
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

QUANTIFIER ELIMINATION

USING THE

VIRTUAL SUBSTITUTION

Boris Schüpp

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl
Additional Advisor:
Jasper Nalbach Aachen, 30 September 2021

Abstract

Quantifier elimination is an interesting topic with various real life appli-
cations such as applications by Siemens (quantifier elimination for parameter
synthesis in testing purposes) or problem simplification in Geogebra (mathe-
matics/geometry software for students from primary school to university level).

In this thesis a new approach for quantifier elimination and parameter syn-
thesis especially for non-linear real arithmetic has been explored. Using the ex-
isting SMT solvers implemented in SMT-RAT, a sample is generated to which
then a sample-based virtual substitution approach is applied which may signif-
icantly reduce the complexity of standard virtual substitution. Therefore, an
equivalent quantifier free formula is generated, which shows the boundaries in
regard to the non-quantified variables. The correctness of the method has been
documented and the implementation has been verified on several examples.

iv

v

Acknowledgements
I am very grateful for the opportunity to work on this exciting topic. Special thanks
go to professor Ábrahám and Jasper Nalbach for the extensive discussions and support
during this project. I also thank professor Giesl for being the second examiner.

vi

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Real arithmetic . 11
2.2 Virtual Substitution . 12
2.3 SMT Solving . 17

3 Sample-based virtual substitution 19
3.1 General idea . 19
3.2 Algorithm . 20
3.3 Example . 22
3.4 Correctness . 25

4 Experimental Results 29

5 Conclusion 31
5.1 Summary . 31
5.2 Discussion . 31
5.3 Future work . 31

Bibliography 35

viii Contents

Chapter 1

Introduction

Quantifier elimination is an interesting topic since it yields major simplification to a
given formula and can be applied in various contexts. Instances in which the problem
can be expressed as a quantified formula appear in various disciplines ranging from
safety applications to chemistry and life sciences.

For this particular work, applications by Geogebra, a mathematics software for
students from primary school to university level in which the simplification of example
problems can be done via quantifier elimination and by Siemens, where the synthesis
of appropriate test parameters can be achieved by quantifier elimination, have been
discussed.

Whether or not a quantified formula can be efficiently and successfully converted
into an equivalent formula that does not require and/or contain any quantifiers de-
pends on the logic that is considered. The possibility of quantifier elimination within
a logic is also deeply connected to the problem of decidability of that logic. For non-
linear real arithmetic (NRA), which will be the logic focused on in this thesis, it has
been shown that quantifier elimination is possible by Tarski [Tar49]. Starting from
that proof, several methods of effective quantifier elimination have been implemented
over the past decades. The most prominent approaches are the cylindrical algebraic
decomposition [Col75] and the virtual substitution [Wei97]. The principles behind the
virtual substitution will be explained in Chapter 2. The virtual substitution has been
incorporated into satisfiability modulo theories solving software such as SMT-RAT
[Cor16]. A more detailed history of different techniques and improvements of those
can be found in [Stu17].

The resulting quantifier-free formula in case of virtual substitution often has a
greater complexity than the original formula or other equivalent descriptions of the
desired result. A possible solution for this problem is presented in this thesis: In
cooperation with an SMT solver, a sample-based virtual substitution approach has
been implemented that reduces the virtual substitution to a certain subset of cases
for which the SMT solver has previously produced a sample.

10 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Real arithmetic

Let R be the set of the real numbers, N the set of natural numbers including zero and
let x be a variable that can be assigned with any rational number.

Definition 2.1.1. A polynomial p is an expression that can be constructed inductively
as follows:

p := x | c | p′ + p′′ | p′ − p′′ | p′ ? p′′

where c ∈ R and p′ and p′′ themselves are polynomials.

We denote the set of variables appearing in p as Var(p). A polynomial p will be
called univariate in case it only contains one variable, therefore |Var(p)| = 1 holds.
In case |Var(p)| > 1 the polynomial p will be denoted as multivariate. The set of all
univariate polynomials with Var(p) = x and coefficients from R is written as R[x].
Analogously, the set of multivariate polynomials that contains variables from the set
{x0, . . . , xn} is called R[x0, · · · , xn].

Theorem 2.1.1. Every polynomial p, with Var(p) = {x0, . . . , xn} can be written in
a normal form as follows:

p =

m∑
i=0

ci
∏

xj∈Var(p)

x
eij
j

where ci ∈ R (with 0 ≤ i ≤ m) and ei,j ∈ N (with 0 ≤ i ≤ m and 0 ≤ j ≤ n).

Definition 2.1.2. The degree of a variable xk in the polynomial p will be defined as:

deg(p,xk) :=


0, if xk 6∈ Var(p)

max(ei,k|i ∈ {0, . . . ,m}), if xk ∈ Var(p)

If for all xk holds that deg(p,xk) ≤ 1, we call p linear. Otherwise we call p non-
linear. In the case that deg(p,xk) ≤ 2 holds for all xk and that there is at least one
xk ∈ Var(p) such that deg(p,xk) = 2, p will be called quadratic (in xk).

12 Chapter 2. Preliminaries

Definition 2.1.3. A constraint cons is a relation defined as follows:

cons := p1 ∼ p2

where p1 and p2 are polynomials and ∼∈ {≤, <,=, 6=, >,≥}.

Any constraint p1 ∼ p2 can always be rewritten as a constraint p3 ∼ 0, with
p1, p2, p3 being polynomials and ∼ ∈ {≤, <,= , 6=, >,≥}.

Definition 2.1.4. A formula ϕ from real arithmetic can be constructed inductively
as follows:

ϕ := cons | ϕ′ ∧ ϕ′′ | ¬ϕ′ | ∃xϕ′

where ϕ′ and ϕ′′ themselves are quantifier-free formulas from real arithmetic, cons is
a constraint of the type p ∼ 0 and x is a variable.

