
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

GENERATING COVERINGS USING VIRTUAL

SUBSTITUTION FOR EXPLANATIONS IN MCSAT

Max Harder

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Jasper Nalbach Aachen, 23.08.2022





Abstract

Satis�ability modulo theories (SMT) refers to the problem of checking whether
a quanti�er-free formula over some theories is satis�able. In recent times, the
model-constructing satis�ability calculus (mcSAT) was presented as a new ap-
proach for SMT solving which makes use of an explanation function in order to
describe con�icts that occur during the search for a solution. Since the choice
of this function has a strong in�uence on the time needed to solve an input
formula, this thesis presents a method to generate explanations by generalizing
coverings using virtual substitution. In conclusion, the results of implementing
this method into the SMT-RAT framework are compared and discussed.



iv



v

Acknowledgements

I am very thankful to Prof. Erika Ábrahám for the opportunity to write my bachelor
thesis about this very interesting topic. Many thanks to Jasper Nalbach for supervis-
ing me throughout the time. Furthermore, I would like to thank Prof. Jürgen Giesl
for agreeing to be the second examiner.



vi



Contents

1 Introduction 9

2 Preliminaries 11

2.1 Non-linear real arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 mcSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Virtual substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Generating explanations using virtual substitution 17

3.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Finding intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Constructing a covering . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Generating an explanation . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Experimental results 29

4.1 Overall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Comparing single instances . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 35

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 37



viii Contents



Chapter 1

Introduction

The Boolean satis�ability problem (SAT) is the �rst problem that was proven to be
NP-complete; therefore, solving instances of SAT requires an exponential time e�ort
in the worst case. The increasing number of use-cases, however, led to a continuous
improvement of SAT solvers. As a result, there are many approaches nowadays which
allow for a reasonably fast solving of instances of SAT for problems like model checking
or arti�cial intelligence. A well known algorithm is DPLL, which is extended to the
most commonly used con�ict-driven clause learning (CDCL) framework.

Having many applications, the Boolean satis�ability problem was extended to
satis�ability modulo theories (SMT), which allows the usage of �rst-order logic theories
like linear real arithmetic (LRA) and non-linear real arithmetic (NRA). Solvers for
SMT can generally be separated into two classes. The �rst one, being eager SMT
solving, describes the approach of transforming a logical formula over a theory into
a satis�ability-equivalent propositional formula, which then can be solved using SAT
solvers. The other method is called lazy SMT solving and makes use of a SAT solver
as well as a theory solver. While the SAT solver focusses on the satisfaction of the
Boolean skeleton of a given formula, the theory solver validates the consistency with
the underlying theory and returns an explanation in case of con�icts. The DPLL(T)
framework, which is an extension to DPLL, is such a lazy SMT solver that is quite
successful.

In the recent time, a new approach called model-constructing satis�ability cal-
culus (mcSAT) was developed as an extension to DPLL(T). The main di�erence is
that mcSAT is not restricted to Boolean decisions only but allows the assignment of
variables to concrete values, which then can be involved in the search for a solution
and in explaining possible con�icts. Since the returned explanation from the the-
ory solver has a signi�cant in�uence on the performance of the algorithm, this thesis
presents a method that generates explanations by generalizing coverings using virtual
substitution.

Therefore, we start in Chapter 2 with a brief introduction into NRA and the prin-
ciple of mcSAT, after which an overview of virtual substitution is given. In Chapter 3,
the procedure for generating explanations using virtual substitution is explained and
illustrated on a few examples. Having understood the theoretical idea, Chapter 4 deals
with the implementation into the SMT-RAT framework and the comparison to other
approaches. Finally, Chapter 5 concludes the results and mentions opportunities for
improvement.



10 Introduction



Chapter 2

Preliminaries

2.1 Non-linear real arithmetic

In the following, let R be the set of real numbers, let Q be the set of rational numbers
and let N denote the set of natural numbers excluding 0. Furthermore, let dom(f) be
the domain of a function f : X → Y , i.e., dom(f) = X.

De�nition 2.1.1 (Non-linear real arithmetic). A formula ϕ from the theory of quanti�er-
free non-linear real arithmetic (QFNRA) is de�ned as follows:

ϕ := c | (ϕ ∧ ϕ) | ¬ϕ
c := p < 0 | p = 0

p := const | x | (p+ p) | (p− p) | (p · p)

where x is an arbitrary variable that gets assigned a real value and const ∈ Q. The
terms c are called constraints, while the terms p are called polynomials.

Since the set {¬,∧} is functionally complete, every other operator like ∨ or →
can be represented. Likewise, we allow the usage of the operators {≤,≥, >, 6=} as
syntactic sugar and write, e.g., p ≥ 0 instead of ¬(p < 0). Moreover, the operators
{≤,≥,=} are called weak, while {<,>, 6=} are called strict.

Let Vars(p) be the set of all variables that appear in a polynomial p. We call
p univariate if |Vars(p)| = 1 and multivariate if |Vars(p)| ≥ 2. Additionally, every
polynomial p with Vars(p) = {x1, x2, . . . , xn} can be transformed into a normal form
that looks as follows:

p =

m∑
j=1

cj · x
e1,j
1 · xe2,j2 · · · · · xen,j

n

where cj ∈ Q, m ∈ N and ei,j ∈ N ∪ {0} with 1 ≤ i ≤ n, 1 ≤ j ≤ m. The degree of a
variable xi in p is de�ned in the following way:

degxi
(p) = max({ei,j | 1 ≤ j ≤ m}).

We call p linear in xi if degxi
(p) = 1. Similarly, p is quadratic in xi if degxi

(p) = 2
holds.



12 Preliminaries

De�nition 2.1.2 (Assignment). Let V be a set of variables. An assignment is a
function α : V → R which assigns each variable in V a real value. Additionally, we
call an assignment β : V ⇀ R partial if there exists an xi ∈ V such that β(xi) is
unde�ned; in this case, we also write β(xi) /∈ R.

De�nition 2.1.3 (Extension of an assignment). An extension of an assignment α is
another assignment α′ : V → R where dom(α) ⊆ dom(α′) and α′(x) = α(x) for all
x ∈ dom(α) with α(x) ∈ R.

The extension of an assignment α which maps the variable y to the value k ∈ R
is denoted as αy 7→k, i.e.,

αy 7→k(xi) =

{
α(xi) xi 6= y

k else
.

De�nition 2.1.4 (Evaluating a formula). Let α be an assignment. The evaluation of
a formula ϕ is written as JϕKα and is done in the standard way. We say that α satis�es
ϕ, written as α |= ϕ, if JϕKα evaluates to true. A formula ϕ is called satis�able if
there exists an assignment that satis�es ϕ. Furthermore, ϕ is called valid, written as
|= ϕ, if ϕ is satis�ed by every assignment. The symbol ≡ is used to denote logical
equivalence of formulas.

2.2 mcSAT

Themodel-constructing satis�ability calculus (mcSAT) [MJ13] is a recent development
in SMT solving, which extends the functionality of DPLL(T). As in DPLL(T), mcSAT
makes use of both a SAT solver and a theory solver in order to �nd a satisfying
solution. The crucial di�erence is that mcSAT allows the theory solver to assign
variables to concrete values that can then be used to �nd an assignment and to
explain upcoming con�icts.

If such a con�ict arises, the theory solver has to produce an explanation based on
the set of constraints together with the currently chosen partial assignment but is also
allowed to introduce new literals, in contrast to DPLL(T). These literals have to be
from a �nite set B, which is called �nite basis, so that the termination of the procedure
is guaranteed. Formally, a con�ict and an explanation are de�ned as follows:

De�nition 2.2.1 (Con�ict between a set of constraints and an assignment). Let R
be a set of constraints, called reason set, that contain the variables x1, . . . , xn, y and
let α be the current partial assignment that assigns every xi ∈ {x1, . . . , xn} a value in
R. The set R and assignment α are con�icting if no extension α′ of α with α′(y) ∈ R
and α′ |=

∧
c∈R c exists. In other words, this means that the variable y is not and

cannot be assigned a value in R without causing a con�ict between R and α.

