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1. Introduction

1.1. General Interest

Electricity is one of a country’s most important resources, but its sources could not
be more different. For decades, energy was obtained only from fossil fuels, which, are
finite and thus cannot be intended for long-term use. In addition, the extraction of
fossil fuels is a massive interference with nature and leads to a negative impact on the
climate [1].
Nuclear energy is one of the cleanest ways to generate energy [2], but the storage,

treatment, and decay of radioactive waste is a problem that remains unsolved to this
day [3]. In addition, the public image of nuclear power plants has fallen into disrepute
at least since the Fukushima super accident in March 2011 [4].
Renewable energies are therefore the only logical way to ensure a secure and long-

term energy supply [5]. The share of renewable energy in Germany was 34.9% in
March 2019, of which 17.3% stems from wind turbines. Thus, the share of wind energy
corresponds to almost half of all energy from renewable sources. In 2020, the energy
generated from wind turbines was about 131 terawatt-hours, of which 79% was from
onshore wind turbines [6]. As a comparison, the state of North Rhine-Westphalia
consumed 114.5 terawatt-hours in total in 2019 [7].
In recent years, politicians have passed more and more laws to expand renewable

energy. The current goal is to obtain at least 80% of the energy needed in Germany
from renewable sources by the year 2050 [8]. The focus here lies on energy from wind
power. The plan to switch to renewable energies and thus protect the climate was again
confirmed in 2021 at the UN Climate Change Conference in Glasgow [9]. Furthermore,
these plans are currently (as of March 2022) strengthened by the European desire for
independence from Russian energy supply [10].
The question of procuring electricity from renewable sources is, thus, an issue which

will affect current and future generations. An early expansion of wind power, solar,
and thermal plants is therefore indispensable. However, the placement of such plants
is not arbitrary. Factors such as proximity to power or residential facilities, existing
infrastructure, weather conditions in the region, or political guidelines play a major
role. The opinion of the citizens living in the region is also a factor that cannot
be disregarded [11]. Even though society’s understanding of the need for renewable
energy is strong, there is clear difference between society’s desire for more energy from
renewable sources, also called green energy, and the willingness to live near such a
facility [12].
Energy companies and investors are often seen to prioritize profit and their benefit

and fail to identify with residents living near wind turbines [13]. Aspects such as noise
from rotating blades, shadow impact, and visual pollution of the area are the main
reasons given by residents against the construction of wind turbines in their vicinity
[13] [14]. Of course, companies can show rendered images of the construction project
to the citizens, but the effectiveness of such images is questionable, as they may only
show the best side of the wind farm, respectively those wind turbines that are farthest
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away from nearby houses.
From this thought, the idea of this bachelor thesis was born. The idea is to create

a visual support tool that allows citizens to visually and personally experience the
planned construction of wind turbines on their cell phones. An app for Android and
iOS is to be created that will use augmented reality (AR) to give a better and unclouded
impression of the visual impact of wind turbines.
To improve the acceptance of such an app, the challenge of obstacle detection and

its management should be implemented. Obstacle detection refers to the acquired
knowledge of a program that a real object is in front of another (not necessarily real)
object. With this knowledge, the program should then act accordingly and occlude
virtual objects by real objects that would occlude this virtual object if it were real.
This part is called obstacle occlusion. This results in a virtual wind turbine not being
(fully) visible when it is actually located behind real objects, such objects can be trees,
larger buildings, or hills, for example.

1.2. Related Work

Facilitating the visualization of planned projects through AR and, therefore, increasing
social acceptance is not a new approach. Surveys among Norwegian workers in the
architecture, engineering, and construction sector have shown that a visual (digital)
presentation of construction projects is on the one hand, very desirable and leads to a
better idea of the project, but on the other hand is less used than classical visualization
methods such as technical drawings or sketches [15].
While this may be due to the fact that these classic methods are easier and cheaper to

design, they are also more appropriate for addressing the corresponding target group.
However, with the new generations that have grown up in the digital age and are more
critical regarding public promises [16], a shift in the direction of digital visualizations
and those in the form of a virtual experience is inevitable. Studies show that conviction
(in this case of a construction project) is more likely to be achieved if the affected target
group (here the citizens) can make their own experience with the product (here wind
turbines in their vicinity) [17].
For a long time, AR was a vision of the future known only from science fiction movies,

but at the latest since the release and subsequent worldwide success of Pokemon Go,
every young adult who uses a cell phone on a regular basis is no longer unfamiliar with
the experience of AR. For months, Pokemon Go has managed to get teens and adults
out of the house to use their phones to collect virtually created characters and compete
against each other [18]. In the process, reality has been augmented with digital content
and made more interesting.
It is precisely this perception that is the decisive factor in convincing users of some-

thing new. The best way to convince is to offer the end-user (or in this case the people
concerned) the opportunity to actively engage with the matter and thus make their
own experience.
The idea of making wind turbines more easily accessible to citizens with the help

of digital media is already partially explored. For example, a paper was presented
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at the ”WindEurope Summit 2016” describing the positive effect of 3D AR on the
acceptance of wind turbine construction projects [19]. Here, high-resolution images
of the surroundings of the planned turbines were used, and then the wind turbines
were inserted into the surroundings. The end-user can then use the platform to move
through the area and see the planned wind farm. The approach taken here was to
visualize the wind farm on end devices to make it more tangible for neighboring citizens
and strengthen approval of its economic benefits. However, it is not clear from the
paper whether this approach also addresses the obstacle detection aspect.
In mid-September 2021, Energie Baden-Württemberg AG (EnBW) presented a vi-

sualization tool that is intended to provide a realistic representation of planned con-
struction projects and their impact on the landscape at an early stage [20]. However,
the aspect of obstacle detection is not mentioned here either.
The question at hand is therefore how good a visualization using AR can be if the

aspect of obstacle detection and its corresponding handling is not considered. How is
a citizen supposed to imagine the extend of the wind turbine’s impact when he points
the cell phone at his house and the wind turbine model extends from his first to third
floor, although being located behind the house, thus it should not even be recognizable
from the user’s current position?
Both Apple and Google have been working on a solution for obstacle detection. Any

phone that is capable of taking a portrait photo needs some sort of interpretation of
depth in the image. However, this doesn’t need to be as accurate with longer distances,
so that many smartphone software assume that portrait photos could only be taken at
a distance of up to two meters. First with the iPhone 12 (Pro version only) did Apple
introduce the LiDAR (Light detection and ranging or Light imaging, detection and
ranging) scanner. This enables the creation of a more precise depth map of the photo
using the phone’s wide-angle lens. Google has taken a similar approach, using the image
from the main camera and the device’s motion sensor to get a more accurate idea of how
the user is moving through space to estimate how far away objects are from the viewer
[21]. However, Google and Apple’s approaches have one major drawback, namely
device compatibility. Apple only relies on the top iPhones, (currently the iPhone 12
Pro and iPhone 13 Pro, both the base and so-called ”max” versions), and Google has
its own requirements for the hardware used in Android smartphones. However, it can
generally be said that the upper-class Android phones of the last two years fulfill these
requirements [22].

1.3. Contribution

The goal of this work is to find a way to implement the visualization of planned wind
farms on mobile devices (both iOS and Android) including obstacle detection and
therefore standing out from other AR solutions, by developing a way to increase the
social acceptance of planned wind farm constructions. It should be ensured that not
only the top-notch smartphones can use this visualization tool.
Many positive effects can be derived from such an app. On the one hand, as already

mentioned, the facilitation for the person concerned to imagine a wind farm in his
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vicinity, on the other hand, it also facilitates the presentation of wind farm projects to
investors for the energy provider companies.
Last but not least, it should be mentioned that this work is not funded or promoted,

the app is developed purely with academic research in mind. Therefore, this work can
be seen as an independent and uninfluenced achievement, creating a certain basic trust
by its users.

1.4. Outline

To create an app that allows users to view planned wind farms on their cell phones
in their neighborhood or familiar surroundings, the development process documented
below is divided as follows:
In Section 2, the general idea is backed up with a concept, as well as a description
of benchmarks, essential requirements and features, that are to be implemented in
the app. Furthermore, the actual model is described on a technical basis, later in
Section 3 the code for the most important aspects of the app is presented, whereby the
reader accompanies the development process. Then, this implementation is tested and
the insights, as well as challenges, are documented. The mentioned insights are then
grouped into solvable and unsolvable problems, whereas possible solutions are either
discussed or the reason why no such solution might exist is explained. Later on, in
Section 3.5 the results of the implementation are mentioned and, further on, discussed.
Finally, the findings and results are summarized in the conclusion in Section 4 and a
possible outlook on further elaboration possibilities is mentioned.
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2. Idea Elaboration

In this section of the thesis, the idea of the app is supported by a concept, including
aspects of functionality and essential requirements for measuring the success of the
app. These aspects are taken up again in Section 4 when comparing the developed
app with the stated idea at the beginning. Furthermore, a model, based on the before
mentioned idea is developed and described in detail.

2.1. General Concept

The idea behind the app can essentially be divided into two parts. Firstly, the distance
between the user, the planned wind turbine, as well as all objects that are in one line
with the user and the planned wind turbine must be correctly estimated or measured.
Here, obstacles are identified by a distance to the user less than the distance between
the user and the wind turbine.
Calculating the distance between the user and the wind turbine should not be a big

challenge. Since smartphones have GPS sensors that can be used to determine the
exact position of the user, and the position of the planned wind turbine is given the
calculation is just the distance between two given coordinates in 2D space (but yet
including the curvature of the earth).
On the other hand, calculating the distance between the user’s current position and

the objects that are in a straight line between the user and the virtual wind turbine,
as well as behind the planned wind turbine, is more difficult because the coordinates
of these objects are not given. The objects behind the planned wind turbine also play
a role, since those are the objects that should be occluded by the virtual wind turbine.
Secondly, the virtual object must be correctly rendered into the image on the user’s

mobile device. Here, it must be ensured that only the parts of the virtual object that
are not obscured by real objects are made visible to the user. This part thus covers
the obstacle occlusion aspect.
There are different approaches to determine the distance between the camera of the

mobile device, and thus the user, and the real objects that are in line with the user
and the virtual object.
One approach would be to determine the size of the real objects, for example by de-

tecting and classifying the objects and storing standard sizes for certain objects, which
are then compared with the actual pixels used on the sensor. By relating the size of the
object in real life, as well as on the sensor, and the focal length of the camera’s sensor,
the distance between the camera and the object can then be determined. Even if the
focal length cannot be read from a so-called ”ImageStream” on either iOS or Android,
this problem could be circumvented by taking a photo to retrieve the metadata before
starting the image stream, which is later needed to place live virtual objects. Also, the
user could be limited so that only the main camera can be used for AR resulting in
no need to consider different focal lengths of sensors on phones with multiple cameras.
However, this approach has a significant drawback. For one, the objects need to be
correctly identified, this could work via a neural network for example, but this iden-
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tification can be resource and time-intensive, hence performance would be affected.
On the other hand, the bigger problem is that it is not only necessary to identify the
object correctly, but also how much of that object can be seen. For example, a house
may be partially obscured by another obstacle, in which case the calculation of the
distance to the house would have to be adjusted to the visible part only. In other
words, this approach can only work if the identified objects are always fully visible and
not themselves obscured. Since this is very intensive image analysis, this approach is
discarded.
Another approach would be not to have to identify the objects via a neural network

but to have a map on which objects such as houses, or forests are noted. With the
help of the direction of the cellphone’s camera and the underlying map, the visible
objects can be identified. With the stored heights of, for example houses or trees, the
above-mentioned calculation can be made. However, the problem remains that objects
must not be partially hidden, otherwise, the calculation will fail again. In addition,
the underlying map must always be kept up to date, should a piece of forest be cut
down to build family houses, this may drastically change the expected height of the
visible object and the distance would be calculated incorrectly. Thus, this approach is
not an acceptable solution either.
Yet another approach would be to use the digital terrain model offered by the state

of North Rhine-Westphalia [23]. Here, the height of the terrain was measured and
publicized as a grid. The size of the grid can even be set to as accurate as 1m x 1m.
This data has the advantage that one can put an invisible layer of the heights from
the grid over the terrain. Therefore, no object detection nor calculation has to follow.
Then only the distance to the wind turbine must be calculated, whereby then the size
of the wind turbine can be determined in pixels and then rendered into the image. The
size of real objects has become uninteresting since the calculated layer covers them.
However, calculating this layer is an impossible task for a smartphone. A 1m x 1m
grid is three megabytes in size [23]. The memory storage the smartphone would have
to provide would be unfeasible with today’s technology. If one decides to use a larger
grid, then the file size is reduced proportionally, but at the latest when rendering the
wind turbine, the problem occurs that it might appear floating if the grid would not
have the registered height on the entire surface. Because of performance reasons and
limited memory on the phone, this approach is discarded.
Thus, a suitable solution should not depend on real objects being fully visible on

the image, nor is it guaranteed that a stored value for an objects height will apply to
every instance of such object. A possible solution would be to use depth analysis of an
image. Both Apple and Google provide such functionalities in their respective AR/VR
toolkit. Here, all that would be needed is to analyze the image obtained and estimate
the depth of each pixel. The size of the wind turbine can then be calculated using the
distance between the user and the wind turbine. If the pixels in which the object is to
be rendered do not have at least the same depth as the distance to the wind turbine,
the app can be sure that a real object occludes the wind turbine.
After that, rendering the virtual objects is just a matter of creating layers of the

image. Here, the image can be divided into two layers, one layer containing all pixels
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of the image that are closer to the user than the wind turbine, and a second layer
containing all pixels that are located behind the virtual object. After that, the wind
turbine must be inserted between the two created layers as an additional layer. This
guarantees that all objects in front of the wind turbine occlude the corresponding parts
of the wind turbine while, at the same time, the corresponding areas of the background
are occluded by the virtual object. Here, it is assumed that the wind turbine is only
defined by its position and has no depth of its own. The fact that a rotor blade can be
further away from the user than another blade of the same wind turbine is neglected.

2.2. Definition of Benchmarks

After the general idea of the app has been described, benchmarks must now be defined
for the app, with the help of which the success of the app can later be evaluated.
The benchmarks can be divided into ”essential requirements” and ”features”. Essential
requirements represent the technical challenges that are to be overcome. Features, on
the other hand, represent the additional functions of the app. Those features can be
further divided into essentials and gimmicks. While essential features are required for
the correct behavior of the app, gimmicks are additional features that only extend the
basic function of the app, but their absence does not affect the correct behavior of the
app.

2.2.1. Essential Requirements

The app shall be designed for mobile devices. This also includes the consideration of
the limited computing power of mobile devices. Specifically, for this bachelor thesis, it
is intended that the app works on smartphones with both Android and iOS operating
systems. The augmented wind turbines should be displayed at the correct location
(indicated by the longitude and latitude of their position). For this, it is crucial that
the user’s current position is also considered. Furthermore, only those virtual objects
currently visible by the camera should be visible on the screen, this also includes
that the parts of the virtual objects that are occluded by real obstacles are not to be
presented on the screen (obstacle occlusion). For this to work the obstacle detection
has to be handled correctly. Another criterion is the possibility to use the app without
internet access. Since wind turbines are not built in densely populated areas, and the
network coverage of the mobile internet is often not good, one of the most important
aspects is that the app can be run completely or at least to a large extent on the mobile
device alone. Finally, it is also important for this bachelor thesis that the created app
is written with the JavaScript programming language since the augmentation part will
eventually become part of an already existing larger Ionic Vue app.