It is important to note that since {¬,∧} is functionally complete, every other
formula that might contain operators such as ∨ or→ can be described in an equivalent
way using the given definition. Additionally, only the existential quantifier is given
here since the universal quantifier can be expressed in an equivalent way using a
double negation.

Let constraints(ϕ) be the set of constraints appearing in ϕ and Polynomials(ϕ)
the set of polynomials found in a formula ϕ. We extend the definition of Var(p) for
formulas as Var(ϕ) :=

⋃
p∈Polynomials(ϕ) Var(p). The set of non-quantified variables

in ϕ will be denoted as free(ϕ) or sometimes parameters, while the set of quantified
variables is called quant(ϕ).

Definition 2.1.5. An assignment α is a function defined as follows:

α : {x0, . . . , xn} → R

where {x0, . . . , xn} denotes a set of variables.

We call an assignment α matching in regards to a formula ϕ if dom(α) ⊇ Var(ϕ).
We call the set of all possible matching assignments Asm(ϕ) for a formula ϕ and
Asm(p) for a polynomial p respectively. The interpretation of a formula ϕ under a
(matching) assignment will be displayed as JϕKα; similarly the evaluation of a polyno-
mial under an assignment is shown as JpKα. Note the difference between interpretation
and evaluation: The interpretation always yields a formula equivalent to true or false,
while the evaluation yields a real number. The interpretation effectively replaces ev-
ery appearance of a variable by the real value given by the assignment. The appearing
operators are evaluated in the usual way. In case JϕKα ≡ true holds we say that α
satisfies ϕ or in short α � ϕ. In the latter case we may call a satisfying assignment a
(satisfying) sample. If a α ∈ Asm(ϕ) for a formula ϕ exists so that α � ϕ, then ϕ is
called satisfiable (SAT), otherwise it is called unsatisfiable (UNSAT).

2.2 Virtual Substitution

Virtual substitution is a quantifier elimination procedure that has been proposed by
Weispfenning [Wei97]. However, it has an important restriction: The degree of the
variable to be eliminated should not exceed two in any of the given constraints.

2.2. Virtual Substitution 13

2.2.1 Univariate case

To explain the virtual substitution, this problem will be motivated starting from an
univariate polynomial. The number of zeros of a univariate polynomial is finite and
bound by its degree. Since a polynomial is of continuous nature, a change of sign can
only happen at one of these zeros.

Definition 2.2.1. The sign-function sgn : R→ {−1,0,1} is defined as:

sgn(x) :=


1, if x > 0

0, if x = 0

−1, if x < 0

Definition 2.2.2. A region R is a connected, non-empty subset of Rn with n ∈ N\{0}.

Note here that the usual condition of a region to be open has been omitted to
allow a single value, such as a zero of a polynomial, to be seen as a region.

Definition 2.2.3. An assignment α lies within a region R if the number of variables
in α matches n from the definition of R and (under assumed ordering of the variables)
(α(x0), . . . α(xn)) ∈ R holds.

Definition 2.2.4. A sign-invariant solution interval Sol(p,R) with underlying region
R for a polynomial p is a set of assignments with Sol(p) ⊆ Asm(p) such that any
α ∈ Sol(p) lies within R and sgn(JpKα1) = sgn(JpKα2) is given for any α1, α2 ∈ Sol(p).

Using the zeros of a polynomial, the set of all assignments Asm(p) can be divided
into sign-invariant solution intervals that consist of the zeros themselves, the intervals
between the zeros and the intervals to the left of the left-most zero and to the right
of the right-most zero. This is shown for an univariate case in Example 2.2.1.

Example 2.2.1. Consider the univariate polynomial p := (x − 1) · (x + 1). From
the zeros x1 = +1 and x2 = −1 the underlying regions for sign-invariant solution
intervals are as follows:

R0 = (−∞,−1)
R1 = [−1,− 1]

R2 = (−1,+ 1)

R3 = [+1,+ 1]

R4 = (+1,+∞)

14 Chapter 2. Preliminaries

x

y

−1 0 1

−1

0

1

R0 R1 R2 R3 R4

p

Figure 2.1: Graphical description of sign-invariant solution intervals of p.

Based on this and given a constraint p ∼ 0 follows that the consideration from
one assignment out of each sign-invariant solution interval is sufficient to conclude
satisfiability of a formula. For the univariate case this is straightforward since an
ordering of the zeros as well as the picking of suitable assignments within the solution
intervals can be done easily.

2.2.2 Multivariate case
Treating a multivariate polynomial as a polynomial of the variable that should be
eliminated, x, with polynomial coefficients and restricting the degree to at most two
yields the following description:

p := pa · x2 + pb · x+ pc

Here pa, pb and pc are possible multivariate polynomials that do not contain x. The
zeros in respect of such a polynomial are symbolic and contain a square-root expression
as well as a side condition.

Definition 2.2.5. A square-root expression sqrtEx is described by a term such that

sqrtEx =
q + r ·

√
t

s

with q, r, t and s being polynomials.

Definition 2.2.6. The zeros of p := pa · x2 + pb · x + pc, denoted by {ξ0,ξ1,ξ2} and
their respective side conditions (sc(ξi)) are

Zero Square-root expression Side condition

ξ0 −pcpb pb 6= 0 ∧ pa = 0

ξ1 −pb−
√
p2b−4·pa·pc
pa

pa 6= 0 ∧ p2b − 4 · pa · pc ≥ 0

ξ2 −pb+
√
p2b−4·pa·pc
pa

pa 6= 0 ∧ p2b − 4 · pa · pc ≥ 0

2.2. Virtual Substitution 15

The sign-invariant solution intervals cannot be determined as easily as for the uni-
variate case because no ordering of the zeros is possible. Since we are only interested
in an assignment that lies safely within each of the solution intervals, an ε-expression
is used to describe an assignment as close as possible to the right of a zero and −∞
can be used for the leftmost interval.