De�nition 2.2.2 (Explanation). Let R be a set of constraints and α an assignment
such that R and α are con�icting. An explanation for this con�ict is a formula E
that ful�ls the following properties:

� E is valid, i.e., |= E holds

� E has the form ϕ→ ψ where ϕ ≡
∧
c∈R′⊆R c and α 6|= ψ

� every literal l in E is part of the �nite basis B



Virtual substitution 13

2.3 Virtual substitution

Virtual substitution (VS) [LW93, Wei97] is a quanti�er elimination procedure for non-
linear real arithmetic formulas in which the variables are only allowed to have a degree
of at most 4. In this thesis, however, we will only focus on variables with a degree
not higher than 2 and limit our view on only some parts of VS.

2.3.1 Symbolic zeros

One part of virtual substitution consists in the calculation of zeros for univariate and
multivariate polynomials. These zeros are expressed by square root expressions and
are calculated as described in the following.

De�nition 2.3.1 (Square root expression). A square root expression is an expression
of the form

p+ q
√
r

s

where p,q,r,s are polynomials.

In the beginning, we will have a look at the univariate case. Therefore, let p =
ax2 + bx+ c be a polynomial with a single variable x and values a,b,c ∈ Q. If we are
interested in the real zeros, we can calculate them using the following rules:

De�nition 2.3.2 (Zeros of a polynomial). Let p = ax2 + bx + c be a polynomial
with coe�cients a, b and c that do not contain x. The zeros of p can be calculated as
follows:

z0 = − cb , if a = 0 and b 6= 0

z1 = −b+
√
b2−4ac
2a , if a 6= 0 and b2 − 4ac ≥ 0

z2 = −b−
√
b2−4ac
2a , if a 6= 0 and b2 − 4ac > 0

As seen in table above, the existence of a zero depends on some constraints called
side conditions that have to be ful�lled. The �rst zero, for example, does only exist
if the given polynomial is linear in x. We abbreviate these side conditions using the
function sc which maps a zero to its side conditions.

In the multivariate case, we can also apply the above-mentioned rules. The only
di�erence is that the coe�cients of x in the polynomial p, namely a,b and c, are
now polynomials themselves. Using this approach, the resulting zeros will not be
necessarily real values but rather new expressions which are called symbolic zeros
from now on. Additionally, the symbolic zero zi of a polynomial p can be written as
zi(p) for i ∈ {0,1,2}.

Example 2.3.1. Let p = ax2+ bx+ c with a = z, b = −6 and c = 1 be a multivariate
polynomial. Using the upper rules, we can calculate the following symbolic zeros:

z0 = − 1

−6
=

1

6

z1 =
−(−6) +

√
(−6)2 − 4 · z

2 · z
=

6 +
√
36− 4 · z
2 · z

z2 =
−(−6)−

√
(−6)2 − 4 · z

2 · z
=

6−
√
36− 4 · z
2 · z



14 Preliminaries

In order to determine which of these zeros exist, we consider the assignment α with
α(z) = 5 and check the side conditions of each zero. The side conditions of z0 are

sc(z0) ≡ (a = 0 ∧ b 6= 0) ≡ (z = 0 ∧ −6 6= 0) ≡ (z = 0).

Since α assigns z to 5, α 6|= sc(z0) holds and z0 is not a zero of p. The side conditions
of z1 and z2 are

sc(z1) ≡ (a 6= 0 ∧ b2 − 4ac ≥ 0) ≡ (z 6= 0 ∧ (−6)2 − 4 · z ≥ 0),

sc(z2) ≡ (z 6= 0 ∧ (−6)2 − 4 · z > 0).

As a result, α |= sc(z1) and α |= sc(z2) holds. Therefore, p has the two zeros z1 and
z2 if α is taken into account.

2.3.2 Substituting variables virtually

Another part of the virtual substitution method is the substitution of variables.
Therefore, let −∞ be the number that is smaller and ∞ be the number that is
larger than every other number. In contrast to substituting a variable x directly, the
variable gets substituted virtually. The reason is that x could be replaced by −∞, for
example, such that the resulting expression would not necessarily be a real arithmetic
formula as described in De�nition 2.1.1.

For this thesis, it is su�cient to restrict to the substitution rules for −∞ and for
square root expressions. An overview of all substitution rules can be found in [Cor16].

Example 2.3.2. Let ϕ := (ax2 + bx + c < 0) be a formula with a = 2, b = −5 and
c = 3. The result of virtually substituting x by −∞ in ϕ, written as ϕ[−∞//x], looks
as follows:

ϕ[−∞//x] ≡ (a < 0) ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c < 0)

≡ (2 < 0) ∨ (2 = 0 ∧ −5 > 0) ∨ (2 = 0 ∧ −5 = 0 ∧ 3 < 0)

≡ false ∨ false ∨ false
≡ false

2.3.3 Sign-invariant regions

The next concept that is introduced is called sign-invariant regions. Therefore, we
will �rst look at the sign function and at regions. Combining them, we can de�ne
sign-invariant regions.

De�nition 2.3.3 (Sign function). The sign function maps a real value to its sign,
i.e.:

sgn : R→ {−1,0,1}, x 7→


−1 , if x < 0

0 , if x = 0

1 , if x > 0

De�nition 2.3.4 (Region and interval). A set I is called a region if I is a connected
subset of R. Synonymously, regions are also called intervals, which can be written in
the following ways:

[a, b] := {x ∈ R | a ≤ x ≤ b}, (a, b) := {x ∈ R | a < x < b},
(a, b] := {x ∈ R | a < x ≤ b}, [a, b) := {x ∈ R | a ≤ x < b}.



Virtual substitution 15

The two endpoints of an interval I are called bounds. We call a bound z of an interval
I closed if z ∈ I; otherwise, it is called open.

De�nition 2.3.5 (Symbolic interval). A symbolic interval Ĩ is an interval that has
at least one symbolic zero as its bound. Hence, Ĩ does not directly correspond to a
subset of R but needs to be evaluated in relation to an assignment that assigns all
variables in the bounds. This evaluation is written as Ĩα where α is an assignment.

Example 2.3.3. Let Ĩ := (−∞, 2x) be a symbolic interval and α with α(x) = 4 an
assignment. Evaluating the bounds in Ĩ using α results in Ĩα = (−∞, 2 ·4) = (−∞, 8).

De�nition 2.3.6 (Sign-invariant region). A region I is called sign-invariant for a
univariate polynomial p if for all values a, b ∈ I holds:

sgn(p(a)) = sgn(p(b)).

De�nition 2.3.7 (Covering). A covering COV of a set X is a collection of sets whose
union includes X as a subset. Formally, COV = {Ii | i ∈ N} is a covering of X if
X ⊆

⋃
Ii∈COV Ii.

Throughout this thesis, the focus lies on coverings of R.

2.3.4 Quanti�er elimination

Finally, the quanti�er elimination procedure, which eliminates a variable that is bound
to an existential or universal quanti�er, is brie�y explained. A more detailed descrip-
tion about this elimination procedure can be found in [Cor16]. Initially, we introduce
ε as a positive number that is in�nitesimally close to 0. In order to perform the
quanti�er elimination, we �rst have a look at test candidates.

De�nition 2.3.8 (Test candidates). Let p be a polynomial that is at most quadratic
in the variable x. Let c := (p ∼ 0) be a constraint where ∼ ∈ {≤,≥, <,>,=, 6=} and
let z0, z1, z2 be the symbolic zeros of p. The set of test candidates for x in c is de�ned
by

tcs(x, p ∼ 0) =

{
{−∞, z0, z1, z2} , if ∼ ∈ {≤,≥,=}
{−∞, z0 + ε, z1 + ε, z2 + ε} , if ∼ ∈ {<,>, 6=}

The side conditions of a test candidate t are de�ned by

sc(t) =


sc(t′) , if t = t′ + ε

sc(t) , if t is a zero

true , if t = −∞

The set of test candidates for a variable x in a formula ϕ is de�ned by

tcs(x, ϕ) =
⋃

Constraint c in ϕ

tcs(x, c).

Theorem 2.3.1 (Eliminating a quanti�er). Let ϕ be a quanti�er-free formula in
which the variable x has a degree of at most 2. Then it holds:

∃x.ϕ ≡
∨

t∈tcs(x,ϕ)

(ϕ[t//x] ∧ sc(t)).

The elimination of a universal quanti�er can be done similarly.



16 Preliminaries

This theorem shows that it is su�cient to insert a �nite set of test candidates
into a formula ϕ, which results in a satis�ability-equivalent formula ψ that has one
quanti�er less than ϕ.