2.2.2. Features

The essential features include the use of the main camera of the mobile device, as well
as the correct use and reading of the sensor data provided by the smartphone, such as
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GPS and gyroscope. Another important feature besides the correct determination of
the user’s position is the correct positioning of the virtual objects. For this purpose,
the choice and settings of the rendering library are of great importance. Moreover, even
though the occlusion is already an essential requirement, it should not only function
but also improve the user experience. Therefore, ideally, the app works smoothly on the
majority of devices, which means that the image is augmented with at least 24 frames
per second. However, this depends on the implementation of the chosen solution and
the computing power of the device. This is an important feature, but not one that can
be guaranteed.
Non-essential features include, for example, info boxes that contain additional infor-

mation about the wind turbine and are only displayed when the wind turbine is clicked.
In addition, a compass in the form of a north-south needle could also be displayed.
This would resemble Google’s well-known map app and possibly contribute to user
acceptance. Also, the integration of a screenshot functionality that allows the user to
show the planned project to friends and family later on, could improve the user experi-
ence. Additionally, a part of a map could be displayed so that a user does not have to
switch back and forth between a map app and the AR app to locate himself. Arrows
on the left and right sides of the screen that pop up when the camera is not facing
the wind turbine would be another possible additional feature, which could make the
app easier to use. Other gimmicks, such as a virtual hot air balloon, would also be
conceivable, which do not add anything to the functionality of the app, but show what
is possible with AR.

2.3. Selection of Core Technology

In the following subsections of the bachelor thesis, the question of what the most
suitable technology is to implement the idea of this thesis is addressed. The initial
planning represents an important milestone. Here, the criteria under which technology
should be selected must be carefully considered, the most important criteria were
already mentioned in Section 2.2.1.

ARCore ARKit WebXR AR.js Unity ML Stream

Android ✓ ✗ ✓ ✓ ✓ ✓ ✓

iOS ✗ ✓ ✗ ✓ ✓ ✓ ✓

JavaScript ✗ ✗ ✓ ✓ ✗ ✗ ✓

Detection ✓ ✓ ? ✗ ✓ ✓ ✓

Offline ✓ ✓ ? ✓ ✓ ✓ ✗

Maintainability ✗ ✗ ✓ ✓ ✗ ✓ ✓

✓Criteria fulfilled, ✗Criteria not fulfilled, ? No information

Table 1. Comparison of possible core technologies in dependency of main criteria.

In the table above, different possible core technologies (visible as columns of Table 1)
have been evaluated against the most important criteria (listed in the rows of Table 1).
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In general, obstacle detection and occlusion is possible both with ARCore1 and
ARKit2, but out-of-the-box only within a short distance of up to eight meter. Even
though a solution written with ARCore ARKit would not be created directly with
JavaScript, it should be possible to have the created apps flow into the Ionic app
afterward. However, it results in double the work, since ARCore from Google supports
Android and iOS, yet the functionality for iOS is very limited [22]. ARKit is developed
by Apple exclusively for iOS, so a double workload is unavoidable. However, solutions
written in the ARCore and ARKit frameworks fulfill another important aspect, the
ability to function completely offline. Nonetheless, the maintainability is not given
here, since two different programming languages are needed to keep the two apps up
to date.
WebXR3 is a project of ”The Immersive Web Working Group/Community Group” in

collaboration with Google, Mozilla, and Facebook, which is intended to present virtual
content to the user in a web solution. XR is the so-called ”mixed reality”, a mixture
of virtual and augmented reality. Among other things, in WebXR, ARCore is used to
display AR content in the Google Chrome browser on Android devices. However, a
possible solution with WebXR does not meet all the mentioned criteria. Even though
it should be a good solution for Android, Apple does not provide the function of XR
in its in-house browser. The Google Chrome browser or Mozilla Firefox also do not
provide the XR functionality on iOS. Only a special XR browser from Mozilla4 is
supposed to fulfill the properties to display XR content. During testing, however, the
app crashed directly when starting the example XR content. Also, the app was last
updated in May 2020, and no information on Mozilla’s official page for this project
indicates that it is actively maintained [24]. Another aspect that is not apparent is the
possible integration into an already existing app. Even though the project can be used
with HTML and JavaScript, WebXR’s documentation indicates that it cannot be part
of an Ionic app. This is also the reason why there is no information about the offline
capabilities of WebXR.
The fourth possible solution is AR.js5. AR.js is a widely used library for providing

AR features to the user of websites. Here, AR.js stands out because it works not only
marker-based but also location-based. In the marker-based method, a special pattern
must be printed out, which is then recognized by the camera and the virtual object
can be positioned on top of the marker, while the location-based method requires the
exact coordinates of the object to be placed. AR.js fulfills almost all the mentioned
important criteria from Table 1. However, AR.js only deals with the rendering of
objects, but not whether these objects are partially or even completely obscured by
real objects.
Unity6 looks like an ideal solution at first sight since almost all criteria could be

1https://developers.google.com/ar/develop
2https://developer.apple.com/augmented-reality/arkit/
3https://developers.google.com/ar/develop/webxr
4https://apps.apple.com/us/app/webxr-viewer/id1295998056
5https://ar-js-org.github.io/AR.js-Docs/
6https://unity.com/unity/features/ar
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provided with a checkmark. However, there are two problems here, one of which is
not obvious from Table 1. On the one hand, a Unity app is written directly in the
Unity development environment and cannot be included as part of another app. Thus,
it would have to exist as a standalone app. On the other hand, and much graver is
that Unity cannot access the graphics chip on Android devices. From another student
project at RWTH Aachen, it is known that the AR of wind farms works on iOS devices
with Unity but takes too long on mobile devices with the Android operating system.
Machine learning (ML) is designed to deliver an approach to previously unsolvable

problems. Machine learning involves training a so-called model (also known as a neural
network) based on extensive training and validation sets. With great computing power
(usually executed on a graphics card), up to several thousand parameters are then
carefully modified so that the model can make predictions that are as close as possible
to the actual values of the validation set. It should be noted that a model can only
be as good as the data with which it was trained. If the underlying data is faulty or
incomplete, this will severely affect the model’s performance. With a neural network,
different tasks can be mastered, for example there are known networks that can classify
objects correctly. These networks are exported to Android or iOS after successful
training and can then be used in an app. A neural network that can estimate the
depth from an image is thus imaginable if sufficient training data is available. Most
neural networks (or better said the algorithm how they are trained) are written in
Python on the computer. This solution seems very promising, as here many of the
important aspects are provided with a checkmark as well. However, the following two
questions arise: First, the availability of correct and meaningful data sets to train and
validate the model. Second, it is unclear whether the computing power from the mobile
devices is sufficient to apply the trained network efficiently.
Finally, the possible solution of a video stream means that the mobile device streams

the camera image to a server, which then sends the rendered image back to the user.
The front end of such an app could be written in JavaScript here and thus be easily
integrated into the app. There should also be no problem with the different operating
systems, as it would be a typical video stream. With an improved processing power
of the server, obstacle detection would still be a challenge, but more manageable than
on a mobile device. However, the offline availability aspect is not a given with such a
solution. Even with approaches to upload only parts of the captured image, latency
would still be a strongly impairing factor in the use of the app. Poor network coverage
in the region of planned wind farms would even prevent the app from functioning
correctly. Thus, while this is a possible idea for areas with great network coverage, it
is not a valid approach to solving the problem.
As in most cases, there is no ideal out-of-the-box solution but a combination of

different approaches to a possible overall solution seems to be the goal here. For the
previously mentioned reasons, the possible solutions with ARCore, ARKit, WebXR,
Unity, and the video stream must be excluded. Each of these solutions has negative
aspects that cannot be overcome, even in combination with other solutions. However,
a combination of machine learning and AR.js is conceivable. In this case, a neural
network would have to be trained on the computer and later integrated into an app
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on the mobile device. The focus here is on a neural network that determines the
absolute distances for each pixel in a given image. The distance of the pixels from the
mobile device can then be used to create what is known as a depth map. With the
information from this map, both the depth map and the original image can be divided
into different areas. It would make sense here to divide the image into sub-parts ”in
front of the wind turbine” and ”behind the wind turbine” so that the virtual object can
be placed between these two parts as yet another layer.
The workflow would look as follows:

Neural Network

Input Sets

Training set Validation set

Neural
Network

Converter

Model.js

Input

Trained model in

arbitrary file type

Converted Model

in JavaScript

Mobile Application

Camera

Mobile deep
learning
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Distance
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Blender
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screen
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Depth map
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Virtual model

Augmented image

M
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Figure 1. General workflow of concept divided into work to be done on the computer
(left) and work to be done on within the mobile application (right).

As can be seen in the diagram, the workload is divided into two areas. Firstly, the
neural network has to be prepared on a computer, and secondly, all following time and
location specific tasks have to happen on the mobile device.

2.4. Neural Network

As can be seen in Figure 1, the task on the computer is to train a suitable neural
network and later convert it to a model type that can be executed on mobile devices.
The most important task here is to find and select suitable training and validation sets.
Of course, it is not said that creating a model is an easy task, but for an expert in this
field, obtaining valid sets is the bigger and more time-consuming challenge. Creating
own suitable sets goes beyond the scope of the context of this bachelor thesis, thus is
not a possible solution.
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2.4.1. Choice of Training Data

Finding a suitable set of outdoor images with sufficiently complete data on the depth of
each pixel has proven to be extremely difficult. Two comprehensive sets are ”DIODE:
A Dense Indoor and Outdoor DEpth Dataset” [25] and ”The KITTI Vision Benchmark
Suite - Depth Prediction Evaluation” [26]. However, both sets have certain advantages
and disadvantages. The set from KITTI only measures depths up to 80 meters. If it
is not the users’ desire to stand less than 80 meters in front of the wind turbine and
view it from up close, this range is for this specific purpose too short. However, there
are pre-trained models for this set, including their corresponding code. The dataset
from DIODE provides better training data in this respect, as the depth of the images
is also greater than 80 meters. The sensor used to measure the depth of the images
can detect depths up to 350 meters. However, the data is not always complete, and no
predefined or pre-trained models are publicly available.
There are other publicly available and detailed training sets such as the ”CITY-

SCAPES DATASET” [27]. However, this is rather intended for training neural net-
works for autonomous driving than landscape depth calculation. The sets thus consist
of various scenes from road traffic whereby important elements of the images have been
classified and identified. This set is not suitable for depth computation from a single
image.

2.4.2. Evaluation of Neural Networks and their Models

The creation of a neural network is the next logical step once the choice of training
and validation data is determined. However, creating a neural network is beyond the
scope of this bachelor thesis. Thus, already existing networks and their models had
to be used. To understand better the terminology, the difference between a neural
network and a model is that the neural network is the mathematical and programmed
description of the network, whereas the model is a trained version of this network. The
model is not further refined and can be applied to new inputs (here images), this step
is called inference [28].
The choice of a neural network and the associated model depended heavily on their

availability. When choosing the network, DORN [29], BTS [30], as well as the GC-
NDepth [31] network stood out. DORN and BTS were both trained exclusively on
the KITTI dataset and are capable of estimating distances up to 80 meters. On the
DORN’s official GitHub page, a predefined model trained on the KITTI dataset is
available for download. DORN is based on the Caffe [32] open-source framework for
deep learning which is developed by Berkeley AI Research (BAIR), The Berkeley Vi-
sion and Learning Center (BVLC), and community contributors. The last published
version of Caffe is from April 18, 2017, and is consequently no longer state-of-the-art,
with just under 1,000 open issues and no adaptation to the latest graphics cards.
BTS on the other hand has been implemented in a framework called ”Tensorflow”.

Tensorflow is an open-source machine learning software library developed by Google.
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With over two thousand open issues on the official GitHub page7, this framework is
not bug-free either, but updates and patches are released almost monthly.
Those two networks conform to the two best-ranked, which also include a link to their

code on KITTI’s benchmark page8. It should be noted that the values of the ”Scale
invariant logarithmic error” (SILog), determining the ranking of the two networks, do
not differ much (BTS 11.67, DORN 11.77), but the specified runtime is very different.
Both times measured on a GPU with 2.5Ghz, BTS is almost ten times faster than
DORN (BTS 0.06s, DORN 0.5s).
In contrast, the third mentioned alternative, GCNDepth, is much more recent. The

accompanying paper to the network was not published until the end of 2021. This
neural network is written entirely in Python and the official GitHub page also has a
pre-trained model available for download. The aforementioned network is built on the
open-source PyTorch framework, which is mainly developed by Facebook’s AI Research
lab (FAIR). By its own claims, the GCNDepth network has a SILog of 15.54, but no
indication of the duration of the inference was provided.
All of the networks mentioned claim to have made a great advance in the determi-

nation of depths compared to previous methods. Therefore, it is not yet possible to
weigh which of the networks will provide the greatest advantage in implementation. It
will be part of the later evaluation to investigate this matter in more detail.

2.4.3. Conversion of Model

A neural network model that has already been created must first be converted for use
on a mobile device. This conversion performs an adaptation to the framework available
on mobile devices. Even though well-known frameworks such as Tensorflow have their
own framework specifically for mobile devices, this is not necessarily the case for all of
them. It is also worth saying that conversion can affect the performance of the network.
By having to recreate the network in the definitions of a different framework, as it was
created in, any performance adjustments will possibly not be applied correctly.
In the field of mobile machine learning frameworks, Tensorflow was the market leader

until last year, currently PyTorch is just as popular [33]. However, other formats also
offer efficient mobile solutions. For example, ONNX offers a mobile JavaScript frame-
work for networks in .onnx format. ONNX stands for ”Open Neural Network Exchange”
and represents a file format that can be opened and edited in various frameworks [34].
The determining factor for the performance of a network is the time of inference. Here
ONNX.js claims to have a clear advantage over other frameworks such as TensorFlow.js
and Keras.js, yet another deep learning framework [35]. Nevertheless, it is impossible
to say whether the accuracy of the network may not be reduced when converting from
another file format to .onnx.
Each file format must ultimately be converted differently. Some converters re-

quire the weights of individual so-called neurons in addition to the model to save
a model in a different format, others only require a special command in the command

7https://github.com/tensorflow/tensorflow
8http://www.cvlibs.net/datasets/kitti/eval depth.php?benchmark=depth prediction
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line [36] [37] [38]. Since all mobile frameworks claim to work well, no preferred choice
can be made so far. It will be part of the testing to compare the performance of these
frameworks.

2.5. Mobile Application

Most of the work is to be done on mobile devices. Here, a ”mobile device” usually
means a smartphone, since a large part of the population owns one and carries it with
them constantly. Nevertheless, a mobile device can also be a tablet or a portable
computer. The software on the mobile device is tasked with getting the camera image
and analyze each frame with the help of the neural network. This analysis results in a
so-called depth map. The depth map contains an estimated distance per pixel of the
image. At the same time, the distance of the user to the virtual objects to be placed
is to be calculated. Using this distance and the depth map, layers can be determined
from the camera image with the help of the segmentator. A layer is an image with
the same dimensions as the input image, but only the pixels that fulfill a condition are
displayed here, all other pixels are transparent. The condition, in this case, is whether
the distance between the user and the object is greater than the depth of the pixel, in
other words, whether this pixel should be in the foreground. The layers created here
can then be extended by the virtual object, created by the renderer, placing the object
between the layers with the help of the blender. The output of the blender should then
be an image with the same dimensions as the initial input image and output to the
user on the screen.