Definition 2.2.7. A symbolic assignment αsym or substitution is a function deified
as follows:

αsym : {x0, . . . ,xn} → {t0, . . . ,tn}

where {x0, . . . ,xn} denotes a set of variables and {t0, . . . ,tn} is a set of substition
terms, that can consist out of square-root expressions, ∞ and/or infinitesimals, that
are possibly connected via addition.

Definition 2.2.8. The set of symbolic assignments with αsym(x) = t (and αsym(y) =
y for variables y 6= x) where

t ∈ {−∞, ξ0, ξ0 + ε, ξ1 + ε, ξ2, ξ2 + ε}

contains exactly one assignment for each sign-invariant solution interval of a polyno-
mial p = pa · x2 + pb · x+ pc and will be denoted as rep(p,x).

For a given constraint p ∼ 0 we only need to consider a certain subset of the
symbolic assignments given by Definition 2.2.8 which depends on the relation symbol
∼. This is the case since we are interested in possible satisfying assignments of p ∼ 0,
e.g. a sign-invariant solution interval in which sgn(p) = 0 is not suited to be a solution
of a constraint of the shape p < 0.

Definition 2.2.9. The test candidates tcs(cons,x) for a constraint cons = p ∼ 0 and
a variable x are defined as a set of symbolic assignments with αsym(y) = y for all
variables y 6= x and αsym(x) = t where

t ∈ {−∞, ξ0, ξ1, ξ2} if ∼∈ {≤,≥,=} or
t ∈ {−∞, ξ0 + ε, ξ1 + ε, ξ2 + ε} if ∼∈ {<,>, 6=}

and every possible t appears in exactly one assignment. Each value for t has a side
condition, where sc(t) = sc(ξi) if t = ξi or t = ξi + ε and sc(t) = true otherwise.

Definition 2.2.10. The test candidates tcs(ϕ, x) for a real algebraic formula ϕ and
a variable x are defined as:

tcs(ϕ,x) =
⋃

cons∈Constraints(ϕ)

tcs(cons,x)

Note here that sometimes the abbreviated statements t ∈ tcs(cons,x) or t ∈
tcs(ϕ,x) are used, which serve as a short version of "there is a symbolic assignment
αsym ∈ tcs(cons,x) or αsym ∈ tcs(ϕ,x) such that αsym(x) = t".

The important quantifier-elimination Theorem 2.2.1 can be deducted from this,
which is proven by by Weispfenning [Wei97].

16 Chapter 2. Preliminaries

Theorem 2.2.1. For any quantified formula ∃xϕ, where x ∈ free(ϕ) and ϕ fulfills
the degree restriction of the virtual substitution for x, it holds that

∃xϕ ≡
∨

t∈tcs(ϕ,x)

sc(t) ∧ ϕ[t//x]

where ϕ[t//x] denotes the virtual substitution of x in ϕ by the term t.

Example 2.2.2. We consider the example

ϑ := ∃xϕ = ∃x(2− x2 − y2 < 0︸ ︷︷ ︸
c1

∧x2 + y2 − 5 < 0︸ ︷︷ ︸
c2

∧x− 1 < 0︸ ︷︷ ︸
c3

∧x+ 1 > 0︸ ︷︷ ︸
c4

)

To determine tcs(ϕ,x), we find the zeros of each constraint:

2− x2 − y2 !
= 0→ ξ0,0 =

√
2− y2 if 2− y2 ≥ 0

ξ0,1 = −
√

2− y2 if 2− y2 ≥ 0

x2 + y2 − 5
!
= 0→ ξ1,0 =

√
5− y2 if 5− y2 ≥ 0

ξ1,1 = −
√

5− y2 if 5− y2 ≥ 0

x− 1
!
= 0→ ξ2,0 = 1

x+ 1
!
= 0→ ξ3,0 = −1

In the next step we can use Definition 2.2.9 to find the terms ti for αsym(x) = t in
tcs(ci,x).

tcs(c1,x) : t ∈ {−∞, ξ0,0 + ε,ξ0,1 + ε}
tcs(c2,x) : t ∈ {−∞, ξ1,0 + ε,ξ1,1 + ε}
tcs(c3,x) : t ∈ {−∞, ξ2,0 + ε}
tcs(c4,x) : t ∈ {−∞, ξ3,0 + ε}

Applying Definition 2.2.10 and Theorem 2.2.1 yields:

tcs(ϕ,x) : t ∈ {−∞, ξ0,0 + ε,ξ0,1 + ε, ξ1,0 + ε,ξ1,1 + ε,ξ2,0 + ε,ξ3,0 + ε}

∃xϕ ≡ ϕ[−∞//x]

∨ ϕ[
√
2− y2 + ε//x] ∧ 2− y2 ≥ 0

∨ ϕ[−
√
2− y2 + ε//x] ∧ 2− y2 ≥ 0

∨ ϕ[
√
5− y2 + ε//x] ∧ 5− y2 ≥ 0

∨ ϕ[−
√
5− y2 + ε//x] ∧ 5− y2 ≥ 0

∨ ϕ[1 + ε//x] ∨ ϕ[−1 + ε//x]

2.3. SMT Solving 17

2.2.3 Substitution rules
For the quantifier elimination to work, the remaining problem now is to solve the
question how to handle the substitution of terms that contain ∞, ε and/or square-
root expressions since the results of "naive" substitution would yield terms which
themselves are not part of real arithmetic. Weispfenning [Wei97] gives a set of rules
that cover all of these cases for up to quadratic polynomials. These rules have been
simplified and implemented by Corzilius [Cor10][Cor16]. At this point we will revisit
Example 2.2.2 to show some of these rules; the entire set of rules can be found in
[Cor10].

