=1

ai · m∏
j=1

x
bi,j
j

 ◦ d
For non-linear real arithmetic formulas, the domains for the assignments of all variables
are the real numbers. For non-linear integer arithmetic formulas, the domains for the
assignments of all variables are the integers.

Z3 is capable of identifying a model for a given formula of the described types
as long as the formula is satisfiable. For the formulas we use, such a model is an
assignment of values to all variables such that the formula is satisfied. These values are
represented by infinite precision arithmetic [BdMNW]. This means a value x ∈ Q is
represented by two integers n, d ∈ Z of arbitrary size such that x = n

d . By representing
numbers this way, exact computation and thus soundness of the computation can
be assured. The price for this precision are potentially large representations which
decreases performance. Regardless of this disadvantage we still use this a number
representation for the implementation of all algorithms presented in this work.

For unsatisfiable formulas, Z3 can produce an (unsatisfiable) core instead of a
model. Such a core is a subset of the constraints of a given formula that is already
unsatisfiable. Note, that these subsets are not minimal in general.
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Chapter 3

Verification with CEGAR

In this chapter, our verification method for FNN using counterexample-guided abstrac-
tion refinement (CEGAR) is introduced. This method combines the over-approximating
and exact reachability analysis introduced in the previous chapter to gain the advan-
tages of both approaches. Thus, our verification method achieves the completeness of
the exact approach. In addition, the number of resulting reachable sets is reduced.
This leads to a reduced amount of safety checks for the verification of FNNs. This
combination is achieved by using over-approximating computation whenever possible
and exact computation whenever necessary. As introduced in the previous chapter,
the only over-approximated operation of the reachability analysis is the application of
activation functions. This is thus the only type of operation for which either exact
or over-approximating computation needs to be chosen. Affine mappings are always
computed efficiently with the exact method introduced before.

As stated before, the over-approximating approach is applied whenever possible.
Thus, the initial abstraction corresponds to the over-approximate reachability analysis.
This abstraction is then refined until either the safety or unsafety of the FNN is proven.
If the initial abstraction includes an unsafe reachable set, we identify the reason for this
unsafety. This search is based on the potentially spurious counterexample found during
the safety check. The counterexample is traced to an origin, which is either the input
set or an over-approximated activation function application. If the counterexample
originates from the input set, we find a counter input and thus the actual unsafety
of the FNN. Otherwise, the counterexample is introduced by over-approximation
and thus spurious. Therefore, the abstraction needs to be refined. For this, the
over-approximated operation that is responsible for the identified introduction of the
counterexample is replaced by the corresponding exact operation. This process of
refinement is repeated until either the unsafety of the FNN can be proven with a
counter input or all resulting reachable sets satisfy the safety specification. This
satisfaction implies the safety of the FNN.

An overview of this refinement process is provided in Figure 3.1. In this figure, a
reachability tree is constructed based on reachability analysis. This data structure
is introduced in Section 3.1 and allows access to all reachable sets computed during
the analysis. Our methods for the identification of counterexamples corresponds to
safety checking and are introduced in Section 3.2. Based a reachability tree and a
spurious counterexample, the tracing methods introduced in Section 3.3 identify an
operation responsible for the counterexample. If the counterexample, is not spurious
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these methods instead provide a counter input.
The refinement algorithms introduced in Section 3.4 combine reachability analysis,

safety checking, and tracing into our verification method. Due to the cyclic nature
of this process, all of these methods can use the information gained during previous
cycles. This is also visualized in Figure 3.1 where the blue subtrees of the central
reachability tree are the result of refinement. Because multiple methods and heuristics
for all of these steps are introduced in their respective sections, the motivation for
some them depends on the methods introduced at a later point. This motivation will
still be explained.

3.1 Reachability Trees

The reachability tree is the data structure we use as an abstraction for a reachability
analysis of an FNN. The nodes in this tree contain the reachable sets that are computed
during this analysis. The root of such a tree thus represents the input to the reachability
analysis. Reachable sets are still represented as stars. Therefore, we sometimes use
nodes and the stars they contain interchangeably.

The structure of a reachability tree corresponds to the structure of an FNN. More
specifically, the operations in the FNN are applied to reachable sets in nodes to
calculate the children of that node. These operations are the affine mappings and the
dimension-wise activation functions applications. For the algorithms in this chapter
and the definition of reachability trees, we define these operations on stars. In the
following definitions, an operation application returns a set of stars according to
reachability analysis. The operation that applies the affine mapping corresponds to
line 5 in Algorithms 1 and 2.

Definition 3.1.1 (Affine Mapping Operation). Consider a weight W (i) ∈ R⟨i⟩×⟨i−1⟩

and bias b(i) ∈ R⟨i⟩ for layer i ∈ {2, . . . , L} for some FNN with L ∈ N≥2 layers. Let
Θ further be a (⟨i− 1⟩,m)-dimensional star with m ∈ N+ representing a reachable set.
Then the operation op(·) corresponding to the affine mapping in the FNN applied to Θ
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is defined as
op(Θ) =

{
W (i)Θ+ b(i)

}
were W (i)Θ+ b(i) is the typical application of an affine mapping to a star.

The operation for the application of activation functions corresponds to Algo-
rithms 3 and 4.

Definition 3.1.2 (Exact Activation Function Operation). Consider an activation
function application to neuron j ∈ {1, . . . , ⟨i⟩} for i ∈ {2, . . . , L} for an FNN with
L ∈ N≥2 layers. Let Θ further be a (⟨i⟩,m)-dimensional star with m ∈ N+ representing
a reachable set. Then the operation op(·) corresponding to the exact application of the
activation function in the FNN applied to Θ is defined as

op(Θ) = exactAct(Θ, j)

were exactAct refers to Algorithm 3 with an implicit input of a list of cases corre-
sponding to the activation function. The output of exactAct is a list of stars. For
this definition, the list is interpreted as a set of stars instead.

Definition 3.1.3 (Over-Approximated Activation Function Operation). Consider an
activation function application to neuron j ∈ {1, . . . , ⟨i⟩} for i ∈ {2, . . . , L} for an
FNN with L ∈ N≥2 layers. Let Θ further be a (⟨i⟩,m)-dimensional star representing
a reachable set for m ∈ N+. Then the operation op(·) corresponding to the over-
approximated application of the activation function in the FNN applied to Θ is defined
as

op(Θ) = {approximateAct(Θ, j)}
were approximateAct refers to Algorithm 4 with an implicit input of a list of cases
corresponding to the activation function.

The operations are applied based on the order in the FNN. Thus, for a single layer,
the first operation is an affine mapping. This is followed by the application of the
activation function to each neuron in ascending order. The overall order of layers
corresponds to the order of operations in the whole FNN which defines an order of
all operations. Note, that a single operation corresponding to an activation function
application can be either exact or over-approximating.

In an abuse of notation, we also identify these operations with the corresponding
function applications in the FNN. An operation op(·) can thus be applied to a value
x directly. In this case we write op(x) = y. While this notation does use stars or
sets of stars anymore, the output is still well-defined. x can be represented by a
star containing only this value. In this case, the operation would return a set only
containing the star that has y as its only element.

Based on these operations we can now define a reachability tree.

Definition 3.1.4 (Reachability Tree). Let F be a FNN with L ∈ N≥2 layers and
N =

∑L
l=2⟨l⟩ neurons after the input layer, let I = ⟨c,V ,P⟩ represent the input set for

the verification of F , let ri be the amount of stars representing the reachable set after
the application of i ∈ {1, . . . , L+N − 1} operations, and let opi,j(·) be an instance
of the i-th operation applied in F for j ∈ {1, . . . , ri−1}. Then a full reachability tree
T = (V,E) is defined with a vertex set V =

⋃L+N−1
i=0 Vi for V0 = {Θ0,1} := {I} and

Vi = {Θi,1, . . . ,Θi,ri} :=
ri−1⋃
j=1

opi,j(Θi−1,j)
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Figure 3.2: Figure 3.2a is a representation for the exact reachability analysis in
Example 2.3.2. Figure 3.2b is a representation for the over-approximating reachability
analysis in Example 2.3.3.

and a set of edges

E :=

N+L−1⋃
i=1

{
(Θi−1,j ,Θ

′) ∈ Vi−1 × Vi

∣∣ Θ′ ∈ opi,j(Θj), j ∈ {1, . . . , ri−1}
}

A (partial) reachability tree T ′ = (V′,E′) is defined as a subtree of a full reachability
tree (V,E) such that T ′ is a tree, V′ ⊆ V, V0 ⊆ V′, and E′ = E∩ (V′×V′). Additionally,
if Θ,Θ′ ∈ V′ with Θ ∈ opi,j(Θ′) for any i ∈ {1, . . . , N + L} and j ∈ {1, . . . , ri−1},
then opi,j ⊆ V′.

Note, that an instance of an operation opi,j(·) always refers to the same affine
mapping, if the i-th operation of the FNN is an affine mapping. For activation function
application, this operation either refers to an exact or over-approximating application.
Reachability trees corresponding to the exact reachability analysis only contain exact
activation function operations, while reachability trees for over-approximating reacha-
bility analysis only contain over-approximated operations. A reachability tree for the
method introduced in this chapter may contain both exact and over-approximated
activation function operations. This means, that for i ∈ {1, . . . , N + L− 1} and
j, k ∈ {1, . . . , ri−1}, operation opi,j may be an exact activation function application,
while operation opi,k is over-approximating.

Example 3.1.1. The reachability analysis described in Examples 2.3.2 and 2.3.3 are
represented by the reachability trees in Figure 3.2. The FNN used for this analysis
consists only of an input and output layer. Therefore, the operations applied to the
input set are an affine mapping followed by two ReLU activation function operations.
Thus, operation op1,1 is the same affine mapping operation in both trees.

In the reachability tree represented in Figure 3.2a, operation op2,1 is the exact
application of the ReLU activation function to the first dimension j = 1. As seen in
the example describing this reachability analysis, this computation results in two sets
representing the reachable set of the FNN up to this point. Thus, the node Θ′ has two
children representing one of these sets each. Corresponding to the FNN, operations
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op3,1 and op3,2 are both exact applications of the ReLU activation function to the
second dimension j = 2. The remaining nodes in the tree result from the same process
as before.

The over-approximated reachability analysis from Example 2.3.3 described by the
reachability tree in Figure 3.2b applies over-approximated ReLU operations in both
dimensions instead of the exact computation before. Therefore, operation op′2,1 is this
application in dimension j = 1 and op′3,1 is the application in dimension j = 2.

In a full reachability tree, each leaf represents a subset of the reachable set F (I) of
an FNN F for an input set I. This representation is, in general, an over-approximation,
if at least one operation on the path from the root of the reachability tree to the leaf
is over-approximated. The union of all leaves in a full reachability tree corresponds
to a reachable set F (I) or an over-approximation thereof, because all operations of
the FNN are applied to the input. In a partial reachability tree, leaves that do not
correspond to the reachable set F (I) can occur, if not all operations are applied to a
specific path from the root. Leaves representing such a partial computation are referred
to as non-final leaves, while leaves resulting from the application of all operations of
the FNN are called final.

As final leaves contain stars representing F (I), these leaves are directly relevant for
safety checking. If the set contained in a final leaf is safe regarding some specification,
we consider the leaf to be safe. If all leaves reachable from a node in the reachability
tree are final and safe, this node is considered safe. The safety of the root node then
implies the safety of the FNN corresponding to the reachability tree. Note, that while
the safety of an FNN can only be proven by a full reachability tree, it is sufficient to
find a single final leaf to identify a counter input proving its unsafety.

3.2 Safety and Counterexamples

In this section, we once more look into safety as defined in Definition 2.3.2 and the
process to derive a counterexample from this. More specifically, the safety of reachable
sets of an FNN represented by the final leaves of a reachability tree will be explored.
To this end, we assume an FNN F , a corresponding safety specification S, and a
reachable set Θ represented by a final leaf of a reachability tree corresponding to
F . As described in Definition 2.3.2, the safety of Θ regarding S can be derived by
checking the intersection of Θ and ¬S for emptiness. Equivalently, the unsafety of Θ
is proven, if a counterexample z ∈ (JΘK ∩ ¬S) exists. We use this second option and
obtain a counterexample by checking the feasibility of the following formula

ψS,Θ ≡ z ∈ JΘK ∧ z /∈ S (3.1)

If a value z that satisfies ψS,Θ exists, then z is a counterexample. Since the verifi-
cation with CEGAR generally uses a combination of exact and over-approximating
computation, this counterexample can be spurious. Our method to determine the type
of counterexample is the topic of the next section.

The abstract formula ψS,Θ needs to be transformed into an equivalent real arith-
metic formula to allow us to check its feasibility. The formula we use will even be linear.
To transform ψS,Θ we make use of the definition of an element in the representation
of a star introduced in Definition 2.2.1. Based on this definition, we search for an
element of the predicate of Θ corresponding to the counterexample.
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Algorithm 7: Safety Checking Algorithm
input : (n,m)-dimensional star Θ = ⟨c,V ,P⟩,

Safety specification S =
⋃k

i=1 Si

output :Pair of counterexample and predicate value (z,α)
Or a pair of empty tuples ((), ())

1 ψP ← constructFormula(P)
2 for Si ∈ S do
3 ψSi

← constructFormula(Si)
4 α← checkFeasibility(ψP(α) ∧

∧k
i=1 ¬ψSi

(c+ V α))
5 if α = () then // JΘK ⊆ S
6 return ((), ())
7 else // (c+ V α) ∈ (JΘK ∩ ¬S)
8 return (c+ V α,α)

Proposition 3.2.1 (Counterexamples). Assume an (n,m)-dimensional star Θ =

⟨c,V ,P⟩ and a safety specification S =
⋃k

i=1 Si ⊆ Rn. Let ψP , ψS1
, . . . , ψSk

be
the linear real arithmetic formulas corresponding to P,S1, . . . ,Sk as introduced in
Section 2.4. Then all values α ∈ Rm satisfying the following formula correspond to
counterexamples z ∈ JΘK ∩ ¬S with z = c+ V α:

ψS,Θ(α) := ψP(α) ∧
k∧

i=1

¬ψSi
(c+ V α)

Based on this proposition, finding a satisfying assignment α for ψS,Θ proves the
unsafety of the reachable set Θ. In addition, such an assignment is a predicate value
α ∈ P corresponding to a counterexample (c+V α) ∈ JΘK for Θ = ⟨c,V ,P⟩. Both the
counterexample and the predicate value are relevant for tracing the counterexample to
its origin. If ψS,Θ is unsatisfiable, no counterexamples exist which implies the safety of
Θ regarding S. The feasibility of this formula provides the primary method of safety
checking for our verification method.

For the safety of a star Θ regarding a safety specification S, this process is
captured in Algorithm 7. The algorithm starts by constructing the formula ψS,Θ as
described in Proposition 3.2.1. To this end, the function constructFormula takes
a convex bounded polytope and returns the corresponding formula. Then the function
checkFeasibility is used to check the feasibility of ψS,Θ. This function returns
the empty tuple (), if the formula is infeasible and a model α of ψS,Θ otherwise. This
check relies on the solver introduced in Section 2.4. Afterwards the function either
returns ((), ()) to indicate the absence of a counterexample and thus the safety of Θ
or the counterexample z and the corresponding predicate value α.

3.2.1 Safety Checking with Previous Counterexamples
During the refinement process explained in the following Section 3.4 the safety of
multiple reachable sets is checked and typically multiple of them are unsafe. If this
heuristic is applied, the algorithm keeps track of all counterexamples that are found
during safety checks. Then it is checked whether any previous counterexample is
included in the current reachable set as a first step. If a previous counterexample is
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Algorithm 8: Algorithm for Safety Checking with Previous Counterexamples
input : (n,m)-dimensional star Θ = ⟨c,V ,P⟩,

Safety specification S =
⋃k

i=1 Si,
Set of previous counterexample Z

output :Pair of counterexample and predicate value (z,α)
Or a pair of empty tuples ((), ())

1 ψP ← constructFormula(P)
2 for z ∈ Z do
3 for i← 1 to n do
4 φi ← constructFormulaEq(Θ, z, i)
5 α← checkFeasibility(ψP(α) ∧

∧n
i=1 ¬φi(α))

6 if α ̸= () then // z ∈ JΘK
7 return (c+ V α,α) // z = c+ V α

8 return checkSafety(Θ,S)

still element of the current reachable set, it is also a counterexample for it. Thus, the
reachable set is unsafe. If none of the previous counterexamples are element of the
current reachable set, the safety of the set is checked using the previous method.