2.5.1. Choice of Renderer

The renderer takes over the task of placing and displaying virtual objects in the app.
In general, AR can be divided into three different functionalities: marker-based AR,
marker-less AR, and location-based AR. Marker-based AR works in such a way that
the camera has to recognize a so-called ”marker”. A marker can be a QR code or a
previously defined image, which must then be printed out or displayed on a screen
and the camera of the cell phone has to be pointed at it. Should a marker be used,
the virtual object can be guaranteed to be in the correct location all the time since it
re-positions itself on the marker in each frame, therefore, this approach provides great
stability to the augmentation. A major drawback of this approach is that the marker
must always be visible to the camera. Ideally, the marker should be orthogonal to the
camera, since any shift or different angle must first be compensated for. This approach
is great for small AR projects to display on your desktop. However, this approach is
unsuitable for the implementation of this app because either no marker could be large
enough for the camera to detect it from a greater distance, or the angle would be too
narrow to identify the marker correctly.
The second method of displaying virtual objects is marker-less ar. With the help of

the camera, the app scans the surroundings of the cell phone and tries to determine
which elements of the image represent a surface to be able to place virtual objects.
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Different textures of the environment are one of the main clues for the software. Modern
mobile devices also have advanced sensors, such as a laser scanner or a LiDaR sensor,
that help determine these surfaces. Since the texture of a surface can no longer be
determined accurately beyond a certain distance, the mobile device can also no longer
decide this with certainty. Even though this distance depends on the technology used
as well as the resolution of the camera, it is safe to say that it is less than the distance
from which a user wants to view virtual wind turbines.
Location-based AR is the third option for rendering virtual objects on the camera

image. In this method, both the GPS sensor and the gyroscope of the mobile device
are addressed, and each virtual object to be rendered must also be provided with GPS
coordinates. The GPS sensor is then used to determine how far the user is located
from the virtual object, this assists in calculating the size of the virtual object. The
gyroscope sensor is used to determine if the camera is facing the direction of the
virtual object, only if this is the case the object should be visible. Since this possibility
is independent of the quality of the camera, the presence of other sensors like laser or
LiDaR, as well as the distance to the virtual objects, is the most suitable variant to
output these objects on the screen. In the research, AR.js turned out to be the most
promising renderer. AR.js is built on top of AFrame, which in turn is a simplified
API for Three.js. Three.js allows the creation of virtual objects, which are then used
by Aframe to combine and place them, AR.js also uses the camera and other sensors
of the cell phone and can therefore offer both a marker-based and a location-based
solution.
An alternative to AR.js would be argon.js, for example. argon.js is just like AR.js a

library to connect virtual 3D objects and 2D content with the user’s real-world image.
Here, three important components of the library are used to present the different inputs
to the user. The three components are the Reality Manager, Reality View, and Reality
Augmentator. The Reality Manager is responsible for distributing the data from the
smartphone (sensor, tracker, user input) to the Reality View and Reality Augmentator.
Furthermore, the Reality Manager has to manage the virtual objects and their current
state and finally render the user interface on the screen. The Reality View receives
the user input and the state of the virtual objects from the Reality Manager, updates
the state of these objects, and returns the new state to the Reality Manager. The
Reality Augmentator has the task of presenting an augmented version of reality using
the virtual objects and their state from the Reality Manager as well as the Reality
View.
However, based on the fact that the latest published version is just under 6 years

old [39], parts of the API documentation are still marked as ”TODO” [40], and there
are no compelling examples online of the usage of argon.js, this approach is refrained
from pursuing.

2.5.2. Choice of Segmentator

In the search for a way to segment an image based on a condition, many other neural
networks were found. However, these segmentators categorize the image based on its
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content and not on a pre-existing depth map. The manual approach to this problem
is to handle the pixel values from the provided image one by one. Typically, for a
low-level pixel-wise calculation the widely spread library ”OpenCV”9 is used. However,
the documentation suggests no function nor implementation to use a depth map to
modify images.
Since the video image from AR.js is presented to the user in a HMTL canvas element,

its context can be determined, and the image data extracted. Each pixel can then be
assigned to either the foreground or background based on the value from the depth
map and the distance to the virtual object. To simplify the work, the depth map
can first be modified with the help of the user’s distance to the wind turbine. The
depth map can be in different formats, for example, a two-dimensional array. However,
since the extracted image data of a canvas element is represented in a one-dimensional
array, and the conversion from a two-dimensional array to a one-dimensional array
is not challenging, the simplifying assumption was made that the depth map is also
represented as a one-dimensional array. Using the distance of the user to the wind
turbine, a new value can now be assigned to each value of the depth map, for example,
true should this pixel belong to the foreground, otherwise false. Values like 1 and 0
would also be conceivable. Since JavaScript is dynamically typed, it has no negative
impact to change a value of type number to a boolean if necessary. To avoid confusion,
a new array can be created with those values, in the following referred to as binary
map (BM). This results in the following formula:
Let I be the total number of wind turbines, D be the depth map with ℓ entries and di
be the distance of the user to the wind turbine i, then

BMi,j =

{
true, if Dj < di

false, otherwise
, 0 ≤ i < |I|, 0 ≤ j < ℓ.

To determine the foreground and background of the image, a for-loop can be used to
split all pixels of the initial image element into newly created canvas elements. All
pixels that have the value true at their corresponding position in the depth map can
be painted on the foreground canvas element, the other pixels onto the background.
Pixels that should not be drawn into the respective element must be replaced by an
arbitrary pixel with 100% transparency.
Let FCi be the foreground canvas element for the wind turbine i and BC the

background canvas element, BMi the binary map for a wind turbine i, T the one-
dimensional array containing all pixels of the image, and p∗ an arbitrary pixel with
100% transparency:

FCi,j =

{
Tj, if BMi,j = true

p∗, otherwise
, 0 ≤ j < |T |.

BCj =

{
true, if FCi,j = false for all i

false, otherwise

9https://opencv.org/
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With this approach, the different images represented as canvas elements can be created,
which then have to be merged by the blender. This completes the part of choosing the
way to segment the image.

2.5.3. Choice of Blender

The blender has the task of merging several layers into one image.
The library ”context-blender” by Gavin Kistner10 has not been updated for more

than seven years, yet is referred to in many image-blending processes. With the help
of this library, a canvas element can be described with two further canvas elements,
a blending mode, and further options. Here, the element passed first represents the
foreground, and the second element is the background of the final image. However, the
content of the foreground is only merged with the content of the background based on
the mode. If the background is transparent, for example, the colors will be softened or
darkened. Therefore, this library is not an option for the planned project.
The library ”merge-images” by Lukas Childs11 is popular, with more than 100 thou-

sand downloads per month. Using this library, multiple images of a file format can be
layered on top of each other. Other options can be applied, such as a shift on the X or
Y axis, respectively, as well as the degree of transparency of each layer can be adjusted.
The result of this function is an image in .PNG format, which can then be inserted
into the document object model (DOM) in a img-element as src-property. This library
is promising, but strongly dependent on the file format of the individual layers after
segmentation.
Another way to layer different images that does not require an external library is to

use pure CSS. HTML elements can be positioned pixel-precise on the screen with the
help of the CSS attribute ”position: absolute;”. Different elements can be placed on
top of each other by using different values in their CSS attribute ”z-index”. Combining
these two attributes does not create a final image element, but instead keeps different
layers. However, since parts of the foreground are transparent, this procedure cannot
be distinguished from creating a single image. One advantage of this method is that
it is not necessary to create a element to display the background. Since the video is
located below all other elements in the DOM, it is sufficient to display the foreground
in a canvas and place it over the video.
In summary, it can be said that the manual approach is preferred due to the special

use case and the lack of suitable libraries. This applies to the calculation of the
foreground as well as the correct positioning and output on the screen.

10https://github.com/Phrogz/context-blender
11https://github.com/lukechilds/merge-images
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3. Implementation and Insights

In this section, the implementation of the model defined in Subsection 2.2.1 is ad-
dressed. The technical details of the used computer are as follows: Processor: 11th
Gen Intel(R) Core(TM) i9-11900K @3.50GHz 3.50GHz, Ram: 32GB, GPU: NVIDIA
GeForce RTX 3070 Ti, OS: Windows 11 64 Bit, Ubuntu 21.04 64 Bit. Software ver-
sions are as follows: node v17.4.0, ionic 6.18.1, npm 8.5.1, Chrome 99. Testing device:
OnePlus 6 with Android 11.

3.1. Implementation of Neural Network

The neural networks mentioned in Section 2.4.2 presented some unexpected difficul-
ties. The DORN network could not be reproduced because the installation of Caffe
was unsuccessful. This had several reasons, the libraries needed to install Caffe are
partly outdated or do not work one the latest operating system, neither Windows nor
Ubuntu. Caffe is not explicitly needed when translating the model with a converter
to another file format, but in converters like ”caffemodel2pytorch” or ”Caffe2Pytorch”
the file containing the weights of neurons is needed besides the .caffemodel file. These
weights are not available for download on GitHub. An email to the owner of the
repository remained unanswered.
The BTS network could not be reproduced also by installation difficulties and after-

ward problems with the execution. A conversion into another file format was omitted
due to the fact that the determined distances would not represent absolute values.
This has also been the problem with Intel’s ”MiDaS” neural network. Even if this

network was not trained exclusively on images and depths in landscapes, it appeared to
be a suitable network for this task. Positive aspects of this network are easy usability
and the wide range of training data. In addition to the images of KITTI, a total of
ten different data sets were used including 3D movies [41]. As another aspect, the
provision of a smaller network, explicitly for use on mobile devices also was in favor
for the network. After email consultation from René Ranftl, one of the authors of the
paper and network, it became clear that the relative values of the depth map cannot
be easily converted into absolute values. To illustrate, relative values simply describe
the relation of pixels to the user. Lower values express closeness to the viewer, thus
larger values express greater distance. However, these values are not related to the
actual absolute distances between the camera and the object.
Through the mentioned consultation it became apparent that a conversion is only

possible if in each image with which the network was trained and in each image on
which the network is applied, there are at least two pixels each to which the absolute
distance is already known. Since this is not the case and cannot be guaranteed, this
network was also discarded. Nevertheless, this insight was groundbreaking for the
further course of the search for a suitable network.
The GCNDepth network was then examined more closely, yet, despite the clues of

the authors, this network is also not capable of evaluating absolute distances. It also
calculates only relative distances. The same authors published the paper ”Absolute
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distance prediction based on deep learning object detection and monocular depth esti-
mation models” [42]. Here, the network described makes use of two underlying neural
networks, including the GCNDepth network. Using a classification of objects, esti-
mating how big these objects are, and then comparing those values with the relative
distances given by the depth map, absolute values are then determined. These values
are quite accurate according to their own data.
However, the challenge arises here that not all objects are recognized or classified.

The underlying classification classes are defined by the COCO network [43]. Also, un-
fortunately, no distance is explicitly specified here on which the network works reliably.
Nevertheless, since the GCNDepth network was tested on KITTI, at least 80 meters
can be assumed. However, the problem of the classification and the estimation of the
size is the same as already described in Section 2.1, the estimated objects must be com-
pletely visible, otherwise, the estimation is biased. However, the biggest problem was
that no model to the network described in this paper was made available for download
and hence is not usable for this work.
As a consequence of the reasons mentioned above, the search for a neural network

was discontinued. Nevertheless, in order to adapt the app to the use of a neural net-
work, a black box was built to simulate the existence and use of a network. This black
box is further described in Section 3.3. Omitting the neural network in the current
implementation nevertheless allows the definition of performance and behavioral re-
quirements of such in the remainder of this thesis. This characterization is described
in more detail in Section 4.1.

3.2. Integration of AR.js and Wind Turbine Model

AR.js is one of the most popular open-source libraries for augmented reality. To use
it on a website, both a version of A-Frame and a version of Three.js must be included
as scripts in the head of the HTML page. How to include the scripts can be found in
Appendix A.
The included scripts may load additional data in the background, for which an

Internet connection is mandatory. After these two scripts are included, a new a-scene-
tag can be created in the body of the web page. This is a native element of A-Frame
and is needed to manage all the underlying functions of Three.js. Also, the a-scene
will include all the virtual objects to be displayed. It is important to know that there
can be only one such element per page. A UI element to go into virtual reality mode
can be hidden by setting the ”vr-mode-ui” attribute to ”enabled: false”. By setting the
”arjs” attribute in the a-scene the functionality of AR.js will be included in the scene.
Each scene needs a a-camera element. This element is responsible for controlling

the virtual camera in A-Frame. However, since the camera from the cell phone is
to be used here, most of the settings are made in the AR.js-specific attribute ”gps-
camera”. With the help of the values of ”gpsTimeInterval” the constant request of
the current position can be delayed by the passed value. ”minDistance” as well as
”maxDistance” set a frame in which distance virtual objects should be displayed on
the screen. The ”rotation-reader” tag allows AR.js to get access to the orientation of
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the camera and the tilt of the phone. Finally, the ”arjs-look-controls” attribute was
added to avoid arbitrary jumping around of virtual objects, more about this in Section
3.7.1. All virtual objects must now be included before the a-camera element within
the scene. This can be done either manually, or dynamically via JavaScript. Here
the dynamic approach was chosen, because it simplifies the further development, for
example with the help of a database, which provides the information about the wind
turbines. Implementation can be found in Appendix A.
However, it should be noted that an a-scene must be a direct child of the body

element. Since this cannot be guaranteed by the Vue framework, the entire AR part
of the work was wrapped inside an iframe and then embedded in the Vue app.
To dynamically create wind turbines the possibility to create elements via com-

ponents provided by AFrame was used. The implementation of the component reg-
istration can be found in Appendix A. For the visualization of the wind turbine, a
.gltf file was used. glTF stands for ”Graphics Language Transmission Format” and
is a standardized file format for three-dimensional models [44]. The component can
now be used to set values for the attributes ”speed” (rotational speed of the wind
turbine), ”heigtScale” (height of the wind turbine), ”rotorScale” (length of the wind
turbine blades), and ”direction” (orientation of the wind turbine). For this purpose, an
a-entity element is created, the coordinates of the object are assigned as latitude and
longitude values to the ”gps-entity-place”attribute and then the wind turbine attribute
is added with the previously mentioned values. Another model was created to handle
toggling the rotation of the wind turbine, which will be discussed in Section 3.7.2.