Chapter 3

Generating explanations using

virtual substitution

This chapter presents a method to generate explanations for mcSAT by generalizing
a covering using virtual substitution. In order to get a better understanding of the
steps that follow, an intuitive description is given after which the three phases of the
procedure, namely

1. �nding excluded intervals,

2. constructing a covering and

3. generating an explanation,

are explained.

3.1 Idea

The goal of this method is to generate for a given set of constraints R and a partial
assignment α an explanation as described in De�nition 2.2.2. The set R and α are
con�icting such that α 6|= ∃y(

∧
c∈R c) holds. The con�ict could be explained if VS is

used directly by substituting all test candidates into the constraints as given by The-
orem 2.3.1. For this con�ict, however, not all test candidates are needed necessarily;
thus, we try to reduce the e�ort of VS by constructing a covering instead.

Intuitively, every constraint in R that contains the variable y restricts the values
that y can be assigned to. Since the given input is con�icting, the solution set of y is
empty.

If we look at the constraint c1 = (xy < 0) and the assignment β with β(x) = 1, for
example, then c1 currently equals (y < 0) and the interval [0,∞) is excluded from the
initial solution set R of y, resulting in R \ [0,∞) = (−∞, 0). If we consider a second
constraint c2 = (y > 2), the interval (−∞, 2] gets excluded. Combining these restric-
tions, the solution set of y becomes R \ ((−∞, 2]∪ [0,∞)) = R \ (−∞,∞) = ∅. Thus,
there is no extension of β that assigns y a value and satis�es both constraints. This
example can also be visualized by drawing the excluded intervals as seen in Figure 3.1.



18 Generating explanations using virtual substitution

y
−∞ . . . . . . ∞-3 -2 -1 0 1 2 3

c2 = (y > 2)

c1 = (xy < 0)

Figure 3.1: Intervals excluded by c1, c2 and β

It is noticeable that the intervals are overlapping and forming a covering of R as
given in De�nition 2.3.7. One way to explain the con�ict is to formalize this concrete
covering. However, this explanation would be fairly simple and not applicable for
similar con�icts. A more general explanation, which we are aiming for, could use the
fact that this covering will remain as long as the bounds are overlapping, no matter
at which speci�c position they are. Thus, the target is to �rst identify the concrete
covering given by R and α, which then gets abstracted to a more general description
of the con�ict. For the abstraction, we use interval data structures, which are de�ned
as follows:

De�nition 3.1.1 (Truth-invariant region). Let c be a constraint that contains the
variable y. A region I is called truth-invariant for c if for an assignment α and for
values a, b ∈ I holds:

αy 7→a |= c⇐⇒ αy 7→b |= c.

De�nition 3.1.2 (Interval data structure). An interval data structure can be repre-
sented by a tuple I = (Ĩ , C, r) where Ĩ is a symbolic interval, C is a set of constraints
called side conditions, and r is the constraint from which Ĩ is derived and for which Ĩ
is a truth-invariant region. Typically, r is part of a reason set R as speci�ed in Def-
inition 2.2.2. The existence of the symbolic interval Ĩ depends on an assignment α;
thus, Ĩ exists if and only if α satis�es the constraints in C.

Additionally, we introduce the function si that maps an interval data structure
I = (Ĩ , C, r) to its symbolic interval Ĩ.

3.2 Finding intervals

The �rst step is to �nd the intervals that are excluded by the given parameters.
Therefore, let R be a set of constraints and α a partial assignment as described before.
The constraints in R have the form p ∼ 0 where p is a polynomial with degy(p) ≤ 2
and ∼ ∈ {≤,≥, <,>,=, 6=}. Also, p can be written as p = ay2 + by + c with a,b,c
being polynomials not containing y. The reason why we do not allow degy(p) > 2
is that we will need to calculate the zeros of p in dependence of y, which requires
more e�ort for higher degrees and can, in general, only be done up to a degree of 4
as explained in [Nic93] and [Shm11]. Lastly, the assignment α assigns all variables xi
in R except y.

In order to �nd the excluded intervals, we �rst have to understand that such inter-
vals correspond to sign-invariant regions as described in De�nition 2.3.6. Therefore,
let p ∼ 0 be a constraint in R from now on and pα := p(α(x1), . . . , α(xn)) be the poly-
nomial that is the result of replacing the variables in p by their current assignment
in α; thus, pα is univariate in y. The following theorem states the relation between
excluded intervals and sign-invariant regions by using truth-invariant regions.



Finding intervals 19

Theorem 3.2.1. Let p be a polynomial and let α be an assignment. Then it holds
that a sign-invariant region I for pα is also a truth-invariant region for p ∼ 0 where
∼ ∈ {≤,≥, <,>,=, 6=}.

In other words, if two values y1 and y2 are chosen from a sign-invariant region I,
either both satisfy a constraint or none of them does. This property applies to every
pair in I; hence, it applies to the entire region I, and I is either completely excluded
from the solution set or no value within I is excluded at all. In summary, this means
that every excluded interval is equivalent to a sign-invariant region.

Proof. Let p be a polynomial and let α be an assignment. Furthermore, let I be a
sign-invariant region for pα and y1, y2 ∈ I. We show that I is truth-invariant for
p ∼ 0, i.e., αy 7→y1 |= (p ∼ 0) if and only if αy 7→y2 |= (p ∼ 0).

αy 7→y1 |= (p ∼ 0)⇔ pα(y1) ∼ 0

⇔ sgn(pα(y1)) ∼ 0

⇔ sgn(pα(y2)) ∼ 0

⇔ pα(y2) ∼ 0

⇔ αy 7→y2 |= (p ∼ 0)

Using this theorem, we can infer the following corollary.

Corollary 3.2.2. Let I be a sign-invariant region for pα and k ∈ I.

αy 7→k |= (p ∼ 0) holds if and only if αy 7→j |= (p ∼ 0) for every j ∈ I holds.

This corollary shows that it is su�cient to only check one value k ∈ I in order to
determine whether all values in I are suitable for satisfying p ∼ 0. This value k is
called a representative.

Proof. Let I be a sign-invariant region for pα and k ∈ I. Assume, αy 7→k |= (p ∼ 0)
holds. By applying Theorem 3.2.1, αy 7→j |= (p ∼ 0) holds for any j ∈ I; therefore, it
holds for every j ∈ I. Furthermore, if αy 7→j |= (p ∼ 0) holds for every j ∈ I, then
especially for j = k.

Referring to Theorem 3.2.1, we can �nd the excluded intervals by determining all
sign-invariant regions. Since a polynomial only changes its sign at its zeros, these are
calculated in the following by using the rules given in De�nition 2.3.2, namely:

z0 = − cb , if a = 0 and b 6= 0

z1 = −b+
√
b2−4ac
2a , if a 6= 0 and b2 − 4ac ≥ 0

z2 = −b−
√
b2−4ac
2a , if a 6= 0 and b2 − 4ac > 0

3.2.1 Linear polynomial with one zero

If p together with the partial assignment α satisfy the side conditions of the �rst
symbolic zero z0, then pα is linear and has the zero z0. As a result, we know that
there exist the three sign-invariant regions (−∞, z0), [z0, z0] and (z0,∞).

In order to determine which of these regions relate to excluded intervals, we could
have a look at each sign-invariant region one after the other, and by picking a repre-
sentative from it, check whether it is an excluded interval as given by Corollary 3.2.2.



20 Generating explanations using virtual substitution

α |= (p ∼ 0)[−∞//y] p ∼ 0 excluded intervals

yes ∼ ∈ {≤,≥} (z0,∞)
∼ ∈ {<,>} [z0,∞)
∼ ∈ {=} (−∞, z0), (z0,∞)
∼ ∈ {6=} [z0, z0]

no ∼ ∈ {≤,≥} (−∞, z0)
∼ ∈ {<,>} (−∞, z0]
∼ ∈ {=} (−∞, z0), (z0,∞)
∼ ∈ {6=} [z0, z0]

Table 3.1: Excluded intervals of a linear polynomial
having a symbolic zero z0

On the other hand, it is su�cient to check only the �rst region and deduce the
other regions by making use of the operator ∼ and the fact that pα is linear. An
example is given in the following.

Example 3.2.1. Let r1 = (xy− 2 < 0) be a constraint and α with α(x) = 1 a partial
assignment. Thus, the polynomial to be considered is p = xy − 2 and has the normal
form p = ay2+by+c with a = 0, b = x, c = −2. Applying α to p results in pα = y−2.