The predicate and its dimension may differ based on the combination of exact
and over-approximated operations applied to obtain the reachable set. Thus, it is
not sufficient to check if the previous predicate value α is still in the predicate of the
current reachable set. Instead, a feasibility problem has to be solved for a formula
that indicates this containment. This requires finding an element of the predicate that
is equal to the counterexample after application of the affine mapping defining the
star. For a (n,m)-dimensional star Θ = ⟨c,V ,P⟩ with a predicate value α ∈ P and a
value x ∈ Rn, the equality of the value in the star based on α and x in dimension
i ∈ {1, . . . , n} is described by the following formula based on Definition 2.2.1:

φi(α) :=

ci + m∑
j=1

vijαj = xi

 (3.2)

Based on this formula, the following proposition defines a formula for the inclusion of
a value x in a star.

Proposition 3.2.2 (Elements of Stars). Assume an (n,m)-dimensional star Θ =
⟨c,V ,P⟩ with predicate P = {α ∈ Rm | ψP(α)} and a value x ∈ Rn. Then x ∈ JΘK
if and only if the following formula using is feasible

ψP(α) ∧
n∧

i=1

φi(α)

for φi(α) defined according to Formula 3.2.

The formula introduced in Proposition 3.2.1 checks the non-containment of the
counterexample. This property of the counterexample does not change for a different
reachable set. Thus, if a previous counterexample is included in the reachable set, it is
a counterexample. Further checks are not required.
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Algorithm 8 describes this process in the form of an algorithm. The input is
an extension of the input for the previous safety checking algorithm. In addition
to the reachable set and safety specification, a set of all previous counterexample is
required. Based on this input, the formulas for the containment check of a previous
counterexample are constructed using the function calls constructFormula and
constructFormulaEq. constructFormula is the same function as before, while
constructFormulaEq constructs Formula 3.2. The feasibility check with the func-
tion call checkFeasibility works in the same way as before. Thus, if this check
finds feasibility, a previous counterexample is also a current counterexample which is
thus returned. Otherwise, the algorithm continues with checking the other previous
counterexamples. Once all of them are checked and none are current counterexample,
the algorithm calls Algorithm 7 for the basic safety checking method which is referenced
with the function name checkSafety.

3.2.2 Reducing Representation Size
The counterexamples produced by the previous methods are represented in an exact
manner as introduced in Section 2.4. This representation can become very large which
reduces the performance of our algorithms. In our early experiments, we encountered
counterexamples with hundreds of digits in their representation. The two methods
to derive counterexamples described in the following are our attempts to reduce this
number of digits. Instead of increasing performance both attempts resulted in a
performance decrease with such significant that verification becomes infeasible. These
methods are thus not used for verification.

The basic idea for both methods is to minimize the sum of the absolute values of the
numerators and denominators of all variable values. Finding a satisfying assignment
to a formula that is minimized regarding an affine transformation of the variables is
possible with Z3 . Absolute values on the other hand cannot be used for minimization.
In addition, the numerators and denominators of the representation of variables cannot
be accessed. Thus, the formulas typically used to check safety need to be changed to
allow this behavior.

To this end, a real variable αi is represented by σi · ηi

δi
for integer variables σi, ηi,

and δi. In this representation, σi represents the sign of αi and is thus restrained
to 1 or −1. By restraining the numerators ηi to the non-negative integers and the
denominators δi to the positive integers, these values are equal to their absolute value.
The final hurdle for this representation is that Z3 does not support division. Thus,
the representation σi · ηi

δi
of αi needs to be transformed in the final formulas.

The first method to reduce the representation size of counterexamples, adds the
new representation on top of the formula ψS,Θ presented in Proposition 3.2.1. This
means, that for all variables αi the equality αi · δi = σi · ηi and the aforementioned
constraints on the new variables σi, ηi, and δi need to be satisfied in addition. The
resulting formula is thus a non-linear arithmetic formula with mixed integer and real
variables. For an (n,m)-dimensional star Θ = ⟨c,V ,P⟩ and a safety specification
S =

⋃k
i=1 Si the resulting formula is of the following form:

ψP(α) ∧
∧k

i=1 ¬ψSi(c+ V α) ∧
∧m

i=1 (αi · δi = σi · ηi)

∧
∧m

i=1 ((σi = 1 ∨ σi = −1) ∧ ηi ≥ 0 ∧ δi ≥ 1) .

The second method substitutes the variables αi in ψS,Θ with the new representation
σi · ηi

δi
instead. For a polytope {α ∈ Rm | Aα ≤ d} with A ∈ Rm×p and d ∈ Rp the
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following formula results from this substitution:

p∧
i=1

m∑
j=1

(
aij ·

σj · ηj
δi

)
≤ di.

Since division cannot be represented directly by Z3 , it is necessary to use the following
equivalent formula:

p∧
i=1

m∑
j=1

aij · σj · ηj · m∏
k=1
k ̸=j

δk

 ≤ di m∏
k=1

δk

This second method thus checks feasibility based on ψS,Θ and these non-linear integer
arithmetic formulas for the polytopes P, S1, . . . ,Sk.

Checking the feasibility for either of these types of formulas is less efficient than
checking the feasibility of linear real arithmetic formulas. In fact, checking safety with
these formulas is so inefficient that even for very fast verifications no assignment or
lack thereof can be found in a reasonable time frame. With this result, we stopped
looking for further options to reduce the number representation.

3.3 Tracing Counterexamples
The last step before the refinement algorithms performing verification can be introduced
is the identification of an origin of a counterexample. Such a counterexample is derived
during the safety checks of final leaves. The origin of a counterexample is either a
counter input as defined in Proposition 2.3.1 or an over-approximated operation during
the reachability analysis. In the first case, the counterexample is non-spurious which
implies the unsafety of the FNN. Finding such a counter input requires tracing the
counterexample to the root of the reachability tree. Identifying an operation as the
origin of a counterexample also relies on tracing the counterexample on the shortest
path to the root of the corresponding reachability tree. In both cases, our tracing
method relies on finding values that lead to the counterexample. Such a value is
called a source of the counterexample. This phrase is based on the following general
definition for a source.

Definition 3.3.1 (Sources). Let T be a reachability tree with a root node Θ0, a final
leaf Θt, and a path (Θ0, . . . ,Θt) in the reachability tree. Let further op1(·), . . . , opt(·)
be the sequence of operations such that Θi ∈ opi(Θi−1) for all i ∈ {1, . . . , t}. Then an
element y ∈ JΘi−1K with opj(opj−1(· · · opi(y) · · · )) = y′ ∈ JΘjK is called a source of
y′ in Θj for i ∈ {1, . . . , t} and j ∈ {i, . . . , t}.

Based on this definition, a source of a counterexample is a value in a reachable set
which is mapped to the counterexample by the remaining computations of the FNN.
Note, that the computation for an operation on singular values is always performed
in an exact manner. This means, that values that are only in a reachable set due
to over-approximation do not necessarily have a source in each prior node of the
reachability tree. Based on this definition of sources, origins of counterexamples can
be defined as follows.



46 Verification with CEGAR

Definition 3.3.2 (Origin of a Counterexample). Let T be a reachability tree with a
root node Θ0, a final leaf Θt with a counterexample z ∈ JΘtK, and a path (Θ0, . . . ,Θt)
in the reachability tree. Let further op1(·), . . . , opt(·) be the sequence of operations such
that Θi ∈ opi(Θi−1) for all i ∈ {1, . . . , t}. An origin of a counterexample is either a
counter input x ∈ JΘ0K with F (x) = z or an operation opi(·) for i ∈ {1, . . . , t} such
that a source y ∈ JΘiK of z exists and no element y′ ∈ JΘi−1K exists that is a source
of y.

In the following, we introduce different methods to trace a counterexample to its
origin based on a single value. This begins with a basic method that iteratively finds
sources in parent nodes until an origin is found in Section 3.3.1. This quite inefficient
method is then improved by tracing a source of a counterexample through sequences
of activation function operations. In Section 3.3.2 this will be done with a binary
search based method. This process is then amended by testing if previous origins are
still origins of counterexamples in Section 3.3.3. Afterwards, we change our method of
search in Section 3.3.4. This new method makes use of the information we gain from
feasibility checks during the tracing process.

3.3.1 Basic Tracing

As mentioned before, this basic tracing method identifies an origin of a counterexample
by finding a source in one node after the other. These nodes form a path from an
unsafe final leaf to the root of a reachability tree. This, a new source of the original
counterexample contained in the parent node is identified in the form of a source for
the already known source. This process stops once an origin is identified. Such an
origin is an over-approximated activation function operation if no new source can be
identified. If a source for the counterexample is traced to the root, the origin is a
counter input.

The process to identify a new source in the parent node either utilizes the star
representation of the nodes in a reachability tree or a solution to a feasibility problem.
This feasibility problem describes the revers application of the operation with which
the node containing the known source was computed. Any new source found in either
way is then a source of the counterexample contained in a node further on the path to
the root.

The utilization of the representation will always produce a new source, but only
works for affine operations. The feasibility problem on the other hand can become
infeasible indicating that the known source does not have a new source in the parent
node. In this case, the operation in between the current pair of child node and parent
node is an origin of the counterexample. It is necessary to differentiate between affine
operations and activation function operations to describe this process in more detail.
It is not necessary to also distinguish exact and over-approximated activation function
operations.

Given a child node with a known source that is the result of an affine operation, a
source in the parent node can be identified in the same way counter inputs are derived
for the exact reachability analysis following Proposition 2.3.1. Thus, a source can be
calculated by simply using the same predicate value as before.

Proposition 3.3.1 (Tracing through Affine Operations). Let Θ = ⟨c,V ,P⟩ and
Θ′ = ⟨c′,V ′,P⟩ such that Θ′ ∈ op(Θ) for an affine operation op(·). For an element
z = c′ + V ′α ∈ JΘ′K with α ∈ P, the element c+ V α ∈ JΘK is a source of z.
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Thus, no feasibility problem needs to be solved to trace a counterexample through
this operation type, if the predicate value is kept track of. The use of the same
predicate value relies on the lack of change to the predicate of a star when an affine
operation is applied. Note, that a parent node computing a child node via an affine
operation always contains at least one source for each element of the reachable set
represented by the child due to the exactness of this operation. On the other hand,
multiple sources for the child node’s source can generally be contained in the parent
node.

The tracing process requires solving a feasibility problem for each activation
function operation. Because activation functions are applied to only one dimension at
a time, the remaining dimensions remain unchanged. This needs to be represented
by the formula for feasibility checking. For the changing dimension, the formula
represents the application of the activation function to a potential new source. In all
other dimensions, this new source needs to equal the known source. Such a formula is
thus similar to the formula introduced for checking if a value is an element of a star
introduced in Proposition 3.2.2.

The only change in these formulas regards the values in dimension k to which the
activation function is applied. Equivalently to the description before, this dimension
is defined by the inverse application of the activation function. To this end, the value
in the star is compared to a constant that can be derived from the known source
and the specific activation function. To calculate this constant, a univariate affine
transformation is applied to the relevant dimension of the known source. Then, the
value of the new source in dimension k is compared to this constant using an operator
◦k ∈ {≤, <,=, >,≥} which depends on the same information as the constant. In
special cases, the restriction to this dimension can also be removed completely.

The specific affine transformation and comparison depend on the segments of
the activation function the source is the result of. For a specific activation function
operation op(·) applied to dimension k ∈ {1, . . . , n}, an (n,m)-dimensional star
Θ = ⟨c,V ,P⟩, and a source z ∈ JΘ′K of a counterexample for Θ′ ∈ op(Θ), any solution
α ∈ Rm to formula of the following form

ψP(α) ∧
n∧

i=1

φi (3.3)

corresponds to a new source c + V α ∈ JΘK. The subformula ψP(α) describes the
inclusion of the vector α in the predicate of the star. The subformulas φi are the
constraints on the values z′i of a new source z′ ∈ JΘK where each dimension i is defined
based on the predicate values α. Therefore, these subformulas are of the following
form

φi :=

ci + m∑
j=1

vijαj

 ◦i (aizi + bi) (3.4)

with ◦i set to the equality =, ai = 1, and bi = 0 for i ∈ {1, . . . , k − 1, k + 1, n} and
◦k ∈ {≤, <,=, >,≥} and ak, bk ∈ Q for the dimension the activation function is
applied to.

With this definition, a formula φi for a dimension the activation function is not
applied to is equivalent to the subformula of the containment check introduced as
Formula 3.2. Thus, the conjunction of these formulas for all dimensions describes the
equality of z and z′ in all dimensions i ̸= k and add a single constraint on the value



48 Verification with CEGAR

Case ◦ a b

zk = 0 ≤ 0 0

zk > 0 = 1 0

(a) ReLU

Case ◦ a b

zk < 0 = 1
γ 0

zk ≥ 0 = 1 0

(b) LeakyReLU

Case ◦ a b

zk = Rmin < 0 v

zk = Rmax ≥ 0 v

(c) UnitStep

Case ◦ a b

zk = Vmin ≤ 0 Vmin

zk = Vmax ≥ 0 Vmax

Vmin < zk < Vmax = 1 0

(d) HardTanh

Case ◦ a b

zk = 0 ≤ 0 Vmin

zk = 1 ≥ 0 Vmax

0 < zk < 1 = Vmax − Vmin Vmin

(e) HardSigmoid

Table 3.1: Constants for the tracing formula for all introduced activation functions

z′k. As mentioned before, the subformula φk may also be set to ⊤ or equivalently not
be contained at all.

Note, that the Formula 3.3 requires additional checks on the input before construc-
tion. These checks could be removed by completely encoding the activation function
in the formula. To reduce the complexity of the feasibility check, we instead apply
this approach.

Since Formula 3.3 is meant to be feasible if and only if there is a new source of the
known source in the parent node, we assume that the known source is the result of an
exact activation function application. The set of all potential values in dimension k
of a new source is therefore the union of all preimages of the value in dimension k of
the known source. Due to the definition of piecewise linear functions over multiple
segments, the image of an activation function is the union of the images of the affine
mappings for each segment with the segment as domain. Thus, the value in dimension
k of a known source is an element of some images of the affine mappings defining the
activation function.

If an affine mapping of a segment is a constant function, any value in the segment
corresponds to a source. Otherwise, an affine mapping f : X→ f(X), x 7→ ax+ b on a
segment X ⊆ R is invertible with f−1 : f(X) → X, x 7→ x

a −
b
a . Thus, f−1(zk) is the

only value in dimension k for a new source based on a known source z and the specific
segment.

Generally, the preimage of a piecewise linear function for a single value is some
subset of the real numbers. For the activation functions introduced in Section 2.1,
the preimage of any value is an interval with only one bound, with only one value,
or without any bounds. The intervals with a singular bound can thus be described
by formulas φk with an operator ◦k ∈ {<,≤,≥, >}. The operator = can be used
to describe the single valued intervals and the interval without bounds corresponds
to the aforementioned removal of φk. A compilation of the values a, b ∈ Q and
◦ ∈ {<,≤,=,≥, >} for all activation functions introduced in Section 2.1 can be found
in Table 3.1. The derivation of these values based on each activation function will be
described in the following. To increase the readability, ck +

∑m
j=1 vkjαj is abbreviated

with z′k for the description of the formulas.
The ReLU activation function is defined over the segments (−∞, 0) and [0,∞).
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The affine mapping applied to elements of (−∞, 0) is the constant function mapping
to 0. In the other interval, the affine mapping is the identity. Thus, the image of
the ReLU activation function consists of the images of these segments which are
{0} = [0, 0] and [0,∞) respectively. The only overlapping value of these images is
0. If a new source z is the result of a ReLU operation in dimension k and zk = 0,
the set of all possible values which result in 0 are (−∞, 0) from the first segment and
[0, 0] from the second. Therefore, a source for z has a value in (−∞, 0] in the k-th
dimension which can be described as z′k ≤ 0. Otherwise, zk > 0 which means that zk
is the result of the identity function. Thus, z′k = zk. These values are represented in
Table 3.1a. Note, that any value a ∈ R leads to the same result for the case zk = 0 as
a is multiplied by zk.

