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Abstract

The star set representation method serves as a powerful technique for working
with state sets, demonstrating remarkable efficiency in computing system reach-
ability. This study represents a significant advancement in the field by aiming
to streamline star set representation through the elimination of redundancies.
Drawing upon principles from linear constraint systems theory, including vari-
able elimination (quantifier elimination) techniques, we develop and implement
a novel dimension reduction approach.

We apply our method to compute the reachable set of feedforward neural net-
works (FNNs). Our dimension reduction approach simplifies the representation
of state sets by eliminating redundancies and retaining only essential informa-
tion. This simplification enhances efficiency and interpretability, facilitating a
more effective exploration of the network’s behavior and properties.

We evaluated the effectiveness of our method on three benchmarks, including
two realistic scenarios involving ACAS Xu and drone networks, as well as a
smaller benchmark - thermostat network.

Keywords: Dimension reduction, star sets, Fourier-Motzkin variable elimi-
nation, FMplex, star-based reachability, over-approximate analysis, neural net-
works, safety and robustness verification.
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Definitions

Definition 0.0.1 (Vector). A d-dimensional vector x ∈ Rd, d ∈ N>0 is an ordered
sequence of d real values x1, . . . , xd ∈ R. In this thesis, we consider column vectors

x =

x1

...
xd


whereas a row vector is oriented horizontally and can be written as a tuple (x1, . . . , xd).
Transposition (x1, . . . , xd)

T transforms a row vector into a column vector and vice
versa.

Definition 0.0.2 (Null vector). A vector is called a null vector (0-vector) if all entries
of the vector are 0.

x =

0...
0


Definition 0.0.3 (Unit vector). A vector ei is called the i−th identity vector in Rm,
if it is a null vector, with a 1 at the i−th row.

ei =



0
...
1
...
0


Definition 0.0.4 (Matrix). A (real-valued) matrix A of dimension n × m is a col-
lection of n · m real numbers arranged in a rectangular array with n rows and m
columns:

A =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m


The set of all real-valued matrices of dimension n × m is denoted by Rn×m. The
matrix entry at row i and column j in matrix A is referenced by ai,j, while we use
Ai,− to reference the i-th row and similarly A−,j to refer to the j-th column of A.

Definition 0.0.5 (0-column matrix). A matrix A ∈ Rn×m is called 0-column if for
at least one column A−,j holds: ∀i 1 ≤ i ≤ n; ai,j = 0 :
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A =

a1,1 · · · a1,j−1 0 a1,j+1 · · · a1,m
...

. . .
...

...
...

. . .
...

an,1 · · · an,j−1 0 an,j+1 · · · an,m


Definition 0.0.6 (Identity matrix). We define the identity matrix Im ∈ Rm×m of
size m as:

Im =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

The i−th column in the identity matrix corresponds to the i−th unit vector.

Definition 0.0.7 (Linear dependence). Linear dependence is a concept that describes
the relationship between vectors. In a vector space, a set of vectors is said to be lin-
early dependent if one or more of the vectors in the set can be written as a linear
combination of the others.
Formally, let v1,v2, . . . ,vn be vectors in a vector space V . These vectors are linearly
dependent if there exist real valued scalars (coefficients) c1, c2, . . . , cn, at least one
non-zero, such that:

c1v1 + c2v2 + . . . ,+cnvn = 0

If no such non-zero coefficients exist, then the vectors are called linearly independent.

Definition 0.0.8 (Rank of a matrix). The rank of a matrix is a fundamental con-
cept that measures the maximum number of linearly independent columns (or rows)
in the matrix. It provides information about the dimension of the column space (or
equivalently, the row space) of the matrix.
For a matrix A ∈ Rn×m, where n is the number of rows and m is the number columns,
the rank of A (denoted rank(A)) is defined as the maximum number of linearly inde-
pendent columns (or rows) in A.

Definition 0.0.9 (Kernel or null space of a matrix). For a matrix A ∈ Rn×m the
kernel or null space, denoted as ker(A) or Null(A), is the set of all vectors x such
that Ax = 0, where 0 is the zero vector.

Null(A) = ker(A) = {x | Ax = 0}

In this thesis, when saying kernel of a matrix, we will refer to the basis of the kernel.

Definition 0.0.10 (Image or column space of a matrix). The image of a matrix,
also known as the column space, refers to the set of all possible linear combinations
of the columns of the matrix. More formally, for a matrix A ∈ Rn×m, the image of
A, denoted by Im(A), is the subspace of Rm spanned by the columns of A.

Mathematically, the image of A is defined as:

Im(A) = {y ∈ Rm : y = Ax for some x ∈ Rn}

We define the basis for Im(A) as a set of vectors {v1,v2, · · · ,vr} such that:

1. Each vector in the set is in the image space of A, i.e., vi ∈ Im(A).
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2. The set of vectors is linearly independent.

3. The set of vectors spans the image space, meaning that any vector in the image
space can be expressed as a linear combination of the vectors in the basis.

Mathematically, if {v1, v2, . . . , vr} form a basis for Im(A), then any vector y in the
image space can be expressed as:

y = c1v1 + c2v2 + . . .+ crvr

where c1, c2, . . . , cr are scalars.
In this thesis, when saying image of a matrix, we will refer to the basis of the

image.

Definition 0.0.11 (Nullity of a matrix). For a matrix A ∈ Rn×m, the nullity (de-
noted as nullity(A)) is defined as the dimension (the number of independent vectors)
of its null space.

nullity(A) = dim(Null(A))

The nullity of a matrix is related to its rank by the Rank-Nullity Theorem, which states
that the sum of the rank and nullity of a matrix is equal to the number of columns of
the matrix.

rank(A) + nullity(A) = m
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Chapter 1

Introduction

Artificial neural networks (ANNs) [HC18] have surged in popularity over the past few
decades, finding applications in diverse fields such as gaming [SHM+16], healthcare
[DKML19, KTS+18], autonomous vehicles [BDTD+16], and many more. Among the
various types of ANNs are feedforward neural networks (FNNs) [SKP97, Saz06], con-
volutional neural networks [LBBH98], recurrent neural networks [MJ01], and graph
neural networks [ZCH+20], each tailored for specific tasks ranging from pattern recog-
nition, image and video processing to social network analysis.

Despite their widespread adoption, ANNs are often regarded as "black box" mech-
anisms, wherein inputs yield outputs without transparent intermediate processes
[LJB+22]. Consequently, questions regarding the reliability and trustworthiness of
neural networks arise, particularly in safety-critical contexts. Can we depend on neu-
ral networks to produce accurate outputs consistently, even in unfamiliar scenarios?
Can we ensure that their behavior adheres to desired properties, such as robustness,
fairness, and safety?

Formal verification offers means to address these concerns by providing math-
ematical assurances regarding a model’s adherence to specified properties. In this
thesis, we focus on the formal verification of FNNs via reachability analysis using a
specific state-set representation. The state set that we use is called the star set, first
introduced in [DV16] and generalized in [BD17].

Tran et al. proposed in [TMLM+19] two ways of computing the reachable set
of neural networks: an exact method ensuring soundness and completeness, and an
over-approximate method, which while not complete, remains sound and is more
scalable to bigger network architectures. Our emphasis lies on the over-approximate
analysis, intending to develop a practical and efficient method for simplifying the
representation of star sets. To achieve this, we leverage established techniques from
theory, specifically focusing on Fourier-Motzkin variable elimination [Dan63, CD07,
KL91] and its recent extension FMplex.

The objective of this thesis is to simplify the representation of star sets while
preserving all essential information. We propose a novel method for reducing the
dimensions of star sets, which has been integrated as an extension of the open-source
C++ library HyPro [SÁMK17], facilitating the evaluation of our method’s efficiency.
Our approach leverages advanced mathematical and computational tools such as the
Eigen library for linear algebra operation [GJ+10], GLPK used for the linear op-
timizations [GAD+13]. Exact calculations are provided by the GNU MP library’s
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mpq_class rational data type [Gra96].

1.1 Thesis Overview
In the Definitions Chapter, we provide essential definitions, notations, and theorems
related to our thesis. Section 2.2 introduces the star set representation, while Sec-
tion 2.3 elucidates the application of Fourier-Motzkin variable elimination to linear
inequality systems. In Chapter 3, we present the central contribution of this the-
sis, presenting the reduction of star sets. Section 3.2 illustrates the application of
FM elimination to star sets, while Section 3.3 establishes precondition for star set
reduction and verifies the correctness of our method.

Sections 4.1-4.3 offer a concise overview of neural networks and their reachability
analysis, culminating in Section 4.4, where we demonstrate the application of our
dimension reduction method tailored to reachability analysis of FNNs. Chapter 5
evaluates our method on three benchmarks regarding the running time, the number
of returned constraints, and the number of redundant constraints, while Chapter 6
discusses its performance, limitations, and avenues for future improvement.

1.2 Related Work
Within the domain of formal verification, Xiang et al. (2018) discuss various tech-
niques for the verification of neural networks, providing valuable insights into the
challenges and approaches within this field [XTJ18]. Tran et al. (2019) propose
methods for computing the reachable set of neural networks, offering insights into en-
suring soundness and completeness with exact and scalability with over-approximate
analysis [TMLM+19].

The study by Guennebaud and Jacob (2010) introduces Eigen, a C++ library for
linear algebra operations, which serves as a foundational component in our imple-
mentation [GJ+10]. Furthermore, Nalbach et al. (2023) present FMplex, a variant
of Fourier-Motzkin variable elimination, offering potential enhancements for our di-
mension reduction method [NPÁK23]. Lastly, HyPro, a tool designed for analyzing
hybrid systems and extended to also calculate neural network’s reachability, which
We employ in evaluating the efficiency of our method [SÁMK17].

Yang et al. compare four techniques for zonotope order reduction (same as dimen-
sion reduction) [Com03, Gir05, ASB10, SRMB16] aiming to achieve a similar result
for zonotopes as our method does for star sets [YWLG17]. Sadraddini et al. proposed
another method for zonotope order reduction in [ST19]. The key difference between
these methods compared to our approach is that they all try to over-approximate the
original zonotope Zorig and get a zonotope Zred described by less generator, such that
Zred ⊇ Zorig holds. Raghuraman et al. discuss the problem of possible dimension
reduction while removing the redundant generators (with desired numerical precision)
from a zonotope representation [RK22].



Chapter 2

Preliminaries

2.1 Set representations

A set, a fundamental concept in mathematics, represents a collection of distinct ob-
jects, treated as an entity in itself. These objects, ranging from numbers and symbols
to elements of other mathematical structures, are referred to as the members or ele-
ments of the set. Sets provide a powerful and abstract framework for organizing and
analyzing mathematical ideas and relationships. This thesis focuses on state sets and
their representation. A comprehensive overview of the existing state set representa-
tion methods is presented in [Sch19]. Below, we will give a short introduction to some
of them.