Example 2.2.3. Consider ϕ from Example 2.2.2. We execute the virtual substitution
ϕ[−1 + ε//x] (here only c1 will be shown). For a polynomial pax2 + pbx + pc with
pa 6= 0 and substitution t + ε, it is sufficient to test if the polynomial or its first or
second derivative is negative for t:

(2− x2 − y2 < 0)[−1 + ε//x] ≡ (2− x2 − y2 < 0)[−1//x]
∨ (2− x2 − y2 = 0)[−1//x] ∧ (−2x < 0)[−1//x]
∨ (2− x2 − y2 = 0)[−1//x] ∧ (−2x = 0)[−1//x] ∧ (−1 < 0)[−1//x]
≡ 1− y2 < 0

The virtual substitution procedure can be described as a tree in which the root
is the original formula and each edge depicts the virtual substitution of a variable
labeled with the according term and its side condition. The constraint it emerges
from is indicated by color. As soon as the substitution is complete (all quantified
variables are substituted) or true/false is the result, a leaf node is written. This is
shown for ∃x∃y(ϕ) with ϕ from Example 2.2.2 in Figure 2.2.

2.3 SMT Solving
Since an SMT solver is an important part of the supposed algorithm in this thesis, a
brief explanation what SMT solving is and how it works is perpended. The satisfia-
bilty problem for propositional logic is NP-complete. Nevertheless, a set of modern
solvers exists that can solve satisfiabilty instances of propositional formulas with high
efficiency. To extend the existing knowledge on more expressive logics such as the
above mentioned (non-linear) real arithmetic, a combined approach of SAT solving
(propositional logic) and theory solvers has been developed in the field of SMT solv-
ing. The general idea is to find a Boolean abstraction of the given first-order logic
constraints by replacing them with Boolean variables, invoking a SAT solver to find a
subset of these constraints that satisfies the Boolean abstraction and afterwards verify
the consistency of these constraints within the theory. This approach is often termed
as lazy SMT solving ; further information on the techniques can be found in [ÁK17].

18 Chapter 2. Preliminaries

2− x2 − y2 < 0︸ ︷︷ ︸
c1

∧ x2 + y2 − 5 < 0︸ ︷︷ ︸
c2

∧ x− 1 < 0︸ ︷︷ ︸
c3

∧ x+ 1 > 0︸ ︷︷ ︸
c4

−∞
√
2− y2 + ε

if 2− y2 ≥ 0

−
√
2− y2 + ε

if 2− y2 ≥ 0

√
5− y2 + ε

if 5− y2 ≥ 0

−
√

5− y2 + ε

if 5− y2 ≥ 0

1 + ε−1 + ε

x

ϕ[−∞//x]

ϕ[
√
2− y2 + ε//x]

ϕ[−
√
2− y2 + ε//x]

ϕ[
√
5− y2 + ε//x]

ϕ[−
√
5− y2 + ε//x]ϕ[1 + ε//x]

ϕ[−1 + ε//x] ≡ 1− y2 < 0︸ ︷︷ ︸
c′1

∧ −4 + y2 ≤ 0︸ ︷︷ ︸
c′2

−∞ −1 + ε 1 + ε 2 −2

y

false false truetruetrue

Figure 2.2: Tree description of the virtual substitution of ∃x∃y(ϕ). Note that the tree
is not complete, since some branches have been not expanded to the end.

Chapter 3

Sample-based virtual
substitution

3.1 General idea

As seen in Theorem 2.2.1 and also in Example 2.2.2, even for seemingly simple prob-
lems the complexity of the virtual substitution procedure is high. The reason for this
is that a lot of test candidates and their respective substitutions have to be executed.
Intuitively from the disjunction shown in Theorem 2.2.1, several test candidates might
simply evaluate to false if they do not represent a region a solution of the original
formula can be found in. Nevertheless, the virtual substitution process still has to
perform the virtual substitution of all these test candidates until - by simplification
or direct result - the formula false is returned.

Therefore, the idea proposed here is to only expand those branches of the virtual
substitution tree that actually contain a solution, e.g. the value true at one of their
leaf nodes. This is supposed to reduce the complexity of the virtual substitution, since
only a subset of all test candidates has to be considered. Whether the overall time
complexity of the quantifier elimination procedure is reduced by this idea depends on
the answer to the question whether the time complexity of the process of identifying
which subset should be considered outweighs the simplification done to the virtual
substitution or not.

In Figure 3.1, you can see a schematic description of the procedure. The input
formula of the type ∃x0 . . . ∃xnϕ is entering the parser which then collects a QEQuerry
(ordered list of quantified variables of input formula) and the quantifier-free formula.
The latter is given to the SMT solver, which then tries to find a satisfying assignment
for the quantifier-free formula. If the SMT solver returns SAT, the sample is passed to
the sample-based virtual substitution module which invokes the virtual substitution
restricted on the branch the current sample lies in. This results in a formula denoted
as ϕregioni

, where i denotes how often the SMT solver has run before. The negated
ϕregioni

is added to the SMT solver (which still contains all previous formulas) while
ϕregioni

will be remembered for the result. This loop continues until the SMT solver
returns UNSAT. In this case, the disjunction of all ϕregioni

will be returned as the
quantifier-free result of the quantifier elimination.

20 Chapter 3. Sample-based virtual substitution

∃x0, . . .∃xnϕ

Parser

SMT solver

Sample-based VS

∨
ϕregioni

[x0, . . . , xn],
addToSolver(ϕ)

SAT, sample

UNSAT

addToSolver(¬ϕregioni
),

addToResult(ϕregioni
)

Figure 3.1: Schematic description of the proposed sampled-based virtual substitution
procedure.