The LeakyReLU activation function behaves similarly to ReLU and is defined over
the same segments. While the affine mapping applied to values in [0,∞) is the same,
the affine mapping applied to values in (−∞, 0) is x 7→ γx for γ ∈ (0, 1). Thus, the
image for this interval is (−∞, 0). Since (−∞, 0) and [0,∞) partition the real numbers
and both affine mappings defining the activation function are invertible, the searched
for values are unique. For a source for z which is the result of a LeakyReLU operation
in dimension k, the same formula as for ReLU is created to find new source values if
zk ≥ 0. If zk < 0, the source z′ has the value z′k = 1

γ zk in dimension k. The values for
the formula φk that result from this are represented in Table 3.1b.

The HardTanh activation function is defined over three segments. For two of
these, the corresponding affine mapping is the constant function mapping to Vmin

and Vmax respectively. Thus, the image for the segment (−∞, Vmin) is [Vmin, Vmin]
and the image for (Vmax,∞) is [Vmax, Vmax]. The remaining segment [Vmin, Vmax]
once more corresponds to the identity function, where the image is the same as the
segment. The images of either of the segments with constant functions are subsets
of the image of the segment with the identity function. Thus, we derive formulas φk

similarly to the ReLU activation function, if Vmin < Vmax. If a known source z is
the result of a HardTanh operation in dimension k, formula φk is constructed for a
new source z′ as z′k ≤ Vmin if zk = Vmin and as z′k ≥ Vmax if zk = Vmax. For the
remaining case Vmin < zk < Vmax the formula is once more equivalent to z′k = zk. If
Vmin = Vmax, the HardTanh activation function becomes the constant function that
maps to Vmin = Vmax. In this case, all values in (−∞,∞) are mapped to the same
value which means that any value z′k satisfies the condition to be a source. Thus,
the formula φk is not included in the overall feasibility problem. The values for the
formula in the case of Vmin < Vmax are represented in Table 3.1d.

The HardSigmoid activation function is also defined over three segments of which
two once more correspond to constant functions. The image of the segment (−∞, Vmin]
is [0, 0] and the image of the segment [Vmin,∞) is [1, 1]. The image of the re-
maining segment (Vmin, Vmax) is (0, 1) which corresponds to the affine mapping
x 7→ x

Vmax−Vmin
− Vmin

Vmax−Vmin
. Since [0, 0], (0, 1), [1, 1] are pairwise disjoint, finding a

new source can be done for each segment individually. Because the segments cor-
responding to constant functions are defined with closed intervals, the formula φk

for the cases zk = 1 and zk = 0 are the same as the formulas for the corresponding
cases for HardTanh. For the remaining segment, the defining affine mapping needs
to be inverted similarly to the negative case of LeakyReLU. The inverse of the affine
mapping for this segment is x 7→ (Vmax − Vmin)x + Vmin. Thus, the formula φk is
equivalent to z′k = (Vmax−Vmin)zk +Vmin for a known source Vmax and a new source
z′k. These values are once more collected in Table 3.1e.
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Algorithm 9: Basic Tracing Algorithm
input : Reachability tree T ,

(n,m)-dimensional star Θ = ⟨c,V ,P⟩,
Operation op,
Known source of a counterexample z contained in a child of Θ,
Corresponding predicate value α

output :Counter input z′ or operation op′

/* Compute the predicate value of the next source */
1 if isAffine(op) then
2 α′ ← α // Continue in line 12
3 else // Trace z to Θ
4 k ← getDimension(op)
5 ψP ← constructFormula(P)
6 for i← 1 to n do
7 if i = k then
8 φi ← constructFormula(z, op, i,Θ)
9 else

10 φi ← constructFormulaEq(z, i,Θ)

11 α′ ← checkFeasibility(ψP ∧
∧n

i=1 φi)

/* Return an origin */
12 if α′ = () then

// Return an over-approximated operation
13 return op
14 else if isRoot (T,Θ) then

// Return a counter input
15 return c+ V α′

16 else
// Continue tracing

17 Θ′ ← getParent(T,Θ)
18 op′ ← getOperation(T,Θ′)
19 return basicTracing (T,Θ′, op′, c+ V α′,α′)

The final activation function UnitStep introduced in Section 2.1 is defined over
two segments which both correspond to constant functions mapping to Rmin and
Rmax respectively. Thus, the image of segment (−∞, v) is [Rmin, Rmin] and the
image of segment [v,∞) is [Rmin, Rmin] similar to the constant function before. If
Rmin ̸= Rmax, these images are disjoint. Therefore, the formula φk for a source
zk = Rmin corresponds to z′k < v and for zk = Rmax to z′k ≥ v. Since there are only
two segments in the definition of this activation function, no further cases need to be
considered if the initial condition holds. These two cases are shown in Table 3.1c. If
Rmin = Rmax on the other hand, this activation function behaves the same way the
HardTanh activation function behaved in the case of Vmin = Vmax. Thus, the formula
φk is not included for feasibility checking since all values map to Rmin = Rmax.

These formulas are the template for the construction of the feasibility problem that
allows tracing in Algorithm 9 which is referenced as basicTracing in this algorithm.
For this algorithm a (partial) reachability tree T = (V,E) with a star Θ ∈ V is assumed.
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Additionally, a source for a counterexample z and the corresponding predicate value
α are parameters. It is assumed, that the counterexample is an element of a child of
Θ and that this child was computed using the operation op(·) which is the final part
of the input.

Based on this input, the algorithm computes an origin. Therefore, the algorithm
either returns an element of the root or an over-approximated activation function
operation as this origin. This return can also be based on a recursive call. In this
call, the algorithm is applied to the parent node of the input star. Therefore, one
application of this algorithm either terminates or reduces the distance to the root
by one. Since all reachability trees have a root, this algorithm terminates once the
original input has been traced to the root at the latest.

The algorithm first differentiates between affine and activation function operations
with the if-statement. For this the method isAffine results in true, when applied
to an affine operation, and false otherwise. Tracing of a source through an affine
operation is then simply handled via the predicate value. The activation function
operation is handled in lines 4 to 11. Since, we aim to trace through this operation,
we need to know the dimension it is applied to. The function getDimension returns
this dimension. For the tracing process, Formula 3.3 is now constructed using methods
constructFormula and constructFormulaEq. When the first one is applied
to a polytope, a corresponding formula is produced. This application behaves the
same way it does in Algorithm 7. A method with the same name is also used with
a source, an operation, a dimension, and a star as input. In this case, the resulting
formula corresponds to Formula 3.4 where the variables are replaced by constants
corresponding to the specifics of the input as explained before. Similarly, the method
constructFormulaEq returns a formula for the equality of the values of stars in
one dimension. Thus, this algorithm constructs all subformulas of Formula 3.3 during
the loop starting in line 6. Finally, the instance of this formula is checked for feasibility
in line 11 with the method checkFeasibility that behaves as before. Note, that
feasibility corresponds to the return of the empty tuple and infeasibility to the return
of a satisfying assignment.

Lines 12 to 19 describe the different ways this algorithm continues based on a new
predicate value α′. If this value is the empty tuple, the feasibility problem is infeasible.
Thus, the algorithm returns the identified origin operation in line 13. Otherwise, a
new predicate value exists which either corresponds to a counter input or the new
source for further tracing. A counter input is found if the input star is the root of the
reachability tree which is checked with the method isRoot. If neither the current
operation nor the current star are an origin, the tracing process continues. To this
end, the algorithm obtains the parent of the input star using the method getParent
and the operation by which the input star was computed from the parent using the
method getOperation.

3.3.2 Binary Search Based Tracing

The basic tracing method introduced in the previous section ensures the identification
of an origin of a counterexample. The disadvantage of this method is the high number
of feasibility problems that need to be solved to trace the counterexample through
sequences of activation function operations. This high number is one of the main
causes of low efficiency. To reduce this amount, we introduce a method that allows
the tracing of a counterexample through such a sequence by solving only a singular
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feasibility problem.
This feasibility problem for tracing through sequences of activation function op-

erations is a modification of Formula 3.3 introduced for basic tracing. The previous
method traces a known source through an activation function application to one
dimension k based on a single subformula φk not representing equality. This new
method aims to trace a known source through the application of activation functions
to a sequence of dimensions. For all these dimensions k, the subformulas φk is con-
structed based on the activation function and known source values as introduce in the
previous section. Thus, the formulas φk for all of these dimensions are derived based
on Table 3.1 and the remaining formulas φi describe the equality as before. Note,
that the special cases where a formula φk is set to ⊤ can still occur for any of the
dimensions.

The structure of reachability trees for reachability analysis is based on FNNs.
Therefore, the operations in the tree are singular affine operation and sequences of
activation function operations corresponding to the layers of the FNN. Based on the
new formula, a counterexample or known source can be traced to a new source through
the operations corresponding to a layer in the FNN with only a single feasibility
check. Tracing through the complete sequence of activation function operations is
thus possible by constructing formulas φk for all dimensions of known source. For
the affine operation, this method relies on the same process that was used for the
basic tracing method. A known source is only traced through the affine operation, if
the initial tracing through the sequence of activation function operation is successful.
Otherwise, an origin for the counterexample can be found in the sequence of activation
function operations.

The searching process for such an origin gives this method its name. We introduce
a method based on binary search that finds the origin in such a sequence using the new
tracing method. For this, the initial tracing attempt through the complete sequence
provides a bound at the end of the sequence in the form of a reachable set that
does not include any new sources for the known source. The other bound is given
by the reachable set with the known source at the beginning of the sequence. This
method then repeatedly attempts to find a source in the node that is in the middle
of both bounds while updating the bounds depending on success and failure. These
updates reduce the search space for the origin by halve with each tracing attempt.
The repetition ends once the bounds correspond to parent and child node in the
reachability tree. Such bounds identify the operation in between to be an origin of the
counterexample.

This faster tracing process is defined in Algorithm 10. This algorithm is referred
to as binaryTracing for recursive calls. Since this algorithm is meant to replace
Algorithm 9, the input and output behave the same way. Additionally, both algorithms
contain similar parts, including the functions used. All methods that are used in both
algorithms behave the same way as before.

Once again, the first step is the distinction between an affine operation and
activation function operation. The first case of the if-statement in lines 2 to 7
corresponds to the handling of affine operations. Despite the difference in format it
actually behaves the same way Algorithm 9 dealt with affine operations. If the input
star is the root, the algorithm returns a counter input. Otherwise, the tracing process
is continued in the parent node.

The else-case of the if-statement beginning in line 9 corresponds to the tracing
through an activation function sequence or the identification of an origin in the
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Algorithm 10: Binary Search Based Tracing Algorithm
input : Reachability tree T ,

(n,m)-dimensional star Θ = ⟨c,V ,P⟩,
Operation op,
Known source of a counterexample z contained in a child of Θ,
Corresponding predicate value α

output :Counter input z′ or Operation op′

1 if isAffine(op) then
2 if isRoot(T,Θ) then // Return counter input
3 return c+ V α // α = α′

4 else // Continue tracing
5 Θ′ ← getParent(T,Θ)
6 op′ ← getOperation(T,Θ′)
7 return binaryTracing(T,Θ′, op′, c+ V α,α)

8 else
/* Attempt to trace through the whole sequence */

9 opn, . . . , op1 ← getOperationSequence(T,Θ)
10 Θn, . . . ,Θ0 ← getStarSequence(T,Θ) // Let Θi = ⟨ci,Vi,Pi⟩
11 for i← 1 to n do // Trace z ∈ JΘnK to Θ0

12 φi ← constructFormula(z, opi, i,Θ0)
13 ψP0

← constructFormula(P0)
14 α′ ← checkFeasibility(ψP0 ∧

∧n
i=1 φi)

15 if α′ = () then
/* An origin is in the sequence */

16 ν ← n, ι← ⌊n2 ⌋, κ← 0
17 z′ ← z
18 while ν ̸= κ+ 1 do
19 for i← 1 to n do // Trace z ∈ JΘνK to Θι

20 if ι < i ≤ ν then
21 φi ← constructFormula(z′, opi, i,Θι)
22 else
23 φi ← constructFormulaEq(z′, i,Θι)

24 ψPι ← constructFormula(Pι)
25 α′′ ← checkFeasibility(ψPι ∧

∧n
i=1 φi)

26 if α′′ = () then // An origin is an operation after opι

27 κ← ι, ι← ⌊ν+κ
2 ⌋

28 else // An origin is an operation before opι

29 ν ← ι, ι← ⌊ν+κ
2 ⌋

30 α′ ← α′′, z′ ← cν + Vνα
′

31 return opν // Origin identified
32 else // (c0 + V0α

′) ∈ JΘ0K
/* Continue tracing */

33 Θ′ ← getParent(T,Θ0)
34 op′ ← getOperation(T,Θ′)
35 return binaryTracing (T,Θ′, op′, c0 + V0α

′,α′)
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sequence. To this end, the algorithm starts by identifying the sequence. The method
getOperationSequence returns the sequence of activation function operation
opn, . . . , op1. The index of these operations corresponds to the dimension the operation
is applied to. Similarly, the method getStarSequence returns the sequence of stars
Θn, . . . ,Θ0 where Θi is the result of the application of opi to Θi−1. Θ0 is the first
node in the reachability tree that does not result from this sequence of activation
function applications to all dimension of the input star. Note, that opn and Θn−1

correspond to the input and that the source that is part of the input is an element of
Θn.

The next step of tracing a source to its origin is the attempt to trace through the
whole sequence. Thus, Formula 3.3 is constructed similarly to Algorithm 9, but with
Formula 3.4 adapted to tracing for all dimension as describe before. If this tracing
attempt succeeds, a new source is identified in Θ0. The algorithm thus calls itself
in line 35 on the parent Θ0 and the corresponding operation to continue the tracing
process. Checking, if Θ0 is the root is not necessary due to the structure of FNNs.

If the attempt to trace through the sequence fails, an origin of the counterexample
can be found in the sequence. To identify this origin, a binary search based approach is
used. For this, the variable ν indicates the star Θν with the smallest ν ∈ {κ+ 1, . . . , n}
that contains a known source. The variable κ ∈ {0, . . . , ν − 1} indicates the opposite.
Θκ is the star with the largest κ that does not contain any source.

The last variable ι points to the star Θι to which tracing is attempted next. Since
Θι is the result of the activation function application in dimension ι and a source
z ∈ Θι is searched for, this source is traced through the operations and corresponding
dimensions starting with ι+ 1 and stopping at ν. This tracing attempt is represented
in lines 19 to 25 and works similar to Algorithm 9. The difference is that Formula 3.3
is used for tracing for all dimensions i ∈ {ι+ 1, . . . , ν}. The equality version of the
formula is still used in the remaining dimensions.

Dependent on the success or failure of this tracing attempt the variables ν, ι, and
κ are adjusted in lines 26 to 30. If Θι contains a new source, a star containing a
source of an initial counterexample is identified with ι ≤ ν. Therefore, the star ν
points to is changed to Θι. In addition, the known source is updated with the result
of the successful feasibility check. If Θι does not contain any new source, κ is updated
instead. In both case the star ι refers to is updated to be in the middle between ν
and κ again.

These updates reduce the distance between ν and κ with each attempted tracing.
Once ν and κ point to a parent and child node, an origin of the counterexample is
identified. With the end of the tracing loop in line 31, the operation between this
parent and child is thus the origin.

3.3.3 Tracing with Remembered Origins

The remembering tracing method extends the binary search based tracing method
by making use of previous results. During the refinement process typically multiple
counterexamples are identified and traced to an origin. It is common that the same
operation is identified as an origin during more than one of these iterations. For the
purpose of this method, two operation are considered the same if they correspond to
the same step in the calculation of an FNN. The primary reason for reoccurring origins
is the refinement process which is explained in Section 3.4 in more detail. During
this process an origin that is replaced by an exact activation function operation can
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be replaced by an over-approximated operation again during a later cycle. This can
reintroduce already removed counterexamples.