Various methods exist for representing state sets, often employed in geometric
or computational contexts. Some of them are H-polytopes (half-space polytopes),
V-polytopes (vertex polytopes), star sets, etc.

An H-polytope is represented as the intersection of half-spaces (Figure 2.1a). A
half-space represents the region on one side of a hyperplane. For instance, in two
dimensions, the H-polytope defined by x ≥ 0 and y ≥ 0 corresponds to the first
quadrant. H-polytopes offer a natural representation for the intersection of half-
spaces, making them suitable for expressing linear constraints in optimization prob-
lems. Many efficient algorithms exist for working with H-polytopes, especially in
the context of linear programming. However, managing and visualizing H-polytopes
becomes increasingly challenging with higher dimensions.

An V-polytope is defined by its vertices (corner points) (Figure 2.1b), constituting
the convex hull of a finite set of points. Intuitively, the convex hull of points is the
shape formed by the outermost boundary points of the given set, resulting in a convex
polygon or polyhedron. However, determining and representing all vertices can be
computationally demanding, particularly in high-dimensional spaces.

2.2 Star set representation

This work presents a state set representation called (generalized) star sets, sometimes
called AH-polytopes [TMLM+19]. Star sets offer precise and efficient computation
with convex sets. They are very efficient in affine mapping operations (Proposition
2.2.2) and intersections with half-spaces (Proposition 2.2.3), which we are going to
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(a) H-polytope (b) V-polytope

Figure 2.1: Different representations of the same convex set (redrawn from [Jia23])

use later in Chapter 4 of this thesis.
In the following, we will present the formal definition of a star set and show some

useful properties of it. This section is mainly based on the work of Hana Masara
[Mas23].

Definition 2.2.1 (Generalized star set). A generalized (n,m)-dimensional star set Θ
is a tuple ⟨c,V,P⟩ where c = (c1, c2, . . . , cn)

T ∈ Rn is the center, V = (v1,v2, . . . ,vm) ∈
Rn×m is the generator (basis) matrix, ∀i 1 ≤ i ≤ m : vi = (vi1, v

i
2, . . . , v

i
n)

T ∈ Rn

are the generator (basis) vectors that all m together create the generator matrix, and
P : Rm → {⊥,⊤} is a predicate. The set represented by the star is given as:

JΘK =

{
x | x = c+

m∑
i=1

αiv
i such that P(α1, ..., αm) = ⊤

}
Sometimes we will refer to both the tuple Θ and the set of states JΘK as Θ. In

this work, we restrict the predicate to be a conjunction of linear constraints, P(α) ≜
Cα ≤ d where, for p linear constraints, C ∈ Rp×m is the matrix of the coefficients,
α = (α1, α2, . . . , αm)T ∈ Rm, and d = (d1, d2, . . . , dp)

T ∈ Rp is the limit vector. In
this thesis, we will use P referring to the predicate (function with boolean output) and
P (α) referring the the set of solutions (it is a real-valued convex set).

In this work, if nothing for a star set is specified, we will refer to this setup and
call it a general star set.

c =

c1...
cn

 V =

v
1
1 · · · vm1
...

. . .
...

v1n · · · vmn

 C =

C11 · · · C1m

...
. . .

...
Cp1 · · · Cpm

 d =

d1...
dp

 α =

α1

...
αm


Example 2.2.1. Let Θ = ⟨c,V,P⟩ (Figure 2.3), P ≜ (Cα ≤ d) (Figure 2.2), where:

c =

[
1
−1

]
V =

[
1 0
0 −2

]
C =


1 0
−1 0
0 1
0 −1

 d =


3
2
1
1
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Figure 2.2: The predicate P of the
star set in Example 2.2.1

Figure 2.3: The star set in Example 2.2.1

In addition, an equivalent definition to the star set would be the following set:

JΘK = {(x1, x2) | −1 ≤ x1 ≤ 4 ∧ −3 ≤ x2 ≤ 1}

Definition 2.2.2 (Dimension of the star set). The dimension of a star set is a tuple
(n,m), where n is the number of rows and m is the number of columns in the generator
matrix V of the star set.

Definition 2.2.3 (0-column star set). The general star set Θ = ⟨c,V,P⟩ is called 0-
column star set if V is a 0-column matrix. To visualize this, without loss of generality,
we assume that there is only one 0-column in the matrix and it is the first one: v1 = 0.

c =


c1
c2
...
cn

 V =


0 v21 · · · vm1
0 v22 · · · vm2
...

...
. . .

...
0 v2n · · · vmn

 C =

C11 · · · C1m

...
. . .

...
Cp1 · · · Cpm

 d =


d1
d2
...
dp

 α =


α1

α2

...
αm


In the upcoming propositions, we show the representational power and efficiency

concerning certain operations of star sets. The proofs of all upcoming propositions
can be found in Appendix A

Proposition 2.2.1. Any convex polyhedron P ≜ {x | Cx ≤ d, x ∈ Rn} can be
represented as a star.

Proposition 2.2.2 (Affine Mapping of a star). Given a star set Θ = ⟨c,V,P⟩, an
affine mapping of the star with the linear mapping matrix W and offset vector b
defined by Θ̄ = {y | y = Wx+ b,x ∈ Θ} is another star such that:

Θ̄ = ⟨c̄, V̄, P̄⟩, c̄ = Wc+ b, V̄ = (Wv1, · · · ,Wvm), P̄ ≡ P

The use of matrix multiplications to the basis and center and one addition of vectors,
as well as preserving the predicate in the affine mapping of star sets, means that the
complexity of the affine mapping of a star is constant. However, the fact that there is
no known polynomial algorithm for the affine mapping of H-polytopes indicates that
the time complexity of affine mapping of H-polytopes is exponential. In conclusion,
star sets are an efficient alternative compared to H-polytopes as mentioned earlier.
Rotation is one of the many linear affine mappings and further, we will focus on it.
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Example 2.2.2. Let Θ = ⟨c,V,P⟩ be the same as in Example 2.2.1, additionally
consider for the affine mapping of the star Θ. The affine mapping matrix W and the
offset vector b:

W =

[
cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

]
=

[√
2
2 −

√
2
2√

2
2

√
2
2

]
, b =

[
− 1

2
− 1

2

]
This affine mapping matrix W describes a 45° rotation.

Wv1 =

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
1
0

]
=

[√
2
2√
2
2

]
= v̄1

Wv2 =

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
0
−2

]
=

[ √
2

−
√
2

]
= v̄2

V̄ =
[
v̄1 v̄2

]
c̄ =

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
1
−1

]
+

[
− 1

2
− 1

2

]
=

[
2
√
2−1
2

− 1
2

]
The resulting star set is defined as Θ′ = ⟨c̄, V̄,P⟩, where:

the basis V̄ =

[√
2
2

√
2√

2
2 −

√
2

]
and the center c̄ =

[
2
√
2−1
2

− 1
2

]

Figure 2.4: The result of affine mapping in Example 2.2.2

Proposition 2.2.3 (Star and half-space Intersection). The intersection of a star set
Θ = ⟨c,V,P) and a half-space H = {x | HTx ≤ g} is another star

Θ̄ = Θ ∩ H = ⟨c,V, P̄) with P̄ = P ∧ P ′,

where P ′(α) ≜ (HTV)α ≤ g −HT c, and V = [v1,v2, ...,vm].

Intersection with half-spaces is very efficient when using star sets and they out-
perform the V-Polytopes [Sch19].
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Example 2.2.3. Let Θ = (c,V, P ) be the same as in Example 2.2.2 where

the basis V =

[√
2
2

√
2√

2
2 −

√
2

]
and the center c =

[
2
√
2−1
2

− 1
2

]
,

also the predicate P (α) ≜ Cα ≤ d where C =


1 0
−1 0
0 1
0 −1

 and d =


3
2
1
1

 .

Additionally, let half-space H be defined as:

H ≜ {x | HTx ≤ g} with x ∈ R2, H =

[
1
1

]
, g = 3.

P ′(α) is defined by this inequality:

[1, 1]

[√
2
2

√
2√

2
2 −

√
2

]
α ≤ 3− [1, 1]

[
2
√
2−1
2

− 1
2

]
By solving the inequality we get:

[
√
2, 0] α ≤ 4−

√
2

The resulting star set becomes Θ′ = ⟨c,V, P̄ ⟩, where

P̄ (α) ≜ C̄ᾱ ≤ d̄ where C̄ =


1 0
−1 0
0 1
0 −1√
2 0

 , d̄ =


3
2
1
1

4−
√
2

 .

Taking a closer look we can see, that P̄ (α) is the same as P̄reduced(α) ≜ C̄reduced ≤
d̄reduced, with

C̄reduced =


√
2 0

−1 0
0 1
0 −1

 , d̄reduced =


4−

√
2

2
1
1



2.3 Variable elimination in a system of linear in-
equalities

The objective of eliminating a variable α (a set of variables can also be considered)
from a system of linear inequalities is to derive another system of linear inequalities
that does not contain the variable α (or without the set of variables that have been
eliminated), while preserving equisatisfiability with the original system (i.e., the two
systems are equisatisfiable) [Cha93]. Consequently, the resulting system is satisfiable
(unsatisfiable) if and only if the original system is satisfiable (unsatisfiable). A key
advantage of variable elimination is the reduction in the number of variables in the
equisatisfiable system compared to the original one. While various methods address
variable elimination problems, this thesis primarily focuses on the Fourier-Motzkin
variable elimination method and its recent extension FMplex.
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Figure 2.5: The illustration of the intersection of a star set with a half-space in
Example 2.2.3

2.3.1 Fourier-Motzkin variable elimination
Fourier–Motzkin variable elimination (FM elimination) [Dan63], sometimes referred
to as quantifier elimination or polytope projection [Sch98], is an algorithm utilized
for eliminating variables from a system of linear inequalities.

Let P be a system of p linear inequalities over n variables α1, . . . , αn. Consider
P to be in the normal form: the inequalities have ≤ sign, all variables are on the
left-hand side and the right-hand side is the real-valued limit (i here corresponds to
the i− th inequality in the system):

n∑
j=1

Cij · αj ≤ di

Without loss of generality, we assume αp is the variable to be eliminated. We can
rewrite the inequalities from the perspective of αp:

Cip · αp ≤ di −
n−1∑
j=1

Cij · αj (2.1)

The linear inequalities in the system can be grouped into three classes depending on
the sign (positive, negative, or null) of the coefficient Cip for αp.