3.2 Algorithm
The cooperation with the SMT solver as described in the previous section is given in
pseudocode in Algorithm 1. Here the QEQuerry denotes the set of quantified variables
in the original formula, while inputFormula stands for the quantifier-free part of the
original formula. In each step the invoked SMT solver tests the combination of the
quantifier-free input formula and the previously found regions for satisfiability. This
produces a sample if SAT has been found. The term "add" stands for a conjunction
(with the previous content) in case something is added to the SMT solver and for a
disjunction (with the previous content) in case something is added to the result.

Algorithm 1 Outer loop of sample-based virtual substitution.

1: procedure QEWithSampleBasedVS(inputFormula, QEQuerry)
2: initialize SMT solver
3: add inputFormula to SMT solver
4: result ← empty formula
5: answer ← SMT solver check SAT
6: while answer = SAT do
7: sample ← sample from SMT solver
8: tempFormula ← InputFormula
9: for variable in QEQuerry do

10: tempFormula ← EliminateVar(tempFormula,variable, sample)
11: region ← tempFormula
12: add negated region to SMT solver
13: add region to result
14: answer ← SMT solver check SAT
15: return result

3.2. Algorithm 21

Algorithm 2 shows the inner procedure of this quantifier elimination approach. It
receives the original input formula, a variable that should be eliminated and a sample
that has been generated by the SMT solver. For each constraint the symbolic zeros are
determined of which some will be removed, namely the ones where the side condition
is not true under the given sample. After that, all remaining zeros are evaluated under
the sample and the resulting numerical values are sorted. To determine in which of
the now formed intervals the sample lies, the value of sample(variable) is assigned to
its position in the ordering. For the sample α in theory three cases appear:

1. α(variable) is smaller than all numeric zeros

2. α(variable) is exactly the value of one of the appearing numeric zeros JξKα.

3. Sample(variable) lies between two numeric zeros JξaKα and JξbKα. ξa and ξb are
the closest bounds for α(variable), e.g. there is no ξ′a with

JξaKα < Jξ′aK
α < α(variable)

and no ξ′b with

α(variable) < Jξ′bK
α < JξbKα.

We then want to reconstruct a term t from rep(ϕ, x) that is associated to the region
the sample lies within (line 8). To do so, we once again consider the above-mentioned
cases:

1. Chose t = −∞

2. Chose t = ξ

3. Chose t = ξa + ε

We note here that some of the chosen terms might not appear in the set of test
candidates as defined in Definition 2.2.9 and we will show later on that this does not
result in a restriction of correctness.

The virtual substitution is then performed on the input formula and variable using
the previously determined term. Another simplification is done here: The resulting
formula of the virtual substitution (according to [Cor10]) is in most cases a disjunction
of mutually exclusive formulas. By evaluating these formulas using the sample, we
identify the only part of the disjunction that is satisfied by the sample and only
return that as the result. This can be seen as an internal simplification step: In case
a part of the disjunction that is unsatisfiable is omitted, it does not matter for the
final result of quantifier elimination anyway. In case it can be satisfied (and is not
covered by another term), the algorithm will produce another sample that satisfies it
and the virtual substitution of this term will be revisited again and this part of the
disjunction will be collected to the result. Note here that it is not tested whether
the omission of these disjunctive formulas increases the overall performance or if the
possible revisiting of a term actually increases the overall cost.

22 Chapter 3. Sample-based virtual substitution

Algorithm 2 Algorithmic structure of inner elimination method.

1: procedure EliminateVar(inputFormula, variable, sample)
2: determine symbolic zeros and side conditions of inputFormula with variable
3: check side conditions with sample
4: remove zeros with unsatisfied side condition
5: numericZeros ← evaluate zeros with sample
6: order numericZeros
7: termNum ← biggest value in numericZeros ≤ sample(variable)?
8: term ← backtrack symbolic term of termNum
9: result ← virtualSubstitution(inputFormula, variable, term)

10: return result
?: In case no value from numericZeros is smaller or equal, skip this step and set term
← −∞ in line 8.

Definition 3.2.1. We define rep′(ϕ,x) ⊆ rep(ϕ,x) as the set of representatives that
are determined by Algorithm 1. Precisely rep′(ϕ,x) is the set of symbolic assignments
αsym with αsym(x) = t and t is one of the terms found in Algorithm 2 (line 8), when
Algorithm 1 is applied on a formula of the type ∃x(ϕ) with a quantifier-free ϕ.

Theorem 3.2.1. For any quantified formula ∃xϕ, where x ∈ free(ϕ) and ϕ fulfills
the degree restriction of the virtual substitution for x, it holds that

∃xϕ ≡
∨

t∈rep′(ϕ,x)

sc(t) ∧ ϕ[t//x].