3.3. Flow of Program

This part of the paper describes the main skeleton of the app and goes into detail
about the individual components as described in Section 2.5. Some parts of the imple-
mentation happen sequentially and the output of single functions is used as input for
the following functions. To avoid constant allocations of memory, data that must be
used by multiple functions and may not change in each iteration have been defined as
global variables. It is important to note that the functions described below must all
be included within the iframe that represents the augmented reality component of the
app.
The implementation is divided into two main parts, the initialization, and a loop. In

the initialization, the app first waits for the video element of AR.js to load. Loading
the video completely is important because the video can be larger than the pixels
that are output to the screen. To ensure that the video is centered, AR.js adjusts
the CSS attributes of the position. This position is then determined and stored by
the function findVideoPosition(). Since the position of the video will not change after
being initialized, this function only needs to be executed once. As another part of the
initialization, for example, the neural network can be loaded and instantiated at this
point.
After this the wind turbines must be loaded with the help of the function loadWind-

Turbines(). The number of turbines to be displayed is also determined in this way.
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Here the turbines are loaded from a JSON file and the corresponding a-entity elements
are created. Since the loading of the wind turbines is asynchronous, the number of
wind turbines to be displayed was also specified manually.
With the help of the correct position of the video and the amount of wind turbines

to be rendered, the overlay canvas elements can then be created and placed correctly,
matching the device’s screen. Since there is one overlay canvas element for each wind
turbine, representing the foreground which lays in front said wind turbine, and only
the content of this canvas element is to be constantly overwritten, this also only needs
to be created once. At the same time, another canvas element is created that matches
the dimensions of the video element. This canvas element reflects the content of the
AR.js video, after which it can be limited to only the visible part of the screen. It
solemnly serves as an aid for the further calculations but is never displayed to the user,
therefore the name hiddenCanvas.
Since the correct placement of the overlay canvas elements is crucial for the further

course of the app to work, the loop is started at the end of this function, which is also
the reason why the wind turbines must be loaded before placing the overlay.
The loop (referred to in the implementation as a function fittingly named loop()) is

executed only if the boolean videoRendering is set to true. This attribute is toggled by
a button on the HomePage. This design decision will be discussed further in Section
3.7.2. Within the loop, first, the contents of the context of the hiddenCanvas are cleared
and overwritten with the current video image provided by AR.js. Then the function
trimHiddenCanvasData is called. This function takes three parameters, the image data
of the hiddenCanvas just described and the width and height of the AR.js video. The
function is responsible for creating new image data, limited to the pixels that are visible
to the user. This is partly because applying the neural network to small image data
is more efficient, but also because if the image data is too large, the content cannot
be displayed correctly to the user. To accomplish this task, the function determines
the excess pixels, which is given by totalOffset = videoWidth− screenWidth. Since the
overlay canvas is supposed to be centered, and it may be that the excess is odd, it was
decided that the left offset would be described by offsetLeft = ⌊totalOffset/2⌋ and the
right offset by offsetRight = ⌈totalOffset/2⌉. If there is a difference between the width
of the video and the screen, a double for-loop will keep only the value of the respective
pixels of the hiddenCanvas that can also be displayed on the screen. Afterward, this
function returns the pixels both in the form of an array and as an image object, and
they are stored together in a single object.
The image data can now be used to create the depth map. This is the part where

the neural network would be applied to the image data. Using the current implemen-
tation, the neural network can either accept an image (i.e., an image object), or a
one-dimensional clamped array with an 8-bit representation of each pixel value (red,
blue, green and alpha) of the image. Since, as described in Section 3.1, no neural
network was possible to include in the implementation, only the possible input and
the expected output of the function are described here. Nevertheless, to simulate the
behavior of a neural network, in the following, it is pretended that the top one third of
the image always describes the background. To achieve this, the function takes besides
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the image data (which is only relevant for an actual neural network) the distance be-
tween the user and the wind turbines. For this purpose, the GPS sensor of the device
is addressed and the distances to the wind turbines are determined by a formula that
also includes the curvature of earth. These distances are later used to fill an array with
random values, the upper third with values greater than any of the distances after
that the remaining space is divided by the number of wind turbines and for each wind
turbine a equal part is filled with values that have a 50% chance of being less than the
distance to that specific wind turbine. In this implementation the wind turbines have
to be sorted from furthest away to closest to the user. Given this condition each wind
turbine and the corresponding canvas element can be placed correctly.
To create the binary map described in Section 2.5.2, the previously created array

of depth maps, each represented as a one-dimensional array, as well as the distance
of the user to the wind turbines are passed to the following function. Within the
calculation of the function calcBinaryMap, another array of one-dimensional arrays is
now filled with values using a for-loop. This array of one-dimensional arrays is also
defined as a global variable and the included arrays are initialized with the number of
displayable pixels of the screen. As a result, the memory for the array does not have to
be reinitialized in each run of the loop. Here, as described before, the value 1 is written
to all locations of the pixels in the array that are in the foreground, 0 otherwise.
Finally, the function applyBinaryMap is executed, this takes both the array of image

data from the object of the trimHiddenCanvasData function and the array representing
the binary maps for each wind turbine. Again, this is done with the help of loops.
Within a for-loop a while-loop is applied to each entry of the array. This while-loop
checks each entry in the binary map. If the corresponding entry is unequal to 1, the
pixel at the corresponding position in the array is set to transparent. Since each pixel is
represented with four values (red, green, blue, alpha) and as described in Section 2.5.2,
each pixel of the background in the overlay can be any pixel with 100% transparency,
it is sufficient to set the alpha value to 0 at this point. Last but not least, the content
of the overlay canvas element for each wind turbine is emptied and filled with the
new corresponding image data. With this, the end of the loopfunction is reached.
Afterwards, depending on the videoRendering variable, the loop is executed again or
paused.
The code to support this described program flow can be found in Appendix B.

3.4. Performance Improvements

Runtime is (besides RAM) the most precious resource in this implementation. Since
many loops are used in the implementation to get, manipulate and output the image
data, it was important to keep the duration of each loop and function as short as
possible.
For this purpose, the duration of individual functions shall be determined. Since the

entire code of the augmentation is written in JavaScript, it was possible to fall back
on proven methods for determining the duration of individual functions. For example,
before calling a function, the value of performance.now(), which outputs the time
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since accessing the page12, can be assigned to a variable and then subtracted from
the then-current value of performance.now() after the function has been executed.
An alternative to this would be to use console.time(label) and console.timeEnd(label).
However, internally the same behavior is applied, yet it bears the problem that de-
termining multiple time spans starting from the same point in execution requires one
label each. By measuring the execution time, for example, the implementation of
the trimHiddenCanvasData() function was identified to be the longest-lasting and,
ultimately, its duration could be reduced by more than 83%.
Another tool used to monitor the performance and internal progress of the app was

Chrome Dev Tools which revealed that the included script for A-Frame loaded yet
another file. To save the time and bandwidth it takes to load all the data, all the
scripts were provided statically. This reduced the time it took to load the app, and
also eliminated any internet access, so the app can now be used offline at 100%.

3.5. Results

In this part of the work, parts of the app are tested against different applications. For
example, the usability on different display sizes is considered, as well as the simulation
of multiple wind turbines and the calculation of the corresponding overlay canvas
elements.
At the beginning, it should be mentioned that one system was used to simulate

different display sizes for comparability reasons. Since mobile devices differ not only
in their display size but also in the available computing capacity, the usage of different
devices could distort the results.

Display
Resolution1

Device Example Total Pixels1 Time per loop
(TPL)2

FPS2

360× 640 BlackBerry Z30 230, 400 26.728 ms 37
375× 667 iPhone SE 1 250, 125 28.580 ms 34
360× 740 Samsung Galaxy

S8+
266, 400 30.336 ms 32

390× 844 iPhone 12 Pro 329, 160 38.311 ms 26
393× 851 Pixel 5 334, 443 38.256 ms 26
412× 915 Samsung Galaxy

S20 Ultra
376, 960 43.568 ms 22

768× 1024 iPad Mini 786, 432 90.430 ms 11
820× 1180 iPad Air 967, 600 119.505 ms 8
912× 1368 Surface Pro 7 1, 247, 616 137.739 ms 7
1024× 1366 iPad Pro 1, 398, 784 155.171 ms 6

1 measured in CSS Pixels; 2 implementation without neural network

Table 2. Comparison of frames per second based on different screen resolutions.

12https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
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Figure 2. Relation number of pixels on device screen and achieved frames per second.

Please note that the average of 1000 iterations was used to smooth out fluctuations
in performance.
The following table shows the average duration of a loop execution on a given resolution
using different numbers of wind turbines.

Number of wind turbines
2 3 4 5

Resolution TPL2,3 FPS3 TPL2,3 FPS3 TPL2,3 FPS3 TPL2,3 FPS3

360× 640 38.190 26 48.234 20 63.061 15 69.602 14
375× 667 41.056 24 55.372 18 65.878 15 77.561 12
360× 740 44.144 22 28.751 17 70.478 14 88.137 11
390× 844 55.655 17 77.601 12 89.951 11 100.141 9
393× 851 58.940 16 73.218 13 86.577 11 103.614 9
412× 915 67.179 14 81.978 12 104.149 9 116.896 8
768× 1024 137.678 7 167.031 5 200.594 4 236.702 4
820× 1180 173.815 5 202.708 4 249.754 4 290.003 3
912× 1368 212.168 4 259.823 3 314.212 3 368.830 2
1024× 1366 239.675 4 293.218 3 339.885 2 413.387 2

1measured in CSS Pixels; 2in ms; 3implementation without neural network

Table 3. Comparison of frames per second based on different amount of rendered wind
turbines and screen resolution.

Here, it is to be considered that the duration of the calculation with a single wind
turbine was not included in the table. The corresponding data can be found in Table 2.
It should also be noted that the number of FPS has been floored. The following graph
summarizes the results from Table 2 and 3 in terms of frames per second.
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Figure 3. Relation between number of windturbines rendered and achieved frames per
second based on screen resolution.

The four main functions of a loop described in Section 3.3 require different amounts
of time. The following table shows an example of the duration in milliseconds as well
as in percent of the total duration of these functions for a screen size of an iPhone 12
Pro.

#wt 1 2 3 4 5
Func. ms % ms % ms % ms % ms %

tHCD 8.73 22.83 11.49 20.66 13.52 17.42 17.44 19.39 18.01 17.98
cDM 25.43 66.48 34,59 62.15 33,24 42.83 39.74 44.18 41.67 41.61
cBM 2.32 6.07 5,26 9.46 22.53 29.03 18.80 20.90 23.35 23.32
aBM 1.76 4.6 4,31 7.74 8.30 10.70 13.95 15.51 17.09 17.07

Total1 38,24 99.98 55,65 99.99 77,59 99.99 89.93 99.98 100.12 99.98
1Total times may not add up correctly due to rounding

#wt: Number of wind turbines, tHCD : trimHiddenCanvasData,
cDM : calcDepthMap, cBM :calcBinaryMap, aBM : applyBinaryMap

Table 4. Distribution of required time per function in loop

Again, 1000 iterations were considered to smooth out potential performance varia-
tions as much as possible. Furthermore, it should be noted that these values may not
correspond to the corresponding total durations from Table 2 and Table 3. This is due
to few additional auxiliary functions that must be executed during a loop.
In addition to looking at the frames per second achieved depending on screen size

and the number of wind turbines to be rendered, the usability of a neural network that
only calculates relative values was also tested.
To test the usability, a total of 20 videos were recorded, 10 of them with the help

of a tripod, the others without. For the videos where no tripod was used, it was tried
to keep the smartphone as still as possible. The duration of each video was about one
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minute. They were recorded with the above-mentioned test device in a resolution of
1080× 1920 pixels with 60 frames per second. The exact number of frames per video
are documented in the table below:

Videos with tripod Videos without tripod
Video Duration in

seconds
Number of frames Duration in

seconds
Number of frames

1 60 3571 60 3584
2 60 3598 60 3608
3 60 3580 60 3608
4 60 3635 60 3614
5 60 3558 60 3581
6 65 3832 60 3583
7 60 3576 60 3558
8 60 3573 60 3574
9 60 3587 60 3580
10 60 3577 60 3593

Total: 605 36,087 600 35,883

Table 5. Number of frames per video. Videos taken with and without a tripod.

Since the given durations are rounded, the number of frames may not result in
sixtyfold the number of seconds.
Each individual image was then evaluated by the MiDaS neural network. Applying

each model to the total 36,087 images of the videos with tripods took 1 hour and 40
minutes each. The evaluation of the images without tripod took about the same time.
For comparability, all three available models of the network were used. Relative depths
that the neural network could not determine are assigned a value of 0. It is important
to know that there can also be negative values, this is because the network decides
for each pixel its placement in relation to a previously selected pixel. The previously
selected pixel is assigned a fixed value, but without knowing if there are more pixels
that are relatively closer or farther away. Since the number of pixels for which no
depth could be determined is important, the pixels assigned 0 as a value were counted.
The network always gives the same result for the same image, yet the small differences
between two individual images may have a great influence on the evaluation of the
network. The most important key figures regarding 0-values per video and model can
be found in Appendix D in Table 6 for the videos with tripod and in Table 7 for the
videos without a tripod, respectively.
The calculation of the number of 0-values was as follows:
Let |F | be the total number of frames, |V | the total number of videos, and n the
total number of pixels. For each frame f ∈ F of each video v ∈ V a list of relative
depths is defined as Dvf = [d1, . . . , dn]. Now a function func can be defined which
maps every value unequal to 0 to 1. The number of 0-values per frame is, therefore,
defined by: Zvf = n−∑n

i=1 func(Dvfi). The minimum per video is defined as Zmin
v =
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min{Zvf | f ∈ F}, and the maximum per video is defined as Zmax
v = max{Zvf | f ∈

F}.
Another important indicator is the average value of the relative depth of each pixel

and its dispersion. For this purpose, on the one hand, the average of the values of each
pixel was determined, excluding the values that received the value 0 at least once (i.e.,
where no depth could be determined).
The average value of all pixels per video was calculated as follows:
Let D′

v = [d′1, . . . , d
′
n] where d′k =

∏|F |
i=1 Dvik , with k ∈ {1, . . . , n} indicating the index

of values in the list, be a list where every depth is index-wise multiplied across all
frames. Consequently, every relative depth which at some point has taken the value
0 yields 0. Now a function can be defined which maps every value unequal to 0 to 1.
Applying this function to the list D′

v creates a bit mask BMv. Let Av = [a1, . . . , an]

with ak = (
∑|F |

i=1Dvik)/|F |, k ∈ {1, . . . , n}. Index-wise multiplication of values was
performed to discard the values which have been 0 in any frame, so that A′

v = Av◦BMv.
Later a function was defined which filters non-zero values from a list, leaving only the
average values of pixels which never have been zero in any frame. These values were
then summed up per video and its variance was plotted graphically in the form of
box-plots in Figure 4, 5 and 6 for the videos with tripod and in Figure 7, 8 and 9 for
videos without tripod in Appendix D. Here, only one graph was created per model for
all videos. A direct comparison of the individual models against each other was not
possible, since the calculated values of the relative depths were very different.
On the other hand, the graphs 10 to 69 in Appendix D recorded how much the

pixel with the highest and lowest fluctuation changed in values. Here, only pixels were
considered that had never been assigned a 0-value at any point in time. Including
these values could bias the analysis due to inaccuracies in the neural network. Only
the videos that were recorded with a tripod were used. Only these videos permit
the assumption that differences in values do not result from a changed camera angle,
position or orientation. The values of the relative depths were rounded to four decimal
places.
Those values were calculated as follows:
Let V arv = [vard1, . . . , vardn] with vardi, i ∈ {1, . . . , n} being the variance over all
relative depths at pixel i in video v. V ar′v = V arv ◦ BMv maps all variances of pixels
that have been 0 at any point to 0. V armax

v describes the pixel with the greatest
fluctuation of depth values in video v where it is defined as follows:

V armax
v = max{vardi | i ∈ {1, . . . , n}, vardi ∈ V ar′v}.

V armin
v describes the pixel with the least fluctuation of depth values in video v where

it is defined as follows:

V armin
v = min{vardi | i ∈ {1, . . . , n}, vardi ̸= 0, vardi ∈ V ar′v}.

V armax
v and V armin

v , therefore, indicate not only the value of the most and least fluc-
tuating pixel but also the corresponding indices. To plot the values of all frames at
said indices, they were added to the corresponding lists V ARmax

v and V ARmin
v .

27



The graphs of the values of the most and least fluctuating pixel per video were not
plotted together, neither were the values of different models, because the scales of the
Y -axis (the values of the relative depths) are in some cases very different.
These investigations thus conclude the test part of the work.