Cip = 0 : ⇒ sets no bound on αp. (2.2)

Cip > 0 : ⇒ αp ≤ di
Cip

−
∑n−1

j=1 Cij · αj

Cip
: sets upper bound on αp. (2.3)

Cip < 0 : ⇒ αp ≥ di
Cip

−
∑n−1

j=1 Cij · αj

Cip
: sets lower bound on αp. (2.4)

The inequalities that set no bounds on αp can be ignored because αp does not appear
in these inequalities. Consequently, eliminating αp will not affect these inequalities.
We denote this list of inequalities by N .
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The remaining inequalities set either lower or upper bounds on αp. Let U be the
list of the right-hand sides of the inequalities of the form 2.3 and L be the list of the
right-hand sides of the inequalities of the form 2.4. To eliminate αp we generate new
inequalities pairing each lower bound with each upper bound. Formally,

∀l ∈ L,∀u ∈ U : l ≤ u,

and we call the list containing these newly generated inequalities E. The inequality
system returned by FM is N∪E. The returned system is equisatisfiable to the original
system and does not contain variable αp.

Let us examine why are both systems equisatisfiable. By construction, we substi-
tute the variable αp with a set of new inequalities that ensure that each lower bound
is less or equal to each upper bound. If these inequalities hold for all pairs, we can de-
duce the existence of a value between the lower and upper bounds for αp that satisfies
the original inequalities. This assertion remains true due to the domain of variables
under consideration being R, which is dense. This denseness property signifies that
for any two numbers, there always exists another number lying between them.

By iteratively applying this elimination process to all variables αi : 1 ≤ i ≤ n we
ultimately arrive at a system where no variables remain. With only constant values,
we can easily determine whether any inequality is violated. If a violation is found,
FM returns UNSAT; conversely, if all inequalities are upheld, FM returns SAT.

Example 2.3.1. Consider the system of linear inequalities in the normal form below
and perform an iterative elimination of α1, α3.

α1 − α2 ≤ 0

α1 − α3 ≤ 0

−α1 + α2 + 2α3 ≤ 0

−α3 ≤ −1

In the first iteration, we focus on eliminating α1. To achieve this, we rewrite the
inequalities with respect to α1 as shown in Formula 2.1:

α1 − α2 ≤ 0 ⇔ α1 ≤ α2 (2.5)
α1 − α3 ≤ 0 ⇔ α1 ≤ α3 (2.6)

−α1 + α2 + 2α3 ≤ 0 ⇔ α1 ≥ α2 + 2α3 (2.7)
−α3 ≤ −1 (2.8)

The Inequality 2.8 sets no bound on α1. So we ignore it for this iteration. The
Inequalities 2.5 and 2.6 set an upper and 2.7 a lower bound on α1. To eliminate α1,
we generate all pairs of lower and upper bounds of α1.

α2 + 2α3 ≤ α2 (2.9)
α2 + 2α3 ≤ α3 (2.10)

−α3 ≤ −1 (2.11)

The next step is to eliminate the α3. To do this, we first simplify and then rewrite
the current system of inequalities regarding the α3.

2α3 ≤ 0 ⇔ α3 ≤ 0 (2.12)
α2 + α3 ≤ 0 ⇔ α3 ≤ −α2 (2.13)
−α3 ≤ −1 ⇔ α3 ≥ 1 (2.14)
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The Inequalities 2.12 and 2.13 set an upper and 2.14 a lower bound on α3. To
eliminate α3, generate all pairs of lower and upper bounds of α3.

1 ≤ 0 (2.15)
1 ≤ −α2 (2.16)

The Inequality 2.15 is not satisfiable, thus the system is unsatisfiable and FM returns
UNSAT.

As shown in Example 2.3.1, each iteration yields a system with one fewer variable
than the previous system. However, the number of inequalities increases after each
iteration (though some of them might be redundant). Let us consider a scenario
where the original system has p inequalities, with p/2 of them defining a lower bound
and p/2 defining an upper bound on the variable to be eliminated. In this case, we
obtain p/2 · p/2 = p2/4 new inequalities. In the worst-case scenario, the number of
inequalities grows double-exponentially with each iteration: in the i − th iteration,
the number of inequalities becomes 4(p4 )

2i [Ábr23].
However, in practice, the algorithm’s performance is often not double-exponential

due to several factors. These include the non-equal distribution of lower and upper
bounds and the removal of redundant constraints after each iteration. Redundant
constraints, also known as redundant inequalities, are those that are implied by other
inequalities in the system. Mathematically, an inequality is redundant if it can be
expressed as a non-negative linear combination of other inequalities in the system.
For example, consider the inequality system below:

x ≤ 2

y ≤ 1

x+ y ≤ 4

In the system above x+ y ≤ 4 is a redundant constraint by taking the linear combi-
nation of the other two with coefficients one.

However, identifying redundant constraints is often computationally inefficient. It
requires weighing the computational cost against the potential benefits of removing
these constraints. This trade-off lies between the time invested in eliminating re-
dundant constraints and the resulting system with fewer constraints for subsequent
calculations.



Chapter 3

Starset dimension reduction

3.1 The need for dimension reduction

In this section, we will be focusing on the dimension reduction of a star set (Defini-
tion 2.2.2). Specifically, we will concentrate on the second parameter of the dimension
tuple (n,m), namely on m. Consequently, unless explicitly stated otherwise, m will
represent the dimension of the star set. Furthermore, the notion of dimension reduc-
tion refers to the downsizing of the parameter m.

Intuitively, a star set representation can be envisioned as the affine transforma-
tion of the solution set of the predicate (denoted as P (α)). The generator matrix
corresponds to the linear transformation, while the center shifts the result (as proven
in Proposition 2.2.2 the result is also a star set). Now, consider a (n,m) dimen-
sional star set, where n < m. In this case, the star set representation is an ar-
bitrary n-dimensional convex polytope, which is obtained via projecting a higher,
m−dimensional polytope: P (α).

In other words, we describe the n-dimensional set by embedding it within a higher
m-dimensional star set. This suggests that in the predicate, there are more variables
than would suffice to represent the set. Consequently, there exists some redundant
information in the higher dimension (specifically the m − n variables projected out
during compression from a higher-dimensional space m to a lower-dimensional space
n). It is evident that the minimum number of variables in the predicate required to
represent a n-dimensional set is n and any additional variable in the predicate can be
replaced by the linear combination of existing ones.

This work aims to propose an algorithmic solution, that explains, in which cases
and how the star set dimension reduction can be done. The benefits after the reduction
are: firstly, fewer variables in the predicate means faster computations when it comes
to solving LP instances (for example when calculating the vertices, finding bounds,
etc.) and secondly, the model becomes more interpretable, as irrelevant dimensions
are removed, leaving only those essential for characterizing the set.

3.2 Handling 0-column generator matrix

In some scenarios, we are going to have a 0-column generator matrix V (see Definition
0.0.5). This is a special case and we will see, that having some 0-column generator
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matrix is very convenient. First, assume that the generator matrix is given in such a
form that it is a 0-column matrix, and let us understand why having a 0-column star
set is beneficial.

Consider the 0-column star set Θ = ⟨c,V,P⟩,P ≜ Cα ≤ d :

c =


c1
c2
...
cn

 V =


0 v21 · · · vm1
0 v22 · · · vm2
...

...
. . .

...
0 v2n · · · vmn

 C =

C11 · · · C1m

...
. . .

...
Cp1 · · · Cpm

 d =


d1
d2
...
dp

 α =


α1

α2

...
αm


The elements of the set x ∈ Rn that the star represents are expressed as:

x1 = c1 + v11 · α1 + v21 · α2 + · · ·+ vm1 · αm

x2 = c2 + v12 · α1 + v22 · α2 + · · ·+ vm2 · αm

...

xn = cn + v1n · α1 + v2n · α2 + · · ·+ vmn · αm

v1 is a null vector, thus, the equations can be written in this form:

x1 = c1 + 0 · α1 + v21 · α2 + · · ·+ vm1 · αm = c1 + v21 · α2 + · · ·+ vm1 · αm

x2 = c2 + 0 · α1 + v22 · α2 + · · ·+ vm2 · αm = c2 + v22 · α2 + · · ·+ vm2 · αm

...

xn = cn + 0 · α1 + v2n · α2 + · · ·+ vmn · αm = cn + v2n · α2 + · · ·+ vmn · αm

This means that α1 does not directly "contribute" to the value of any xi : 1 ≤ i ≤ n.
Consequently, the intuition arises that there should be a method for representing the
same set Θ without the predicate variable α1. This means that in the star set that we
are searching for, the variable α1 has to be removed. However, eliminating α1 cannot
be done arbitrarily while maintaining everything the same as they are. The predicate
must be adjusted accordingly because even though α1 does not directly impact xi, it
still influences (α2, α3, · · · , αm) through constraints involving both α1 and the other
α-s. This influence entails internal changes to P (α). Below will be shown, how α1

affects the values of other α-s.

Question 1. Can the variable corresponding to the 0-column be thrown away? To
answer this question, let us explicitly write the inequalities in the system Cα ≤ d.

C11 · α1 + C12 · α2 + · · ·+ C1m · αm ≤ d1

C21 · α1 + C22 · α2 + · · ·+ C2m · αm ≤ d2

...
Cp1 · α1 + Cp2 · α2 + · · ·+ Cpm · αm ≤ dp
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Furthermore, we can conclude that in any of the inequalities i ∈ {1, · · · , p} and any
αj ∈ {α2, · · · , αm} holds:

Cij · αj ≤ di −Ci1α1 −
m∑

k=2,k ̸=j

Cikαk (3.1)

As shown in 3.1, α1 still has an impact on the satisfying valuations of the other α-s,
thus on P (α).

This emphasizes the necessity of implementing the requisite changes to the pred-
icate before eliminating αi corresponding to the 0-column. It is worth to note, that
if Ci1 is zero, then it does not influence P (α). Thus, the question arises: Is there a
method to obtain a system P ′(α), equisatisfiable to the original system P (α) with
Ci1 = 0 : ∀i ∈ {1, · · · , p}. The answer is yes, and the techniques that yield such eq-
uisatisfiable systems are known as variable (quantifier) elimination algorithms. One
such algorithm is described in Section 2.3.1: Fourier Motzkin variable elimination
(FM elimination). This method effectively nullifies the influence of αi (the variable
to be eliminated) on the other α-s, by setting all the coefficients of αi to zero in
all constraints within the system. In other words, FM elimination projects out the
dimension of the variable we aim to eliminate from the solution of the original system.

Proposition 3.2.1. Applying Fourier Motzkin variable elimination on a given system
of linear inequalities Cα ≤ d to eliminate αi from the system, we get an equisatisfiable
system C′α ≤ d′, where all coefficients of αi are set to zero.

Proof. As the variable αi is not present in the resulting system C′α ≤ d′ anymore
(because we eliminated αi), the coefficients of αi are zero.