Since pα is linear in y, the side conditions of z0 are satis�ed and z0 = − cb = −
−2
x =

2x−1. Therefore, the sign-invariant regions are (−∞, z0), [z0, z0] and (z0,∞). Using
the current assignment α, we could evaluate z0 to 2x−1 = 2 · 1−1 = 2 in order to �nd
the concrete regions; however, we will already abstract from α and continue with z0
as a symbolic zero. Now we check if the �rst region is an excluded interval by picking
the representative −∞. This value is chosen because it is always a representative
of the leftmost interval. Since −∞ is not a real value, we cannot directly assign it
to y but have to substitute it virtually. Hence, we evaluate r1[−∞//y] as described
in Section 2.3.2:

ϕ := r1[−∞//y] ≡ (b > 0) ∨ (b = 0 ∧ c < 0)

≡ (x > 0) ∨ (x = 0 ∧ −2 < 0)

≡ (x > 0) ∨ (x = 0 ∧ true)
≡ (x > 0) ∨ (x = 0)

The result is that α |= ϕ, so −∞ is suitable for satisfying r1 and the region (−∞, z0)
is not an excluded interval. However, we can infer due to the monotonicity of linear
functions that the region (z0,∞) is excluded from the solution set. In order to evaluate
the point interval [z0, z0], the operator ∼ has to be checked. Since ∼ ∈ {<} is strict,
zeros are no feasible solutions and [z0, z0] is excluded, too. All in all, the excluded
intervals for the constraint r1 and the current assignment α are [z0, z0] and (z0,∞),
which can be combined to the interval [z0,∞) = [2x−1,∞).

An overview of all rules for the linear case can be found in Table 3.1. Once
each excluded interval I for this concrete constraint and assignment is found, I is
transformed into an interval data structure, which encodes the side conditions that
need to be satis�ed in order for I to be excluded by p ∼ 0.



Finding intervals 21

De�nition 3.2.1 (Interval data structure for a linear polynomial). Let p be a poly-
nomial and α an assignment such that pα is linear, i.e., α |= sc(z0(p)). Furthermore,
let p ∼ 0 be a constraint and ϕ := (p ∼ 0)[−∞//y]. Then we de�ne the interval data
structure (Ĩ , C, p ∼ 0) such that:

� Ĩ is chosen according to Table 3.1

� C = {sc(z0(p)),¬sc(z1(p))} ∪ {ϕ | α satis�es ϕ} ∪ {¬ϕ | α satis�es ¬ϕ}

As a side note, ¬sc(z2(p)) does not need to be part of C because ¬sc(z1(p)) already
implies ¬sc(z2(p)).

All the constraints in C are satis�ed by the current assignment α, and every other
assignment that satis�es these side conditions, too, excludes an interval similar to I.

Example 3.2.2. Assume, we are given the former example with r1 = (xy−2 < 0) and
α(x) = 1 such that the excluded interval is Ĩ1 := [2x−1,∞), and let ϕ := r1[−∞//y].
The corresponding interval data structure is I1 := (Ĩ1, C1, r1), where C1 contains the
following side conditions:

� sc(z0) ≡ (0 = 0 ∧ x 6= 0) ≡ (x 6= 0)

� ¬sc(z1) ≡ ¬(0 6= 0 ∧ x2 − 0 ≥ 0) ≡ (0 = 0 ∨ x2 < 0) ≡ true

� ϕ ≡ (x > 0) ∨ (x = 0), because α |= ϕ

The second constraint can be ignored, because it evaluates to true.

3.2.2 Quadratic polynomial with one or two zeros

If the side conditions sc(z0(p)) are not satis�ed, we check sc(z1(p)) instead. Should
the conditions be ful�lled, then pα is quadratic and has at least the one zero z1.
Whether the polynomial has a second zero can be found out by having a look at the
side conditions of z2.

Supposing sc(z2(p)) are not ful�lled, then pα only has the zero z1; therefore,
the sign-invariant regions are (−∞, z1), [z1, z1] and (z1,∞). By picking −∞ as a
representative for the �rst region, we check whether this region is an excluded interval.
Having this knowledge, the other intervals can be inferred similarly as described for
the linear case by using the parabola form of quadratic polynomials. Thus, the regions
(−∞, z1) and (z1,∞) are either both excluded or none of them is. The point interval
[z1, z1] is excluded if ∼ is strict.

In case the side conditions of z2 are ful�lled, then pα has the two di�erent zeros
z1, z2. The resulting sign-invariant regions are (−∞, zi), [zi, zi], (zi, zj), [zj , zj ] and
(zj ,∞) with i, j ∈ {1,2}, i 6= j. Since the regions now consist of two symbolic zeros,
we need to �nd out which of the zeros is the leftmost. Intuitively, one could de�ne
the formula ϕ := (z1 < z2) and check if α |= ϕ holds. The problem, however, is that
z1 and z2 are square root expressions such that ϕ is not a formula from the theory
of quanti�er-free non-linear real arithmetic as given in De�nition 2.1.1; therefore,
it requires a di�erent approach to check which zero is smaller than the other. An
alternative is to de�ne a formula ψ := (a < b) with variables a and b, and then use
virtual substitution to get the satis�ability-equivalent formula θ := (ψ[z1//a])[z2//b].



22 Generating explanations using virtual substitution

In this case, we use the rules for substituting a square root expression virtually into
a formula in order to receive the QFNRA-formula θ for which holds:

α |= ϕ⇐⇒ α |= θ.

Should α |= θ hold, then z1 is smaller than z2 and zi becomes z1, while zj is z2.
On condition that it does not hold, zi is z2 and zj is z1. This formula θ will later
also be part of the side conditions in an interval data structure. Having �nally found
all sign-invariant regions of the polynomial pα, we can again verify whether the �rst
sign-invariant region (−∞, zi) is an excluded interval by using −∞ as a representative
and derive the other intervals using the operator ∼ and the parabola form of pα.

Example 3.2.3. Let r2 := (y2−8y+15x ≤ 0) be a constraint and α with α(x) = 1 the
same assignment as in the previous examples. The normal form of p = y2− 8y+15x
is ay2 + by + c with a = 1, b = −8, c = 15x. The side conditions of the �rst zero
z0(p) are not satis�ed, because a = 1 does not equal 0; thus, sc(z1(p)) are tested next.
It turns out that they are ful�lled by p and α, which results in pα being quadratic and
having at least one zero. Testing sc(z2(p)) for satis�ability is also successful such that
pα has the two symbolic zeros

z1 =
−b+

√
b2 − 4ac

2a
=
−(−8) +

√
(−8)2 − 4 · 1 · 15x
2 · 1

=
8 +
√
64− 60x

2
= 4 +

√
16− 15x

z2 =
−b−

√
b2 − 4ac

2a
=
−(−8)−

√
(−8)2 − 4 · 1 · 15x
2 · 1

=
8−
√
64− 60x

2
= 4−

√
16− 15x

The sign-invariant regions are (−∞, zi), [zi, zi], (zi, zj), [zj , zj ] and (zj ,∞) with i, j ∈
{1,2}, i 6= j. The next step is to �nd out which zero z1, z2 relates to either zi or zj.
This can be done as described before by �rst determining θ = (ψ[z1//a])[z2//b] and
then checking if α |= θ. The concrete calculation of θ is skipped; however, α |= θ does
not hold. This can also be seen by evaluating z1 to 5 and z2 to 3 if α is considered.
Thus, z1 is the rightmost zero such that zi = z2 and zj = z1 holds. For this example,
the sign-invariant regions result in (−∞, z2), [z2, z2], (z2, z1), [z1, z1] and (z1,∞). By
using −∞ as a representative for the �rst region, it follows:

ϕ := r2[−∞//y] ≡ (a < 0) ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c ≤ 0)

≡ (1 < 0) ∨ (−8 = 0 ∧ −8 > 0) ∨ (1 = 0 ∧ −8 = 0 ∧ 15 ≤ 0)

≡ false

The assignment α does not satisfy ϕ which makes the �rst region (−∞, z2) an excluded
interval. Due to the parabola form of pα, the last region (z1,∞) is also excluded, but
the third region (z2, z1) is not. Finally, we check the point intervals [z2, z2] and [z1, z1].
Since ∼ is weak, zeros are feasible solutions for r and these two intervals do not
correspond to excluded intervals. As a result, the excluded intervals are (−∞, z2) =
(−∞, 4−

√
16− 15x) and (z1,∞) = (4 +

√
16− 15x,∞).