3.6. Discussion of Results

In this part of the paper, the results of the tests described in the previous part will
be discussed. From Table 2 it can be seen that the number of achievable images per
second depends on the screen size used. This results from the fact that the calcula-
tions of the determined distances or the determination of whether a pixel is in the
foreground or not, must be executed more frequently. It also follows from Table 2 that
there is also a correlation between the number of achieved frames per second and the
number of rendered wind turbines. The more wind turbines are used, the lower the
number of frames per second. This follows from the same argument as for screen size.
When multiple wind turbines are used, it follows in the implementation that multiple
foregrounds must be computed per iteration. Even though the depth of the pixels has
to be determined only once when using X wind turbines, it has to be determined X
times whether the pixels are in front or behind the respective wind turbine. Likewise,
it must be determined X times whether the pixel should thus be visible to the user or
not.
The results of testing several wind turbines from Table 3 strongly suggest that no

more than two wind turbines should be loaded or displayed at the same time. When
using more than two wind turbines, the number of frames per second achieved drops
drastically and is no longer usable without a tripod.
However, this finding should be taken with a grain of salt. The use of a suitable

neural network, which can determine absolute distances per pixel, could influence the
time per loop both positively and negatively. If only one wind turbine is to be displayed,
the duration of the computation of simulated depths has the greatest impact on the
total duration. If multiple wind turbines are to be displayed, the duration of foreground
computation will predominate. When using five wind turbines, this takes up to 70%
of the total duration (with the resolution of an iPad Pro). Thus, an efficient neural
network could only improve the archived frames per second for a very limited number
of wind turbines. For several, an efficient neural network would have less impact on
the required time per loop.
It could also be considered whether the wind turbines should be dynamically loaded

into the app and dynamically deleted again. This would ensure that only the wind
turbines within a certain radius around the viewer are loaded. Through this dynamic,
the user can then walk through the virtual wind farm and always view the closest
wind turbines on his mobile device. This dynamic can be achieved by setting the
”maxDistance” attribute of the a-camera. In the current implementation, a value of
10,000 meters is used.
Even though no suitable neural network has been found that can calculate the abso-

lute depths of each pixel, the use of the MiDaS network has been investigated in more
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detail. The preliminary tests to check the general usability have already shown that
the dispersion of the values of the relative depths from image to image is considerable.
This is also evident from the sometimes strongly varying number of 0-values seen in
Table 6. The more accurate the network, the more 0 values are output. This is because
even smaller areas are examined more precisely. The potential use of the relative dis-
tances to place wind turbines is complicated by the appearance of 0 values. Since any
value less than the distance value of the wind turbine is interpreted as foreground, the
sometimes large variation in the number of 0 values makes it impossible to accurately
represent the foreground. Since all videos from Table 6 were taken with a tripod, only
small fluctuations were expected here. Table 7 shows the number of 0 values for the
videos taken without a tripod. Consequently, it is noticeable that the differences be-
tween the minimum and maximum of the 0-values are considerably larger than in the
videos with a tripod. Also, the span, visible in the next-to-last column, is significantly
higher. Surprising is the evaluation from the video 9 with the MiDaS model small,
here there was at least one frame where the network could assign a value to all pixels,
thus there was no 0-value, however, the average of the 0-values of the frames of the
video is more than 30% of all pixels.
Apart from the number of indeterminable depths, the box-plots of Figure 4, 5, and

6 also show that the values of the non 0 values vary greatly. In the boxplots mentioned
above, the range of values per video can be seen, this gives information about how
close or far apart the values within a video are from each other. From the box-plots of
Figure 7, 8 and 9 it can be seen that the range increases for the videos without tripod.
Also, the number of outliers is much higher.
A look at the Graphs 10 to 69 gives a detailed insight into the fluctuations per

video regarding the strongest and weakest fluctuating pixel per model. However, it is
noticeable that the values for the least fluctuating pixel are not meaningful, as they
are close to 0 in almost all videos and models. The strongest fluctuations per video
and model, however, give a good insight into how sensitive the models are concerning
marginal changes in the camera image between two consecutive frames.
If the values did not differ so much it would have been conceivable to take a snap-

shot, using the cell phone on a tripod, simulating the distance of the wind turbine by
the relative depth at the expected location in the image. Then the app could have
been rebuilt and transferred back to the phone. An implementation by touching the
screen would have been conceivable, but the substantial differences between the rela-
tive depths of each pixel from frame to frame suggest that even touching the screen
would already affect the calculation of future depths in the video. Due to the time re-
quired to determine the depth of an image, the need for an Nvidia graphics card to run
the network (at least the more accurate models, hybrid and large) on the computer,
and the fact that the values of the same pixels can sometimes change significantly
between frames, this approach is not useful and thus not pursued. Nevertheless, it
can be said that a filter for the values describing an invalid or non-calculable distance
would be useful. Since this value can be different between networks, this value must be
adapted respectively. The use of a neural network that only calculates relative values
is therefore not useful.
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Even though these results suggest that a neural network that determines only rel-
ative values is not suitable, requirements and criteria for a suitable network can be
determined. Through the TPL in Table 2 and 3 the desired maximum inference time
of a network can be determined. Depending on the desired display size and the reso-
lution in CSS pixels, respectively, it can be said that when simulating only one wind
turbine on an iPhone 12 Pro, the inference may take a maximum of 28.766 ms. This
value results from the fact that the video should ideally still be displayed with 24
frames per second, therefore the TPL may take a maximum of 1000ms/24 = 41.667
ms, yet the current implementation already requires 38.311 ms, thus leaving a max-
imum of 3.336 ms for the inference of the network. However, the duration of the
generation of random values must be subtracted (25.43 ms see Table 4), resulting in a
total of 3.336 ms + 25.43 ms = 28.766 ms for the inference. Using two wind turbines,
inference should already take only 20.607 ms; using more than two wind turbines, ac-
cording to Table 4, no suitable network would be able to achieve the desired 24 frames
per second on any screen size.
This concludes the discussion of results.

3.7. Testing

In this part of the paper, new findings that emerged during the code writing process
are discussed. In addition, problems with the implementation of the previously desired
features are also mentioned and described here.

3.7.1. Insights

Previous versions of AR.js repositioned the virtual objects every time the GPS data
was updated. Since the rotation and GPS sensors do not always provide accurate
data, this behavior caused the virtual elements to frequently change their position in
the image. This could be worked around by only periodically requesting the user’s GPS
data and then using the ”simulateLatitude” and ”simulateLongitude” attributes of the
a-camera, manually updating the user’s position. Since version 3.3.1, this problem can
be overcome more comfortably, the property ”smoothingFactor”exists in the ”arjs-look-
controls” component, which can be added to the a-camera-tag [45]. The value of this
property specifies the percentage for the exponential smoothing with which a new read
value of the sensors influences the rendering. If k is the passed value of the property,
the last calculated value of the sensors has an influence of 1 − k with k ∈ [0, 1]. The
exponentially refined display angle of the virtual object is thus:

smoothedAngle = k · newValue + (1− k) · previousSmoothedAngle.

Another important insight was that a website’s unit of measurement for pixels on a
screen does not have to match the actual physical pixels of the device. The so-called
CSS pixels do not exactly correspond to one physical pixel per unit, because they
try to display content in the same way on different devices with high-density displays
using the new property ”pixel-ratio”. By using this unit of measurement, it could also
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happen that the video provided by AR.js or the device’s camera is too big for the
screen. Should this be the case, it had to be guaranteed that the middle part of the
image is always visible. Shifting it to the left or right would irritate the user. Even
though AR.js handles this task on its own, it is something to consider when inserting
the overlay-canvas element into the DOM. A canvas element has the general behavior,
that even if the content of the element is larger than the actual width of the element,
this content is compressed to fit inside the element.

3.7.2. Identified Challenges

Challenges arose in all areas of implementation, starting with the choice of an appro-
priate version of AR.js. The last official stable version was released in May 2021, after
which a new beta version was released in November 2021, and currently (as of March 9,
2022) version 3.4.0 is available as an alpha version. AR.js is maintained by the ”AR.js
organization”. There are eight people in the GitHub organization, but only three of
them are actively working on the repository. With over 151 open issues (as of March
9, 2022), the current version is not expected to work flawlessly.1314

As best performance is always desirable, the latest stable version (3.3.3) was used in
the implementation. However, it should be noticed that this version is not compatible
with the latest version of Aframe (1.3.0 as of March 3, 2022)15. Nevertheless, since
only basic functions of Aframe were needed in the implementation, it was decided to
use version 1.0.4 from February 2020, being the best working in this case.
Facing possibly poor internet connection in rural areas of Germany, the required data

size was investigated. The minimized version of Aframe 1.3.0 is just over a megabyte
in size. Itself needs one more file to work, namely the ”aframe.min.js.map”. This is
just under three megabytes in size. The AR.js file used is confusingly named ”aframe-
ar-nft.js” and is itself also more than two megabytes in size. In total, the data needed
to successfully render the wind turbine model is more than six megabytes in size. To
counteract possible poor internet connections in the countryside, the files were provided
statically as part of the app, resulting in no need to be downloaded every time the app
is started. The only disadvantage that this approach could bring on, would be that the
latest available version of the individual components is not automatically used. When
a new stable version is released, it should be considered updating the app.
Another challenge was the partly inconsistent performance of the rendering of wind

turbines. Depending on the computing power of the mobile device, the calculation of
the foreground may take up a large part of the device’s computing resources. This can
cause the animation of the spinning wind turbine to temporally freeze. Another aspect
that can occur is that the rendering of the wind turbine may take longer because the
computing capacity is occupied by the calculation of the foreground. To address these
two problems, two buttons have been integrated into the app. One button switches

13https://github.com/kalwalt
14https://github.com/AR-js-org/AR.js/
15https://github.com/AR-js-org/AR.js/issues/385
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off the calculation of the foreground, or, if it is already switched off, activates it again.
The other button determines whether the rendered wind turbines rotate or not.
Yet, the solution of the previous problem created new challenges. It was assumed

that since the wind turbine is created via a component, one could read and manipulate
the attributes of these components defined in the schema. Again, to separate the
logic from the actual operation here, the HomePage triggers an event in the iFrame.
However, reading the values via the function ”getAttribute(’windturbine’)” (this was
the name of the former model for creating a wind turbine), turned out to be more
difficult than expected. By definition, the function returned a string, but at runtime,
this was an object. By concatenating ”JSON.parse(JSON.stringify(attribute))” the
values like ”speed”, ”heightScale”, ”rotorScale”, ”direction” as well as ”rotation” of type
Boolean (used at that time to indicate if the wind turbine is rotating or not) could be
read. After manipulating the value of ”rotation”, there was, unfortunately, no way to
return these values to the component of AFrame. So, finally, this way was discarded.
To overcome this challenge, a new wind turbine model was created that is an exact

copy of the first model, but without the rotation function and its execution at each tick.
This is managed in a way that internally the status is handled whether currently, the
wind turbine should rotate or not. Depending on this status, the appropriate model is
loaded. If the status changes, all occurrences of wind turbines are deleted, and the now
correct model is loaded. Since the models are not large and AFrame is well equipped
for this task, this is a very performant solution. However, the only disadvantage this
approach has, is that the blades of the wind turbine do not hold in the current position,
but are always drawn in a position defined in the model.
A new challenge arose taking different screen sizes into account. Using landscape

mode on a mobile device only makes sense if the width of the screen is still large
enough to display the content adequately. This is only the case on a tablet, but not
on a cell phone. Secondly, it was identified that there are problems with the correct
functionality of AR.js16 when using the landscape mode. For these reasons, the use of
landscape mode on the Android operating system was not granted. This was achieved
by adding an ’android:screenOrientation=”portrait”’ entry to the AndroidManifest.xml
file.
Addressing the performance and power consumption of the device the number of

sensor request has been investigated. While the exact position of a virtual object is
given by the specification of longitude and latitude, the current position of the user
can be determined by the GPS sensor in the device. Thus, the direct approach would
be to re-determine the user’s position and recalculate the distance to the virtual object
every time the position is updated, or after a certain time interval. However, in AR.js,
the custom attributes ”distance” as well as ”distanceMsg”, have been implemented for
all objects with a gps-entity-place attribute. Since AR.js requests the user’s position
anyway, using these attributes would be more resource-efficient than separately making
a request to the GPS sensor and performing the calculation manually. Unfortunately,
using these attributes did not work and no explanatory description was provided by the

16https://github.com/AR-js-org/AR.js/issues/376
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developers, so it was decided to use the manual approach. However, this is a possible
improvement, potentially achieved by using a newer version of AR.js.
Within the described implementation in Section 3, the loop function is called con-

stantly. However, tests have shown that this can be very resource intensive. A short
delay before the next start of the function solves the problem here. This is at the
expense of the possible maximum number of frames per second, but an increase in
FPS is achieved compared to the constant execution of the function. What seems
contradictory at first glance can be justified by the fact that JavaScript is not inactive
during the delay time but cleans up the memory of variables that are no longer used.
While testing, a loop delay of just five milliseconds has proven to be sufficient here.
Finally, an improvement for user feedback was added to the implementation. The

initialization of AR.js and the preparing functions takes about 2.59 seconds. To visu-
alize the current state of the app, a loading spinner as well as the current process of
the app are displayed.

3.7.3. Identified Problems

In this part of the work challenges are mentioned that have not been able to be over-
come during implementation, and therefore being considered problems.
In Section 2.2.2, the feature of being able to see where the closest wind turbine is

positioned, with the help of markers on a map, was mentioned. While researching
how this feature could have been implemented, it was noticed that AR.js does not give
the user or the programmer any information about where the virtual object is located
on the screen. Since the virtual object is like a layer on top of the video, these two
elements are unrelated to each other. The attempt to determine the position of the
wind turbine, in the same way as the position of the video on the screen, cannot be
successful because the wind turbine element in the HTML-code occupies a size of 0×0
pixels on the screen, in other words, it should not be visible. However, since the wind
turbine can still be seen when the user holds the phone in the right direction, it is due
to the internal implementation of AR.js and its use of the a-scene. It is not intended
to completely rule out the possibility of this feature, especially since there might be a
way with the underlying library AFrame or even Three.js. However, no such possibility
was found during the conducted research.
The next problem affected another desirable feature of the app. The screenshot

feature was intended to allow users to take a snapshot of the image from their mobile
device to save the image of the rendered wind turbine and show it to friends and family
if necessary. For this purpose, three different approaches were pursued. A library
called ”html2canvas”17, as well as a plugin from the official Capacitor community called
”Screenshot”18 and the possibility to capture the current image of the screen with the
”Screen Capture API”19 of the browser.