After applying FM elimination on the predicate Cα ≤ d, we get an equisatisfiable
system of linear inequalities C′α ≤ d′, where all coefficients of the variable αi are zero.
At this stage, proceed to remove the 0-column from both the constraint matrix C′

and the generator matrix V. We will name them C′
elim and V ′

elim respectively. The
star set equivalent to the original one is denoted as Θ′ = ⟨c,V ′

elim,P ′⟩, where P ′ ≜
C′

elimα′ ≤ d′.
For better understanding, let us look at an example.

Example 3.2.1 (0-column in the generator matrix). x ∈ JΘK and star set Θ =
⟨c,V,P⟩,P ≜ Cα ≤ d, where:

c =

[
0
0

]
,V =

[
0 0 1
0 1 0

]
, C =



−1 −1 0
−1 1 0
1 1 0
1 −1 0
0 0 −1
1 0 −1√
2−6
10 0 1


,d =



√
2 + 1√
2

2
√
2− 1√
2
0
0

11
√
2+2

20


,α =

α1

α2

α3



These parameters describe the following star set, graphically depicted in Figure
3.1:

x1 = c1 + v11 · α1 + v21 · α2 + v31 · α3 = 0 + 0 · α1 + 0 · α2 + 1 · α3

x2 = c2 + v12 · α1 + v22 · α2 + v32 · α3 = 0 + 0 · α1 + 1 · α2 + 0 · α3
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Figure 3.1: The illustration of the set presented in Example 3.2.1

In this example, we observe that there is a 0-column (α1) in the generator matrix.
As described earlier, we use the FM elimination introduced in Subsection 2.3.1 to
eliminate α1. In the first step, we rewrite the inequalities with respect to α1:

−α1 − α2 ≤
√
2 + 1 −α2 −

√
2− 1 ≤α1 (3.2)

−α1 + α2 ≤
√
2 α2 −

√
2 ≤α1 (3.3)

α1 + α2 ≤ 2
√
2− 1 α1 ≤ −α2 + 2

√
2− 1

(3.4)

α1 − α2 ≤
√
2 α1 ≤

√
2α2 (3.5)

−α3 ≤ 0 −α3 ≤ 0 (3.6)
α1 − α3 ≤ 0 α1 ≤ α3 (3.7)

√
2− 6

10
α1 + α3 ≤ 11

√
2 + 2

20

5(
√
2− 6)

17
α3 −

2
√
2 + 1

2
≤α1 (3.8)

As you can see, in Inequality 3.6 α1 is not present (Inequality 3.6 sets no bound
on α1), so for the next step, it can be ignored. The Inequalities 3.2, 3.3, and 3.8 set
a lower and 3.4, 3.5, and 3.7 an upper bound on α1. We generate new inequalities by
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building all possible combinations of lower and upper bounds:

−α2 −
√
2− 1 ≤ 2

√
2− 1− α2

−α2 −
√
2− 1 ≤

√
2 + α2

−α2 −
√
2− 1 ≤ α3

α2 −
√
2 ≤ 2

√
2− 1− α2

α2 −
√
2 ≤ α2 +

√
2

α2 −
√
2 ≤ α3

5(
√
2− 6)

17
α3 −

2
√
2 + 1

2
≤ 2

√
2− 1− α2

5(
√
2− 6)

17
α3 −

2
√
2 + 1

2
≤

√
2 + α2

5(
√
2− 6)

17
α3 −

2
√
2 + 1

2
≤ α3

Now let us remove the redundant inequalities, simplify the remaining ones, and bring
back Inequality 3.6.

−α3 ≤ 0

−2α2 ≤ 2
√
2 + 1

2α2 ≤ 3
√
2− 1

α2 − α3 ≤
√
2

α2 +
5(
√
2 + 6)

17
α3 ≤ 6

√
2− 1

2

−α2 +
5(
√
2 + 6)

17
α3 ≤ 4

√
2 + 1

2

In the resulting set of inequalities, we see, that there is no α1. This means, that for
our star set, the generator matrix can be modified and the 0-column can be removed.
The resulting star set is Θ′ = ⟨c′,V ′,P ′), with c′ = c, P ′ ≜ C′

elimα ≤ d′ and:

V ′ =

[
0 1
1 0

]
, C′

elim =



0 −1
−2 0
2 0
1 −1

1 5(
√
2+6)
17

−1 5(
√
2+6)
17


, d′ =



0

2
√
2 + 1

3
√
2− 1√
2

6
√
2−1
2

4
√
2+1
2


Plotting the resulting star set, we see that the resulting set is the same as it was in
Figure 3.1, before doing the elimination. This means that we could successfully remove
one variable (alpha1) from the star set while not changing the set itself.

In consequence, we can conclude that if the generator is a 0-column ma-
trix, FM elimination can be directly applied to reduce the dimension of the star set.
Furthermore, if after one iteration of FM elimination, there is another 0-column in
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the generator matrix, we can iterate this procedure and successively eliminate α-s,
corresponding to the zero columns in the generator, to reduce the dimension of the
star set.

3.3 Transforming into 0-column star set

As shown in the previous Section 3.2, we can eliminate a column (or multiple columns)
from the generator matrix if this is a 0-column matrix. For this, we apply the FM
elimination on the variable, which corresponds to the 0-column. However, this is not a
general instance, and in most cases, the generator matrix is unlikely to be a 0-column
matrix.

In this section, we focus on addressing the scenario wherein the generator is not a 0-
column matrix. Specifically, we explore whether we can implement any modifications
to the star set to eliminate certain variables. In some cases yes. In the following, we
present the requisite condition and the adjustments applied to the star set to bring it
into a form where elimination can be done.

As mentioned, the ideal form of the generator is a 0-column matrix. Even when
the matrix lacks 0 columns, we can still generate some through elementary column
transformations. The number of possible 0-columns is strongly related to the dimen-
sion of the column space (also known as the rank of the matrix, Definition 0.0.8). If
the rank of the matrix is less than the number of its columns (indicating a non-full col-
umn rank), then some columns are linearly dependent. This redundancy implies that
linearly dependent columns can be expressed as linear combinations of other columns
in the matrix. Therefore, these redundant columns can be eliminated without losing
any information, simplifying the representation of the matrix.

The proposed method for reducing the dimension of a star set involves generating
as many 0-columns in the generator matrix as possible and subsequently eliminating
them using FM elimination, as demonstrated in Section 3.2.

Consider a general star set Θ = ⟨c,V,P⟩,P ≜ (Cα ≤ d) and the generator matrix
V ∈ Rn×m and the condition n < m. As proven in Section A of the appendix of this
thesis (Proposition A.0.1) V has at least m − n linearly dependent columns. This
means the rank of this matrix is bounded by the number of rows (since the matrix
has fewer rows than columns). Bounded, because there can still exist rows that are
linearly dependent from other rows. Therefore, it is the same as rank(V) ≤ n.

Using the fact of linear dependency between the generator vectors and employing
elementary column operations, we can transform the generator matrix V into a 0-
column matrix V ′. The number of 0-columns in V ′ precisely equals m− rank(V). To
get a star set Θ′ representing the same set as Θ, we have to adapt the predicate P
as well. Below we show that such transformations for the generator matrix V and
predicate P exist. To do this, we will move to the initial description of a star set and
show step by step how V ′ and P ′ can be obtained.

Proposition 3.3.1 (Star set transformation). Any general star set Θ = ⟨c,V,P⟩, P ≜
(Cα ≤ d) can be transformed to another general star set Θ′ = ⟨c′,V ′,P ′⟩, P ′ ≜
(C′α′ ≤ d′), such that V ≠ V ′, C ≠ C′ and Θ ≡ Θ′. For the transformation, we use a
manually designed invertible matrix G, such that VG = V ′.
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Proof. Using the definition of the star set and applying some transformations, we get:

Θ = {x = Vα+ c | Cα ≤ d} (3.9)

= {x = VG︸︷︷︸
=V′

G−1α+ c | Cα ≤ d}

= {x = V ′ G−1α︸ ︷︷ ︸
=α′

+c | Cα ≤ d}

= {x = V ′α′ + c | Cα ≤ d}. (3.10)

By multiplying the equation G−1α = α′ by G from the left side, we obtain:

GG−1︸ ︷︷ ︸
Im

α = Gα′ ⇒ α = Gα′. (3.11)

Hence, with (3.10) and (3.11):

Θ = {x = V ′α′ + c | CG︸︷︷︸
=C′

α′ ≤ d}

= {x = V ′α′ + c | C′α′ ≤ d} = Θ′. (3.12)

The proof suggests that two parameters stay the same: c′ = c and d′ = d.
In this thesis, the matrix G will be referred to as the transformation matrix.

The founded equation shows that with the help of transformation matrix G we
get the same star set but different generator V and constraint matrix C. However,
we should be careful while choosing the matrix G. In most cases, there are infinitely
many G-s that satisfy the equation VG = V ′. The only restriction is that G must
be invertible, although the inverse of G does not need to be calculated. This careful
consideration of the transformation matrix is essential for the success and validity of
the star set transformation process.

Lemma 3.3.2. For any star set transformation from Θ = ⟨c,V, P ⟩, P ≜ (Cα ≤ d)
to Θ′ = ⟨c,V ′, P ′⟩, P ′ ≜ (C′α′ ≤ d) with V,V ′ ∈ Rn×m and Θ ≡ Θ′ holds: if
rank(V) = r < m, then there exists an invertible transformation matrix G ∈ Rm×m,
such that VG = V ′ and V ′ has exactly r linear independent columns from V and m-r
zero-columns.

Proof. From the rank-nullity theorem (Definition 0.0.11) follows, that

nullity(V) = m− r, (3.13)

where r = rank(V). Let J be the set of the indices of the linear dependent columns
of V,M := {1, . . . ,m}, I = M \ J. Then |J | = m− r. Let kj ∈ Rm, j ∈ J be linearly
independent vectors forming a basis for the null space (also called kernel, Definition
0.0.11) of V, which means:

Vkj = 0, j ∈ J. (3.14)
From Equation 3.13 follows, that any set of m − r linear independent vectors from
the kernel will form a base for it. We can construct the transformation matrix G =
[g1, . . . ,gm ], gi ∈ Rm, 1 ≤ i ≤ m as follows:

gi :=

{
ki, i ∈ J,

ei, i ∈ I,
(3.15)
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where i ∈ M and ei is the i-th unit vector (Definition 0.0.3) in Rm. Then, with
Equations 3.14 and 3.15:

VG = V ′,

where V ′ is the matrix having exactly the r linear independent columns from V and
m− r zero-columns.