The previous origins are then used to increase the performance of tracing by checking
if they are origins of a new counterexample once more. This check is performed once a
sequence of activation functions is identified that contains an origin. This heuristic is
thus inserted between lines 16 and 17 in Algorithm 10 after the unsuccessful attempt
to trace a new source through the sequence of activation functions. To be able to
check these previous origins they need to be tracked. This happens during the tracing
and refinement algorithms but is not explicitly included in the algorithms introduced
in this thesis. For the purpose of the application of this method, it is assumed that a
list of the indices of the previous origins in each activation function sequence is kept
track of. Based on this list, the previous origins can be checked iteratively. If any of
the previous origins are an origin again, this origin is the result of the tracing process.
Otherwise, the binary search based tracing method is applied using the information
gained from the attempted tracings.

The identification of an origin requires one successful and one unsuccessful tracing
attempt. Thus, checking each previous origin would require double the number of
previous origins in feasibility checks. This number can be reduced by sorting the
list in ascending order and tracing each previous origin at most once. The failure or
success of these attempts can then be used to reduce the number of feasibility checks
similar to the bounds ν and κ used in binary tracing. If an attempt succeeds the node
to which the corresponding previous origin is applied contains a source. Thus, an
origin of the counterexample exists between this and the last previous origin to which
tracing failed. If no such previous origin exists, the method defaults to binary search
between the successfully traced previous origin and the end of the sequence. After
failed tracing attempts to previous origins, this algorithm simply continues with the
next element of the list.

Algorithm 11 describes this process. This algorithm is meant to initialize the
variables in lines 16 and 17 of Algorithm 10 with its output. The names of output
and variables correspond to each other. The algorithm takes the reachability tree, the
sequences of n+ 1 stars and n operations generated in lines 9 and 10 of Algorithm 10,
a source of a counterexample, and the aforementioned ordered list L = [l0, . . . , lλ] of
previous origins with 1 ≤ l0 < · · · < lλ ≤ n in the form of indices as input.

The algorithm then initialize the variables ν, ι, κ and z′ for the binary search
based tracing method. This ensures correct behavior, if no previous origins are known.
Afterwards, the algorithm iterates through these origins with the loop beginning in
line 3. In lines 4 to 11 the counterexample is traced to the reachable set to which
the previous origin operation is applied to. If the current index in the list is not the
last and the tracing attempt fails, the loop continues with the next iteration after
updating κ in the same way as in Algorithm 10. For the last element of the list, the
variable ι for the next tracing attempt is also updated to lλ. This ensures the binary
tracing method checks if the previous origin that is the last element of the list is an
origin again before continuing with the typical method.

If it is possible to find a new source, then the previous origin cannot be an origin
again. In lines 17 to 23 the starting position is updated to the node containing the
new source. Only the previous origin checked before the current iteration of the loop
can be the origin once a tracing attempt is successful. It is necessary to trace a source
contained in the star corresponding to the first element of the list through the stars
of all other elements in the list. Therefore, no previous origin is an origin again, if
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Algorithm 11: Tracing Algorithm with Previous Origins
input :Reachability tree T ,

Sequence of stars Θn, . . . ,Θ0,
Sequence of activation function operation opn, . . . , op1,
Known source of a counterexample z ∈ JΘnK,
Ascending list of previous origins L = [l0, . . . , lλ],

output :Values ν, ι, κ ∈ N for binary tracing
And a new source z′

1 ν ← n, ι← ⌊n2 ⌋, κ← 0
2 z′ ← z
3 for j ← 0 to λ do
4 ι← lj − 1
5 for i← 0 to n do // Trace z ∈ JΘνK to Θι

6 if ι < i ≤ ν then
7 φi ← constructFormula(z′, op, i,Θι)
8 else
9 φi ← constructFormulaEq(z′, i,Θι)

10 ψPι
← constructFormula(Pι)

11 α′ ← checkFeasibility(ψPι
∧
∧n

i=1 φi)
12 if α′ = () then
13 κ← ι
14 if j = λ then // lj is the last element
15 ι← lj // Check if oplj is the origin

16 else
17 ν ← ι
18 z′ ← cν + Vνα

′

19 if j > 0 then
20 ι← lj−1 // Find an origin between Θlj and Θlj−1

21 else
22 ι← ⌊ν+κ

2 ⌋
23 break // Continue with line 24

24 return ν, ι, κ, z′ // Use binary search based tracing

tracing to this first element is successful. The variable ι is set according to the process
in binary search based tracing in this case. Otherwise, if the current element of the
list is not the first, an origin can be found between this node and the last node that
was checked. This also includes the previous origin that was checked before. Thus, ι
is set such that the binary tracing method checks if this previous origin is an origin
again, before continuing with the standard algorithm.

3.3.4 Core based Tracing

In this section, an alternative method to binary search based tracing introduced in
Section 3.3.2 is presented. This method also aims to reduce the number of feasibility
checks required to identify an origin in a sequence of activation function operation.
Instead of halving the search space in each step, this method uses information gained
from unsuccessful tracing attempts. This is facilitated by the core that the Z3 solver
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provides for unsatisfiable formulas. Such a core represents a subformula that is already
unsatisfiable.

For the purpose of this method, we are specifically interested in which of the
formulas φi corresponding to Formula 3.4 are present in the core. These formulas
constrain the values in dimension i of new sources in a sequence of activation function
operations. For this heuristic we assume, that a formula φi that is present in the core
indicates that the corresponding operation is more likely to be an origin.

The idea of this method, is to trace iteratively to a dimension i with a formula φi

in the core. We use the largest dimension for which a corresponding formula is part of
the core. In addition, only dimensions decreasing the search space for an origin are
considered. This search space is once again bounded by the star that contains the
known source and by a star that contains no source.

A reachable set of an FNN for a nonempty input set is never empty. Thus, any
star corresponding to a node in the reachability tree is also nonempty. Based on
Proposition 2.2.1, the predicates P of such stars are nonempty which means that ψP
the formula corresponding to P is always satisfiable. Thus, at least one formula φi

is present in any core. This does however not prove that this formula would reduce
the search space. In the case that no formula φi that satisfies the aforementioned
conditions is part of the core, we simply trace to κ+ 1. This ensures that the search
space is reduced with every tracing attempt.

Besides the difference in deciding the next star in the sequence, the method
generally works similar to the binary search based tracing method. After identifying a
sequence of activation function operations that contains an origin, the method keeps
track of the star Θν containing the current source and the star Θκ not containing any
source. The identification of the sequence already requires a feasibility check. This
check provides the first core and thus the first goal for tracing as explained before.

If a tracing attempt succeeds, the value of ν and thus the star corresponding to ν
as well as the source and corresponding predicate value are updated. The next tracing
goal is set to Θκ. For unsuccessful tracing attempts, the core is used to derive the
next goal. In addition, Θν is adjusted to the current goal. This process is repeated
until an origin is identified. Since the search space is reduced in each iteration, this
condition is always fulfilled at some point.

This process is described in more detail in Algorithm 12. As mentioned before, this
algorithm behaves very similarly to Algorithm 9. Since it is a tracing algorithm, it has
the same input and output as the previous tracing algorithms. In addition, only lines
15 to 35 differ from the binary tracing method because only the approach of tracing
in a sequence of activation function operations that contains an origin changes for this
method. This also means, that the function calls in the method are mostly the same
as before. The exception to this, are the recursive call with the name coreTracing
and the new method getCore. This method returns a set of all indices of formulas
φi that are part of the unsatisfiable core of the input formula. Such an input formula
is always a formula similar to Formula 3.3.

As mentioned before this core is used to define the next target for a tracing attempt.
The initial target is set after a failed attempt to trace a source through the whole
sequence of activation functions. The core corresponding to this attempt is then used
to find the next target with the method described before.

Lines 20 to 26 correspond to this and all other tracing attempts in the sequence.
If such an attempt succeeds, a new predicate value corresponding to a new source is
returned by the feasibility check. In this case, the starting point of tracing attempts is
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Algorithm 12: Core Based Tracing Algorithm
input : Reachability tree T ,

(n,m)-dimensional star Θ = ⟨c,V ,P⟩,
Operation op,
Known source of a counterexample z contained in a child of Θ,
Corresponding predicate value α

output :Counter input z′ or Operation op′

1 if isAffine(op) then
2 if isRoot(T,Θ) then // Return counter input
3 return c+ V α // α = α′

4 else // Continue tracing
5 Θ′ ← getParent(T,Θ)
6 op′ ← getOperation(T,Θ′)
7 return coreTracing(T,Θ′, op′, c+ V α,α)

8 else
9 opn, . . . , op1 ← getOperationSequence(T,Θ)

10 Θn, . . . ,Θ0 ← getStarSequence(T,Θ) // Let Θi = ⟨ci,Vi,Pi⟩
11 for i← 1 to n do // Trace z ∈ JΘnK to Θ0

12 φi ← constructFormula(z, opi, i,Θ0)
13 ψP0 ← constructFormula(P0)
14 α′ ← checkFeasibility(ψP0 ∧

∧n
i=1 φi)

15 if α′ = () then // An origin is in the sequence
16 core← getCore(ψP0

∧
∧n

i=1 φi)
17 ν ← n, ι← max((core ∩ (κ, ν)) ∪ {κ+ 1}), κ← 0
18 z′ ← z
19 while ⊤ do
20 for i← 1 to n do // Trace z ∈ JΘνK to Θι

21 if ι < i ≤ ν then
22 φi ← constructFormula(z′, opi, i,Θι)
23 else
24 φi ← constructFormulaEq(z′, i,Θι)

25 ψPι
← constructFormula(Pι)

26 α′′ ← checkFeasibility(ψPι
∧
∧n

i=1 φi)
27 if α′′ ̸= () then // New source is identified
28 ν ← ι, ι← κ
29 α′ ← α′′, z′ ← cν + Vνα

′

30 else if ν = ι+ 1 then// Origin identified
31 return opι

32 else // No new source exists in Θι

33 κ← ι
34 core← getCore(ψP ∧

∧n
i=1 φi)

35 ι← max((core ∩ (ι, ν)) ∪ {κ+ 1})
36 else // (c0 + V0α

′) ∈ JΘ0K
37 Θ′ ← getParent(T,Θ0)
38 op′ ← getOperation(T,Θ′)
39 return coreTracing (T,Θ′, op′, c0 + V0α

′,α′)
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updated to the current goal. In addition, the next tracing attempt will be performed
with the goal of the star closest to the start of the sequence to which tracing is not
possible. This attempt always fails, but provides a new goal based on the core.

Such a core is used in lines 32 to 35 to set this goal in the same manner as before.
Since a core only exists, if the formula is infeasible, this computation is only performed
for failed tracing attempts. Besides setting new tracing goals, an origin can only be
returned after a failed tracing attempt from a child to a parent node.

3.4 Refinement Methods

In this section, our approaches to the verification of FNN using CEGAR are introduced.
These combine the reachability tree data structure with the reachability analysis from
Section 2.3 and the safety checking and tracing algorithms presented in the previous
sections of this chapter. When a non-specific method from these sections is referenced,
generally any of the introduce methods can be used.

This section will start with two general verification algorithms. Both of them,
iteratively construct and refine reachability trees until either safety or unsafety of
the FNN can be proven. Construction refers to the use of the reachability methods
introduced in Section 2.3 to generate the reachable sets that the reachability tree is
composed of. The actual refinement process begins once final leaves are computed
and starts with the safety checking of these leaves. If an unsafe final leaf is found, the
resulting counterexample and predicate value are used to trace this counterexample
to an origin. This origin then either allows refinement or proves the unsafety of the
FNN. In the second case, this origin is a counter input. Otherwise, the reachability
tree and the corresponding reachability analysis are refined by exchanging the over-
approximated operation that is the origin with the corresponding exact operation.
This replacement of an operation removes the source of the spurious counterexample
that is used to identify the origin as specified in the following proposition.

Proposition 3.4.1 (Refinement). Let Θo ∈ opo(Θ) for two stars Θo and Θ in a
reachability tree and opo an over-approximated activation function operation.

If z ∈ JΘoK is a source of a counterexample such that opo is an origin of this
counterexample, then z /∈

⋃k
i=1JΘiK for ope(Θ) = {Θ1, . . . ,Θk} where ope is the exact

activation function operation corresponding to opo.

The replacement of the origin with an exact operation then requires recomputation
of the reachability subtree. This recomputation is the first step for the next iteration
of the refinement algorithms.

The way reachability trees are constructed is the primary difference between
refinement algorithms. The first algorithm introduced in Section 3.4.1 always computes
full reachability trees before continuing with the next steps of refinement. The second
algorithm which is presented in Section 3.4.2 instead computes partial reachability
trees that have one more final leaf in each iteration and then performs the subsequent
steps on this leaf. After a deeper introduction to these algorithms, multiple heuristics
are presented in Sections 3.4.3 to 3.4.5. These heuristics add to the basic algorithms
by storing different information during each refinement loop and then modify the
construction and verification of subsequent reachability trees.
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3.4.1 Full Refinement

As mentioned before, this refinement method always constructs a full reachability tree
as a first step. During this construction the activation function operations of the FNN
are applied in an over-approximated manner. Once all leaves in the reachability tree
are final, the safety of the leaves is checked iteratively. For safe final leaves no further
computation is necessary. If a final leaf is unsafe on the other hand, the identified
counterexample is traced to its origin. If the origin is a counter input, the FNN is
unsafe and the algorithm terminates. Otherwise, the origin is an over-approximated
activation function operation. This operation is then replaced by its exact counterpart.
For this, the subtree with the star resulting from the application of the operation as
its root is removed. Afterwards, the exact activation function operation is applied
instead of the over-approximated operation. All resulting stars are then added to the
reachability tree accordingly. This exchange of exact and over-approximated activation
function operation is the core of the refinement process.

The described process up to this point represents one cycle in the refinement
loop. The next cycle of the loop and thus the next steps are the completion of the
reachability analysis to construct a full reachability tree once again. This, starts
with the identification of all non-final leaves. Previously, this step was implied in
the construction of the initial fully over-approximated reachability tree. The actual
initialization of the reachability tree for this algorithm creates a new partial reachability
tree that only consists of the input set as the root. This root is also a non-final leaf.
From the partial reachability tree, a full tree is computed by applying the corresponding
operations of the FNN to the reachable sets represented by non-final leaves until all
leaves are final. The correct operation can be identified by the length of the path from
a leaf to the root. This length corresponds to the number of the operation.

This algorithm identifies the unsafety of an FNN once a single counter input is
calculated. If all final leaves of the reachable set are safe, the union of them represents
an over-approximation of the reachable set of the FNN. Because none of the reachable
sets in this over-approximation is unsafe, the union is safe. Therefore, the FNN is also
safe. The algorithm thus determines the safety of an FNN once all final leaves are safe.

This refinement method is described by Algorithm 13. For the verification of an
FNN, this algorithm performance reachability analysis and safety checks. Therefore,
the input for the algorithm consists of an FNN and an input set in the form of a
star for the reachability analysis and a safety specification to check. Note, that a
bounded convex polytope could be used as an input set in the same way it could be
used for reachability analysis. Such a polytope would be transformed into a star with
an application of Proposition 2.2.2. Based on this input, this algorithm determines
whether the FNN is safe regarding the input star and the safety specification and
returns ⊤ for safety and a counter input to indicate unsafety.

After initializing a reachability tree T with input star Θ and a boolean variable to
false. The refinement loop begins in line 3 and only stops with the termination of the
algorithm. This can either happen, if a counter input is identified in line 17, or if all
final leaves are safe.