3.3 Example
Example 3.3.1. We revisit the formula

ϑ := ∃xϕ = ∃x(2− x2 − y2 < 0︸ ︷︷ ︸
c1

∧x2 + y2 − 5 < 0︸ ︷︷ ︸
c2

∧x− 1 < 0︸ ︷︷ ︸
c3

∧x+ 1 > 0︸ ︷︷ ︸
c4

)

from Example 2.2.2. The satisfying region of this problem is shown in green in Figure
3.2. Since there are solutions for ϕ a sample will be produced, here the sample α1 with
α1(x) = 0 and α1(y) ≈ −1.618 is determined. The symbolic zeros including their side
condition of the constraints are calculated (similar to Example 2.2.2), which yields
the set

{±
√
2− y2 if 2− y2 ≥ 0,±

√
5− y2 if 5− y2 ≥ 0,±1 if true}

Since J2 − y2 ≥ 0Kα1 ≡ false, the side condition of the zeros ±
√
2− y2 is not

satisfied by α1 and they are removed for this iteration of the loop. The evaluation of
the remaining symbolic zeros yields the set of numeric zeros as:

{−1.54,−1,+1,+1.54}

Since α1(x) = 0 the value lies between −1 and 1 as the closest numeric zeros from
below and above respectively, therefore t1 = −1 + ε is chosen and t1 ∈ rep′(ϕ, x)

3.3. Example 23

x

y

Figure 3.2: Plot of satisfying region of ϕ from Example 2.2.2. The constraints are
shown dashed (since the all have relations < or >) and the satisfying region is denoted
in green.

is assigned. The virtual substitution ϕ[t//x] produces true for c3[t//x] and c4[t//x]
while for c1 and c2 a disjunction of three terms is obtained from which (according
to the simplification described above) only that part is kept which is satisfied by α1.
Therefore

c1[t//x] = 1− y2 < 0 and c2[t//x] = −4 + y2 < 0.

Note here that according to Example 2.2.3, two of three of the terms in the disjunction
evaluate to false anyway during the substitution of c1 while for the substitution of c2
a term that is satisfiable is omitted due to this simplification. The resulting region of
the first loop iteration is

ϕregion1
= 1− y2 < 0 ∧ −4 + y2 < 0.

The relation between the entire solution space and ϕregion1
is displayed in Figure 3.3.

ϕregion1
is subsequently excluded from the search for possible samples of ϕ. The

next sample found is α2 with α2(x) = 0 and α2(y) = −2. The same process as
described above is carried out and yields t2 = −

√
5− y2+ε ∈ rep′(ϕ,x). The simplified

virtual substitution is performed, which yields true for c1 and c3. For c2 and c4, the
simplification restricts us to one part of the resulting disjunction that is satisfied by
α2 and in conclusion ϕregion2

is obtained as

ϕregion2
= y2 − 5 < 0 ∧ −4 + y2 = 0.

The graphical description of ϕregion2
is shown in Figure 3.4.

24 Chapter 3. Sample-based virtual substitution

x

y

Figure 3.3: Plot of ϕregion1
(blue, dashed) determined from ϕ from Example 2.2.2.

The satisfying region is shown in green. α1 is displayed as a red cross.

x

y

Figure 3.4: Plot of ϕregion2
(blue line) determined from ϕ from Example 2.2.2. The

satisfying region of ϕ is shown in green. α2 is displayed as a red cross.

For the final iteration of the loop, t2 is found again from the third sample α3

with α3(x) = 0 and α3(y) = −2.12. Note here that the aforementioned case occurs
where the same term has to be revisited due to the simplification during the virtual
substitution. The simplified virtual substitution still yields true for c1 and c3 and
disjunctions of multiple constraints for c2 and c4. Due to the differing sample, a
different constraint is picked from the substitution result of c4 resulting in

ϕregion3
= y2 − 5 < 0 ∧ 4− y2 < 0

3.4. Correctness 25

which is shown in Figure 3.5.

x

y

Figure 3.5: Plot of ϕregion3
(blue,dashed) determined from ϕ from Example 2.2.2.

The satisfying region of ϕ is shown in green. α3 is displayed as a red cross.

The three formulas found cover the entire solution space of ϕ in y-direction and
are therefore a suitable result of quantifier elimination. The SMT solver consequently
returns UNSAT after the third iteration and the result is given by:

∃xϕ ≡ ϕregion1
∨ ϕregion2

∨ ϕregion3

The process is summarized in Table 3.1.

Iteration i t ∈ rep′(ϕ,x) ϕRegioni

1 −1 + ε 1− y2 < 0 ∧ −4 + y2 < 0

2 −
√
5− y2 + ε y2 − 5 < 0 ∧ −4 + y2 = 0

3 −
√
5− y2 + ε y2 − 5 < 0 ∧ 4− y2 < 0

Table 3.1: Iteration steps for quantifier elimination of ∃xϕ.

3.4 Correctness
Lemma 3.4.1. Let αsym ∈ rep′(ϕ,x) be a symbolic assignment with αsym(x) = t and
αsym 6∈ tcs(ϕ,x). For any assigment β it holds that

β � sc(t) ∧ ϕ[t//x]→ β �
∨

t′∈tcs(ϕ,x)

ϕ[t′//x] ∧ sc(t′).

26 Chapter 3. Sample-based virtual substitution

Proof. Proof of Lemma 3.4.1. Let β be the assignment as given in the lemma. We
have a look at the set rep′(ϕ,x) that has been determined from the algorithm. It is
obvious that

rep′(ϕ,x) ⊆
⋃

cons∈ϕ
rep(cons,x)

holds, since the only results for rep′(ϕ,x) generated by the algorithm are per con-
struction symbolic assignments with αsym(x) = t and t being −∞, the zeros of p for
p ∼ 0 ∈ cons(ϕ) or one of those zeros plus an infinitesimal.

Now we have to consider the relationship between rep′(ϕ,x) and tcs(ϕ,x): We
assume that there is a term t so that t ∈ rep′(ϕ,x) \ tcs(ϕ,x). Two cases have to be
taken into account:

1. t = ξi + ε, where ξi is the (symbolic) zero of a polynomial p that appears in ϕ
as the constraint p ∼ 0 with ∼∈ {≤,≥,=} (compare Definition 2.2.9).

It is also given from the condition of this lemma that β � ϕ[t//x] ∧ sc(t). We
now show that

β �
∨

t′∈tcs(ϕ,x)

ϕ[t′//x] ∧ sc(t′)

exemplary with one of the substitution rules given by [Cor10].