Next, we want to show that the transformation matrix G is invertible.
For this, we need to prove that the columns of G are linearly independent. That

means:

αj , βi ∈ R, j ∈ J, i ∈ I :
∑
j∈J

αjkj +
∑
i∈I

βiei = 0 =⇒ αj = 0, βi = 0 ∀j ∈ J, i ∈ I.

(3.16)
Assume, the linear combination in Equation 3.16 equals 0. By multiplying the linear
combination by the matrix V we obtain:

V

∑
j∈J

αjkj +
∑
i∈I

βiei

 = 0

⇐⇒
∑
j∈J

αj Vkj︸︷︷︸
=0

+
∑
i∈I

βiVei = 0 =⇒
∑
i∈I

βiVei = 0.

I is the set of indices of linearly independent columns of V and Vei is the i−th column
of V. Therefore, βi = 0 ∀i ∈ I. That means:∑

j∈J

αjkj +
∑
i∈I

βiei =
∑
j∈J

αjkj = 0

From the linear independence of the vectors kj, j ∈ J follows, that:

αj = 0 : ∀j ∈ J.

In particular, we get the generator V ′ that has only the columns, which form the
column space of the original generator matrix V (the image of V, Definition 0.0.10).

3.4 Dimension reduction method
In this section, we want to summarize all the steps described in Sections 3.2 and 3.3
and formulate a clear, step-by-step algorithm and apply this on an example.

Example 3.4.1 (No 0-column in the generator matrix). Now let us consider the
following star set Θ = ⟨c,V,P⟩ and P ≜ Cα ≤ d, where:

c =

[
0
− 1

2

]
, V =

[
0 0 1√
2
2

√
2
2 0

]
, C =



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1√
2
2 −

√
2
2 −1

−3
√
2+1

10
3
√
2−1
10 1


, d =



1
2
1
1
0
0.5

3
√
2−1
5
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Algorithm 1 Dimension reduction method of star set
Input: Θ = ⟨c,V, P ⟩, P ≜ Cα ≤ d
Output: Θ′ = ⟨c,V ′,P ′⟩, P ′ ≜ C′α′ ≤ d′

1: m = V.cols() ▷ number of columns in V
2: r = V.rank()
3: if r < m then ▷ if false, method not applicable
4: V ′ = V.image()
5: linDep = V.getLinDepCols()∗ ▷ list of column indices that are not in the

image
6: G = Im ▷ identity matrix of the size m
7: K = V.kernel() ▷ matrix which columns form basis of the kernel of V
8: for i = 1 : linDep.length() do
9: G.col(linDep[i]) = K.col(i) ▷ replace i− th column in G with current

kernel vector
10: end for
11: CFM = C ∗ G ▷ applying transformation by G
12: C′

FM ,d′ = FMelimination(CFM ,d, linDep) ▷ iteratively
eliminate all variables in linDep from the system and return the final constraints
matrix and limits vector

13: C′ = C′
FM .removeZeroColumns()

14: OPTIONAL: Remove redundant constraints from C′α′ ≤ d′

15: return Θ′ = ⟨c,V ′, P ′⟩, P ′ ≜ C′α′ ≤ d′

16: end if
∗ If there are some identical columns in V, only one of them is in the image, and the
indices of all remaining ones should be added to this list.

This star set represents the same set, as Example 3.2.1 before (graphically Figure
3.1).

As we see, there is no 0-column in the generator matrix, so we cannot directly
apply FM elimination and eliminate one of the variables. However, rank(V) < 3.
This means we can apply the steps of Algorithm 1.

First, we compute the image of V:

V ′ =

[
0 1√
2
2 0

]
Then we store the indices of those columns that are not in the image. Note that

the first and second columns are identical, and as stated in the algorithm above, we
need to add the index of the second one to the list. We start the indexing with 1.

linDep = [2]

In the next step, we create the identity matrix of size 3.

G =

1 0 0
0 1 0
0 0 1


Next, we compute the kernel of V.
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K =

−1
1
0


We replace each column in G which index is in linDep list. In this case, it is only

the second column. After replacing, G looks as follows.

G =

1 −1 0
0 1 0
0 0 1


Note that, VG = V ′′, such that V ′′ is identical to V except it has 0-column at

position 2.
As the next step, we prepare the predicate to apply FM elimination: CFM = CG.

CFM =



−1 1 0
1 −1 0
0 −1 0
0 1 0
0 0 −1√
2
2 −

√
2 −1

− 3
√
2−1
10

3
√
2−1
5 1


Now we have to apply FM elimination on the system linear inequalities CFMα ≤ d

to eliminate the columns whose indices are in the list linDep, namely in this case only
the second column.

After applying FM, it returns the following system:

C′
FM =



0 0 0
1 0 0

0.5 0 5(3
√
2+1)

17
−1 0 0
0 0 0

−0.5 0 5(3
√
2+1)

17

−0.5 0 −
√
2
2

0.5 0 −
√
2
2

0 0 13
√
2+10
34


, d′ =



3
3
3
2
2
2

1+2
√
2

2
√
2

1+2
√
2

2
√
2

1+2
√
2

2
√
2


As the final step, we need to erase the 0-columns in the C′

FM .

C′ =



0 0
1 0

0.5 5(3
√
2+1)

17
−1 0
0 0

−0.5 5(3
√
2+1)

17

−0.5 −
√
2
2

0.5 −
√
2
2

0 13
√
2+10
34
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If we also consider the optional step of removing the redundant constraints (which
are the first, fifth, and seventh in this example), the predicate looks as follows:

C′ =



1 0

0.5 5(3
√
2+1)

17
−1 0

−0.5 5(3
√
2+1)

17

0.5 −
√
2
2

0 13
√
2+10
34


, d′ =



3
3
2
2

1+2
√
2

2
√
2

1+2
√
2

2
√
2


The resulting star set Θ′ = ⟨c,V ′,P ′⟩ with P ′ ≜ C′α′ ≤ d′ describes the same set

as the previous Θ = ⟨c,V,P⟩ with P ≜ Cα ≤ d, and but it has 1 variable less in the
predicate.

As one can see, the predicate without redundant constraints, has six constraints.
In our example, the number of constraints returned by the FM elimination was nine,
but only six of them were non-redundant. This is an indicator, that a naive imple-
mentation of FM elimination may return many redundant constraints. This aspect is
later discussed in Chapter 5.
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Chapter 4

Application on neural network
verification

In this chapter, we will first give some basic principles of the feedforward neural
network (FNN), and then discuss the star-based reachability method. Finally, we will
discuss the application of star set dimension reduction within this context.

4.1 Feedforward neural networks (FNNs)

x1

x2

h
(1)
1

h
(1)
2

h
(1)
3

h
(2)
1

h
(2)
2

h
(2)
3

y

Figure 4.1: Multi-layer FNN with two hidden lay-
ers, 3 neurons in each, two neurons in the input
layer and one neuron in the output layer

j iwij

bj bi

Figure 4.2: Connection from
j−th neuron to the i−th neu-
ron with the weight wij and
the biases of each neuron

Feedforward neural networks can be conceptualized as multi-layer graphs with
one input layer, one output layer, and one (single-layered FNN) or many (multi-layer
FNN) hidden layers in between (see Figure 4.1). The inputted information (input
vector) is propagated through each layer until it reaches the output layer [Saz06].

Each hidden layer has neurons in it, which are connected to the neurons in the
previous and next hidden layers (or in the case of the first and last hidden layer to the
input and output layer), and each connection has its weight. Given the input vector
((x1, x2)

T in the Figure 4.1), FNN will give us the output (y in the Figure 4.1) based
on three key components: weight matrix, bias vector, and activation function.
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The weight matrix Wk represents the weighted connections of neurons in two
neighboring layers k − 1 and k. The entry wij in Wk describes the weight of the
connection from j−th to i−th neuron (see Figure 4.2).

The second component is the bias vector. We denote bk to be the bias vector of
the k − th layer (see Figure 4.2).

−3 −2 −1 1 2 3

1

2

3

x

ReLU(x)

Figure 4.3: ReLU (rectified linear unit)

The third component is the activation function, which is chosen to transmit non-
linearity to the neural network. It enables the model to learn and represent complex
and sometimes non-interpretable relations between the variables. While various ac-
tivation functions are employed in practice (such as tanh, sigmoid, softmax, etc.),
in this thesis, we are only going to focus on ReLU (rectified linear unit) defined as
ReLU(x) = max(0, x) (see Figure 4.3).

Now let us connect all three components, and see, how the output of the i − th
neuron (yi) is calculated given the n−dimensional input vector (x). First, we take Wk

with the corresponding column and compute the weighted sum of the input vector.
Then, we add the bias value (bi) and in the last step apply the activation function
(ReLU ):

yi = ReLU(bi +

n∑
j=1

wijxj)

This calculation is done for all neurons and the output becomes the input for the
neurons in the next hidden layer (or for the output layer).

4.2 Reachability analysis of FNNs
In general, the goal of the reachability analysis of FNN is to determine the final state
(or the final set of states) of the network, given a fixed set of input states [LM17].
Specifically, the aim is to ascertain whether the reachable set of the FNN is safe.
Safe means, that the FNN should fulfill some predefined safety specifications. This
process, known as safety verification of FNNs [HKWW17], involves assessing whether
the FNN behaves safely under all circumstances.

In this thesis, we will use the generalized star set representation introduced in
Section 2.2. Leveraging the generalized star representation offers several advantages,
including scalability, efficiency, and high accuracy. Additionally, it possesses the ca-
pability to generate tangible counterexamples, a feature typically unavailable in al-
ternative reachability approaches [BD17].
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Before moving any further, let us formally define the reachable set of FNN.

Definition 4.2.1 (Reachable set of FNN). Given a bounded convex polyhedron input
set defined as I ≜ {x ∈ Rn | Ax ≤ b} with A ∈ Rm×n,b ∈ Rm, and an k-layers
feed-forward neural network F ≜ {L1, L2, · · · , Lk} with ReLU activation function, the
reachable set F (I ) = RLk

of the FNN F corresponding to the input set I is defined
incrementally by:

RL1 ≜ {y1 | y1 = ReLU(W1x+ b1), x ∈ I },
RL2 ≜ {y2 | y2 = ReLU(W2y1 + b2), y1 ∈ RL1},

...

RLk
≜ {yk | yk = ReLU(Wkyk−1 + bk), yk−1 ∈ RLk−1

},

where Wk and bk are the weight matrix and bias vector of the kth layer Lk, respec-
tively. The reachable set RLk

contains all outputs of the FNN corresponding to all
input vectors x in the input set I . The ReLU function is applied dimensionwise (on
each neuron) on each vector Wiyi + bi.