All in all, Table 3.2 lists up the cases and excluded intervals for a quadratic poly-
nomial. As for linear polynomials, the excluded intervals now need to be abstracted
to interval data structures.



Finding intervals 23

α |= sc(z2) α |= (p ∼ 0)[−∞//y] p ∼ 0 excluded intervals

no yes ∼ ∈ {≤,≥} no interval
∼ ∈ {<,>} [z1, z1]
∼ ∈ {=} (−∞, z1), (z1,∞)
∼ ∈ {6=} [z1, z1]

no ∼ ∈ {≤,≥} (−∞, z1), (z1,∞)
∼ ∈ {<,>} (−∞,∞)
∼ ∈ {=} (−∞, z1), (z1,∞)
∼ ∈ {6=} [z1, z1]

yes yes ∼ ∈ {≤,≥} (zi, zj)
∼ ∈ {<,>} [zi, zj ]
∼ ∈ {=} (−∞, zi), (zi, zj), (zj ,∞)
∼ ∈ {6=} [zi, zi], [zj , zj ]

no ∼ ∈ {≤,≥} (−∞, zi), (zj ,∞)
∼ ∈ {<,>} (−∞, zi], [zj ,∞)
∼ ∈ {=} (−∞, zi), (zi, zj), (zj ,∞)
∼ ∈ {6=} [zi, zi], [zj , zj ]

Table 3.2: Excluded intervals of a quadratic poly-
nomial having a zero z1 or zeros zi, zj with zi < zj

De�nition 3.2.2 (Interval data structure for a quadratic polynomial). Let p be a poly-
nomial and α an assignment such that pα is quadratic, i.e., α |= sc(z1(p)). Further-
more, let p ∼ 0 be a constraint, ϕ := (p ∼ 0)[−∞//y] and θ := (ψ[z1(p)//a])[z2(p)//b]
with ψ := (a < b). Then we de�ne the interval data structure (Ĩ , C, p ∼ 0) such that:

� Ĩ is chosen according to Table 3.2

� C = {¬sc(z0(p)), sc(z1(p))} ∪ {ϕ | α satis�es ϕ} ∪ {¬ϕ | α satis�es ¬ϕ}
∪ {sc(z2(p)) | α satis�es sc(z2(p))} ∪ {¬sc(z2(p)) | α satis�es ¬sc(z2(p))}
∪ {θ | α satis�es θ ∧ sc(z2(p))} ∪ {¬θ | α satis�es ¬θ ∧ sc(z2(p))}

Example 3.2.4. Let r2 = (y2− 8y+15x ≤ 0) be the previous example with α(x) = 1
and the excluded intervals Ĩ2 := (−∞, 4−

√
16− 15x) and Ĩ3 := (4 +

√
16− 15x,∞).

Transforming them into interval data structures results in I2 = (Ĩ2, C2, r2) and I3 =
(Ĩ3, C2, r2), where the side conditions of both data structures are as follows:

� ¬sc(z0(p)) ≡ ¬(1 = 0 ∧ −8 6= 0) ≡ true

� sc(z1(p)) ≡ (1 6= 0 ∧ (−8)2 − 4 · 15x ≥ 0) ≡ (64− 60x ≥ 0)

� ¬ϕ ≡ ¬(r2[−∞//y]), because α |= ¬ϕ

� sc(z2(p)) ≡ (1 6= 0∧(−8)2−4 ·15x > 0) ≡ (64−60x > 0), because α |= sc(z2(p))

� ¬θ ≡ ¬(((a < b)[z1(p)//a])[z2(p)//b]), because α |= ¬θ



24 Generating explanations using virtual substitution

α |= (p ∼ 0)[−∞//y] excluded intervals

true no interval
false (−∞,∞)

Table 3.3: Excluded intervals of a polynomial without zeros

3.2.3 Polynomial without zeros

If none of the zeros z0(p), z1(p), z2(p) exist because their side conditions are not satis-
�ed, the polynomial pα does not have any zeros. Thus, the only sign-invariant region
that needs to be checked is (−∞,∞). Assuming that α |= (p ∼ 0)[−∞//y] holds,
there is no interval being excluded by the current constraint and the partial assign-
ment. Otherwise, the interval (−∞,∞), which corresponds to R, is excluded as given
in Table 3.3.

De�nition 3.2.3 (Interval data structure for a polynomial without zeros). Let p be a
polynomial and α an assignment such that pα has no zeros, i.e., α |= ¬sc(z0(p)) and
α |= ¬sc(z1(p)). Furthermore, let p ∼ 0 be a constraint and ϕ := (p ∼ 0)[−∞//y]. If
α |= ϕ, then the interval data structure (Ĩ , C, p ∼ 0) is de�ned such that:

� Ĩ = (−∞,∞)

� C = {¬sc(z0),¬sc(z1)}
Otherwise, no interval data structure is needed.

Algorithm 1 Algorithm for �nding excluded intervals

1: function findIntervals(ReasonSet R, Assignment α, Variable var)
2: IntervalDataStructures IDS = ∅
3: for Constraint (p ∼ 0) ∈ R do

4: Calculate symbolic zeros z0(p), z1(p), z2(p)
5: if sc(z0(p)) are ful�lled then . linear polynomial
6: Get excluded intervals from Table 3.1 using ϕ and α
7: Transform intervals to interval data structures
8: Add interval data structures to IDS
9: else if sc(z1(p)) are ful�lled then . quadratic polynomial

10: if sc(z2(p)) are ful�lled then

11: Determine leftmost zero zi
12: Get excluded intervals from Table 3.2 using ϕ and α
13: else

14: Get excluded intervals from Table 3.2 using ϕ and α
15: end if

16: Transform intervals to interval data structures
17: Add interval data structures to IDS
18: else . No zeros
19: Get excluded intervals from Table 3.3 using ϕ and α
20: Transform intervals to interval data structures
21: Add interval data structures to IDS
22: end if

23: end for

24: return IDS
25: end function



Constructing a covering 25

Having considered the di�erent cases for a constraint p ∼ 0 and assignment α, this
step is repeated for every other constraint r ∈ R as shown in Algorithm 1. Thus, this
phase of �nding excluded intervals results in a set IDS of interval data structures,
which is used in the following to �nd a covering.

3.3 Constructing a covering

Once all excluded intervals have been identi�ed and a set of interval data structures
was collected, the next step is to construct a covering using this set. It is important
to mention that the set may contain more data structures than needed to construct
such a covering. Additionally, there might be multiple combinations of intervals such
that di�erent coverings could result. In the following, however, the covering being
constructed uses as few intervals as possible in order to reduce the length of the
generated explanation; therefore, the intervals with the largest diameters between
their bounds are preferred. Furthermore, it is guaranteed that at least one covering
can be found since the given set R of constraints and the partial assignment α are
con�icting. This property is shown by the following theorem.

Theorem 3.3.1. Let R be a set of constraints and α an assignment. If R and α
are con�icting, i.e., α 6|= ∃y(

∧
c∈R c) holds, then there exists a covering of R that is

formed by the excluded intervals of constraints in R.

Proof. Let the set R and the assignment α be con�icting. We assume, it does not
exist a covering of R using excluded intervals. Therefore, there has to exist an interval
I ⊆ R that is not excluded by any of the constraints. By picking any value k ∈ I and
assigning it to y, the extension αy 7→k satis�es ϕ :=

∧
c∈R c. It cannot be the case that

αy 7→k does not satisfy ϕ, because k would be excluded otherwise by a constraint in R,
which contradicts the fact that I is not excluded. Thus, ϕ and αy 7→k are not con�icting
such that ϕ and α cannot be con�icting either, because αy 7→k is an extension of α.
This is a contradiction to the initial assumption; hence, there must exist a covering
of R.

Now, let IDS be the set of interval data structures that is the result of the previous
phase. As described in Section 3.1, the concrete covering for the given constraint
and assignment is built �rst, which then gets abstracted to a general one. In the
following, let COV be the set of interval data structures that are actually needed to
build a covering; initially, this set is empty. In the beginning, the set IDS is sorted
to simplify the construction. Hence, the data structures whose intervals have the
smallest left bound according to α come �rst. Should two intervals have the same left
bound, the one with a closed left bound is preferred over one with an open left bound.
If the left bounds of both intervals are open respectively closed, then the one with the
larger right bound is chosen. Should two intervals have the same right bound, then a
closed bound is again preferred over an open one. The following example shows the
application of this sorting principle.