17https://html2canvas.hertzen.com/
18https://ionicframework.com/docs/v3/native/screenshot/
19https://developer.mozilla.org/en-US/docs/Web/API/Screen Capture API/Using Screen Capture
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html2canvas is a TypeScript library developed and maintained by Niklas von Hertzen
with more than 25 thousand stars on Github. The script can either be installed with
the Node Package Manager or inserted as an external file via a script tag. To use the
script simply search for the element to be saved and pass it to the function of the same
name as an argument. A canvas object is created, which can then be either displayed
on the screen or saved to the gallery. The problem that occurs when it is called in
the HomePage.vue file is that the actual video is not in the body of this file, but in
the iFrame that is included in the HomePage. Thus, calling the function on the body
element of the HomePage will only output the buttons, as well as the header on a
black background. When trying to call the function in the file included by the iFrame,
different problem occurs. The canvas element used by AR.js to display the wind
turbine and the entire video has a ”webgl” context. This context does not allow taking
a snapshot of the current state of the element as long as the ”preserveVideoBuffer”
attribute is set to false. Unfortunately, this attribute cannot be manually changed for
the moment of the screenshot and then reset to the initial value. AR.js uses this option
to improve the performance of working with virtual objects. The only content visible
in the screenshot is the OverlayCanvas, as this has a ”2d” context. However, another
problem arises here, since the video can take on very large dimensions, the screenshot
also has such large dimensions with the non-displayable area being filled solid white.
For all these reasons, the library of Niklas von Hertzen cannot be used.
The official community plugin from Capacitor called ”Screenshot” looks like a simple

solution at first sight. Capacitor is the underlying plugin manager of Ionic. The plugin
has to be installed via two commands in the terminal, then the type ”Screenshot” has
to be imported and instantiated, finally, the function save() has to be called on the
Screenshot instance. Here the function takes three further parameters to determine the
format, quality, and name of the screenshot. However, two things quickly stood out
that diminished the hope of success. Firstly, there is no documentation of the plugin
being integrated and used in a Vue framework. Secondly, this plugin has not been
further developed for over five years and was finally archived. After installing the plugin
and importing and instantiating it the same way as, for example, the ”html2canvas”
library, a problem when saving an image occurred, which is also noted on the project’s
issue page on Github. The content of the iFrame is solid black. Only the buttons and
the header are visible on the image. The implementation can be found in Appendix C.
Since no solution to this problem was proposed on the GitHub page, this plugin is also
not a solution for implementing a screenshot function.
Another option was to use the browser’s native Screen Capture API. At the latest

since the rapid increase in the use of the virtual meeting software ”Zoom” and the
possibility to share one’s screen, the usage of this API has become widespread. It
allows the user to share either their entire screen or just a single window on the web.
The idea of how this API can be used to take a screenshot was the following. When the
user presses the screenshot button, the API is called, which in turn shares the screen
(with the app itself). Then, using the ImageCapture interface 20, the current image of

20https://developer.mozilla.org/en-US/docs/Web/API/ImageCapture
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the shared screen can be captured and saved to a canvas element, for example. To use
the interface the W3C Image Capture definitions21 had to be installed via npm and
then manually added to the tsconfig.json file under ”compilerOptions → types”. On
the computer, the problem arises that a prompt is started asking which window should
be shared, and only then a screenshot is saved. Even if this behavior works almost
as desired on the computer, other difficulties arise on the smartphone. Here, screen
sharing is not supported via this API. Whether this will change in the future is still
uncertain. The implementation of this idea can be found in Appendix C.
The last idea was to find another way to use JavaScript to trigger the native screen-

shot functions of mobile devices. This would mean that the status bars at the top of the
screen, showing the network provider, notifications and the battery, and possibly the
virtual navigation buttons at the bottom would be visible on Android phones, but it
was decided to put up with this behavior to be able to take screenshots. Unfortunately,
research regarding such a function or library was inconclusive.
Due to the multitude and diversity of problems encountered regarding the screen-

shot function it was not possible to implement it, although this feature can be very
important for the user. However, the user still has the option to take a screenshot of
the app via the phone’s native key combination.
Finally, the last problem affects the representation and correct order of wind turbines

to the user. Since for performance reasons the overlay-canvas elements are created only
once and afterward their content is only rewritten, the order of these elements in the
DOM is fixed. To identify which canvas element belongs to which virtual wind turbine,
identifiers were used to clarify an affiliation. The IDs of the wind turbines are also not
modifiable. They are already defined in the windturbine.json file. From these two
aspects, the problem arises that the order of the wind turbines is not modifiable. Since
the wind turbines should be displayed in descending distance to the user, this is not a
problem as long as the user is standing in line with the wind turbines. If the user now
moves and the order given by the distances to the wind turbines changes, the current
implementation fails to display the wind turbines correctly. Even if this problem is
known, the solution does not seem to be so directly possible. An attempt to manage
the wind turbines internally (after a one-time load from the JSON file) failed because
of moving single HTML elements in the DOM while persisting their state was not
possible. The intent to delete and reload them was also unsuccessful. There is no
known library that would solve this specific problem. Since the manual attempt was
without success, this problem was not treated further.

21https://www.npmjs.com/package/@types/w3c-image-capture
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4. Conclusion

During this Bachelor thesis, it became apparent that the model pictured in Section
2.2.1 was a very direct attempt to represent the course of the app and the interaction
between the work on the computer as well as on the mobile device. The newly gained
insights, through implementation as well as testing, were course changing. The lack of
a neural network for estimating absolute distances also eradicated almost entirely the
work on the computer for the course of this Bachelor’s thesis.
New findings during the implementation of the app in JavaScript pointed out the

peculiarities of the popular augmented reality framework AR.js. Nevertheless, these
could be handled successfully and the advantages and strengths of AR.js could be
used. Thus, the final model mainly refers to the flow of the functions from Section
3.3. Components such as the segmentator and blender have been custom written to fit
their special task.
Reviewing the success of the app, it can be checked against the previously desired

properties from Section 2.2. Regarding the criteria from Section 2.2.1, it can be said
that all essential criteria were met. The app works on the Android operating system
and no libraries or plugins were used that would stand in the way of using it on iOS.
AR.js takes care of the task of correct positioning, displaying only currently visible
virtual objects, as well as checking the GPS position of the user. Furthermore, it was
described in Section 3.7.1 that by using local copies of the required libraries, the app
works completely offline. It should also be noted that only the JavaScript programming
language was used. Only the determination of the pixels that are in the foreground did
not initially work as expected. Nevertheless, a black box implementation was created
for this, into which the integration of a suitable network should be simple.
Regarding the features described in Section 2.2.2, it can be said that some could

already be checked off by using the AR.js framework. For example, the reading of
the sensors is handled by the library. Looking at the mentioned frames per second
from Table 2 and 3, it can be claimed that the performance of the app is as expected.
Regarding the non-essential features, not all of them were successfully implemented.
For example, no arrows are to be found in this implementation to indicate the next
wind turbine, nor was a screenshot function implemented.
All in all, it can be said that the essential parts of the work have been incorporated

into the final model.

4.1. Identified Requirements for Neural Network

Even though, as mentioned before, no neural network was found for the accomplish-
ment of the task within the scope of this work, characteristics can be established, which
a suitable neural network should fulfill, as well as possibilities to reduce its workload.
The methods for improving the performance from Section 3.4 as well as the results of

the test from Section 3.5 have also shown, among other things, which time limitations
exist for the neural network. One run of the loop described in Section 3.3 takes 38.311
milliseconds on a screen size of an iPhone 12 Pro (as an average of 1000 executions).
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Given this value, it corresponds to roughly 26 frames per second. It should be noted
that this value may depend on the end-device and other factors, such as the number
of simultaneously opened apps.
To be able to present a smooth image to the user, i.e., at least 24 frames per sec-

ond, the inference of the neural network should therefore take a maximum of 28.766
milliseconds, as calculated in Section 3.6. It should be noted here that faster is always
better. However, often (yet not always) a trade-off of accuracy and speed of infer-
ence is noticed in neural networks [46]. Since accuracy is also important, a suitable
implementation must be found here as well.
The neural network should also be able to handle image data, respectively their

representation in the form of a one-dimensional array. Furthermore, in the implemen-
tation from Section 3.3, the output of the network is also calculated in the form of a
one-dimensional array. Any other numerical representation of depth is also conceivable
here. The original format of the neural network, as well as the framework in which it
was written, are almost irrelevant here, since, as mentioned in Section 2.4.3, there are
sufficient converters.
Possible improvements of a neural network, regarding the performance, would be

a reduction of the pixels to be evaluated. Here, for example, four pixels could be
combined into one. Four pixels are to be chosen here, which together form a square.
Each value of the RGBA channels could form the new pixel in equal proportions.
Mathematically expressed this would mean:
Let P ∗ = (R∗, G∗, B∗, A∗) be the new pixel to be created with R∗, G∗, B∗, A∗ ∈

{0, . . . , 255} from pixels P0, P1, P2, P3 then R∗ = 1
4

∑3
i=0 Ri. G∗, B∗ and A∗ respec-

tively.
Having then determined the depth for that combined pixel, it must be applied to all
four original pixels. This generalization results in a certain inaccuracy but at the same
time, a reduction of the depths to be calculated by 75% is achieved. An alternative
would be to combine only two neighboring pixels, so the reduction would still be 50%,
but the inaccuracy would also be reduced by 50%.
Another feasible improvement of the neural network would be to apply it only to the

part of the image on the screen where the virtual object is being rendered. Even though
this would drastically improve the performance of the network, since the network would
not have to be applied at all when the virtual object is not visible, no possible way was
found during testing to read the position of the virtual object in the video, see Section
3.7.3.
A simpler, more realistic improvement in neural network performance would be to

not apply the network to every frame. With up to 26 frames per second as described
earlier, applying it to every second or even fourth frame would be conceivable. By
suspending the application of the neural network, the app saves the resources of some
inferences. Thus, the duration that the neural network is allowed to take for inference is
increased, accordingly. Alternatively, but with the same effect, it could be imaginable
not to apply the network again if the cell phone has not moved much. However, the
problem here is that close objects move more than distant ones relative to the user
when the position of the camera changes. This could result in the depth determination

37



being inaccurate and would also not be updated as long as the change of position does
not surpass a chosen threshold.
Lastly, it should be noted that the model of the network should only be loaded once.

After that, it occupies memory in the RAM of the mobile device. For this reason, the
model should not be too large. For example, the most accurate MiDaS network is over
a gigabyte in size and thus unsuitable for use on a mobile device. Even though the size
of RAM on mobile devices has increased over the past few years, it doesn’t mean that
an app will have access to the entire memory at any time. It must also be considered
that the size of the app grows due to the integration of the model. Thus, the memory
must be sufficient not only in RAM but also in the internal storage of the device.

4.2. Future Work

Probably the most important part for future work on this project is the creation of
a suitable network. To achieve this, images of suitable scenery must be taken along
with the absolute depths of each pixel. Furthermore, other features discussed but not
implemented can be addressed. Once this is accomplished, possible applications of the
app are far-reaching. Since no object recognition is used, other construction projects
such as larger buildings, bridges, or roads can also be augmented without much fur-
ther ado. However, the application here is not limited to the construction aspect.
Computer-animated 3D movies, as well as playful applications, could also be made
more interesting by applying the described logic.

In summary, this thesis pointed out the importance of a visual representation tool for
planned construction projects for social acceptance and provided a detailed description
and implementation of one possible solution.
Different approaches were carefully evaluated, and the decision was made to use

a neural network. Thoughtfully considering different networks, it turned out in the
course of the work that such a network does not (yet) exist. Nevertheless, in order
to do the preliminary work for the later integration of such a network, a black box
for the use of a neural network for absolute depth estimation was implemented. At
the same time, the challenges and problems during the implementation were addressed
and documented. By simulating the output of a possible network, the feasibility of the
project was successfully proven.
Overall, through the findings of this work, it can be said that augmenting reality to

visualize wind farms including obstacle detection is conceivable.
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A. AR.js Setup

1 <script src="https ://raw.githack.com/AR-js-org/AR.js/master/aframe/

build/aframe -ar-nft.js">

2 <script src="https ://raw.githack.com/AR-js-org/AR.js/master/three.js/

build/ar-nft.js">

Listing 1. Necessary script imports for AR.js

1 <body style="margin: 0; overflow: hidden">

2 <a-scene

3 vr-mode -ui="enabled: false"

4 arjs="sourceType: webcam; debugUIEnabled: false;"

5 >

6 <a-camera

7 gps -camera="gpsTimeInterval :1500"

8 minDistance="20"

9 maxDistance="10000"

10 rotation -reader

11 arjs -look -controls="smoothingFactor: 0.1"

12 >

13 </a-camera >

14 </a-scene >

15 </body >

Listing 2. Settings for a-camera

1 AFRAME.registerComponent("windturbine -rotating", {

2 schema: {

3 speed: { type: "number", default: 0.02 },

4 heightScale: { type: "number", default: 1 },

5 rotorScale: { type: "number", default: 1 },

6 direction: { type: "string", default: "south" },

7 },

8 init() {

9 this.el.addEventListener("model -loaded", () => {

10 const windTurbineMesh = this.el.getObject3D("mesh");

11 this.positionMesh(windTurbineMesh);

12 const towerMesh = windTurbineMesh.children.find(

13 (element) => element.name === "tower"

14 );

15 this.setupTower(towerMesh);

16 windTurbineMesh.children.forEach (( element) => {

17 this.setupRotorHeight(element);

18 this.setupBlades(element);

19 });

20 this.el.isWindModelLoaded = true;

21 });

22 },

23 setupBlades(element) {

24 const bladeRegExp = new RegExp("blade.*$");

25 if (bladeRegExp.test(element.name)) {

26 element.scale.x = this.data.rotorScale;
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27 element.position.y += 2;

28 this.data._windTurbineBlades

29 ? this.data._windTurbineBlades.push(element)

30 : (this.data._windTurbineBlades = [element ]);

31 }

32 },

33 setupTower(element) {

34 element.scale.z = this.data.heightScale;

35 const size = new window.THREE.Box3().setFromObject(element).

getSize ();

36 this.el._windTurbineRotorYPosition = size.y;

37 },

38 setupRotorHeight(element) {

39 if (element.name !== "tower") {

40 element.position.y = this.el._windTurbineRotorYPosition;

41 }

42 },

43 positionMesh(windTurbine) {

44 switch (this.data.direction) {

45 case "south":

46 return windTurbine.rotation.set(0, 0, 0);

47 case "north":

48 return windTurbine.rotation.set(0, (180 * Math.PI) / 180, 0);

49 case "east":

50 return windTurbine.rotation.set(0, (90 * Math.PI) / 180, 0);

51 case "west":

52 return windTurbine.rotation.set(0, (-90 * Math.PI) / 180, 0);

53 case "northwest":

54 return windTurbine.rotation.set(0, (-135 * Math.PI) / 180, 0);

55 case "northeast":

56 return windTurbine.rotation.set(0, (135 * Math.PI) / 180, 0);

57 case "southeast":

58 return windTurbine.rotation.set(0, (45 * Math.PI) / 180, 0);

59 case "southwest":

60 return windTurbine.rotation.set(0, (-45 * Math.PI) / 180, 0);

61 }

62 },

63 rotateBlades () {

64 if (!this.el.isWindModelLoaded || !this.data._windTurbineBlades)

return;

65 this.data._windTurbineBlades.forEach ((blade) => {

66 blade.rotation.z -= this.data.speed;

67 });

68 },

69 tick() {

70 this.rotateBlades ();

71 },

72 });

Listing 3. Schema and setup to register a rotating wind turbine component

1 AFRAME.registerComponent("windturbine -still", {

2 schema: {
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3 speed: { type: "number", default: 0.02 },

4 heightScale: { type: "number", default: 1 },

5 rotorScale: { type: "number", default: 1 },

6 direction: { type: "string", default: "south" },

7 },

8 init() {

9 this.el.addEventListener("model -loaded", () => {

10 const windTurbineMesh = this.el.getObject3D("mesh");

11 this.positionMesh(windTurbineMesh);

12 const towerMesh = windTurbineMesh.children.find(

13 (element) => element.name === "tower"

14 );

15 this.setupTower(towerMesh);

16 windTurbineMesh.children.forEach (( element) => {

17 this.setupRotorHeight(element);

18 this.setupBlades(element);