Definition 4.2.2 (Safety verification of FNN). Given a k-layers feedforward neural
network F , and a safety specification S defined as a set of linear constraints on the
neural network outputs S ≜ {yk | Cyk ≤ d}, the neural network F is called to be safe
corresponding to the input set I , we write F (I ) |= S , if and only if RLk

∩¬S = ∅,
where RLk

is the reachable set of the neural network with the input set I , and ¬ is
the symbol for logical negation. Otherwise, the neural network is called to be unsafe
F (I ) ̸|= S .

4.3 Methods to solve the reachability problem of FNNs
In this Section, we will introduce two algorithms proposed in [TMLM+19] for solving
the reachability problem for FNNs with the ReLU activation function.

The first approach is the exact and thus, complete analysis. This algorithm will
be discussed to provide insight into the motivation behind the second algorithm. The
second method, termed over-approximate analysis, will be the central focus of this
thesis. However, our method for reducing the star set’s dimension can also be applied
to the exact analysis.

4.3.1 Exact and Complete Analysis

As we have shown in Proposition 2.2.1, any bounded convex polyhedron can be rep-
resented as a star. Hence, we can assume that the input I of the FNN is a star
set. According to the Definition 4.2.1, the reachable set of the first layer of the FNN
RL1

is computed by applying operations on the input set I . The multiplication
of W and the star set I , along with the addition of the bias vector b1 is an affine
transformation of the star set. The ReLU operation on a star set involves intersecting
the star set with half-spaces, corresponding to the two cases of the ReLU function
(projection for the negative case and identity for the positive case). Thus, according
to the Propositions 2.2.2 and 2.2.3 RL1

(which is a union of star sets due to the case
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splittings) is also a star set. According to the Definition 4.2.1, the reachable set of the
FNN is defined incrementally, layer-by-layer. While we are using the same operations
(affine mapping, intersection with half-spaces) for all layers, having RL1 as a star
implies that all other reachable sets of the FNN are also stars.

For a layer L with n neurons in it, the reachable set of this layer is computed by
doing a sequence of n chained exactStepReLU operations:

RL = ReLUn(ReLUn−1(· · · (ReLU1(Θ)))),

with Θ = ⟨c,V, P ⟩ being the input star set to the FNN. Intuitively, this means
that each neuron is responsible for the exactStepReLU operation on one dimension of
the star set. The i−th dimension of the star set captures the reachable states (values)
of the i−th neuron in the layer.

The exactStepReLU operation on the i−th neuron in the layer, i.e.,
exactStepReLUi(·), works as follows. First the input star set Θ = ⟨c,V, P ⟩ is divided
into two subsets: Θ = Θ1 ∪ Θ2, such that Θ1 = Θ ∧ xi ≥ 0 and Θ2 = Θ ∧ xi < 0.
As Θ1 and Θ2 are the results of the intersection of a star set with a half-space,
according to the Proposition 2.2.3, Θ1 and Θ2 are also star sets. Let us assume
Θ1 and Θ2 are as follows: Θ1 = ⟨c,V, P1⟩ and Θ2 = ⟨c,V, P2⟩. This step was a
preparation to apply the exactStepReLU on the xi. Since, xi < 0 for Θ2, applying
ReLU on the xi of the vector x = [x1, · · · , xi−1, xi, xi+1, · · · , xn]

T results a new vector
x′ = [x1, · · · , xi−1, 0, xi+1, · · · , xn]

T . This procedure is the same, as mapping the star
set Θ2 by the mapping matrix M = [e1, · · · , ei−1,0, ei+1, · · · , en]: x′ = Mx. On the
other hand, applying ReLU on the xi of the vector x ∈ Θ1 does not change anything
(since xi ≥ 0 and ReLU(xi) = xi).

The result of the exactStepReLU operation on the i−th neuron in a layer L is the
union of two star sets: ReLUi(Θ) = ⟨c,V, P1⟩ ∪ ⟨Mc,MV, P2⟩.

From the description above, we can discern three cases regarding the ranges of the
states in one arbitrary dimension of the input star set:

1. The lower bound is greater than zero,

2. The upper bound is less than zero,

3. The lower bound is smaller than zero, and the upper bound is greater than zero.

The first two cases imply that there is no need to divide the star set into two subsets,
which is advantageous as it avoids increasing the number of star sets. This means that
knowing the ranges of all states will help boost the efficiency of the exact analysis.
We only increase the number of star sets by dividing the input star set into two
subsets only when the range of the values of the neuron lies on both sides of zero.
Another optimization strategy might involve checking the inclusion of star sets after
each exactStepReLU. However, this approach was found to be NP-complete [ST19]
and therefore, simply keeping both star sets as they are and later treating them as
separate star sets is more beneficial [ST19].

Although the exact analysis provides a concrete description of the neural network’s
behavior, the exponentially increasing number of star sets poses a serious limitation.
This makes the exact analysis inefficiently applicable to large neural networks with
many hidden layers, limiting its scalability.
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Algorithm 2 Star-based over-approximate reachability analysis for one layer
Input: I = Θ = ⟨c,V, P ⟩,W,b ▷ input star set, weight matrix, bias vector
Output: R ▷ over-approximated reachable set
1: procedure R =ApproxLayerReach(I ,W,b)
2: I1 = W ∗Θ+ b = ⟨Wc+ b,WV,P⟩
3: In = I1

4: for i = 1 : n do ▷ n is the number of neurons of the layer
5: In = ApproxStepReLU (In, i) ▷ ith approximate-stepReLU operation
6: end for
7: R = In

8: end procedure
9: procedure ApproxStepReLU(Ĩ , i)

10: Ĩ = Θ̃ = ⟨c̃, Ṽ, P̃ ⟩
11: [li, ui] = Θ̃.getRange(i) ▷ range of x[i], i.e., li ≤ x[i] ≤ ui

12: M =
[
e1 e2 · · · ei−1 0 ei+1 · · · en

]
13: if li ≥ 0 then R̃ = Θ̃ = ⟨c̃, Ṽ, P̃ ⟩
14: if ui ≤ 0 then R̃ = M∗ Θ̃ = ⟨Mc̃,MṼ, P̃ ⟩
15: if li < 0 and ui > 0 then
16: P̃ (α) ≜ C̃α ≤ d̃,α = [α1, . . . , αm]T ▷ input set’s predicate with p

constraints
17: α′ = [α1, . . . , αm, αm+1]

T ▷ new variable αm+1

18: C1 =
[
0 · · · 0 −1

]
∈ R1×m+1, d1 = 0 ▷ αm+1 ≥ 0 ⇔ C1α

′ ≤ d1
19: C2 =

[
Ṽ[i :] −1

]
∈ R1×m+1, d2 = −c̃[i] ▷ αm+1 ≥ x[i] ⇔ C2α

′ ≤ d2

20: C3 =
[

−ui

ui−li
× Ṽ[i :] 1

]
, d3 = ui

ui−li
(c̃i − li) ▷

αm+1 ≤ ui(x[i]−li)
ui−li

⇔ C3α
′ ≤ d3

21: C0 =
[
C̃ 0p×1

]
, d0 = d̃

22: C′ = [C0; C1; C2; C3], d′ = [d0; d1; d2; d3]
23: P ′(α′) ≜ C′α′ ≤ d′ ▷ output set’s predicate
24: c′ = Mc̃, V ′ = MṼ, V ′ = [V ′ ei] ▷ y[i] = ReLU(x[i]) = αm+1

25: R̃ = ⟨c′,V ′, P ′⟩
26: end if
27: end procedure

4.3.2 Over-approximation Analysis

The over-approximate reachability analysis (presented in Algorithm 2) is an alterna-
tive to the exact analysis. Although the exact analysis provides a complete view of the
reachable sets of an FNN, the downside of it is the exponentially increasing number
of star sets making its application on large FNNs computationally unfavorable. The
primary benefit of the over-approximate analysis is that we will have to track only
one single star set through the whole reachability analysis.

The need to separate the star set into two parts in exact analysis occurs when
we would get a non-convex set as the result of the ReLU. That happens if the lower
bound of a neuron is less than zero and the upper bound is greater than zero. In such
scenarios, the exact and over-approximate analyses differ.

For any input xi the output of ReLU(xi) = yi in over-approximate analysis is:
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yi = xi, if li ≥ 0.

yi = 0, if ui ≤ 0.

yi ≥ 0, yi ≤ ui(xi−li)
ui−li

, yi ≥ xi if li ≤ 0 and ui ≥ 0

(4.1)

uili yi ≥ 0

y i
≤ λx i

+
µ

y i
≥
x i

xi

ReLU(xi)

Figure 4.4: Over-approximation of ReLU neuron with λ =
ui

ui − li
and µ = − liui

xi − li
(Redrawn from [TMLM+19])

Figure 4.4 shows the values for xi in the third case that are restricted in the
depicted triangle, which is a convex over-approximation of the ReLU function on the
domain [li, ui].

In over-approximate reachability analysis we get the values for ReLU(xi) with
some over-approximation error in the third case. The dark blue lines describe the
exact set of the ReLU and the light blue shaded triangle is the over-approximated set.
Although this makes the analysis incomplete, it significantly enhances the scalability
of the over-approximate analysis for large FNNs compared to the exact analysis.

The over-approximation of a neuron is achieved by adding one new variable (αm+1)
to the predicate of the star set (line 17 in the Algorithm 2) and three new inequalities
in the predicate (lines 18−20 in Algorithm 2). These inequalities constrain the newly
added variable in the generator to be inside the triangle depicted above. The center
and the generator are also correspondingly changed (line 24 in the Algorithm 2).

4.4 Application in the reachability of neural networks
In this section, we will explore how our method can be applied during computing the
reachable set of a neural network using the over-approximation method introduced in
Section 4.3.2.

As presented in Section 3.3, the condition for the dimension reduction method to
work is that the rank of the generator matrix V must be less than the number of
its columns. This condition needs to be checked for the reachable set of each layer.
Therefore, for a k-layer FNN, we will perform k checks at the end of each layer and
at most k dimension reduction steps during the analysis.

Real-life FNNs are typically much larger than the exemplary FNNs presented in
Examples 3.2.1 and 3.4.1. For example, a well-known benchmark like the Airborne
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Collision Avoidance System (ACAS) Xu has five input and five output neurons, and
six hidden layers with 50 neurons each [LJB+22]. For a star set to represent the
reachable set of for example first layer, this means having a generator matrix of size
(50, 5 + j), where 5 is the number of original variables and j is the number of over-
approximated neurons in the layer.

Dealing with matrices of this size might cause computational overload. That is
why a non-naive implementation of the dimension reduction method is necessary. In
this section, we will discuss the tricks and improvements made in the implementation
to address this challenge.