Example 3.3.1. Let IDS be the set containing the interval data structures I1 =
(Ĩ1, C1, r1), I2 = (Ĩ2, C2, r2) and I3 = (Ĩ3, C2, r2) with Ĩ1 = [2x−1,∞), Ĩ2 = (−∞, 4−√
16− 15x) and Ĩ3 = (4 +

√
16− 15x,∞) from the former examples, and let α with

α(x) = 1 be the previously used assignment. Sorting the data structures leads to the
following order:



26 Generating explanations using virtual substitution

1. I2 comes �rst because Ĩ2 is the only symbolic interval whose left bound is −∞

2. I1 comes next because α |= (2x−1 < 4+
√
16− 15x), i.e., the left bound of Ĩ1 is

smaller than the left bound of Ĩ3

3. I3 remains; thus, it is the last

After IDS has been sorted, the construction of the covering can be done by
selecting the �rst interval data structure I = (Ĩ , C, r) in IDS and adding it to COV.
Due to the sorting, the left bound of Ĩ is always −∞. If the right bound of Ĩ is
not ∞, the next structure I′ = (Ĩ ′, C ′, r′) ∈ IDS is picked in order to extend the
�rst interval and to form a covering. Whether Ĩ ′ is suitable for extending the current
covering can be found out by validating Ĩα ⊂ Ĩα ∪ Ĩ ′α. Providing it holds, I′ is
added to COV; otherwise, this data structure is skipped. This procedure continues
with the next interval data structure in IDS until the �rst structure I′′ is found in
which si(I′′) has ∞ as its right bound. Since a covering does exist, this will be the
case after some iterations and COV will contain enough data structures to build a
covering. Then, every neighbouring pair of intervals in COV is overlapping, i.e., the
right bound of si(Ii) overlaps with the left bound of si(Ii+1) for every Ii, Ii+1 ∈ COV
with 1 ≤ i < |COV|. Lastly, Algorithm 2 gives an overview of this phase.

Example 3.3.2. Let IDS = {I2, I1, I3} be the sorted set from the former example
and α with α(x) = 1 the partial assignment. Initially, I2 is added to COV. Since
the right bound of si(I2) is not ∞, we continue with the next interval data structure
I1. Whether I1 extends the current covering is checked by looking at si(I2)α ⊂
si(I2)α ∪ si(I1)α. Since si(I2)α = (−∞, 3) and si(I1)α = [2,∞), this relation holds
such that I2 is also inserted into COV. The procedure stops now because the right
bound of si(I2) is ∞; as a result, COV contains enough intervals for a covering.
However, the interval data structure I3 is skipped and no longer needed. All in all,
COV = {I2, I1}.

Algorithm 2 Algorithm for constructing a covering

1: function getCovering(IntervalDataStructures IDS, Assignment α)
2: Covering COV = ∅
3: Sort IDS using α
4: for I ∈ IDS do
5: if I extends current covering COV then
6: Add I to COV
7: end if

8: if COV is a covering of R then

9: Break loop
10: end if

11: end for

12: return COV
13: end function



Generating an explanation 27

3.4 Generating an explanation

After having constructed a covering that consists of interval data structures, the last
step of the procedure is to generate an explanation for the con�ict between R and α;
therefore, let COV be the covering from the former phase.

The explanation E needs to have the form ϕ→ ψ as speci�ed in De�nition 2.2.2.
In this case, ϕ is a conjunction over constraints in R′ ⊆ R, while ψ equals the
formula requiring that the current covering and coverings similar to it do not exist.
In other words, if ¬ψ is satis�ed by an assignment β, then R and β are con�icting,
and a covering over R can be found. The implication ϕ → ψ = (

∧
ci∈R′ ci) →

¬(cov1 ∧ · · · ∧ covm) is equivalent to (¬c1 ∨ · · · ∨ ¬cn) ∨ (¬cov1 ∨ · · · ∨ ¬covm) where
covi are the conditions that describe a covering. As a result, the explanation is just a
disjunction over negated constraints, for which we use the set expl in order to collect
all the disjuncts that are then used to form E.

In the beginning, every constraint r ∈ R that is needed for the covering is added
to the explanation. These constraints were collected in the interval data structures;
thus, ¬r ∈ expl for every I = (Ĩ , C, r) ∈ COV. We continue by adding the negation
of all side conditions in an interval data structure I ∈ COV to expl, i.e., ¬(

∧
c∈C c) ≡

(
∨
c∈C ¬c) ∈ expl for every I = (Ĩ , C, r) ∈ COV. Therefore, all the constraints that

are needed for a symbolic interval to exist are part of expl.

Additionally, the overlapping of intervals needs to be considered. If we look at the
two symbolic intervals Ĩ1 = (−∞, a], Ĩ2 = [b,∞), e.g., then θ1 := (b ≤ a) expresses
that Ĩ1 and Ĩ2 are overlapping. On the one hand, however, θ1 might not be an
QFNRA-formula if a or b is a square root expression. Therefore, the formula θ2 :=
((x ≤ y)[b//x])[a//y] can be de�ned, in which x and y are variables that get virtually
substituted by a and b. Then, θ2 is a QFNRA-formula for which holds: α |= θ1 ⇐⇒
α |= θ2. On the other hand, the bounds of Ĩ1 and Ĩ2 might be both open. In this
case, the operator "≤" in θ2 needs to be "<"; otherwise, the intervals will not overlap,
and a point interval that is not excluded from the solution set remains such that no
covering is formed.

Since the interval data structures in COV are sorted, only neighbouring pairs are
overlapping; hence, for every pair Ii = (Ĩi, Ci, ri) and Ii+1 = (Ĩi+1, Ci+1, ri+1) the
formula θ(Ii,Ii+1) is de�ned similar to the former described formula θ2. Therefore,
let θ(Ii,Ii+1) := ((x ∼ y)[ai+1//x])[bi//y] be a formula where bi is the right bound
of the interval Ĩi, ai+1 is the left bound of Ĩi+1, and ∼ equals "<" only if both the
left bound of Ĩi and the right bound of Ĩi+1 are open; otherwise, ∼ is "≤". Finally,
¬θ(Ii,Ii+1) is added to expl.

Having done this for every neighbouring pair in COV, the set expl now contains
all constraints that are needed for the explanation E; thus, E :=

∨
c∈expl c is returned

as an explanation for the con�ict between R and α but also prevents that similar
assignments are chosen which lead to a covering as in COV. All in all, the returned
explanation looks as follows:

E :=

 ∨
I=(Ĩ,C,r)∈COV

¬r

 ∨
 ∨

I=(Ĩ,C,r)∈COV

(
∨
c∈C
¬c)

 ∨
 ∨

Ii,Ii+1∈COV

¬θ(Ii,Ii+1)





28 Generating explanations using virtual substitution

3.5 Correctness

The generated explanation is correct if it ful�ls the three properties given in De�ni-
tion 2.2.2. Thus, the proof is outlined in the following.

Theorem 3.5.1. Let R be a set of constraints and α an assignment such that R and
α are con�icting. The explanation E that is generated by our procedure has the form
ϕ→ ψ where ϕ ≡

∧
c∈R′⊆R c and α 6|= ψ.

Proof. Referring to Section 3.4, E has the structure (¬c1 ∨ · · · ∨ ¬cn) ∨ (¬cov1 ∨
· · · ∨ ¬covm) where ci ∈ R and covi are the covering conditions. This structure is
equivalent to

¬(c1 ∧ · · · ∧ cn) ∨ ¬(cov1 ∧ · · · ∧ covm)

≡ (c1 ∧ · · · ∧ cn)︸ ︷︷ ︸
ϕ:=

→ ¬(cov1 ∧ · · · ∧ covm)︸ ︷︷ ︸
ψ:=

It is noticeable that ϕ ≡
∧
c∈R′⊆R c. Additionally, the constraints covi in ψ are chosen

in Section 3.2 in such a way that α |= covi for 1 ≤ i ≤ m. Hence, α |= cov1∧· · ·∧covm
and α does not satisfy ¬(cov1 ∧ · · · ∧ covm), which equals ψ.

Theorem 3.5.2. Let R be a set of constraints and α an assignment such that R and
α are con�icting. The generated explanation E for R and α is valid.