In lines 4 to 7, a full reachability tree is constructed form T according to F . To
identify at which point T is a full reachability tree, the method isFull is used. If
T is not full, a non-final leave exists in T . One of these is returned by the method
getNonFinalLeaf. Note, that checking if a leave is final or if a reachability tree is
full generally requires access to the FNN corresponding to the reachability tree. Once
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Algorithm 13: Full Refinement Algorithm
input :FNN F ,

Input set as a star I = Θ,
Safety specification S

output : Safe (⊤) or unsafe with a counter input o

1 T = (V,E)← ({Θ} , ∅)
2 isSafe← ⊥
3 while isSafe = ⊥ do

/* Construction of a full reachability tree */
4 while not isFull (T, F ) do
5 Θ′ ← getNonFinalLeaf(T, F )
6 op ← getOperation(T, F,Θ′) // affine or approximate
7 T = (V,E)← (V ∪ op(Θ′),E ∪ {(Θ′,Θ′′) | Θ′′ ∈ op(Θ′)})

/* Refinement of the reachability tree */
8 isSafe← ⊤
9 leaves← getFinalLeaves(T, F )

10 for Θ′ ∈ leaves do
11 (z,α)← checkSafety(Θ′,S)
12 if z ̸= () then // z is a counterexample
13 Θ′′ ← getParent(T,Θ′)
14 op ← getOperation(T,Θ′′)
15 o← trace(T,Θ′′, op, z,α)

16 if o ∈ R⟨1⟩ then // The origin is a counter input
17 return o

/* Refine by replacing the origin */
18 Θ′′ ← getNode(T,Θ′, o)
19 V′ ← V \ {Θ ∈ V | Θ is a descendant of Θ′′}
20 E′ ← E ∩ V′ × V′

21 ope ← getExact(o)
22 T = (V,E)← (V′ ∪ ope(Θ

′′),E′ ∪ {(Θ′′,Θ′′′) | Θ′′′ ∈ ope(Θ
′′)})

23 isSafe← ⊥
24 break // Continue with the next loop after line 3

25 return ⊤

a non-final leave is chosen, the function getOperation is used to get the operation
that should be applied to the leaf. This operation is either an exact affine mapping or
an over-approximated activation function application.

Once a full reachability tree is constructed the safety of the final leaves is determined.
The final leaves that have not been checked for safety are returned by the method
getFinalLeaves. For this the safety of each leaf is check using any of the methods
introduced in Section 3.2. These methods are represented by the function named
checkSafety. The call to this function is represented with the basic input. If further
input is required for the safety check this would be added to this call. The algorithm
returns ((), ()), if a leaf is safe and a pair of a counterexample and a corresponding
predicate value otherwise. If all leaves are safe, the refinement loop ends and the
algorithm returns ⊤ and thus the safety of F .
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Otherwise, the counterexample is traced to an origin. For this, the input for a
tracing algorithm is prepared. These algorithms require the initial goal for tracing
in the form of a star as well as the operation that is applied to calculate the star
containing the counterexample. The star and operation are derived using the methods
getParent and getOperation which behave the same way as in the algorithm in
Section 3.3. trace refers to any of the tracing methods introduced the aforementioned
section. The same note regarding different inputs that applied to safety checking
methods also applies to the different tracing methods.

The output of tracing is either a counter input or an over-approximated activation
function operation. In the first case, the algorithm returns the unsafety of F in line 17.
If an over-approximated activation function operation is identified, the reachability
tree is refined. To this end, the node Θ′′ in T is identified to which the operation is
applied using the method getNode. Then, in lines 19 and 20 the subtree starting
with the child of Θ′′ is removed from T . Note, that Θ′′ has exactly one child due to
the over-approximated manner in which the operation is applied.

With the application of the method getExact the exact operation corresponding
to the origin is obtained. This exact operation is then applied to Θ′′. All results
are added as leaves to T . Afterwards the refinement cycle ends, and the algorithm
continues with the next loop. Note, that the leaves added to T may be final or non-final
leaves depending on the operation that is replaced. This does not introduce problems
as long as getFinalLeaves is defined correctly and not solely based on a leave
being final or non-final.

3.4.2 Avoidant Refinement

This refinement method works similarly to the method introduced in the previous
section. Like before, this method takes non-final leaves and applies over-approximated
reachability analysis until final leaves are computed. Different from before, only a
single non-final leaf is chosen to compute a path to a single final leaf. For this non-final
leaf, the reachability analysis is applied like before to compute a reachability tree in
the form of a path ending in a final leaf.

Instead of applying reachability analysis to any other non-final leaves, the next
steps in the refinement loop are applied to the computed final leaf. Thus, the next
step is the verification of safety again. If the reachable set in the final node is safe,
the next cycle begins. Otherwise, the counterexample is traced to its origin which is
treated as before. An over-approximated operation is replaced with the corresponding
exact operation, or the algorithm terminates with the unsafety of the FNN.

The exception to this procedure occurs if the identified origin is the final operation
of an FNN. This means that the leaves computed by the exact operation are final. In
this case, all of these leaves need to be checked for safety before continuing with the
next refinement cycle. Otherwise, the safety of these leaves would remain unchecked
as the reachability trees are constructed based on only non-final leaves. If any of these
final leaves are unsafe, the typical process of refinement is applied to the first unsafe
one. Thus, the counterexample is traced to its origin which is either refined or causes
the termination of the algorithm. Note, that if one unsafe leaf is found and refined,
the other leaf is discarded in this process because the last operation is already exact
and cannot be an origin in this step. Therefore, these leaves are only checked until
the first unsafe one is identified.

The previous algorithm terminates once a counter input is found or all final leaves
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Algorithm 14: Avoidant Refinement Algorithm
input :FNN F ,

Input set as a star I = Θ,
Safety specification S

output : Safe (⊤) or unsafe with a counter input o

1 T = (V,E)← ({Θ} , ∅)
2 while not isFull(T, F ) do

/* Compute a new final leaf */
3 Θ′ ← getNonFinalLeaf(T, F )
4 while not isFinal(T, F,Θ′) do
5 op ← getOperation(T, F,Θ′) // affine or approximate
6 {Θ′′} ← op(Θ′)
7 T = (V,E)← (V ∪ {Θ′′} ,E ∪ {(Θ′,Θ′′)})
8 Θ′ ← Θ′′

/* Refinement of the reachability tree */
9 (z,α)← checkSafety(Θ′,S)

10 if z ̸= () then // z is a counterexample
11 o← trace(T,Θ′, z,α)

12 if o ∈ R⟨L⟩ then // The origin is a counter input
13 return o

/* Refine by replacing the origin */
14 Θ′′ ← getNode(T,Θ′, o)
15 V′ ← V \ {Θ ∈ V | Θ is a descendant of Θ′′}
16 E′ ← E ∩ V′ × V′

17 ope ← getExact(o)
18 R← ope(Θ

′′)
19 T = (V,E)← (V′ ∪ R,E′ ∪ {(Θ′′,Θ′′′) | Θ′′′ ∈ R})

/* Refinement if new leaves in R are final */
20 for Θe ∈ R do
21 if isFinal(T, F,Θe) then
22 (z,α)← checkSafety(Θe,S)
23 if z ̸= () then
24 o← trace(T,Θ′, z,α)

25 if o ∈ R⟨L⟩ then // The origin is a counter input
26 return ⊥
27 Θ′

e ← getNode(T,Θe, r)
28 V′ ← V \ {Θ ∈ V | Θ is a descendant of Θ′

e}
29 E′ ← E ∩ V′ × V′

30 ope ← getExact(o)
31 T = (V,E)← (V′ ∪ ope(Θe),E

′ ∪ {(Θe,Θ
′
e) | Θ′

e ∈ ope(Θe)})
32 break // Continue after line 2

33 else
34 break // Continue after line 2

35 return ⊤
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are safe. This algorithm behaves the same way. The unsafety is identified with a
counter input. The safety of all final leaves is detected when the reachability tree is
full at the beginning of a cycle. In this case, all leaves in the tree are final and safe
leaves. If such a leaf would not be safe, the algorithm would have refined the origin of
this unsafety and thus created non-final leaves. This contradiction also applies to the
special case where the last operation is an origin since these leaves are checked for
safety and refined if necessary.

This process is captured by Algorithm 14. It uses the same input and output
as Algorithm 13 and thus verifies an FNN F based on an input star Θ for a safety
specification S. For this process, it also utilizes the same calls to methods.

First the initial reachability tree is constructed consisting only of Θ as its root. This
tree is than extended in lines 4 to 8 based on the application of reachability analysis
until a single final leaf is computed. To this end, a non-final leaf in the reachability
tree is picked. We use depth-first search to find such a leaf. In the first cycle, this leaf
is Θ. Based on the leaf, a subtree is computed using only affine and over-approximated
activation function operation. This process is analog to the construction of the full
reachability tree in the Algorithm 13.

Once a final leaf is computed, the algorithm behaves the same way as the previous
refinement algorithm. Thus, the safety of the final leaf is determined. If the leaf is
safe, the algorithm continues with the next non-final leaf or returns the safety of F
for the given input. Otherwise, the counterexample found during the safety check is
traced to its origin which is refined.

After this refinement, this algorithm once more differs from the previous one. As
mentioned before, the last operation in an FNN can be an origin. If such an operation
is identified as an origin, refinement in lines 14 to 19 adds final leaves to the reachability
tree. These leaves need to be checked for safety directly because the algorithm would
not otherwise do so. This is done using exactly the same process as before.

3.4.3 Refinement with Exact Origins

This method is the first heuristic we introduce for the refinement process. During
each loop, the origins of counterexamples are kept track of. The activation function
operations corresponding to these origins are then always computed in the exact
manner during later cycles. This ensures that each operation can only be an origin at
most once. Using more exact operations has the disadvantage of an increased amount
of reachable sets that need to be checked for safety.

This method works with both the full and avoidant refinement algorithms intro-
duced in the previous section. In both cases, the previous origins need to be kept track
of. This can be done with a set to which origins are added once they are identified
after tracing.

Since the full refinement algorithm always constructs full reachability trees, only
the getOperation method used in line 6 of Algorithm 13 needs to be changed to
implement this heuristic. Instead of always returning an over-approximated activation
function operation, the method returns the corresponding exact operation, if the
operation is part of the set of previous origins.

The construction of reachability trees in the avoidant refinement algorithm needs
to be changed to a greater degree. The reason for this change is the assumption that
only a single leaf is added in each iteration of the construction loop which is not true
for exact activation function operation in general. To make the methods compatible,



Refinement Methods 65

Algorithm 15: Reachability Tree Construction with Exact Origins
input :FNN F ,

Reachability tree T ,
Star Θ,
Set of previous origins L

output :Updated reachability tree T ′ and star Θ0

1 op ← getOperation(T, F,Θ) // affine or approximate
2 if op ∈ L then
3 op ← getExact(op)
4 R← op(Θ) // Let R = {Θ0, . . . ,Θk}
5 T ′ = (V,E)← (V ∪ R,E ∪ ({Θ} × R))
6 return T ′,Θ0

one of these leaves is chosen for further computation as presented in Algorithm 15.
This algorithm is meant to replace lines 5 and 6 in Algorithm 14. In addition, the

reachability tree and star that are set in lines 7 and 8 should be set corresponding to
the output of this algorithm. The methods used here behave the same way as in the
previous sections. This includes the getOperation method.

The algorithm ensures that exact operations are used instead of over-approximated
once for previous origin. In addition, a newly computed leaf with which the remaining
refinement algorithm can continue is picked. Note, that the algorithm could also be
used to replace the analog computation in Algorithm 13 instead of the change to the
getOperation method. For this the information of the next leaf would simply be
discarded.

This heuristic can in principle be used in conjunction with any of the tracing and
safety checking methods introduced in the previous sections. In practice, a similar
problem to the safety checking method that uses previous counterexamples introduced
in Section 3.2.1 is solved. While it is theoretically possible that a counterexample
remains after an origin is removed, it is unlikely in practice. This checking method
thus unnecessarily increases the computational effort required for the safety checks.
Even less useful, but still possible, is the combination of this heuristic with the tracing
method that keeps track of origins to check if they remain sources introduced in
Section 3.3.3. Since this heuristic ensures all previous origins are computed in an
exact manner and can thus not be origins again, this method just adds an unnecessary
overhead by checking these operations again.

3.4.4 Refinement with Remembered Sources

This refinement heuristic also changes the reachability analysis used for the construction
of the reachability tree. For this it keeps track of previous origins and the last source
that leads to the identification of this origin. Assume an over-approximated activation
function operation op is an origin and applied to a reachable set Θ resulting in
Θ′ ∈ op(Θ). This method then keeps track of a source z ∈ JΘ′K and the operation op.

During the construction of the reachability tree, the method then first constructs
new nodes of the reachability tree using over-approximated activation function op-
erations similar to the construction in the unmodified full or avoidant refinement
algorithm. Once a previous origin is computed in the over-approximated manner, it is
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Algorithm 16: Reachability Tree Construction with Remembered Sources
input :FNN F ,

Reachability tree T = (V,E),
(n,m)-dimensional star Θ = ⟨c,V ,P⟩,
Set of previous sources and origins L =

{
(opl1 , z

(1)), . . . , (oplλ
, z(λ))

}
output :Updated reachability tree T and star Θ′

1 op ← getOperation(T, F,Θ) // affine or approximate
2 {Θ′} ← op(Θ) // Let Θ′ = ⟨c′,V ′,P ′⟩
3 if not isAffine(op) then
4 for i = 1 to λ do
5 if opli = op then
6 for j = 1 to n do
7 φj ← constructFormulaEq(z(i), j,Θ′)
8 ψP′ ← constructFormula(P ′)
9 α← checkFeasibility(ψP′ ∧

∧n
i=1 φi)

10 if α ̸= () then // z(i) ∈ JΘ′K
11 op ← getExact(op)
12 R← op(Θ) // Let R = {Θ0, . . . ,Θk}
13 T = (V,E)← (V ∪ R,E ∪ ({Θ} × R))
14 return T,Θ0

15 T = (V,E)← (V ∪ {Θ′} ,E ∪ ({Θ} × {Θ′}))
16 return T,Θ′

checked whether the resulting node contains the same source again. If this is the case,
the resulting node is discarded and the corresponding exact operation is used instead.

This process is described by Algorithm 16 in more detail using methods that are all
introduced previously. This algorithm is meant to be applied similarly to Algorithm 15.
Thus, the algorithm for this heuristic is used to replace lines 5 and 6 in Algorithms 13
and 14 and set the variables in lines 7 and 8 to its output. This output is a reachability
tree to which the stars resulting from the operation are added and one of these stars
which allows further computation for avoidant refinement method.

To facilitate this computation, the input consists of an FNN, a reachability tree,
and a star similar to the input of Algorithm 15. In addition, a set L containing all pairs
of previous origins and the corresponding source as described above is a parameter for
this method. These origins and sources need to be added during the tracing process.

The algorithm for the computation of the next set in the reachability tree starts
the same as before by applying the next operation op to the input star. Assume that
Θ′ results from this computation. If this operation is affine, the algorithm continues
with the typical update to the reachability tree as described for the full and avoidant
refinement methods.

For activation function operations, it is checked whether op is a previous origin in
the loop in lines 3 to 16. This is the case, if any pair in L contains the operation. Once
a previous origin is identified, it is checked whether the corresponding source to the
operation is contained in Θ′ using the formula introduced in Proposition 3.2.2. This
formula is feasible, if a predicate value α exists that corresponds to the source in Θ′.

The feasibility check with checkFeasibility returns a nonempty tuple in this
case. If such a tuple is found, the exact operation corresponding to op is used instead
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of the over-approximation to construct the next nodes in the reachability tree. This
process works the same way as in Algorithm 15. If no source with an operation
corresponding to op is contained in Θ′, the algorithm adds Θ′ as child of Θ to the
reachability tree.

Using this heuristic has a similar advantage to the previous heuristic, but reduces
the amount of safety checks that need to be performed compared to the previous
method. The disadvantage of this method are the additional containment checks which
are necessary to decide whether exact computation should be used. This method is
useable with all heuristics and methods introduced for tracing and safety checking.
The same reduction of performance the previous heuristic has in combination with the
tracing method introduce in Section 3.3.3 and the safety checking method introduced
in Section 3.2.1 also occur with this method as similar problems are solved.