The structure of the generator matrix V after one layer can be analyzed to un-
derstand its possible configuration. Assume, we had a star set of dimension (n,m) as
the input to the layer (meaning that for the generator matrix V̄ of the input star set:
V̄ ∈ Rn×m), and during the layer, we did j over-approximations (case 3 in Formula
4.1), i projections of the negatives (case 2 in Formula 4.1), and n − i − j identity
mappings (case 1 in Formula 4.1).

Reordering the rows of the generator matrix yields the following structure, where
Ij corresponds to the identity matrix of size j (Definition 0.0.6) and the Vslice ∈
R(n−j−i)×m corresponds to the matrix containing some rows of the original V̄ which
was the generator matrix of the current layer’s input star set:

V =

 0 Ij

Vslice 0
0 0

 ∈ Rn×(m+j)

The presence of the identity matrix in the generator matrix corresponds j over-
approximation steps (the first j rows), the 0-rows correspond to the projection of the
negatives (the last i rows), and in the middle part are the n− i− j identity mappings,
preserving the original rows from the generator matrix before the ReLU step.

For the first step, we are only interested in the rank of V, and in particular, if
rank(V) < m + j holds. The last i rows can not contribute to the rank (the rank of
that block is zero), so we can ignore them for this step. The rank of the Ij is fixed
and is equal to j. Because of the 0 blocks in V, the number of independent columns
in V is implied by:

1. the number of independent columns in Vslice (rank(Vslice)),

2. the number of independent columns in the identity matrix Ij (rank(Ij) , which
is j).

Therefore,

rank(V) = j + rank(Vslice).

To sum up, instead of considering the whole matrix V and checking rank(V) <
m + j, we can just take Vslice, and check if rank(Vslice) < m. If this does not hold,
then the dimension reduction method does not apply to this star set. Otherwise, we
continue, and based on the Algorithm 1 we do the steps described in lines 4−10 while
replacing each V in the algorithm with Vslice. Now we have a transformation matrix
G∗ ∈ Rm×m that ensures

VsliceG∗ = V ′
slice,
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where V ′
slice is the matrix that has exactly rank(Vslice) non-zero and m−rank(Vslice)

0-columns. This is not the same transformation matrix G ∈ R(m+j)×(m+j), which we
would have obtained if we would consider the whole V. This means, now we need
to construct back G having G∗. The dimensions of G and G∗ show that we are miss-
ing only the j over-approximation columns. This means, that G is constructed by
appending unit vectors from the (m+ 1)− th to (m+ j)− th position:

G =

[
G∗ 0
0 Ij

]
Now let us prove that this is the right transformation matrix G. Using the block

structure of the matrices in the matrix multiplication, we obtain:

VG =

 0 Ij

Vslice 0
0 0

[ G∗ 0
0 Ij

]
=

 0 · G∗ + Ij · 0 0 · 0 + Ij · Ij

G∗ · Vslice + 0 · 0 Vslice · 0 + 0 · Ij

0 · G∗ + 0 · 0 0 · 0 + 0 · Ij

 =

 0 Ij

V ′
slice 0
0 0


Now when we have the right transformation matrix G, we can compute CG = CFM

and we are ready to apply the FM elimination. After applying the FM elimination,
we get the new C′

FM and d′. We erase the 0-columns from C′
FM and get C′. We can

also apply the optional step of removing the redundant constraints and get a final
star set Θ′ = ⟨c,V ′, P ′⟩, P ′ ≜ C′α′ ≤ d′. This is the reachable set of the current layer
with reduced dimension, which serves as input for the next layer.



Chapter 5

Experimental results

In this section, we show and analyze the performance of the dimension reduction
algorithm and compare two variable elimination algorithms. As benchmarks, we used
the ACAS Xu[KBD+17], Drones[DGPT24], and Thermostat[Jia23] benchmark sets.

We implemented the dimension reduction algorithm in the open-source C++ tool
HyPro1 [SÁMK17] using the Eigen2 [GJ+10] library for linear algebra. We evaluate
our algorithm only during the over-approximative analysis for computing the reacha-
bility set of an FNN. The whole analysis is executed using exact number representa-
tions (rational numbers represented by the mpq_class of the GNU MP library). The
experiments were done using a machine with Ubuntu 22.04.3 LTS operating system,
12GB RAM, 8 cores, and Intel® Core™ i7-1065G7 CPU @ 1.30GHz × 8 processor.

During our evaluation of the dimension reduction method on certain benchmarks,
we encountered one issue, namely, applying the FM elimination causes an exponential
blow-up in the number of constraints, thus calculating the result is computationally
infeasible. In most cases, at the end of each layer, we have to eliminate more than
one variable. For this, we would have to iteratively apply FM elimination until there
are no variables to be eliminated. However, as shown in Section 2.3.1, the worst-case
number of new constraints the algorithm generates for eliminating one variable is
double exponential regarding the number of constraints in the original system. The
exponential blow-up happens not only in worst-case but also, as our experiments show,
that on average the number of newly generated constraints is too big even when only
eliminating one variable. If we had applied the FM Elimination to eliminate more
than one variable, then in most cases we would have ended up with a huge number
of constraints, that are even hard to allocate in the memory.

Based on this problem, we used another variable elimination algorithm, which has
the same idea as FM, but it allows us to eliminate more than one variable in one shot.
The method is called FMplex [NPÁK23], which is an extension of the FM variable
elimination. It uses simplex optimization[Dan63] while generating the constraints
and in the implementation, it operates with sparse matrices[YWLG17] (instead of
the dense matrices like our basic FM elimination implementation does).

Although FMplex is a faster algorithm and in total produced fewer constraints
than the basic implementation of FM elimination, it still takes much more time than
the whole analysis of an FNN with the redundant variables in the predicate and the

1https://github.com/hypro
2https://eigen.tuxfamily.org/index.php?title=Main_Page

https://github.com/hypro
https://eigen.tuxfamily.org/index.php?title=Main_Page
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generator matrix. For example, on one of the ACAS Xu networks, the elimination
of only three variables can take up to 2.5 minutes (N3

3,1 of Table 5.1). In com-
parison, the whole reachability analysis of the ACAS Xu benchmark with redundant
variables in the predicate and the generator matrix lasts on average only 10.38 seconds
(note that this result was achieved by a machine with an overall poorer performance)
[Mas23]. Therefore, the dimension reduction method does not improve the overall
running time of the whole analysis. For this reason, in this chapter, we are not going
to focus on the running time, but on other aspects, such as the number of (redundant)
constraints returned by FMplex, and in Chapter 6 we will discuss some suggestions,
that might improve FMplex in the future.

5.1 ACAS Xu
To start demonstrating different statistics, we wanted to test, in how many cases the
condition for our method (rank of the matrix less than the number of its columns)
holds. For this, we examined the ACAS Xu networks for Property 3 [KBD+17]
with the over-approximation method. At the end of each layer, we check whether
the condition holds and how many variables can be eliminated. The results are
summarized in Figure 5.1.

Figure 5.1: The arithmetic means and the maximum number of variables that can be
eliminated after each layer when applying the over-approximation method on ACAS
Xu benchmarks considering Property 3 (see appendix of [KBD+17]).

Let us discuss the results. As we can see, at the end of the first layer, there is no
benchmark, for which the condition rank is smaller than the number of columns in the
generator matrix holds. Already starting from the second layer, we observe that there
are some benchmarks, for which we can apply the dimension reduction. The small
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value of the means indicated that for most benchmarks, the condition still does not
hold. The averages for the third and upcoming layers show that for most benchmarks
the condition holds. As you can see, the number of variables that can be eliminated
grows exponentially. The linear dependency that occurs at any layer (particularly
at Layer 1 and Layer 2), will not disappear and even more, increases the chances of
getting more dependencies in the upcoming layers. However, we assume that this
number would be much lower if we had eliminated the linear dependent after that
layer, where it first appears. We could not prove or disprove our thoughts because
the number of constraints that we get after eliminating the variables after the first
possible layer (even when using FMplex) is huge and it is impossible to continue the
analysis with this number of constraints. In Table 5.1, the performance of FMplex on
some benchmarks of ACAS Xu is summarized.

Np
x,y Row Col LinDep Time(s) Constraints

N3
3,1 34 13 1 0.022 224

N4
1,9 55 20 1 0.408 577

N3
1,2 58 21 2 1.333 4797

N3
5,5 91 32 2 37.860 16770

N3
2,9 34 13 3 1.739 4385

N3
4,1 67 24 3 533.361 58984

N3
1,1 73 26 3 283 88891

N4
4,7 88 31 3 T -

N4
4,4 49 18 4 55.418 54163

N3
2,8 55 20 4 114.399 73761

N4
3,7 52 19 4 240.006 82496

N3
2,6 76 27 4 T -

N4
4,1 82 29 4 T -

N3
2,7 52 19 5 460.166 164203

N3
2,5 61 22 5 T -

N3
2,2 64 23 5 T -

N4
3,4 70 25 5 T -

N4
1,5 85 30 5 T -

N3
3,9 34 13 6 103.906 33458

N4
5,1 82 29 6 T -

N3
5,4 52 19 7 T -

N4
2,8 79 28 7 T -

Table 5.1: The performance of FMplex on the ACAS Xu benchmark set. Nx,y is the
benchmark network and the p is the input property (3 or 4). The Row is the number
of constraints that the predicate has originally, Col is the number of variables in the
predicate, LinDep is the number of linearly dependent columns, and Constraints is
the number of constraints returned after eliminating all linearly dependent columns.
T means the method did not terminate within one hour.

As you can see, eliminating more than four variables is challenging for FMplex.
When trying to eliminate five or more variables almost on all benchmarks FMplex
did not terminate within one hour. However, on N3

3,9 it could eliminate six variables
in less than two minutes. The reason is the number of constraints and variables in
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the original system. It has only 34 constraints over 13 variables. In comparison, the
other benchmarks have at least 60 constraints over at least 22 variables, when trying
to eliminate five or more variables. It is also interesting to state, that although N4

5,4

has less than 60 constraints (52) and less than 22 variables (19), FMplex still did not
terminate in one hour when trying to eliminate seven variables.

For all networks, regardless of how many variables were eliminated, we could not
continue analyzing the reachable set of the FNN. Even with the smallest number
of returned constraints (which happens in benchmark N3

3,1), we encounter an error
thrown by GLPK when trying to solve LP instances (namely simplex) on these con-
straint systems resulting from FMPlex: Assertion failed: −DBL_MAX <= val
&& val <= +DBL_MAX. This error indicates that when trying to calculate the
bounds of the neurons in the next layer using simplex (which has a certain range for
the input), we encounter very large numerators and denominators in the fractions
represented by mpq_class that exceed the maximum allowed limit for GLPK sim-
plex. These large numbers occur because we are working with exact numbers and
due to the precise calculations of FMplex, which require very large numerators and
denominators to represent values with high precision. The solution to this problem
could be that after each layer we normalize all values. This would also be a costly
operation, however, it will allow us to calculate the reachable set of at least the next
layer.