Proof. As shown in the previous theorem, E does have the form ϕ → ψ where ϕ ≡∧
c∈R′⊆R c and α 6|= ψ. The explanation E is valid if for every assignment α holds

that α |= E. We proof this by looking at ¬ψ → ¬ϕ which is equivalent to ϕ→ ψ.
Assume, E is not valid. Then there exists an assignment α with α |= ¬ψ and

α 6|= ¬ϕ, i.e., α |= ϕ. Since ¬ψ ≡ ¬(¬(cov1 ∧ · · · ∧ covm)) ≡ (cov1 ∧ · · · ∧ covm) and
α |= ¬ψ, α satis�es all the constraints covi; thus, a covering exists which excludes all
possible values in R from the solution set of the variable y. As a result, R and α are
con�icting such that α cannot satisfy the constraints ci in ϕ. This is a contradiction
to the assumption that α |= ϕ. Therefore, the assumption cannot hold and E has to
be valid.

Theorem 3.5.3. Let R be a set of constraints and α an assignment such that R and
α are con�icting. Let E be an explanation that is generated by our procedure. Then
it holds that every literal l in E is part of the �nite basis B.

Proof. In order to see that B is �nite, it is su�cient to enumerate all literals in B.
Since every input formula in mcSAT consists of �nitely many constraints, every reason
set R is �nite, too. Each constraint in R has at most 2 symbolic zeros; thus, there are
only �nitely many zeros for whole R and only �nitely many sign-invariant regions.
Some of these sign-invariant regions correspond to intervals that are excluded by a
constraint. Hence, there is only a �nite number of excluded intervals. Each excluded
interval is transformed into an interval data structure, which contains a �nite number
of side conditions that are used in an explanation. Finally, there are only �nitely
many overlaps of intervals, because the number of intervals is limited. All in all, the
set of literals used in any explanation can be collected in a �nite set.

As shown in the theorems above, every property of an explanation is respected by
the presented procedure which leads to the correctness of this method.



Chapter 4

Experimental results

In this chapter, the e�ciency of the procedure that was presented in Chapter 3 is
analysed. Therefore, it was implemented into the SMT-RAT framework, which is an
open source C++ toolbox that allows the checking of quanti�er-free real and integer
arithmetic formulas for satis�ability [CLJÁ12] [CKJ+15]. SMT-RAT provides several
modules which can be combined to di�erent strategies. One of the o�ered modules is
the mcSAT-module [Kb18], which implements the approach of the model-constructing
satis�ability calculus as explained in Section 2.2 and is used in the following tests.

In order to evaluate our procedure, it is tested with di�erent inputs such that the
result can be compared to the results of other explanation functions. All in all, the
following combinations are considered:

1. NLSAT: the initially provided NLSAT-style [JM12] explanation function from
the mcSAT-module,

2. VS+NLSAT: an explanation function that uses the traditional VS quanti�er
elimination without taking the assignment into account [Nal17], and NLSAT as
a backend,

3. VSCovering+NLSAT: our approach with NLSAT as an additional backend,

4. VSCovering+VS+NLSAT: our approach using VS and NLSAT as backends.

NLSAT is used as a backend in order to guarantee that at least one of the explanation
functions is able to describe the con�ict. The reason is that VSCovering, e.g., can only
handle constraints that are at most quadratic in the unassigned variable. Additionally,
VSCovering requires that only a single variable is not assigned. Should more than
one variable be not assigned, then no explanation can be generated using VSCovering.
That is why we look at VSCovering+NLSAT as well as VSCovering+VS+NLSAT; VS
can handle multiple unassigned variables and could lead to a better result than using
NLSAT only. In case that VS also fails in VSCovering+VS+NLSAT, then NLSAT is
chosen next.

Since many varying problems as input allow for a better understanding of the per-
formance, we use the QF_NRA benchmark set that is provided by SMT-LIB [BFT16],
an international initiative for research and development in SMT. This set consists of
round about 12000 di�erent input problems which in the following are tried to be
solved with a time limit of 60 seconds and a memory limit of 4 gigabyte. The testing
system uses the following processors: 4x 2.1 GHz AMD Opteron with 12 cores each.



30 Experimental results

SAT UNSAT TIMEOUT MEMOUT SEGFAULT

NLSAT 4818 4666 2569 78 3
VS+NLSAT 4955 4782 2325 70 2

VSCovering+NLSAT 4923 4730 2399 82 0
VSCovering+VS

+ NLSAT
4931 4779 2352 72 0

Table 4.1: Benchmark results of 12134 test �les

NLSAT

VS+NLSAT

VSCovering+NLSAT

VSCovering+VS+NLSAT

9,484

9,737

9,653

9,710

Number of solved problems per candidate

Figure 4.1: Total number of
solved problems per candidate

4.1 Overall performance

Firstly, the general performance is analysed. Therefore, the numbers of solved prob-
lems, i.e., the inputs that are evaluated to SAT or UNSAT, and the numbers of
problems that could not be solved due to the time or memory restriction are collected
for each of the above-mentioned alternatives. The results are depicted in Table 4.1.
It is important to notice that no wrong answers were returned in any of the tests.

In order to see the relative di�erences between the explanation functions better,
the results are additionally drawn in the bar chart shown in Figure 4.1.

As one can see, NLSAT solves the least number of inputs; VS+NLSAT the
most. Our explanation function using VS and NLSAT as backends lies closely be-
hind VS+NLSAT, after which the VSCovering+NLSAT combination follows on the
third place. Thus, our implementation is not the best but also not the worst when
comparing the total number of solved instances.

4.2 Comparing single instances

The previous results showed the overall performance of each explanation function;
however, it was not considered yet how individual inputs are solved. Therefore, we
continue by comparing pairwise which instances are solved by which explanation
procedure and in which time, but especially have a look at those instances that are
only solved by one of the alternatives.



Comparing single instances 31

Total Number

Solved equally fast

Solved faster by VSCovering

Solved faster by VS

9,560

197

2,813

6,550

Number of instances solved by both VSCovering+NLSAT and VS+NLSAT

Figure 4.2: Comparison of instances solved by
both VSCovering+NLSAT and VS+NLSAT

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Runtime of VSCovering+NLSAT [s]

R
un
ti
m
e
of

V
S+

N
L
SA

T
[s
]

Runtime for instances solved by both VSCovering+NLSAT and VS+NLSAT

Figure 4.3: Comparison of runtime for instances
solved by both VSCovering+NLSAT and VS+NLSAT

4.2.1 VSCovering+NLSAT and VS+NLSAT

Initially, VSCovering+NLSAT and VS+NLSAT are inspected, since they are both
using virtual substitution for explanations. As seen in Figure 4.2, there are 9560
input instances that are solved by both procedures. From these instances are 6550
solved faster using VS+NLSAT; the other 3010 examples are solved equally fast or
faster by VSCovering+NLSAT. In order to see how much faster the one explanation
function over the other is, Figure 4.3 illustrates all instances and their corresponding
runtimes. Every point laying above the diagonal line represents an input �le that
is solved faster by VSCovering+NLSAT; accordingly, every point below the diagonal
line shows an input �le being solved faster by VS+NLSAT. Every point that lies on
the diagonal is solved by both alternatives in the same time.

On the one hand, it stands out that most of the problems are solved within 15
to 20 seconds by both approaches and are laying close to the diagonal. On the other
hand, there are instances like the ones marked red which stick out by being evaluated



32 Experimental results

Neither VSCovering nor VS

Only VS

Only VSCovering

175

93

2,224

Instances solved by either VSCovering+NLSAT or VS+NLSAT

Figure 4.4: Instances solved by either
VSCovering+NLSAT or VS+NLSAT

10 20 30 40 50

Runtime [s]

Runtime for instances solved by either VSCovering+NLSAT or VS+NLSAT

VSCovering
VS

Figure 4.5: Runtime for instances that are solved
either by VSCovering+NLSAT or VS+NLSAT

much faster using the one explanation function than by the other and vice-versa.
Moreover, if the instances are considered that can either be solved by VS+NLSAT

or VSCovering+NLSAT, then the following numbers, as shown in Figure 4.4, result.
There are in total 93 instances that can only be solved by VSCovering+NLSAT with-
out exceeding the given time limit of 60 seconds. The comparison of the computa-
tion times of these 93 instances shows that a duration of 13 seconds is needed on
average. Similarly, VS+NLSAT can solve 175 input �les that cause a timeout if VS-
Covering+NLSAT is chosen. The average computation time of these lies around 18
seconds. Thus, the instances are in general not close to a timeout but are solved
within a quarter of the given time limit. The exact time distribution can be found
in Figure 4.5. All in all, both VSCovering+NLSAT and VS+NLSAT do perform on
some inputs better and on some inputs worse than the respective other.