We consider a single constraint cons = l < 0 with l = a · x2 + b · x+ c from ϕ.
Note that cons is a different constraint in ϕ from the constraint that produced
t in the algorithm. We want to show

β � cons[t//x] ∧ sc(t)→
∨

t′∈tcs(ϕ,x)

cons[t′//x] ∧ sc(t′)

The substitution cons[t//x] ≡ cons[ξi + ε//x] yields

cons[ξi + ε//x] ≡ ((a · x2 + b · x+ c < 0)[ξi//x])︸ ︷︷ ︸
c1

∨ ((a · x2 + b · x+ c = 0)[ξi//x] ∧ 2a · x+ b < 0[ξi//x])︸ ︷︷ ︸
c2

∨ ((a · x2 + b · x+ c = 0)[ξi//x] ∧ (2a · x+ b = 0)[ξi//x] ∧ (2a < 0)[ξi//x])︸ ︷︷ ︸
c3

From β � cons[t//x] we conclude β � c1 ∨ c2 ∨ c3. We know that t′ ∈
tcs(ϕ, x) for t′ = ξi (see p ∼ 0 ∈ ϕ above). c1 therefore also appears in∨
t′∈tcs(ϕ,x) cons[t

′//x] ∧ sc(t′), which proves the statement for β � c1. In case
β � c2 ∨ c3 we have β � (a · x2 + b · x+ c = 0)[ξi//x]. That implies ξi is also a
zero of l. According to Theorem 2.2.9, this means that ξi + ε ∈ tcs(ϕ,x) which
contradicts the assumption from this lemma (t ∈ rep′(ϕ,x) \ tcs(ϕ,x)).
Extending this kind of argument on different substitution rules proves the lemma
for any set of constraints ϕ in this sub-case with t = ξi + ε.

2. t = ξi, where ξi is the (symbolic) zero of a polynomial p that appears in ϕ as
the constraint p ∼ 0 with ∼∈ {< , > , 6=}. Since the according solution interval

3.4. Correctness 27

to t = ξi only contains ξi it follows from the algorithm that for the considered
sample α the statement

α(x) = JξiKα

holds. Otherwise the algorithm would not have assigned t to a sample and t
would not appear in rep′(ϕ,x). This means that JpKα = 0 and consecutively
Jp ∼ 0Kα ≡ false. α is therefore not a sample, contradiction. This case will
therefore never occur in rep′(ϕ,x).

Since case 2 never occurs and in case 1 it has been shown that the lemma holds, this
proves the lemma.

Proof. Proof of Theorem 3.2.1. For this proof we assume a "perfect" SMT solver, i.e.
one that returns SAT and a valid sample if the given formulas are satisfiable. If not,
it returns UNSAT.

We consider the quantifier-elimination of ∃xϕ. It is enough to prove that∨
t∈rep′(ϕ,x)

ϕ[t//x]

︸ ︷︷ ︸
ϑ

≡
∨

t∈tcs(ϕ,x)

ϕ[t//x]

︸ ︷︷ ︸
ϑ′

because from this the desired theorem immediately follows with Theorem 2.2.9. We
assume the contrary, so either there is an assignment α with α � ϑ and α 6� ϑ′ or an
β with β 6� ϑ and β � ϑ′.

Case 1: Assume there is an assignment α with α with α � ϑ and α 6� ϑ′. If α � ϑ
there is at least one t ∈ rep′(ϕ, x) such that α � ϕ[t//x]. If t ∈ rep′(ϕ,x) ∩ tcs(ϕ,x),
ϕ[t//x] also appears in ϑ′, therefore α � ϑ′, contradiction. The remaining case is
therefore t ∈ rep′(ϕ,x) \ tcs(ϕ,x), which is covered by Lemma 3.4.1. Here we also get
β � ϑ′, a contradiction. There is no α with the given properties.

Case 2: Assume there is an assignment β with β with β 6� ϑ and β � ϑ′. From
Theorem 2.2.9 it follows that β � ∃xϕ. We create an extension of β′, which assigns
a value to x. Due to β � ∃xϕ we can always chose a c and β′(x) = c such that
β′ � ϕ. Since x does not appear in ϑ using the coincidence lemma and β 6� ϑ we get
β′ 6� ϑ. From β′ 6� ϑ and β′ � ϕ we conclude β′ � (¬ϑ ∧ ϕ). The SMT solver should
therefore return SAT and β′ (or another sample), if executed on ¬ϑ ∧ ϕ. This is a
contradiction, since for ϑ to be the result of the algorithm, the last answer should
have been UNSAT. Therefore there is no assignment β with the given properties.

From these two cases we can conclude that Theorem 3.2.1 holds and the algorithm
works correctly. Note that for this proof we have omitted the part of the algorithm
that may discard some parts of a substitution result to avoid disjunctions. Therefore
it is possible that a t ∈ rep′(ϕ,x) has to be visited multiple times (also shown in the
previous example). This however does not influence the correctness due to similar
arguments as shown in this proof.

28 Chapter 3. Sample-based virtual substitution

Chapter 4

Experimental Results

The presented algorithm has been implemented within the SMT-RAT framework.
For the SMT solver, the "NRA-solver" strategy has been chosen which was modified
by removing the virtual substitution and the preprocessing module. The current
implementation restricts the input formula to be a conjunction of constraints. Testing
has been done on several simple examples that have been crafted for testing or were
given by Geogebra developers. The command line output for the Example 2.2.2 can
be seen in Figure 4.1. It fits the expectations for the result.

Figure 4.1: Command line output when the quantifier elimination is executed on
Example1.txt, which constraints 2.2.2 in SMT-LIB syntax.