19 });

20 this.el.isWindModelLoaded = true;

21 });

22 },

23 setupBlades(element) {

24 const bladeRegExp = new RegExp("blade.*$");

25 if (bladeRegExp.test(element.name)) {

26 element.scale.x = this.data.rotorScale;

27 element.position.y += 2;

28 this.data._windTurbineBlades

29 ? this.data._windTurbineBlades.push(element)

30 : (this.data._windTurbineBlades = [element ]);

31 }

32 },

33 setupTower(element) {

34 element.scale.z = this.data.heightScale;

35 const size = new window.THREE.Box3().setFromObject(element).

getSize ();

36 this.el._windTurbineRotorYPosition = size.y;

37 },

38 setupRotorHeight(element) {

39 if (element.name !== "tower") {

40 element.position.y = this.el._windTurbineRotorYPosition;

41 }

42 },

43 positionMesh(windTurbine) {

44 switch (this.data.direction) {

45 case "south":

46 return windTurbine.rotation.set(0, 0, 0);

47 case "north":

48 return windTurbine.rotation.set(0, (180 * Math.PI) / 180, 0);

49 case "east":

50 return windTurbine.rotation.set(0, (90 * Math.PI) / 180, 0);

51 case "west":

52 return windTurbine.rotation.set(0, (-90 * Math.PI) / 180, 0);

53 case "northwest":
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54 return windTurbine.rotation.set(0, (-135 * Math.PI) / 180, 0);

55 case "northeast":

56 return windTurbine.rotation.set(0, (135 * Math.PI) / 180, 0);

57 case "southeast":

58 return windTurbine.rotation.set(0, (45 * Math.PI) / 180, 0);

59 case "southwest":

60 return windTurbine.rotation.set(0, (-45 * Math.PI) / 180, 0);

61 }

62 },

63 });

Listing 4. Schema and setup to register a stationary wind turbine component
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B. Code of Implementation

1 function waitForVideo () {

2 dispatchCurrentState(false , "Waiting for video ...");

3 const observer = new MutationObserver ((mutations , obs) => {

4 const video = document.getElementsByTagName("video")[0];

5 if (video) {

6 console.log("video loaded");

7 obs.disconnect ();

8 arjsVideo = video;

9 video.addEventListener("loadedMetadata", findVideoPosition ());

10 }

11 });

12 observer.observe(document , {

13 childList: true ,

14 subtree: true ,

15 });

16 }

Listing 5. Implementation of waitForVideo()

1 function findVideoPosition () {

2 dispatchCurrentState(false , "Finding video position ...");

3 return new Promise ((resolve , reject) => {

4 if (

5 JSON.stringify(arjsVideo.getBoundingClientRect ()) ===

6 JSON.stringify(arjsVideoRect)

7 ) {

8 // now the video is set correctly.

9 videoPositioned = true;

10 loadNeuronalNetwork ();

11 loadWindturbines ();

12 placeOverlay ();

13 } else {

14 // video not yet positioned correctly

15 arjsVideoRect = arjsVideo.getBoundingClientRect ();

16 setTimeout(findVideoPosition , 100);

17 }

18 });

19 }

Listing 6. Implementation of findVideoPosition()

1 function loadNeuronalNetwork () {

2 dispatchCurrentState(false , "Loading neural network ...");

3 // Load neural network here

4 }

Listing 7. Implementation of loadNeuronalNetwork()

1 async function loadWindturbines () {

2 dispatchCurrentState(false , "Loading windturbine information ...");

3 await fetch("../ windturbineDB.json")
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4 .then(( response) => {

5 console.log(response);

6 return response.json();

7 })

8 .then((data) => {

9 windturbines = data.windturbines;

10 windturbineLocations = data.windturbines.map(( windturbine) => {

11 return [

12 windturbine ?.id,

13 windturbine ?. location ?.latitude ,

14 windturbine ?. location ?.longitude ,

15 ];

16 });

17 console.error("winturbinelocations", windturbineLocations ,

windturbines);

18 appendWindturbines ();

19 });

20 toggleBladeRotation ();

21 }

Listing 8. Implementation of loadWindturbines()

1 function appendWindturbines () {

2 for (var i = 0; i < windturbines.length && i < numberOfWindturbines

; i++) {

3 if (rotationToggle) {

4 try {

5 const windturbineElement = document.createElement("a-entity")

;

6
7 windturbineElement.setAttribute(

8 "id",

9 ‘windturbineElement -${windturbines[i].id}‘

10 );

11 windturbineElement.setAttribute(

12 "gltf -model",

13 windturbines[i]. entity.model

14 );

15 windturbineElement.setAttribute(

16 "gps -entity -place",

17 ‘latitude: ${windturbines[i]. location.latitude }; longitude: $

{windturbines[i]. location.longitude}‘

18 );

19 windturbineElement.setAttribute(

20 "windturbine -rotating",

21 "speed: " +

22 windturbines[i]. entity.speed +

23 "; heightScale: " +

24 windturbines[i]. entity.heightScale +

25 "; rotorScale: " +

26 windturbines[i]. entity.rotorScale +

27 "; direction: " +

28 windturbines[i]. entity.direction +
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29 ";"

30 );

31 appendCounterpart(windturbineElement);

32 } catch (error) {

33 console.error("Appending rotating windturbine failed: " +

error);

34 }

35 } else {

36 try {

37 const windturbineElement = document.createElement("a-entity")

;

38 windturbineElement.setAttribute(

39 "id",

40 ‘windturbineElement -${windturbines[i].id}‘

41 );

42 windturbineElement.setAttribute(

43 "gltf -model",

44 windturbines[i]. entity.model

45 );

46 windturbineElement.setAttribute(

47 "gps -entity -place",

48 ‘latitude: ${windturbines[i]. location.latitude }; longitude: $

{windturbines[i]. location.longitude}‘

49 );

50 windturbineElement.setAttribute(

51 "windturbine -still",

52 "speed: " +

53 windturbines[i]. entity.speed +

54 "; heightScale: " +

55 windturbines[i]. entity.heightScale +

56 "; rotorScale: " +

57 windturbines[i]. entity.rotorScale +

58 "; direction: " +

59 windturbines[i]. entity.direction +

60 ";"

61 );

62 appendCounterpart(windturbineElement);

63 } catch (error) {

64 console.error("Appending rotating windturbine failed: " +

error);

65 }

66 }

67 }

68 }

Listing 9. Implementation of appendWindturbines()

1 function appendCounterpart(newElement) {

2 const identifier = newElement.getAttribute("id");

3 const id = identifier.split("-")[1];

4 var referenceNode;

5 if (identifier.includes("windturbineElement")) {

6 try {
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7 referenceNode = document.getElementById(‘overlayCanvas -${id}‘);

8 } catch (error) {

9 console.error("Appending after referenceNode failed: " + error)

;

10 }

11 if (referenceNode) {

12 insertAfter(newElement , referenceNode);

13 }

14 } else {

15 try {

16 referenceNode = document.getElementById(‘windturbineElement -${

id}‘);

17 } catch (error) {

18 console.error("Appending after referenceNode failed: " + error)

;

19 }

20 if (referenceNode) {

21 referenceNode.parentNode.insertBefore(newElement , referenceNode

);

22 }

23 }

24 }

Listing 10. Implementation of appendCounterpart()

1 function insertAfter(newNode , referenceNode) {

2 referenceNode.parentNode.insertBefore(newNode , referenceNode.

nextSibling);

3 }

Listing 11. Implementation of insertAfter()

1 function toggleBladeRotation () {

2 if (rotationToggle === rotationToggleNewState) return;

3 deleteWindturbines ();

4 rotationToggle = rotationToggleNewState;

5 appendWindturbines ();

6 }

Listing 12. Implementation of toggleBladeRotation()

1 function deleteWindturbines () {

2 console.log("entered delete Windturbines");

3 let entities = document.getElementsByTagName("a-entity");

4 entities = Object.values(entities).filter(

5 (entity) =>

6 entity.hasAttribute("windturbine -rotating") ||

7 entity.hasAttribute("windturbine -still")

8 );

9 console.log("entities: " + entities.length);

10 if (! entities) return;

11 for (var i = 0; i < entities.length; i++) {

12 console.log("entered for loop");
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13 if (

14 entities[i]. hasAttribute("windturbine -rotating") ||

15 entities[i]. hasAttribute("windturbine -still")

16 ) {

17 console.log("Entered deletion");

18 entities[i]. parentNode.removeChild(entities[i]);

19 }

20 }

21 }

Listing 13. Implementation of deleteWindturbines()

1 function placeOverlay () {

2 dispatchCurrentState(false , "Placing overlay canvas ...");

3
4 asceneElement = document.getElementsByTagName("a-scene")[0];

5 asceneElement.style.zIndex = "0";

6
7 overlayCanvas = document.createElement("canvas");

8 overlayCanvas.setAttribute("id", "overlayCanvas");

9 overlayCanvas.width = screenWidth;

10 overlayCanvas.height = screenHeight;

11
12 overlayContext = overlayCanvas.getContext("2d");

13 overlayContext.fillRect(0, 0, screenWidth , screenHeight);

14 overlayContext.drawImage(arjsVideo , 0, 0, screenWidth , screenHeight

);

15
16 overlayCanvas.style.position = "absolute";

17 overlayCanvas.style.top = 0 + "px";

18 overlayCanvas.style.right = 0 + "px";

19 overlayCanvas.style.left = 0 + "px";

20 overlayCanvas.style.bottom = 0 + "px";

21
22 overlayCanvas.style.zIndex = "1";

23 document.body.prepend(overlayCanvas);

24
25 videoWidth = Math.abs(arjsVideoRect.width) - (Math.abs(

arjsVideoRect.width) % 4);

26 videoHeight = Math.abs(arjsVideoRect.height);

27
28 hiddenCanvas = document.createElement("canvas");

29 hiddenCanvas.width = videoWidth;

30 hiddenCanvas.height = videoHeight;

31 hiddenctx = hiddenCanvas.getContext("2d");

32
33 dispatchCurrentState(true , "Done loading");

34 if (videoRendering) {

35 loop();

36 }

37 }

Listing 14. Implementation of placeOverlay()
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1 async function loop() {

2 hiddenctx.clearRect(0, 0, videoWidth , videoHeight);

3 hiddenctx.drawImage(arjsVideo , 0, 0, videoWidth , videoHeight);

4
5 trimmedCanvasData = trimHiddenCanvasData(

6 hiddenctx.getImageData (0, 0, videoWidth , videoHeight).data ,

7 videoWidth ,

8 videoHeight

9 );

10
11 distance = getDistance ();

12 calcDepthMap(trimmedCanvasData.imageData , distance);

13 calcBinaryMap(depthmap , distance);

14 applyBinaryMap(trimmedCanvasData.clampedArray , binaryMap);

15
16 if (videoRendering) {

17 setTimeout(loop , loopdelay);

18 }

19 }

Listing 15. Implementation of loop()

1 function trimHiddenCanvasData(dataArray , videoWidth , videoHeight) {

2 const totalOffset = videoWidth - screenWidth;

3 if (totalOffset > 0) {

4 offsetLeft = Math.floor(totalOffset / 2);

5 offsetRight = Math.ceil(totalOffset / 2);

6 }

7 var pos = 0;

8 const widthStart = offsetLeft * 4;

9 const widthEnd = (videoWidth - offsetRight) * 4;

10 const valuesPerWidth = videoWidth * 4;

11 for (var i = 0; i < videoHeight; i++) {

12 for (var j = widthStart; j < widthEnd; j++) {

13 resizedArray[pos] = dataArray[i * valuesPerWidth + j];

14 pos++;

15 }

16 }

17 const imageData = new ImageData(resizedArray , screenWidth);

18 return {

19 clampedArray: resizedArray ,

20 imageData: imageData ,

21 };

22 }

Listing 16. Implementation of trimHiddenCanvasData()

1 function getDistance () {

2 function calcDistance(userPosition) {

3 if (! userPosition) return;

4 var gpsEntities = document.getElementsByTagName("a-entity");

5 const gpsEntitiesCopy = [];

6 for (var i = 0; i < gpsEntities.length; i++) {
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7 if (gpsEntities[i]. hasAttribute("gltf -model")) {

8 gpsEntitiesCopy.push(gpsEntities[i]);

9 }

10 }

11 gpsEntities = gpsEntitiesCopy;

12 if (! gpsEntities) return;

13 let windturbineCoords = [];

14 for (var i = 0; i < gpsEntities.length; i++) {

15 windturbineCoords.push(gpsEntities[i]. getAttribute("gps -entity -

place"));

16 }

17 var userCoords = userPosition.coords;

18 for (var i = 0; i < numberOfWindturbines; i++) {

19 distanceBetweenUserAndWindTurbine[i] = calcCrow(

20 userCoords.latitude ,

21 userCoords.longitude ,

22 windturbineCoords[i].latitude ,

23 windturbineCoords[i]. longitude

24 );

25 }

26 }

27
28 function calcCrow(lat1 , lon1 , lat2 , lon2) {

29 var R = 6_371_000; // in meter

30 var lat1 = toRad(lat1);

31 var lat2 = toRad(lat2);

32 var dLat = toRad(lat2 - lat1);

33 var dLon = toRad(lon2 - lon1);

34
35 var a =

36 Math.sin(dLat / 2) * Math.sin(dLat / 2) +

37 Math.sin(dLon / 2) * Math.sin(dLon / 2) * Math.cos(lat1) * Math.

cos(lat2);

38 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

39 var d = R * c;

40 return d.toFixed (2);

41 }

42
43 // Converts numeric degrees to radians

44 function toRad(value) {

45 return (value * Math.PI) / 180;

46 }

47
48 if (navigator.geolocation) {

49 navigator.geolocation.getCurrentPosition(

50 calcDistance ,

51 locationError ,

52 gpsOptions

53 );

54 return distanceBetweenUserAndWindTurbine;

55 } else {

56 console.log("no GPS available");
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57 }

58 function locationError(err) {

59 console.warn(‘ERROR(${err.code}): ${err.message}‘);

60 }

61 }

Listing 17. Implementation of getDistance()

1 function calcDepthMap(imageData , distance) {

2 /**

3 * this function does not need the second parameter distance , yet

the calculation of the distance

4 * works , but the calc depth is not correctly implemented since the

neural network is missing.