4.2.2 VSCovering+NLSAT and NLSAT

The second pair being considered is VSCovering+NLSAT and NLSAT. As done in the
former comparison, we start by having a look at the number and runtime of instances
that are solved by VSCovering+NLSAT as well as NLSAT, and then continue with
inputs that can only be solved by one of them or are even unsolvable. Therefore, Fig-
ure 4.6 states that most of the benchmark �les can be evaluated faster if NLSAT is
used as the explanation function. In Figure 4.7, however, it is shown that the general
runtimes between the alternatives are very close, since the values accumulate around
the diagonal line.



Comparing single instances 33

Total Number

Solved equally fast

Solved faster by VSCovering

Solved faster by NLSAT

9,399

221

3,455

5,723

Number of instances solved by both VSCovering+NLSAT and NLSAT

Figure 4.6: Comparison of instances solved
by both VSCovering+NLSAT and NLSAT

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Runtime of VSCovering+NLSAT [s]

R
un
ti
m
e
of

N
L
SA

T
[s
]

Runtime for instances solved by both VSCovering+NLSAT and NLSAT

Figure 4.7: Comparison of runtime for instances
solved by both VSCovering+NLSAT and NLSAT



34 Experimental results

Only NLSAT

Only VSCovering

Neither VSCovering nor NLSAT

85

254

2,312

Instances solved by either VSCovering+NLSAT or NLSAT

Figure 4.8: Instances solved by either
VSCovering+NLSAT or NLSAT

10 20 30 40 50

Runtime [s]

Runtime for instances solved by either VSCovering+NLSAT or VS+NLSAT

VSCovering
NLSAT

Figure 4.9: Runtime for instances that are solved by
either VSCovering+NLSAT or NLSAT+NLSAT

If we look at the �les that are solved by only one of the combinations, then there are
254 inputs that VSCovering+NLSAT solves exclusively; NLSAT does only 85 as shown
in Figure 4.8 and Figure 4.9. All in all, the di�erence between VSCovering+NLSAT
and NLSAT is larger than between VSCovering+NLSAT and VS+NLSAT. Neverthe-
less, there is no explanation function that performs better on every single instance
compared to the others.

4.3 Discussion

The previous results show that our approach does not solve the problem of gener-
ating explanations fundamentally. On the �rst sight it seems that VS+NLSAT is
better than VSCovering+NLSAT. By looking at the individual instances, however,
we see that there are inputs which are solved much faster by VSCovering+NLSAT
compared to VS+NLSAT. Also, it is noticeable that VSCovering+VS+NLSAT solves
more instances than VSCovering+NLSAT. The reason is that VSCovering can only
be used for con�icts in which a single variable is unassigned and whose degree is not
higher than 2. Thus, VS can handle more cases such that VSCovering+VS+NLSAT
leads to better results than VSCovering+NLSAT. Additionally, this holds also for
VSCovering+NLSAT against VS+NLSAT; VS is able to handle more cases which re-
sults in more solved instances. Surprisingly, VSCovering+VS+NLSAT does not solve
as many inputs as VS+NLSAT. One reason could be that the explanation returned
by VSCovering+VS+NLSAT is not general enough and does not exclude as many
assignments as VS+NLSAT.



Chapter 5

Conclusion

5.1 Future work

Having seen the general idea of constructing coverings and the results of implementing
it into the SMT-RAT framework, there are now some options that can be considered
in order to improve the procedure. One possibility is to change the way how coverings
are constructed. The presented approach aims to use as few intervals as possible for
the covering, but other metrics could also be used. As an example, those interval data
structures I = (Ĩ , C, r) could be selected whose constraint r has the smallest degree
in the unassigned variable y. Since substituting variables virtually causes a rise in
the degree sometimes, we would avoid that the degree of y becomes larger than 2 in
order to be able to still calculate symbolic zeros.

Furthermore, extending the computation of zeros to a degree of 4 could also lead
to an increasing number of solved inputs. Currently, constraints with degrees larger
than 2 are handed over to the backends.

Lastly, one could try to simplify the generated explanation. The idea is to leave
out disjunctions that are introduced by virtual substitution but are not satis�ed by
the current assignment. Therefore, these disjuncts do not in�uence the satis�ability
of the explanation and can be omitted.

5.2 Summary

This thesis started with an introduction to SAT and SMT solving. It was explained
why these problems are relevant and which use cases they address. Furthermore,
the principle of DPLL(T) was presented and compared to the model-constructing
satis�ability calculus (mcSAT), which is a recent approach for SMT solving.

It was explained that one part of mcSAT is a theory solver, whose task it is to
assign values to variables, to check for con�icts and especially to resolve these con-
�icts by generating explanations. Since the explanations have a signi�cant in�uence
in terms of performance, this thesis focussed in the following on an approach for gen-
erating such explanations by generalizing coverings using virtual substitution (VS).

After the theoretical requirements were presented and an introduction to VS was
given, the three phases of the main procedure were described, which are the following:
�nding the intervals that are excluded by the given constraints, constructing a covering



36 Conclusion

using these intervals, and transforming this covering into an explanation for mcSAT.
In the last chapter, the presented procedure was implemented into the SMT-RAT

framework and evaluated on round about 12000 benchmark �les. During the tests, the
runtimes and numbers of solved inputs were collected. These values showed that this
procedure can compete with other explanation functions but is not outperforming
them when comparing single instances. Thus, it cannot be decided for sure which
method should be preferred. In fact, they complement one another such that in total
an even higher number of instances could be solved if the approaches are used in
parallel, instead of using only one at a time.

All in all, the ideas and results that were achieved may lead to a further devel-
opment of this procedure or could even improve other approaches, resulting in faster
SMT solvers.



Bibliography

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satis�ability Mod-
ulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: an open source C++ toolbox for strategic and
parallel SMT solving. In LNCS, volume 9340, pages 360�368. Springer,
2015.

[CLJÁ12] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Ábrahám.
Smt-rat: An SMT-compliant nonlinear real arithmetic toolbox. In Inter-
national Conference on Theory and Applications of Satis�ability Testing,
pages 442�448. Springer, 2012.

[Cor16] Florian Corzilius. Integrating virtual substitution into strategic SMT solv-
ing. PhD thesis, RWTH Aachen University, Germany, 2016.

[JM12] Dejan Jovanovi¢ and Leonardo de Moura. Solving non-linear arithmetic. In
International Joint Conference on Automated Reasoning, pages 339�354.
Springer, 2012.

[Kb18] Gereon Kremer and Erika Ábrahám. Modular strategic SMT solving with
SMT-RAT. Acta Universitatis Sapientiae / Informatica, 10(1):pages 5�25,
2018.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quanti�er elimi-
nation. The computer journal, 36(5):450�462, 1993.

[MJ13] Leonardo de Moura and Dejan Jovanovi¢. A model-constructing satis�abil-
ity calculus. In International Workshop on Veri�cation, Model Checking,
and Abstract Interpretation, pages 1�12. Springer, 2013.

[Nal17] Jasper Nalbach. Embedding the virtual substitution in the MCSAT frame-
work. Bachelor's thesis, RWTH Aachen University, 2017.

[Nic93] Richard WD Nickalls. A new approach to solving the cubic: Cardan's
solution revealed. The Mathematical Gazette, 77(480):354�359, 1993.

[Shm11] Sergei L Shmakov. A universal method of solving quartic equations. Int.
J. Pure Appl. Math, 71(2):251�259, 2011.

[Wei97] Volker Weispfenning. Quanti�er elimination for real algebra�the
quadratic case and beyond. Applicable Algebra in Engineering, Communi-
cation and Computing, 8(2):85�101, 1997.


	Introduction
	Preliminaries
	Non-linear real arithmetic
	mcSAT
	Virtual substitution

	Generating explanations using virtual substitution
	Idea
	Finding intervals
	Constructing a covering
	Generating an explanation
	Correctness

	Experimental results
	Overall performance
	Comparing single instances
	Discussion

	Conclusion
	Future work
	Summary

	Bibliography