3.4.5 Refinement with Safe Histories

This heuristic can be used on top of the other refinement heuristics introduced before.
It relies on the idea, that once a set in a node of a reachability tree is identified to be
safe all subsets of this set represented by a node resulting from the same amount of
operation of the corresponding FNN are also safe.

Proposition 3.4.2 (Safe Subtrees). Let Θi be a star resulting from the application
of the first i ∈ {1, . . . , L+N − 1} operations in an FNN F with L ∈ N≥2 layers and
N =

∑L
i=2⟨i⟩ non-input neurons.

If the subtree of a reachability tree corresponding to F with Θi as root is safe, then
all subtrees of reachability trees corresponding to F with a root represented by a star
Θ′

i resulting from the first i operations of F such that JΘ′
iK ⊆ JΘiK are also safe.

Based on this proposition, it seems possible to simply keep track of sets represented
by safe roots of subtrees and then check if other nodes calculated with the same
number of operations are subsets of the known safe sets. This method is not applicable
because testing whether a star is the subset of another star is computationally very
expensive.

Nonetheless, the idea behind this heuristic can be applied by using the properties
of reachability trees and reachability analysis to derive the necessary subset relation
of two stars. The foundation for this is that an over-approximated activation function
operation applied to a star results in a superset of the union of stars resulting from
the corresponding exact operation applied to the same star.

Proposition 3.4.3 (Safe Paths). Let F be an FNN with L ∈ N≥2 layers and let
Θ0, . . . ,Θi and Θ′

0,Θ
′
1, . . . ,Θ

′
i be two paths in reachability trees corresponding to F

with the root Θ0 = Θ′
0. If for all j ∈ {1, . . . , i} the following conditions hold, then

JΘ′
iK ⊆ JΘiK:

• If Θj is the result of an exact activation function operation applied to Θj−1, then
Θ′

j is computed from Θ′
j−1 using the same calculations. This means intersection

with the same halfspaces and the application of the same affine mapping.

• If Θj is the result of an over-approximated activation function operation applied
to Θj−1, then Θ′

j is the result of a corresponding exact or over-approximated
operation applied to Θ′

j−1.
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• If Θj is the result of an affine operation applied to Θj−1, then Θ′
j is the result

of the same affine operation applied to Θ′
j−1.

By keeping track of the operations applied to a node in a reachability tree, it is
thus possible to identify the roots of safe subtrees. For this to work, it is necessary to
not only keep track of the operation, but also the specific halfspace intersections and
affine mappings that are applied to compute the node in the case of an exact activation
function application. Once such a root is identified, no further reachability analysis or
safety checking is necessary to ensure the safety of the corresponding subtree. Thus,
the time for the construction of the reachability tree and the amount of final leaves
for which safety needs to be checked can be reduced by applying this method. Note,
that due to time constraints an implementation of this heuristic was not possible.



Chapter 4

Experimental Results

In this chapter, the different heuristics we implemented for the verification of FNN
using CEGAR will be evaluated and compared with each other. Additionally, the best
combination of these heuristics is then compared to the existing method of verification
using exact or over-approximated reachability analysis. To this end, we first evaluate
the drones benchmark with different combinations of heuristics for verification with
CEGAR. Afterwards, the resulting best combination of heuristics is compared to
the previous verification methods on the drones benchmark. This is followed by a
similar evaluation on the sonar benchmark which is based on a FNN mapping complex
inputs to a binary output. Lastly, we evaluate the verification with CEGAR on the
thermostat benchmark.

All these evaluations were performed on a computer with an Intel Core i7-9700K
CPU (3.6GHz, 8 cores) and 32GB RAM. In addition, computation was aborted after
1h of runtime.

4.1 Drone Benchmark

The drone benchmark [Dem23] consists of a set of eight FNNs designed to allow a
drone to hover at a chosen altitude autonomously. The first four of these FNN are
made up of two hidden layers. The remaining four have an additional hidden layer.
In both groups of four, the size of the hidden layers increases from one FNN to the
next, while decreasing with each consecutive layer. For all these FNNs, the size of
each layer can be found in Table 4.1. In each hidden layer a ReLU activation function
is applied. The output layer maps to R and does not apply any activation function,
despite the definition for FNN provided in Section 2.1.

For the verification, input sets of P =
{
x′ ∈ R12

∣∣ ∥x− x′∥∞ ≤ δ
}

for constants
x ∈ R12 and δ ∈ {0.01, 0.1} are used. Such a set represents a 12-dimensional hyperbox
around x and can be represented by a polytope P =

{
α ∈ R12

∣∣ ψP(α)
}

with

ψP(α) :=

12∧
i=1

(xi − δ ≤ αi ∧ αi ≤ xi + δ) .

This then corresponds to a star Θ =
〈
0(12), I(12),P

〉
. For this benchmark safety is

specified by a single polytope for each FNN.
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⟨1⟩ ⟨2⟩ ⟨3⟩ ⟨4⟩ ⟨5⟩
AC1 12 32 16 1 -

AC2 12 64 32 1 -

AC3 12 128 64 1 -

AC4 12 256 128 1 -

AC5 12 32 16 8 1

AC6 12 64 32 16 1

AC7 12 128 64 32 1

AC8 12 256 128 64 1

Table 4.1: The sizes of layers (including input and output layers) of all FNN in the
benchmark.

In the following, this benchmark is used to first determine the most performative
combination of heuristics for the verification of FNN using CEGAR presented in the
previous chapter. Afterwards, this method is compared to the previous verification
methods using exact and over-approximated reachability analysis.

4.1.1 Comparison of Tracing Methods

We first compare the verification of the drones benchmark for the tracing methods
introduced in Section 3.3. To ensure the same conditions for the different methods,
the basic safety checking method corresponding to Algorithm 7 and the avoidant
refinement strategy corresponding to Algorithm 14 are used for verification with all
tracing methods. The resulting verification time and the amount of tracing attempts
during the verification can be found in Table 4.2 for the input set with δ = 0.01. In this

Time (ms) Tracing Attempts

Basic Binary Origin Core Basic Binary Origin Core

AC1 28480 14422 13687 14082 59 21 19 15

AC2 16311 11646 11012 8953 76 24 21 13

AC3 197442 104604 104765 86490 37 8 8 8

AC4 - - - 2642829 - - - 17

AC5 12643 3942 3986 3365 80 15 15 9

AC6 56321 7509 7574 7606 179 19 19 10

AC7 2926778 657925 556049 603130 572 87 75 48

AC8 - 585452 492057 534406 - 125 96 68

Table 4.2: Verification time in milliseconds and amount of tracing attempts using
CEGAR with different tracing methods for the drones benchmark with δ = 0.01. The
bold number in each row indicates the method with the best performance. Dashes
indicate a timeout.
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table, columns are labeled with the tracing method used to verify the FNN specified
by the row. For all tables in this section, Basic refers to the tracing method introduced
in Section 3.3.1. The tracing method labeled as Binary refers to the method from
Section 3.3.2. Origin is used to identify the heuristics used on top of the binary tracing
method introduced in Section 3.3.3. Finally, the label Core is used for the method
introduced in Section 3.3.4.

These results, confirm that the basic tracing method is significantly slower than
the other introduced methods. In addition, the heuristics keeping track of previous
origins increases the performance or maintains it compared to the binary search based
methods. This seems especially impactful for large networks as can be seen for AC7
and AC8. The reason a similar performance increase does not occur for AC3 is
the specific characteristics of the verification. Only a single origin is refined, before
termination. Thus, the heuristics does not have any impact besides a slight overhead
for this verification.

The final tracing method using the unsatisfiable cores of failed tracing attempts
increases performance in half of cases. In all cases, the amount of tracings attempts
performed decreases or stays the same. The higher verification time for AC1, AC7,
and AC8 can be explained by the overhead of computing a core. Overall, the tracing
methods introduced in Sections 3.3.3 and 3.3.4 achieve the best performance.

Note, that the networks of the drones benchmark were also tested for the second
input set with δ = 0.1. In this case, all verification attempts were aborted due to the
time limit of one hour.

4.1.2 Comparison of Refinement Methods

Based on the previous section, we now compare the different refinement algorithms
introduced in Section 3.4 with both high performing tracing methods. Like before,
the basic safety checking method is used. The full and avoidant refinement methods
introduced in Sections 3.4.1 and 3.4.2 are referenced with corresponding labels in the

Time (ms) Tracing Attempts

Full Avoidant E-Origin Source Full Avoidant E-Origin Source

AC1 14114 13687 11700 14721 19 19 15 19

AC2 11121 11012 10192 11494 21 21 17 21

AC3 103026 104765 105016 105559 8 8 8 8

AC4 - - 3124603 - - - 21 -

AC5 4742 3986 4014 3993 15 15 15 15

AC6 8871 7574 7471 7478 19 19 19 19

AC7 587647 556049 368918 615233 75 75 46 75

AC8 781904 492057 304737 533738 96 96 57 96

Table 4.3: Verification time in milliseconds and amount of tracing attempts using
CEGAR with the tracing method introduced in Section 3.3.3 and different refinement
methods for the drones benchmark with δ = 0.01. The bold number in each row
indicates the method with the best performance. Dashes indicate a timeout.
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Safety Checks Final Leaves

Full Avoidant E-Origin Source Full Avoidant E-Origin Source

AC1 7 6 6 6 3 3 4 3

AC2 7 6 6 6 3 3 4 3

AC3 3 3 3 3 2 2 2 2

AC4 6 6 6 6 3 3 4 3

AC5 3 2 2 2 2 2 2 2

AC6 3 2 2 2 2 2 2 2

AC7 19 14 19 14 4 4 14 4

AC8 23 12 5 12 4 4 4 4

Table 4.4: Amount of safety checks performed, and final leaves computed using
CEGAR with the tracing methods introduced in Sections 3.3.3 and 3.3.4 and different
refinement methods for the drones benchmark with δ = 0.01. Note, that no data
exists for the tracing method introduced in Section 3.3.3 for AC4 with all refinement
methods except E-Origins.

tables in this section. The label E-Origin is used to indicate the algorithms using
exact activation function operation for all identified origins introduced in Section 3.4.3.
Finally, Source is used to refer to the heuristic described in Section 3.4.4.

In Table 4.3 the verification time and the amount of tracing attempts performed
are compared. The verifications were performed with the tracing method introduced
in Section 3.3.3 and all refinement methods. Most of the refinement methods perform
similarly for the networks in this benchmark. The full refinement method performs
slightly worse compared to the avoidant refinement method for most networks, and
significantly worse for AC8. This cannot be explained by a different amount of tracing
attempts like in the previous section. The reason for this difference in performance
is the amount of safety checks illustrated in Table 4.4. These are higher for full
refinement because full reachability trees are constructed.

The good performance of the full refinement method for AC3 can once more
be explained by the specific verification. The all refinement methods perform the
same computation. The initial fully over-approximated reachability analysis is refined
exactly once resulting in a safe reachability tree. The slightly better performance can
thus be explained by a reduced amount of overhead.

Compared to either method, the refinement heuristic introduced in Section 3.4.3
is faster or performs similarly. Because the avoidant refinement method performs
slightly better, this heuristic is used on top of it instead of the full refinement method.
The performance increase and the variance in the degree of this increase is explained
by the reduced amount of tracing attempts. The opposed performance impact of an
increased amount of required safety checks and final leaves does not change this. With
this performance, this refinement method is the most efficient in this combination.

The final refinement heuristic is also used on top of the avoidant refinement method.
Instead of increasing performance the overhead of this method reduces it. The reason
for the decrease in performance is that the method is not actually applied. Thus, this
benchmarks it is not conclusive whether this method could have an impact on the
correct FNN.
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Time (ms) Tracing Attempts

Full Avoidant E-Origin Source Full Avoidant E-Origin Source

AC1 14555 14082 12036 14604 15 15 11 15

AC2 9256 8953 7864 9082 13 13 9 13

AC3 86972 86490 87434 87918 8 8 8 8

AC4 2577470 2642829 1555611 3094790 17 17 13 17

AC5 4205 3365 3592 3366 9 9 9 9

AC6 8978 7606 7529 7391 10 10 10 10

AC7 634857 603130 314285 685440 48 48 26 44

AC8 803029 534406 286673 668121 68 68 32 68

Table 4.5: Verification time in milliseconds and amount of tracing attempts using
CEGAR with the tracing method introduced in Section 3.3.4 and different refinement
methods for the drones benchmark with δ = 0.01. The bold number in each row
indicates the method with the best performance.

In Table 4.5, analog results for the verification with the tracing method using the
unsatisfiable core are presented. The different refinement methods behave similarly to
before with the method introduced in Section 3.4.3 performing the best.

Additionally, the low performance of the refinement heuristic introduced in Sec-
tion 3.4.4 is consolidated. The effect of the overhead of this method seems to be
especially impactful for longer computation based on the difference in computation
to the avoidant refinement method for AC4. For AC7, the heuristic actually changes
the computation. This reduces the number of tracing attempts slightly, but does not
increase the performance compared to the avoidant refinement method.

Thus, the refinement method labeled E-Origin performs the best for both tracing
methods. Comparing the performance between the tracing methods for this refinement
method, the tracing method based on unsatisfiable cores either performs similarly or
better.

Note, that once more the benchmarks for the input set with δ = 0.1 did not finish
within the time limit of 1h.

4.1.3 Comparison of Safety Checking Methods

Based on the results of the previous sections, the combination of the unsatisfiable core
based tracing method and the refinement method using exact operations for previous
origins is the most performant. The last comparison of methods regards the safety
checks. In Tables 4.4 and 4.5, this combination of refinement and tracing method is
used with the basic tracing method. Table 4.6 holds the corresponding data for the
safety checking method using previous counterexamples introduced in Section 3.2.1.

When comparing the verification times of these approaches, the basic safety checking
method performs better or similar. The reason for this is, that each safety check
resulting in a new counterexample can increase the computational cost of subsequent
safety checks because the inclusion of these counterexamples is checked. The chosen
refinement method ensures that each identified origin cannot be an origin in a later
refinement cycle again. It is thus less likely, that a counterexample can be used more
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Time (ms) Tracing Attempts Safety Checks Final Leaves
Basic Counter Basic Counter Basic Counter Basic Counter

AC1 12036 12824 11 11 6 6 4 4

AC2 7864 7973 9 9 6 6 4 4

AC3 87434 92531 8 8 3 3 2 2

AC4 1555611 1537637 13 13 6 6 4 4

AC5 3592 3383 9 9 2 2 2 2

AC6 7529 7353 10 10 2 2 2 2

AC7 314285 376592 26 31 19 30 14 22

AC8 286673 283308 32 32 5 5 4 4

Table 4.6: Verification time in milliseconds and the amount of tracing attempts,
safety checks, and final leaves using CEGAR with the tracing method introduced
in Section 3.3.4, the refinement methods introduced in Section 3.4.3, and the safety
checking heuristic introduced in Section 3.2.1 for the drones benchmark with δ = 0.01.
The bold number in each row indicates the method with the best performance.

than once. Therefore, the overhead of this method is greater than the computational
benefit.

As seen in AC7, the reuse of a counterexample can in addition lead to an increased
amount of tracings, safety checks, and final leaves. Because this is a singular result, and
we do not introduce any methods to find counterexamples with any specific properties,
it is inconclusive whether reusing counterexamples always leads to a performance
decrease or only in some cases.

4.1.4 Comparison with Previous Methods

To allow for a better comparison between verification with exact reachability analysis,
over-approximated reachability, and reachability analysis using CEGAR, the algorithms
Algorithms 1 and 2 were implemented for reachability analysis with reachability trees.
These algorithms perform non-parallelized reachability analysis and construct the
corresponding reachability tree. For the exact method, this tree can be constructed
using a breadth-first (BF) or a depth-first (DF) approach. This differentiation is
not necessary for over-approximated reachability analysis. Every node in such a
reachability tree has either exactly one child node or is a leaf. Additionally, these
implementations terminate as soon as an unsafe final leaf is computed.