5 * the attribute distance is here used to simulate the behavior of

the neural network

6 */

7 const totalPixels = screenWidth * screenHeight;

8 for (

9 var tophalfpixel = 0;

10 tophalfpixel < Math.ceil(totalPixels / 3);

11 tophalfpixel ++

12 ) {

13 depthmap[tophalfpixel] = Math.floor((Math.random () + 1) * 100000)

;

14 }

15 for (var windturbine = 0; windturbine < numberOfWindturbines;

windturbine ++) {

16 for (

17 var j =

18 Math.ceil(totalPixels / 3) +

19 Math.floor ((2 * totalPixels) / 3 / numberOfWindturbines) *

windturbine;

20 j <

21 Math.ceil(totalPixels / 3) +

22 Math.floor ((2 * totalPixels) / 3 / numberOfWindturbines) *

23 (windturbine + 1);

24 j++

25 ) {

26 depthmap[j] =

27 (Math.random () + 1) * 2 * (Math.round(Math.random ()) ? 1 : -1)

+

28 Math.floor(distance[windturbine ]);

29 }

30 }

31 }

Listing 18. Implementation of calcDepthMap()

1 function calcBinaryMap(depthmap , distance) {

2 for (var windturbine = 0; windturbine < numberOfWindturbines;

windturbine ++) {

3 for (var depthpixel = 0; depthpixel < depthmap.length; depthpixel

++) {
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4 binaryMap[windturbine ][ depthpixel] =

5 depthmap[depthpixel] < distance[windturbine] ? 1 : 0;

6 }

7 }

8 }

Listing 19. Implementation of calcBinaryMap()

1 function applyBinaryMap(clampedArray , binaryMap) {

2 var binaryCounter = 0;

3 var clampedCounter = 3;

4 var allClampedArrays = [];

5 for (var i = 0; i < numberOfWindturbines; i++) {

6 allClampedArrays.push(clampedArray);

7 }

8 for (var i = 0; i < numberOfWindturbines; i++) {

9 while (binaryCounter < binaryMap[i]. length) {

10 if (binaryMap[i][ binaryCounter] != 1) {

11 allClampedArrays[i][ clampedCounter] = 0;

12 }

13 binaryCounter ++;

14 clampedCounter = clampedCounter + 4;

15 }

16 binaryCounter = 0;

17 clampedCounter = 3;

18 }

19 for (let i = 0; i < numberOfWindturbines; i++) {

20 var imageData;

21 try {

22 imageData = new ImageData(allClampedArrays[i], screenWidth);

23 } catch (error) {

24 dispatchCurrentState(false , "An error occured , please restart

the app!");

25 }

26 overlayContext[i]. clearRect(0, 0, screenWidth , screenHeight);

27 overlayContext[i]. putImageData(imageData , 0, 0);

28 }

29 }

Listing 20. Implementation of applyBinaryMap()
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C. Code of Screenshot Implementations

1 import { Screenshot } from "@ionic -native/screenshot";

2 function takeScreenshot () {

3 Screenshot.save("jpg", 80, "myscreenshot.jpg");

4 }

Listing 21. Implementation of official Capacitor Screenshot plugin

1 async function takeScreenshot () {

2 const stream = await navigator.mediaDevices.getDisplayMedia ();

3 const screenVideoTrack = stream.getVideoTracks ()[0];

4 const capture = new ImageCapture(screenVideoTrack);

5 }

Listing 22. Implementation of Screen Capture API

56



D. Test results

Videos recorded with a tripod

Video Model Average
Average
Per-
centage

Minimum Maximum
Difference
Min Max

% Differ-
ence over
Average

1 small 595,221 28.7% 591,760 598,604 6844 1.15%
1 medium 603,013 29.08% 601,765 605,097 3332 0.55%
1 large 606,470 29.25% 604,660 608,431 3771 0.62%
2 small 183,495 8.85% 177,008 193,397 16,389 8.93%
2 medium 195,216 9.41% 189,701 202,732 13,031 6.68%
2 large 198,681 9.58% 188,214 209,459 21,245 10.69%
3 small 678,855 32.74% 661,120 694,594 33,474 4.93%
3 medium 673,532 32.48% 670,487 677,979 7492 1.11%
3 large 685,664 33.07% 681,580 689,916 8336 1.22%
4 small 195,670 9.44% 147,177 252,138 104,961 53.64%
4 medium 248,208 11.97% 243,580 256,232 12,652 5.1%
4 large 287,906 13.88% 278,958 298,370 19,412 6.74%
5 small 6662 0.32% 0 120,177 120,177 1803.92%
5 medium 55,624 2.68% 45,711 75,727 30,016 53.96%
5 large 127,448 6.15% 109,821 153,399 43,578 34.19%
6 small 198,906 9.59% 5573 322,372 316,799 159.27%
6 medium 222,963 10.75% 216,145 230,839 14,694 6.59%
6 large 246,969 11.91% 238,742 260,352 21,610 8.75%
7 small 549,767 26.51% 546,283 553,689 7406 1.35%
7 medium 566,144 27.3% 564,695 569,455 4760 0.84%
7 large 577,403 27.85% 574,929 582,047 7118 1.23%
8 small 158,956 7.67% 139,983 183,435 43,452 27.34%
8 medium 172,590 8.32% 165,396 178,621 13,225 7.66%
8 large 211,556 10.2% 205,559 220,311 14,752 6.97%
9 small 544,726 26.27% 515,044 623,862 108,818 19.98%
9 medium 557,632 26.89% 551,301 564,353 13,052 2.34%
9 large 568,642 27.42% 562,045 576,543 14,498 2.55%
10 small 389,940 18.8% 383,453 394,689 11,236 2.88%
10 medium 396,255 19.11% 393,931 398,586 4655 1.17%
10 large 406,428 19.6% 402,443 412,250 9807 2.41%

Table 6. Information about number of incalculable values per video and MiDaS model
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Videos recorded without a tripod

Video Model Average
Average
Per-
centage

Minimum Maximum
Difference
Min Max

% Differ-
ence over
Average

1 small 463,326 22.34% 440,842 481,200 40,358 8.71%
1 medium 472,223 22.77% 454,439 487,170 32,731 6.93%
1 large 477,840 23.04% 413,725 498,005 84,280 17.64%
2 small 533,715 25.74% 500,102 575,066 74,964 14.05%
2 medium 539,524 26.02% 506,320 577,684 71,364 13.23%
2 large 537,915 25.94% 404,969 578,121 173,152 32.19%
3 small 311,220 15.01% 232,607 409,251 176,644 56.76%
3 medium 324,202 15.63% 246,738 420,814 174,076 53.69%
3 large 334,741 16.14% 255,769 429,625 173,856 51.94%
4 small 31,171 1.5% 0 64,988 64,988 208.49%
4 medium 77,206 3.72% 72,823 87,225 14,402 18.65%
4 large 86,607 4.18% 80,542 98,450 17,908 20.68%
5 small 566,176 27.3% 321,707 614,736 293,029 51.76%
5 medium 537,329 25.91% 134,400 626,681 492,281 91.62%
5 large 556,570 26.84% 370,618 634,006 263,388 47.32%
6 small 328,640 15.85% 251,637 411,115 159,478 48.53%
6 medium 330,114 15.92% 268,457 396,921 128,464 38.92%
6 large 308,349 14.87% 11,203 408,794 397,591 128.94%
7 small 552,720 26.66% 390,684 635,353 244,669 44.27%
7 medium 563,974 27.2% 399,943 645,034 245,091 43.46%
7 large 570,847 27.53% 406,535 653,906 247,371 43.33%
8 small 534,164 25.76% 464,934 645,227 180,293 33.75%
8 medium 542,136 26.14% 477,046 652,065 175,019 32.28%
8 large 541,836 26.13% 290,872 657,617 366,745 67.69%
9 small 632,841 30.52% 0 705,869 705,869 111.54%
9 medium 675,324 32.57% 579,854 722,975 143,121 21.19%
9 large 677,437 32.67% 582,671 725,417 142,746 21.07%
10 small 435,859 21.02% 280,117 552,929 272,812 62.59%
10 medium 467,589 22.55% 393,757 542,726 148,969 31.86%
10 large 502,165 24.22% 391,273 588,540 197,267 39.28%

Table 7. Information about number of incalculable values per video and MiDaS model
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Used model: MiDaS - small

Figure 4. Distribution of average non-zero pixel values per video. Used model: small.
Video recorded with a tripod.

Used model: MiDaS - hybrid

Figure 5. Distribution of average non-zero pixel values per video. Used model: hybrid.
Video recorded with a tripod.
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Used model: MiDaS - large

Figure 6. Distribution of average non-zero pixel values per video. Used model: large.
Video recorded with a tripod.

Used model: MiDaS - small

Figure 7. Distribution of average non-zero pixel values per video. Used model: small.
Video recorded without a tripod.
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Used model: MiDaS - hybrid

Figure 8. Distribution of average non-zero pixel values per video. Used model: hybrid.
Video recorded without a tripod.

Used model: MiDaS - large

Figure 9. Distribution of average non-zero pixel values per video. Used model: large.
Video recorded without a tripod.
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Lowest and highest fluctuations of relative depth values per video and model
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Figure 10. Lowest variation of relative depth values.
Video used: Video 1 with tripod, Model used: MiDaS-small
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Figure 11. Highest variation of relative depth values.
Video used: Video 1 with tripod, Model used: MiDaS-small
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Figure 12. Lowest variation of relative depth values.
Video used: Video 1 with tripod, Model used: MiDaS-hybrid

62



0 1,000 2,000 3,000

0

200

400

600

Frame

R
el
at
iv
e
d
ep
th

va
lu
e

Figure 13. Highest variation of relative depth values.
Video used: Video 1 with tripod, Model used: MiDaS-hybrid
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Figure 14. Lowest variation of relative depth values.
Video used: Video 1 with tripod, Model used: MiDaS-large
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Figure 15. Highest variation of relative depth values.
Video used: Video 1 with tripod, Model used: MiDaS-large
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Figure 16. Lowest variation of relative depth values.
Video used: Video 2 with tripod, Model used: MiDaS-small
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Figure 17. Highest variation of relative depth values.
Video used: Video 2 with tripod, Model used: MiDaS-small

0 1,000 2,000 3,000
−1

−0.5

0

Frame

R
el
at
iv
e
d
ep
th

va
lu
e

Figure 18. Lowest variation of relative depth values.
Video used: Video 2 with tripod, Model used: MiDaS-hybrid
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Figure 19. Highest variation of relative depth values.
Video used: Video 2 with tripod, Model used: MiDaS-hybrid
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Figure 20. Lowest variation of relative depth values.
Video used: Video 2 with tripod, Model used: MiDaS-large
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Figure 21. Highest variation of relative depth values.
Video used: Video 2 with tripod, Model used: MiDaS-large
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Figure 22. Lowest variation of relative depth values.
Video used: Video 3 with tripod, Model used: MiDaS-small
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Figure 23. Highest variation of relative depth values.
Video used: Video 3 with tripod, Model used: MiDaS-small
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Figure 24. Lowest variation of relative depth values.
Video used: Video 3 with tripod, Model used: MiDaS-hybrid
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Figure 25. Highest variation of relative depth values.
Video used: Video 3 with tripod, Model used: MiDaS-hybrid
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Figure 26. Lowest variation of relative depth values.
Video used: Video 3 with tripod, Model used: MiDaS-large
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Figure 27. Highest variation of relative depth values.
Video used: Video 3 with tripod, Model used: MiDaS-large
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Figure 28. Lowest variation of relative depth values.
Video used: Video 4 with tripod, Model used: MiDaS-small
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Figure 29. Highest variation of relative depth values.
Video used: Video 4 with tripod, Model used: MiDaS-small
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Figure 30. Lowest variation of relative depth values.
Video used: Video 4 with tripod, Model used: MiDaS-hybrid
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Figure 31. Highest variation of relative depth values.
Video used: Video 4 with tripod, Model used: MiDaS-hybrid
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Figure 32. Lowest variation of relative depth values.
Video used: Video 4 with tripod, Model used: MiDaS-large
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Figure 33. Highest variation of relative depth values.
Video used: Video 4 with tripod, Model used: MiDaS-large
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Figure 34. Lowest variation of relative depth values.
Video used: Video 5 with tripod, Model used: MiDaS-small
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Figure 35. Highest variation of relative depth values.
Video used: Video 5 with tripod, Model used: MiDaS-small
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Figure 36. Lowest variation of relative depth values.
Video used: Video 5 with tripod, Model used: MiDaS-hybrid
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Figure 37. Highest variation of relative depth values.
Video used: Video 5 with tripod, Model used: MiDaS-hybrid
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Figure 38. Lowest variation of relative depth values.
Video used: Video 5 with tripod, Model used: MiDaS-large
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Figure 39. Highest variation of relative depth values.
Video used: Video 5 with tripod, Model used: MiDaS-large
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Figure 40. Lowest variation of relative depth values.
Video used: Video 6 with tripod, Model used: MiDaS-small
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Figure 41. Highest variation of relative depth values.
Video used: Video 6 with tripod, Model used: MiDaS-small
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Figure 42. Lowest variation of relative depth values.
Video used: Video 6 with tripod, Model used: MiDaS-hybrid
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Figure 43. Highest variation of relative depth values.
Video used: Video 6 with tripod, Model used: MiDaS-hybrid
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Figure 44. Lowest variation of relative depth values.
Video used: Video 6 with tripod, Model used: MiDaS-large
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Figure 45. Highest variation of relative depth values.
Video used: Video 6 with tripod, Model used: MiDaS-large
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Figure 46. Lowest variation of relative depth values.
Video used: Video 7 with tripod, Model used: MiDaS-small
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Figure 47. Highest variation of relative depth values.
Video used: Video 7 with tripod, Model used: MiDaS-small
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Figure 48. Lowest variation of relative depth values.
Video used: Video 7 with tripod, Model used: MiDaS-hybrid

74



0 1,000 2,000 3,000

0

500

1,000

Frame

R
el
at
iv
e
d
ep
th

va
lu
e

Figure 49. Highest variation of relative depth values.
Video used: Video 7 with tripod, Model used: MiDaS-hybrid
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Figure 50. Lowest variation of relative depth values.
Video used: Video 7 with tripod, Model used: MiDaS-large
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Figure 51. Highest variation of relative depth values.
Video used: Video 7 with tripod, Model used: MiDaS-large
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Figure 52. Lowest variation of relative depth values.
Video used: Video 8 with tripod, Model used: MiDaS-small
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Figure 53. Highest variation of relative depth values.
Video used: Video 8 with tripod, Model used: MiDaS-small
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Figure 54. Lowest variation of relative depth values.
Video used: Video 8 with tripod, Model used: MiDaS-hybrid
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Figure 55. Highest variation of relative depth values.
Video used: Video 8 with tripod, Model used: MiDaS-hybrid
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Figure 56. Lowest variation of relative depth values.
Video used: Video 8 with tripod, Model used: MiDaS-large
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Figure 57. Highest variation of relative depth values.
Video used: Video 8 with tripod, Model used: MiDaS-large
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Figure 58. Lowest variation of relative depth values.
Video used: Video 9 with tripod, Model used: MiDaS-small
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Figure 59. Highest variation of relative depth values.
Video used: Video 9 with tripod, Model used: MiDaS-small
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Figure 60. Lowest variation of relative depth values.
Video used: Video 9 with tripod, Model used: MiDaS-hybrid
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Figure 61. Highest variation of relative depth values.
Video used: Video 9 with tripod, Model used: MiDaS-hybrid
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Figure 62. Lowest variation of relative depth values.
Video used: Video 9 with tripod, Model used: MiDaS-large
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Figure 63. Highest variation of relative depth values.
Video used: Video 9 with tripod, Model used: MiDaS-large
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Figure 64. Lowest variation of relative depth values.
Video used: Video 10 with tripod, Model used: MiDaS-small
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Figure 65. Highest variation of relative depth values.
Video used: Video 10 with tripod, Model used: MiDaS-small
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Figure 66. Lowest variation of relative depth values.
Video used: Video 10 with tripod, Model used: MiDaS-hybrid

80



0 1,000 2,000 3,000

0

500

1,000

Frame

R
el
at
iv
e
d
ep
th

va
lu
e

Figure 67. Highest variation of relative depth values.
Video used: Video 10 with tripod, Model used: MiDaS-hybrid
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Figure 68. Lowest variation of relative depth values.
Video used: Video 10 with tripod, Model used: MiDaS-large

0 1,000 2,000 3,000

0

5

10

Frame

R
el
at
iv
e
d
ep
th

va
lu
e

Figure 69. Highest variation of relative depth values.
Video used: Video 10 with tripod, Model used: MiDaS-large
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