However, no sufficient verification of the implementation and speed comparison has
been done. Some technical problems in handling of certain real algebraic numbers
that cannot be converted to rationals, such as

√
2, have occurred and need to be

solved in order for an extensive run time comparison study on a set of more complex
problems. The remaining problems and possible solutions are explained in the next
chapter.

30 Chapter 4. Experimental Results

Chapter 5

Conclusion

5.1 Summary
In this thesis, a quantifier elimination approach has been discussed and implemented.
The approach is based on virtual substitution, simplified by using a sample-based
procedure which makes use of existing SMT solvers for sample generation. From this,
a reduction in overall complexity of the standard virtual substitution is expected.
The correctness of the method has been proven and the algorithm was implemented
within the SMT-RAT framework, but still needs some modifications to be broadly
applicable.

5.2 Discussion
A complete analysis of the current implementation is difficult since concrete results
on the run time of the algorithm in comparison to existing implementations are still
missing. Nevertheless, this methods promises a substantial reduction of complexity
for the virtual substitution and has been proven to be correct.

The interesting question to answer is whether or not the reduction of complexity
during the virtual substitution outweighs the increase effort to call an SMT solver
several times during the procedure. We will list the remaining problems to be solved
in order for the method to be applicable for arbitrary input formulas and in order to
produce insightful benchmarks in the next section.

5.3 Future work
Implementation of quantifier elimination by standard virtual substitution
The standard virtual substitution for quantifier elimination should be implemented
within the SMT-RAT framework in order compare the efficiency with the method
proposed in this thesis.

Conversion into prenex normal form (PNF)
Since the proposed algorithm works with a formula that is in prenex normal form, an
arbitrary input formula should be converted in PNF beforehand. Efficient algorithms
for this, which include renaming variables and rearranging negations, exist. However,

32 Chapter 5. Conclusion

they are not implemented in the SMT-RAT framework so far.

Universal quantifiers
As of right now, an universal quantifier in the input formula is not permitted and
the procedure will be terminated. Since a double negation can convert an universal
quantifier into an existential quantifier as follows

∀xϕ ≡ ¬∃x¬ϕ,

covering universal quantifiers using that rule should be implemented in the future.

Verification of the implementation
To verify the implementation, a test study and comparison with results of a tool that
allows for quantifier elimination such as Z3 [dMB08] should be done. We suggest the
usage of SMT-LIB examples from the QF-NRA section in which a random subset of
variables is chosen to be quantified in the tested problems. After the verification, a
run time comparison should be carried out to compare the existing implementation
with the new approach.

Handling of non-ration real algebraic numbers (RAN)
An important step to make this method broadly applicable is the handling of non-
rational RAN such as

√
2 during the algorithm. In the current implementation they

are stored as (p,(a,b)), where p ∈ R[x], a,b ∈ R and a < b. The described RAN is
a zero of the given polynomial p that lies within the interval given by (a,b). As of
right now, the main part of the algorithm (compare Algorithm 2) exclusively works
with rational numbers in the sample. As soon as a non-rational RAN appears in one
of the samples that have been found, the algorithm cannot proceed. To solve this
problem, the algorithm has to be modified to be able to evaluate symbolic zeros using
the description of RAN using a polynomial and an interval. Therefore, the numeric
zeros that are found may also be represented in the fashion described above for RAN.
Since non-rational RAN still allow for ordering, this is merely a technical problem
rather than a problem of theoretical nature.

Validation of simplification
As described in the main part, there is a simplification done after each virtual sub-
stitution that only selects one part of the resulting disjunction, namely the part that
is satisfied by the sample. This reduces the complexity of the resulting regions, but
may also lead to revisiting a term for virtual substitution that has been visited in
a previous iteration of the algorithm. To check whether or not the average cost of
possible revisiting exceeds the gain of simplification, a run time comparison with an
implementation that does not perform this step should be performed. Once again,
here we suggest a similar set of test cases as described above.

Variation of SMT solving strategy
After an implementation that can be benchmarked and compared to Z3 successfully
has been established, another approach is to vary the SMT solver involved in the
procedure. We suspect that the sample-based quantifier elimination creates a special
subset of SMT solving problems, namely subsequently finding solution regions from
the same formula and consequently excluding them. Therefore, certain SMT solving
strategies might be more efficient in handling such a problem structure, e.g. those

5.3. Future work 33

that have a high degree of incrementality might profit from the inherently incremental
problem structure. Thus, we suggest a testing and comparison of different SMT solvers
within this method.

34 Chapter 5. Conclusion

Bibliography

[ÁK17] Erika Ábrahám and Gereon Kremer. SMT solving for arithmetic theories:
Theory and tool support. In 2017 19th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC), pages
1–8. IEEE, 2017.

[Col75] George E Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decompostion. In Automata theory and formal languages, pages
134–183. Springer, 1975.

[Cor10] Florian Corzilius. Virtual substitution in SMT solving. Master’s thesis,
RWTH Aachen University, 2010.

[Cor16] Florian Corzilius. Integrating Virtual Substitution into Strategic SMT Solv-
ing. PhD thesis, RWTH Aachen University, 2016.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[Stu17] Thomas Sturm. A survey of some methods for real quantifier elimination,
decision, and satisfiability and their applications. Mathematics in Computer
Science, 11(3):483–502, 2017.

[Tar49] Alfred Tarski. A decision method for elementary algebra and geometry.
Journal of Symbolic Logic, 14(3):188–188, 1949.

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra — the quadratic
case and beyond. Applicable Algebra in Engineering, Communication and
Computing, 8(2):85–101, 1997.

	Introduction
	Preliminaries
	Real arithmetic
	Virtual Substitution
	SMT Solving

	Sample-based virtual substitution
	General idea
	Algorithm
	Example
	Correctness

	Experimental Results
	Conclusion
	Summary
	Discussion
	Future work

	Bibliography