All results of both exact approaches for the drone benchmark are complied in
Table 4.7. In this table the exact computation with BF is label E-BF and the DF-based
one with E-DF. In addition, the label Exact is used for both methods if the results are
the same. Besides significant differences in the computation time of both algorithms
for the unsafe FNNs, both approaches behave relatively similar for safe FNNs. Since
the order of final leaves differs between the BF approach and the DF approach, the
difference in computation time for the unsafe FNNs does not directly indicate the
superiority of one method over the other. It is however noticeable, that the DF
approach produces a result faster or in comparable time. This occurs for unsafe FNN
where the same, a lesser, or a higher number of final leaves are computed before the
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Time (ms) Final Leaves Safety

δ E-BF E-DF Approximate E-BF E-DF Exact Approximate

AC1 0.1 2245071 2276649 477151 2660 2660 safe unknown

AC1 0.01 13145 13129 2398 25 25 safe unknown

AC2 0.1 - - 1738191 - - - unknown

AC2 0.01 3403 3568 2432 5 5 safe unknown

AC3 0.1 - - - - - - -

AC3 0.01 161836 159360 24334 81 81 safe unknown

AC4 0.1 - - - - - - -

AC4 0.01 - - 104998 - - - unknown

AC5 0.1 - - - - - - -

AC5 0.01 2131 1467 1659 3 3 unsafe unknown

AC6 0.1 - - - - - - -

AC6 0.01 5263 5275 3531 1 4 unsafe unknown

AC7 0.1 - - - - - - -

AC7 0.01 140856 139500 43185 88 88 safe unknown

AC8 0.1 - - - - - - -

AC8 0.01 361246 94180 77222 13 3 unsafe unknown

Table 4.7: In , the verification time in milliseconds, the amount of final leaves, and
the resulting safety of the drone benchmark FNNs derived using exact computation
with breadth-first (BF) or depth-first (DF) is displayed. In , the verification time
in milliseconds and the resulting knowledge regarding the safety of the FNN using
over-approximated computation is presented for the drones benchmark.

unsafety is found. The likely reason for this behavior is the difference in computation.
The BF approach calculates all non-final leaves, before the first final leaf is computed.
On the other hand, a final leaf is produced after computing as little non-final leaves
as possible with the DF approach. Thus, DF exact computation is used to compare
verification performance with CEGAR in the following sections.

The benchmark results for the over-approximated verification are also presented
in Table 4.7 under the label Approximate. This approach terminates before the
exact algorithm in almost all cases except for AC6 with δ = 0.01, where the exact
computation with DF also only requires a single safety check. Compared to any
CEGAR verification, the over-approximated computation always terminates faster,
because this computation is the first step of CEGAR. Different from both the CEGAR-
based and exact verification, over-approximated reachability analysis may result in an
unknown safety of the FNN. This is the case for all FNNs in the drone benchmark.
Thus, the over-approximate analysis cannot provide a conclusive answer for this
benchmark despite its efficiency.

Comparing our best CEGAR-based verification method presented in Table 4.8 with
the exact approach, CEGAR is only faster for three of the eight FNNs that terminate
within the 1h time limit. Only for two of these, the performance increase is significant.
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Time (ms) Checks Variables Constraints
δ Exact CEGAR Exact CEGAR Exact CEGAR Exact CEGAR

AC1 0.1 2276649 - 2660 - 12 [31, 36] [28, 41] [83, 96]

AC1 0.01 13129 12036 25 17 12 [15, 18] [28, 29] [35, 42]

AC2 0.1 - - - - 12 [39, 39] [30, 48] [105, 105]

AC2 0.01 3568 7864 5 15 12 [13, 15] [25, 27] [29, 33]

AC3 0.1 - - - - 12 - [35, 50] -

AC3 0.01 159360 87434 81 11 12 [19, 20] [27, 32] [46, 48]

AC4 0.1 - - - - 12 - [32, 41] -

AC4 0.01 - 1555611 - 19 12 [21, 23] [29, 35] [53, 57]

AC5 0.1 - - - - 12 - [32, 49] -

AC5 0.01 1467 3592 3 11 12 [14, 15] [25, 27] [31, 33]

AC6 0.1 - - - - 12 - [29, 49] -

AC6 0.01 5275 7529 1 12 12 [13, 14] [26, 26] [28, 30]

AC7 0.1 - - - - 12 - [34, 49] -

AC7 0.01 139500 314285 88 45 12 [13, 20] [29, 32] [31, 48]

AC8 0.1 - - - - 12 - [37, 49] -

AC8 0.01 94180 286673 13 37 12 [18, 22] [28, 30] [45, 54]

Table 4.8: Comparison of the best combination of heuristics for CEGAR-based and
exact verification with corresponding label for columns. For the verification time in
milliseconds and the amount of checks the bold number in each row indicates the
method with the better performance. Dashes indicate a timeout. Note, that data
prior to timeouts was still recorded. The dashes in columns Variables and Constraints
thus indicate unfinished reachability analysis.

Whether CEGAR is faster or slower is primarily dependent on the amount of feasibility
checks performed and the complexity of these checks. This is enough of a reason for
the verification of FNNs AC2, AC5, AC6, and AC8 with δ = 0.01 to be slower with
CEGAR than with the exact computation. The amount of stars checked for safety
is lower with exact calculation than the sum of tracing attempts and safety checks.
Both of these values are contained in the column labeled Checks. Note, that affine
tracing does not require feasibility checks and that these attempts are still counted
towards the sum of tracing attempts and safety checks.

For AC1 with δ = 0.1 and AC7 with δ = 0.01, this is not a sufficient reason
as the amount of feasibility checks for the exact computation is higher than the
aforementioned sum. The higher number of safety checks in the exact computation is
still performed faster because the amount of constraints in the corresponding feasibility
checks is lower than in the checks for tracing and safety checking with CEGAR. For
AC1, the amount of constraints in the predicates of all stars represented by final leaves
is between 28 and 41 for the exact computation. All of these constraints have 12
variables. For the same computation with CEGAR before termination due to time
out, the number of variables ranged between 36 and 31 and the amount of constraints
between 83 and 96. Similarly, the stars checked for safety during verification of AC7
had 12 variables and 28 to 40 constraints each, while the computation with CEGAR
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Input Over-Approximated CEGAR Exact

9 7556 7984 6638

27 10180 10907 11033

48 7230 1038998 6800

70 10774 11386 10461

88 14307 15050 14060

94 13353 14227 12563

97 8481 8956 8346

98 15377 15826 16782

167 7998 8596 7418

176 8893 9495 8846

Table 4.9: Comparison of verification times in milliseconds for relevant inputs of
the sonar benchmark. Between the CEGAR-based and exact method, the faster
verification times are indicated by bold numbers.

worked with stars with 13 to 20 variables and 34 to 48 constraints. The ranges for these
amounts of variables and constraints are presented in Table 4.8 with corresponding
names.

The remaining verifications of FNNs where thus faster with CEGAR than with
the exact approach, when the amount of tracing attempts and safety checks was low
enough to compensate for the increased cost of feasibility checks.

4.2 Sonar Benchmark
The Connectionist Bench (Sonar, Mines vs. Rock) [SG88], or sonar benchmark in short,
provides data for training an FNN. This FNN can than classify whether a sonar signal
has bounced of rocks or metal cylinders (mines). To this end, the FNN takes a 60-
dimensional vector in [0, 1]60 of a frequency modulated chirps as input. Similar to the
previous benchmark, the input set is defined as I :=

{
x′ ∈ R60

∣∣ ∥x− x′∥∞ ≤ 0.0001
}

for a vector x corresponding to one of the aforementioned signals. The expected output
is then a singleton set containing only the single value 0 (rock) or 1 (metal).

The FNN performing this computation consists of four layers, where the first
two have size 60 and all others have size 1. Note, that the affine mappings applied
between layers of size 1 are all the identity. The activation function corresponding to
the second layer is ReLU. Afterwards, a HardSigmoid activation function is applied
with Vmin = −2.5 and Vmax = 2.5. Finally, a UnitStep activation function is used to
classify the output to rocks or metal cylinders with v = 0.5, Rmin = 0, and Rmax = 1.

The benchmark provides 208 inputs x. Of these, the first 97 are expected to be
classified as rock and the remaining chirps correspond to metal. For most of these,
the exact and over-approximated reachability analysis performs the same calculations.
A comparison of verification time for the 10 inputs for which different computation
occurs is presented in Table 4.9.

Only for numbers 9 and 48, the over-approximation is not able to identify the
safety of the FNN. In both cases, reason for result is the actual unsafety of the FNN.
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Input Safety Specification Over-Approximated CEGAR Exact

([22, 23],ON) OFF 199 193 291

([22, 23],ON) ON 192 451 291

((−∞, 17],OFF) OFF 262 256 444

((−∞, 17],OFF) ON 267 235 474

Table 4.10: Comparison of verification times in milliseconds for the thermostat bench-
mark.

For these inputs, the CEGAR approach only traces counterexamples identified in the
output of the over-approximation. For input 9, a counter input is found after 4 tracing
attempts within a reasonable timeframe. This is not the case for input 48 even though
the number of tracing attempts required is the same. The difference between these
inputs is, that the output for 9 is computed using exact calculations only, while the
output for 48 is computed using one over-approximation for a HardSigmoid activation
function application.

Comparing the verification times for these inputs, the exact method is only slower
than the over-approximated one for inputs 27 and 98. In these cases, CEGAR is also
faster than the exact method. Otherwise, CEGAR is slower due to the already slower
over-approximation. It is unclear, why CEGAR performs this bad for input 27.

4.3 Thermostat Benchmark

The thermostat benchmark [Jia23] consists of an FNN designed to control the tem-
perature in a room by activating and deactivating a heater. The FNN input consists
of the current temperature of the room and the state of the heater. This state is
indicated by 1 (ON) and 0 (OFF). Based on this, the benchmark provides two input
sets. The first set corresponds to an active heater and a room temperature between
22 and 23. The second one to an inactive heater and a room temperature below 17.

Based on these inputs the FNN is meant to calculate whether the heater should
stay active or not. This is indicated by a 1-dimensional output that is 0, if the heater
should be turned off, and 15 otherwise. The FNN is expected to behave according to
the following function

F : R× {0, 1} → {0, 15} , (x,m) 7→


0 , if 22 ≤ x
15 , if x ≤ 18

m · 15 , otherwise.

Thus, the safety specification consists of a single polytope corresponding to 0 or 15
with a tolerance of 0.1.

The given FNN is composed of 4 layers. Both hidden layers have ten neurons and
apply the ReLU activation function. The output layer only has size 1 and applies a
UnitStep activation function with v = 7.5, Vmin = 0, and Vmax = 15.

This benchmark is intended to verify the combination of input and safety speci-
fication in rows 1 and 4 in Table 4.10. We still decided to use this benchmark with
combination for data. Only the combination of the input corresponding to a room
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temperature in (−∞, 17] and with an activated heater (ON) is safe. This safety is
already identified by the over-approximated method. This is thus the reason for the
better performance of CEGAR compared to the exact method for this input and safety
combination.

Because the other combinations are unsafe, the result of the over-approximation
is otherwise not meaningful. Using CEGAR for verification still provides a higher
performance in two of the other cases. In these, the amount of tracings and safety
checks is once again low. For the slower case, the amount of these operations is high
making the exact computation method faster as expected.
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Chapter 5

Conclusion

In this thesis, a new approach for the verification of FNN using five widely-used
piecewise linear activation functions is introduced. This approach is based on CEGAR
and pre-existing methods for star-based reachability analysis of such FNNs [TMLM+19,
AMÁ23]. We first summarized the pre-existing reachability algorithms for exact and
over-approximated analysis for the individual activation functions. Based on these
algorithms, the CEGAR based reachability analysis is introduced. This analysis is
composed of sub-algorithms for safety checking, tracing of counterexamples, and the
refinement of the analysis. For all of these, sub-algorithms multiple approaches and
heuristics are introduced. All of these heuristics except for the refinement heuristic
introduced in Section 3.4.5 are implemented in HyPro [SÁMK17].

Based on the performance of different combinations of heuristics discussed in
Chapter 4, the fastest combination for verification of FNN with CEGAR is identified.
This method uses the basic safety checking method introduced in Section 3.2 which
simply identifies a counterexample using a feasibility check with Z3 . In addition to this
safety method, tracing based on unsatisfiable cores and refinement with application of
exact activation functions operations for all identified origins is used. The corresponding
algorithms are introduced in Sections 3.3.4 and 3.4.3.

Despite partially relying on over-approximation for reachability analysis, it is
still a complete method for verification. This completeness is the desired advantage
of the CEGAR-based verification compared to verification with over-approximated
reachability analysis. The second part of the initial goal for CEGAR-based verification
is an increased performance compared to verification with exact reachability analysis.

This goal is only partially satisfied by the method introduced in this thesis. Verifi-
cation of FNN with CEGAR sometimes leads to decreased verification time compared
to the exact method and sometimes not. Whether the method with CEGAR is faster
depends on the specific FNN and input set. Specifically, on the number of resulting
reachable sets with exact approach compared to the amount of feasibility problems
used for safety checking and tracing. In addition to the amount, the complexity of
these problems impacts the verification time of CEGAR. Generally, the complexity of
the formulas checked on an over-approximation heavy reachability analysis is higher
than for a reachability analysis focused on exact computation.
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5.1 Future work
In this thesis, various heuristics and methods for the verification of FNN with CEGAR
are introduced. Part of future work are the introduction and implementation of further
heuristic to increase performance further. A first unimplemented heuristic is already
proposed in Section 3.4.5. The implementation of this heuristic requires additional
tracking of the specific computations performed to generate reachable sets during
reachability analysis. Once implemented, this approach likely reduces the time invested
in reachability analysis and the amount of both tracing attempts and safety checks for
a rather low overhead, if the tracking is implemented correctly.

In addition to this refinement heuristic, specifying the counterexample derived
during the safety checking might lead to better verification results. Counterexamples
with specific properties might lead to origins that have a greater impact on the
reachable sets of an FNN. Finding such origins first would then reduce the amount
of necessary refinement loops and thus also safety checks and tracing attempts. An
interesting property of counterexamples could be the relative position in regard to
the bounds of the unsafe subset of the reachable set. Specifically the distance of
the counterexamples to safe values in the reachable set might impact the verification
algorithms.

All heuristics and methods for verification with CEGAR introduced in this thesis
use one concrete counterexample to find a single origin using a sequence of sources. An
implementation of safety checking and tracing that relies on a symbolic representation
of counterexamples and sources might lead to a performance increase. Such an imple-
mentation would allow to always find the first origin or all origins of a counterexample.
This could thus reduce the required amount of refinement cycles.

The exact reachability analysis and thus verification using it is easily parallelizable.
Our approaches using CEGAR is less straight forward to parallelize. The primary
reason for this is the refinement process which repeatedly discards and reconstructs
subtrees of reachability trees. Multiple parallel process performing reachability analysis,
tracing, or safety checks thus need to be implemented facilitating this property of the
refinement process.
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Appendix A

Proofs

Proposition A.0.1 (Emptiness [TMLM+19]). A star Θ = ⟨c,V ,P⟩ is empty if and
only if P is empty.

Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star for n,m ∈ N+.
If P = ∅, then JΘK = {c+ V α | α ∈ P} = ∅.
If JΘK ≠ ∅, then an x ∈ JΘK exists. Because JΘK = {c+ V α | α ∈ P}, an α ∈ P
exists such that x = c+ V α. Thus, P ≠ ∅.
Therefore, the proposition holds.

Proposition A.0.2 (Representing Polyhedra with Star Sets [BD17]). Any bounded,
convex polytope P = {x ∈ Rn | Ax ≤ d} for n ∈ N+ can be represented by the (n, n)-
dimensional star

〈
0(n), I(n),P

〉
with 0(n) ∈ Rn the origin and I(n) ∈ Rn×n the identity

matrix.

Proof. Let P ⊆ Rn for n ∈ N+ a polytope and Θ =
〈
0(n), I(n),P

〉
. Then the following

holds
P = {α ∈ Rn | α ∈ P} =

{
0(n) + I(n)α ∈ Rn

∣∣∣ α ∈ P} = JΘK.

Therefore, the proposition holds.

Proposition A.0.3 (Affine Mapping [TMLM+19]). Let k,m, n ∈ N+. For any
matrix W ∈ Rk×n and any vector b ∈ Rk the affine mapping {Wx+ b | x ∈ JΘK} of
a (n,m)-dimensional star Θ = ⟨c,V ,P⟩, can be represented by a (k,m)-dimensional
star Θ′ = ⟨c′,V ′,P⟩ where c′ = Wc+ b and V ′ = WV .

Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star and Θ′ = ⟨c′,V ′,P⟩ a (k,m)-
dimensional star for n,m, k ∈ N+. Let further c′ = Wc + b and V ′ = WV for
W ∈ Rk×n and b ∈ Rk. Then the following holds

{b+Wx | x ∈ JΘK} = {W · (c+ V α) + b | α ∈ P}

= {(Wc+ b) + (WV )α | α ∈ P}

= {c′ + V ′α | α ∈ P}

= JΘ′K.

Therefore, the proposition holds.
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Proposition A.0.4 (Intersection with a Halfspace [TMLM+19]). Assume n,m ∈ N+

for a (n,m)-dimensional star Θ = ⟨c,V ,P⟩ and a halfspace H =
{
x ∈ Rn

∣∣ hTx ≤ g
}

defined by h ∈ Rn and g ∈ R. Then, the intersection H ∩ JΘK can be represented by
the (n,m)-dimensional star Θ′ = ⟨c,V ,P ∩ P ′⟩ with

P ′ =
{
α ∈ Rm

∣∣ (hTV )α ≤ g − hT c
}
.

Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star for n,m ∈ N+ and H ={
x ∈ Rn

∣∣ hTx ≤ g
}

for h ∈ Rn and g ∈ R. Let further P = {α ∈ Rm | Aα ≤ d}
with A ∈ Rp×m and d ∈ Rp for p ∈ N+. Let finally Θ′ = ⟨c,V ,P ∩ P ′⟩ for P ′ ={
α ∈ Rm

∣∣ (hTV )α ≤ g − hT c
}
. Then the following holds

H ∩ JΘK =
{
x ∈ Rn

∣∣ hTx ≤ g
}
∩ {(c+ V α) ∈ Rn | α ∈ P}

=
{
c+ V α

∣∣ hT (c+ V α) ≤ g ∧α ∈ P
}

=
{
c+ V α

∣∣ hT c+ hTV α ≤ g ∧α ∈ P
}

=
{
c+ V α

∣∣ hTV α ≤ g − hT c ∧α ∈ P
}

= {c+ V α | α ∈ P ′ ∧α ∈ P}

= JΘ′K.

Therefore, the proposition holds.

Proposition A.0.5 (Bounds [AMÁ23]). For n,m ∈ N+ and any (n,m)-dimensional
star Θ = ⟨c,V ,P⟩, the upper and lower bounds of the set in dimension i ∈ {1, . . . , n}
can be calculated by:

• Lower bound: li := ci + min {Viα | α ∈ P}

• Upper bound: ui := ci +max {Viα | α ∈ P}

Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star for n,m ∈ N+ and i ∈
{1, . . . , n}. Since x = c+V α for all x ∈ JΘK for some α ∈ P , xi = ci +Viα. Because
ci is a constant, the minimal or maximal value in dimension i corresponds to the
minimal or maximal value of Viα for α ∈ P. Thus, the proposition holds.

Proposition A.0.6 (Counter Input [TMLM+19]). Assume an FNN F with L ∈ N≥2

layers, an input set I ⊆ R⟨1⟩ with I = J⟨c,V ,P⟩K and a safety specification S ⊆ R⟨L⟩.
Let Θ′ = ⟨c′,V ′,P ′⟩ represent a reachable set of F with input set I computed using
the exact algorithm and let z ∈ ¬S ∩ JΘ′K be a counterexample. Then z = c′ + V ′α
for some α ∈ P ′ and F (x) = z for the counter input x = c+ V α.

Proof. Let F be an FNN with L ∈ N≥2 layers, I = J⟨c,V ,P⟩K a (⟨1⟩, ⟨1⟩)-dimensional
input star and S ⊆ R⟨L⟩ a safety specification. Let further Θ′ = ⟨c′,V ′,P ′⟩ represent
a reachable set of F based on the input set I computed using the exact algorithm.
Let finally z ∈ (¬S ∩ JΘ′K) be a counterexample with α ∈ P ′ such that z = c′ + V ′α.

Because Θ′ is the result of the exact reachability analysis, V ′, c′ are the result
of L+N − 1 for N =

∑L
i=2⟨i⟩ affine mappings applied to V , c and P ′ is the result

of intersecting P with halfspaces. Thus, P ′ ⊆ P which implies α ∈ P and thus
x = c + V α ∈ JΘK. It also follows that V ′ = W (L+N−1) · · · · ·W (1) · V and
c′ = b(L+N−1) + W (L+N−1)

(
· · ·
(
b(1) +W (1) · c

)
· · ·
)

for the affine mapping with
matrix W (i) and vector b(i) applied to the input in step i of the FNN computation
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for i ∈ {1, . . . , L+N − 1}. Since the computation is exact, these affine mappings are
thus also applied to derive any value z ∈ JΘ′K. Therefore,

F (x) = b(L+N−1) +W (L+N−1)
(
· · ·
(
b(1) +W (1) · x

)
· · ·
)

. Since x = c+V α, b(L+N−1)+W (L+N−1)
(
· · ·
(
b(1) +W (1) · x

)
· · ·
)
= c′+V ′α = z.

Thus, the proposition holds.

Proposition A.0.7 (Counterexamples). Assume an (n,m)-dimensional star Θ =

⟨c,V ,P⟩ and a safety specification S =
⋃k

i=1 Si ⊆ Rn. Let ψP , ψS1
, . . . , ψSk

be
the linear real arithmetic formulas corresponding to P,S1, . . . ,Sk as introduced in
Section 2.4. Then all values α ∈ Rm satisfying the following formula correspond to
counterexamples z ∈ JΘK ∩ ¬S with z = c+ V α:

ψS,Θ(α) := ψP(α) ∧
k∧

i=1

¬ψSi(c+ V α).

Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star and S =
⋃k

i=1 Si ⊆ Rn a
safety specification for n,m, k ∈ N+.

Let α ∈ Rm such that ψS,Θ(α) ≡ ⊤. Then α ∈ P because ψP(α) ≡ ⊤. Let
z := c+ V α. Then z ∈ JΘK. Because for all i ∈ {1, . . . , k} it follows that ψSi

(z) ≡ ⊥
which implies z /∈ Si. Therefore, z /∈ S and thus z ∈ ¬S.

Thus, z ∈ (JΘK∩¬S) which makes it a counterexample and proves the proposition.

Proposition A.0.8 (Elements of Stars). Assume an (n,m)-dimensional star Θ =
⟨c,V ,P⟩ with predicate P = {α ∈ Rm | ψP(α)} and a value x ∈ Rn. Then x ∈ JΘK
if and only if the following formula using is feasible

ψP(α) ∧
n∧

i=1

φi(α)

for φi(α) defined according to Formula 3.2.

Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star and x ∈ Rm for n,m ∈ N+.
For checking the containment of x in Θ, φi(α) :=

(
ci +

∑m
j=1 vijαj = xi

)
for all

i ∈ {1, . . . , n} and ψP is defined such that P = {α ∈ Rm | ψP(α)}.
If x ∈ JΘK, then an α ∈ P exists such that x = c+ V α. Thus,

xi = ci + Viα = ci +

m∑
j=1

vijαj

which implies φi(α) = ⊤ for all i ∈ {1, . . . , n}. Because α ∈ P , ψP(α) = ⊤. Therefore,
ψP(α) ∧

∧n
i=1 φi(α) is satisfied by α and thus feasible.

Let α ∈ Rm such that ψP(α) ∧
∧n

i=1 φi(α) ≡ ⊤. Then α ∈ P and xi = ci +∑m
j=1 vijαj = ci + Viα. Therefore, x = c+ V α and x ∈ JΘK.
Thus, the proposition holds.

Proposition A.0.9 (Tracing through Affine Operations). Let Θ = ⟨c,V ,P⟩ and
Θ′ = ⟨c′,V ′,P⟩ such that Θ′ ∈ op(Θ) for an affine operation op(·). For an element
z = c′ + V ′α ∈ JΘ′K with α ∈ P, the element c+ V α ∈ JΘK is a source of z.
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Proof. Let Θ = ⟨c,V ,P⟩ be an (n,m)-dimensional star and Θ′ = ⟨c′,V ′,P⟩ an (k,m)-
dimensional star with Θ′ ∈ op(Θ) for an affine operation op(·). Let op(·) correspond to
the affine mapping with W ∈ Rk×n and b ∈ Rk. Thus, c′ = Wc+ b and V ′ = WV .

Let z = c′ + V ′α ∈ JΘ′K with α ∈ P. Then, the following holds:

z = c′ + V ′α = Wc+ b+WV α = W (c+ V α) + b = op(c+ V α).

Thus, c+ V α is a source of z and the proposition holds.

Proposition A.0.10 (Refinment). Let Θo ∈ opo(Θ) for two stars Θo and Θ in a
reachability tree and opo an over-approximated activation function operation.

If z ∈ JΘoK is a source of a counterexample such that opo is an origin of this
counterexample, then z /∈

⋃k
i=1JΘiK for ope(Θ) = {Θ1, . . . ,Θk} where ope is the exact

activation function operation corresponding to opo.

Proof. Let opo be an over-approximated activation function operation, Θ,Θo two stars
with Θo ∈ opo(Θ), z ∈ JΘoK such that opo(z

′) ̸= z for all z′ ∈ JΘK, and let ope be the
exact activation function operation corresponding to opo with ope(Θ) := {Θ1, . . . ,Θk}
for k ∈ N+.

Assume z ∈ JΘiK for some i ∈ {1, . . . , k}. Then z′ ∈ JΘK exists such that
ope(z

′) = z, because ope is exact. Because operations applied to single values are
always exact, z = ope(z

′) = opo(z
′). This is a contradiction to opo(z

′) ̸= z for all
z′ ∈ JΘK. Therefore, z /∈ JΘiK for all i ∈ {1, . . . , k} and thus z /∈

⋃k
i=1JΘiK.

Thus, the proposition holds.

Proposition A.0.11 (Safe Subtrees). Let Θi be a star resulting from the application
of the first i ∈ {1, . . . , L+N − 1} operations in an FNN F with L ∈ N≥2 layers and
N =

∑L
i=2⟨i⟩ non-input neurons.

If the subtree of a reachability tree corresponding to F with Θi as root is safe, then
all subtrees of reachability trees corresponding to F with a root represented by a star
Θ′

i resulting from the first i operations of F such that JΘ′
iK ⊆ JΘiK are also safe.

Proof. Let Θ and Θ′ be two stars with JΘ′K ⊆ JΘK that result from the application of
the first i ∈ N operations in a sufficiently large FNN F . Let T be a reachability tree
corresponding to F and let Θ be the root of a safe subtree of T . Because this subtree
is safe, the stars resulting from applying exact reachability analysis after Θ are also
safe. Let finally r ∈ N be the number of remaining operation applications.

If r = 0, Θ and Θ′ are final leaves and no further computation is necessary. Thus,
safety directly corresponds to a safety specification S. Since Θ is safe, JΘK ⊆ S which
implies JΘ′K ⊆ S. Therefore, Θ′ is a safe final leave and thus the root of a safe subtree.

For r + 1 remaining operations, it is necessary to differentiate between the types
of operation that are applied next. Let the next operation be an affine mapping
with matrix W and vector b and Θa and Θ′

a the resulting stars from the application
to Θ and Θ′ respectively. For x ∈ JΘ′K, (Wx+ b) ∈ JΘ′

aK. Because JΘ′K ⊆ JΘK,
(Wx+ b) ∈ JΘaK. Thus, JΘ′

aK ⊆ JΘaK.
Assume now that the next operation op(·) is an exact activation function application.

Let op(Θ) = {Θ1, . . . ,Θk} and Hi,1, . . . ,Hi,ki
the halfspaces that are intersected with

Θ to calculate Θi for i ∈ {1, . . . , k}, ki ∈ N and k ∈ N+. Let additionally W (i), b(i)

be the matrix and vector applied to calculate Θi. Because JΘ′K ⊆ JΘK, these or
less halfspaces and affine mappings are used to calculated op(Θ′). It holds, that
JΘ′K ∩

⋂kj

j=1Hi,j ⊆ JΘK ∩
⋂kj

j=1Hi,j . The application of the affine mapping to these
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intersected stars also preserve the subset property as described for the application of
affine operations. Thus, the union of reachable sets resulting from Θ′ is a subset of
the union of reachable sets resulting from Θ.

Therefore, the proposition holds.

Proposition A.0.12 (Safe Paths). Let F be an FNN with L ∈ N≥2 layers and let
Θ0, . . . ,Θi and Θ′

0,Θ
′
1, . . . ,Θ

′
i be two paths in reachability trees corresponding to F

with the root Θ0 = Θ′
0. If for all j ∈ {1, . . . , i} the following conditions hold, then

JΘ′
iK ⊆ JΘiK:

• If Θj is the result of an exact activation function operation applied to Θj−1, then
Θ′

j is computed from Θ′
j−1 using the same calculations. This means the same

intersections with halfspaces and the application of the same affine mappings.

• If Θj is the result of an over-approximated activation function operation applied
to Θj−1, then Θ′

j is the result of a corresponding exact or over-approximated
operation applied to Θ′

j−1.

• If Θj is the result of an affine operation applied to Θj−1, then Θ′
j is the result

of the same affine operation applied to Θ′
j−1.

Proof. Let Θ0, . . . ,Θi and Θ′
0,Θ

′
1, . . . ,Θ

′
i be two paths in reachability trees corre-

sponding to an FNN F with roots Θ0 = Θ′
0 for i ∈ N+. Let the conditions in the

proposition hold for all j ∈ {1, . . . , i}.
If i = 0, then JΘ′

0K ⊆ JΘ0K because Θ′
0 = Θ0.

If otherwise i+1 operations are applied to generate Θi+1 and Θi+1 and JΘ′
iK ⊆ JΘiK,

the following prove depends on the remaining operation type. Let this operation be
affine with matrix W and vector b. Because JΘ′

iK ⊆ JΘiK, the following holds

JΘ′
i+1K = {Wx+ b | x ∈ JΘ′

iK} ⊆ {Wx+ b | x ∈ JΘiK} = JΘi+1K

Let the operation now be the same exact activation function operation where
Θi and Θ′

i are intersected with the halfspaces H1, . . . ,Hk for k ∈ N and the affine
mapping with matrix W and vector b is applied to them. Because JΘ′

iK ⊆ JΘiK, also
JΘ′

iK ∩
⋂k

j=1Hj ⊆ JΘiK ∩
⋂k

j=1Hj . The application of the affine mapping to these
new stars preserves the subset property as described for the previous operation. Thus,
JΘ′

i+1K ⊆ JΘi+1K.
Let Θi+1 ∈ {Θi+1} = opo(Θi) be calculated by an over-approximated activation

function operation opo(·) applied to Θi. Let further Θ′
i+1 ∈ ope(Θ

′
i) be calculated

using an exact activation function application ope(·) where the halfspaces H1, . . . ,Hk

for k ∈ N and the affine mapping with W and b are applied to Θ′
i to calculate Θ′

i+1.
Let finally Θe ∈ ope(Θi) be the result of the same exact activation function application
with halfspace intersections with H1, . . . ,Hk and affine mapping with W and b applied
to Θi. Θe ⊆ Θi+1, because Θe represents a subset of the exact application of an
activation function, while Θi+1 represents the over-approximation of the same function
application. Because JΘ′

iK ⊆ JΘiK, it holds that JΘ′
i+1K ⊆ JΘeK based on the previous

case. Therefore, JΘ′
i+1K ⊆ JΘi+1K.

Let Θi+1 and Θ′
i+1 now be calculated based on an over-approximated activation

function operation. Because JΘ′
iK ⊆ JΘiK, the interval of values in the dimension to

which the activation function is applied of Θ′
i is a subset of Θi. Because we use the

tightest convex over-approximation possible, JΘ′
i+1K ⊆ JΘi+1K follows.

Thus, the proposition holds.
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