The returned number of constraints is also an interesting topic. As we can observe,
the number of constraints FMplex returns is exponential regarding the number of
original constraints. It is better than the one returned by the basic FM elimination,
which is double exponential. However, dealing with exponentially more constraints
is highly inefficient. Moving back to our dimension reduction Algorithm 1, we see
that at the end we could also remove the redundant constraints and end up with
less number of constraints. We tried to apply one of the best linear programming
solvers: GLPK [GAD+13]. However, for the ACAS Xu benchmark, detecting which
inequalities are redundant and removing them was impossible. We faced again the
same error: Assertion failed: −DBL_MAX <= val && val <= +DBL_MAX.
The reason is, that for removing the redundant constraints also the GLPK simplex is
invoked, which raises the same error as we had when trying to calculate the bounds of
neurons at the next layer. However, we also tried to detect and remove redundancies
while computing the reachability with floating points (doubles). Unfortunately, in
this case, the program did not terminate in a reasonable time.

The encountered problems above show that we are in a deadlock even if assuming
that the normalization of the values after each layer is done: we cannot continue the
analysis of the FNN because the number of constraints is so big that we can neither
allocate the constraint matrix (bad alloc error, discussed in the next paragraphs) nor
remove the redundant constraint.

This means, with the current implementation of FMplex it is impossible to apply
the dimension reduction method on the ACAS Xu benchmark.

5.2 Drones

Another benchmark, that we used is the Drones benchmark. This benchmark has
eight trained neural networks (denoted AC1, . . . , AC8, Table 5.2).

However, the number of layers becomes irrelevant as we could not proceed beyond
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Architecture Network ID Neurons

Two layers

AC1 32, 16
AC2 64, 32
AC3 128, 64
AC4 256, 128

Three layers

AC5 32, 16, 8
AC6 64, 32, 16
AC7 128, 64, 32
AC8 256, 128, 64

Table 5.2: Drones benchmark networks architecture, reused from [Mas23]

the first layer where our condition was met. Either the number of returned constraints
after the dimension reduction method was too large, rendering further analysis impos-
sible (both with FMplex and basic FM), or the program failed to terminate. However,
we can present the results of the eliminations where it terminated.

For each neural network, we have two safety properties (denoted AC11 and AC12
when applied on the first neural network), that we can check (two different inputs). In
total, we have 16 network and input property pairs, but because the computation of
the reachable set of two pairs (AC41 and AC81) could not be finished within two hours,
those two pairs will not analyzed. Note, that the dimension reduction method was not
even applied on these pairs. On the pair AC32 the method is not applicable because
the condition never was met. We left out these three networks and input property
pairs and compared the behavior of FMplex and the basic FM implementation on
the remaining 13 benchmarks. In Table 5.3 we summarized the number of returned
constraints and in Tables 5.4a and 5.4b the running time of the methods.

The findings reveal that FMplex successfully solved only four out of 13 instances.
In this benchmark, the number of eliminated variables peaked at 6 within one hour.
For any number of variables greater than six, FMplex did not terminate in one hour.
However, the number of already existing constraints also matters. For instance, while
both AC11 and AC62 benchmarks required the elimination of six variables, AC11
entailed double the number of constraints compared to AC62. Consequently, FMplex
managed to tackle the latter but not the former benchmark. Comparing FMplex
with basic FM we can say, that Fmplex remarkably outperformed FM. FM could
only eliminate at most two variables, which is way beyond the number of variables
that should be eliminated. Because of this problem, we decided to work with smaller
benchmarks, to be able at least to finish the FNN reachable set analysis by applying
the dimension reduction method at the end of each layer.
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Row Col LinDep FMplex FM1 FM2 FM3

AC11 69 27 6 T 509 53869 Killed(BA)
AC12 42 18 11 T 131 2920 Killed(R)
AC21 105 39 29 T 1004 221277 Killed(BA)
AC22 33 15 5 20486 153 4688 Killed(R)
AC31 231 81 51 T 5336 Killed (BA) -
AC42 57 23 4 214859 608 86147 Killed(BA)
AC51 81 31 9 T 564 64572 Killed(BA)
AC52 30 14 4 4268 129 3153 Killed(R)
AC61 105 39 29 T 1034 232321 Killed(BA)
AC62 30 14 6 18932 109 2215 Killed(R)
AC71 159 57 43 T 2461 Killed(R) -
AC72 42 18 9 T 161 4840 Killed(R)
AC82 49 19 13 T 134 2939 Killed(R)

Table 5.3: The comparison of the performance of both methods, FMplex and basic FM
elimination. Row is the number of constraints that the predicate has originally, Col is
the number of variables in the predicate, LinDep is the number of linearly dependent
columns, under FMplex is the number of constraints after eliminating all linearly
dependent columns, under FM1, FM2, and FM3 are the numbers of constraints when
trying to iteratively eliminate first, second and third using basic FM. Killed(BA)
indicates that we have a bad allocation error, Killed(R) indicates that we ran out of
RAM during the computation and T means the method timed out.

FM1 FM2 FM3

AC11 0.014 1.886 Killed
AC12 0.004 0.136 Killed
AC21 0.030 13.719 Killed
AC22 0.006 0.231 Killed
AC31 0.406 Killed -
AC42 0.044 8.049 Killed
AC51 0.015 1.776 Killed
AC52 0.002 0.065 Killed
AC61 0.040 15.371 Killed
AC62 0.003 0.097 Killed
AC71 0.090 Killed -
AC72 0.006 0.266 Killed
AC82 0.003 0.111 Killed

(a) Time in milliseconds to eliminate one
and two variables by iteratively applying
FM. The reasons for Killed are the same
as presented in the Table 5.3 above

linDep FMplex

AC11 6 T
AC12 11 T
AC21 29 T
AC22 5 42
AC31 51 T
AC42 4 408
AC51 9 T
AC52 4 7
AC61 29 T
AC62 6 76
AC71 43 T
AC72 9 T
AC82 13 T

(b) Time in seconds to eliminate linDep
variables using FMplex. T means the
method timed out.

Table 5.4: Time comparison of two variable elimination techniques on Drones bench-
mark.



Thermostat 49

5.3 Thermostat
The next benchmark that we worked with is the Thermostat benchmark. The neural
network of this benchmark consists of two input neurons, ten neurons in each of two
hidden layers, and one output neuron. The purpose of focusing on this benchmark is
to analyze the number of redundant constraints returned by FMplex. Therefore, we
will leave the time measurements for the thermostat benchmark.

Although the benchmark is small, when eliminating two or more variables, we
could not find the number of redundancies. Even when eliminating one variable we can
see, that it is not always the case that the number of redundant constraints could be
calculated (benchmark ID 13). We got again the Assertion error: −DBL_MAX <=
val && val <= +DBL_MAX. This shows, that the values go beyond the ranges
that GLPK can handle. For example, on benchmark 13, we get the number that
has 309 digits, which is greater than DBL_MAX = 1.7976931348623158e+ 308. In
this case, neither the analysis can be continued, nor the redundant constraints can
be removed. The reason is that in both cases simplex is invoked, which cannot be
executed because of the assertion error. As in the case of elimination of more than
one variable we do lots of division and multiplication operations, and the values blow
up very quickly. This is why when eliminating more than one variable, on none of the
benchmarks the redundancy check could be done. One solution to this problem could
be to divide the nominator and denominator of the fraction by the GCD (greatest
common divisor). It might only not help in general, but still is an improvement, that
can be applied in some cases. There is also another solution, which is more complex
and requires a proper implementation. As during the over-approximation step the
values of the coefficients in the three new inequalities (lines 17−19 in Algorithm 2) in
the constraint matrix C are implied by the bounds of the neurons, we can modify those
bounds in a way, that the resulting constraints are easier and computationally more
beneficial to represent with exact representation. This can be done by rounding down
(or just decreasing) the lower bounds and rounding up (or just increasing) the upper
bounds. In this way, we over-approximate the values even more, but the analysis
remains sound.

Focusing on the cases where the number of redundant constraints could be cal-
culated we can say, that on this benchmark, the number of generated redundant
constraints by FMplex is approximately 34%. This number may be way different
than what we would expect to see in general cases. The main reason is that 34% that
we got, is only based on the cases where only one variable is eliminated. The results
of applying the dimension method on this benchmark are summarized in Table 5.5
below.
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ID Row Col LinDep Constraints Redundant

1 4 2 1 2 0
2 7 3 1 8 2
3 10 4 1 16 4
4 13 5 1 26 5
5 13 5 1 26 6
6 10 4 1 16 10
7 19 7 1 52 18
8 29 9 1 86 20
9 31 11 1 128 27
10 31 11 1 128 29
11 31 11 1 128 30
12 31 11 1 128 101
13 31 11 1 128 -
14 16 6 2 150 -
15 19 7 2 205 -
16 22 8 2 291 -
17 22 8 3 791 -
18 69 9 4 677463 -
19 28 10 4 4372 -
20 22 8 4 1797 -
21 25 9 4 2871 -
22 28 10 5 8987 -
23 31 11 5 14415 -
24 39 14 7 134571 -

Table 5.5: The performance of FMplex on the Thermostat benchmark. Row is the
number of constraints that the predicate has originally, Col is the number of variables
in the predicate, LinDep is the number of linearly dependent columns, Constraints is
the number of constraints returned after eliminating all linearly dependent columns,
Redundant is the number of redundant constraints detected by GLPK solver. - in-
dicates that we got an error: Assertion failed: −DBL_MAX <= val && val <=
+DBL_MAX.
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Conclusion

6.1 Summary

In Section 3.4, we introduced a method for star set dimension reduction where we
decrease the number of variables in the predicate using Forier-Motzkin(FM) variable
elimination. For this, in Section 3.2 we showed what form must the star set have
to apply the FM elimination. In Section 3.3 we proved under which condition and
how any given star set can be transformed into an equivalent form like in Section
3.2. Moreover, in Chapter 5, we showed how often this condition is met on a real-life
benchmark - ACAS Xu.

Furthermore, we implemented our method in Hypro - a C++ state set represen-
tation library, using the Eigen library for our calculations. Finally, we applied our
method for dimension reduction on the state set over-approximate reachability anal-
ysis of feedforward neural networks. For this, we extended the implementation of our
method to be more efficient while applying it in the reachability analysis of FNNs,
taking into account the specific aspects of the over-approximate analysis. We chose
three benchmarks to measure the runtime, and number of returned constraints and
tried to determine how many of them are redundant. We also compared two vari-
able elimination techniques mentioned above by integrating them into our dimension
reduction method.

6.2 Discussion and Future work

Although our method successfully reduces the number of variables in the star set rep-
resentation without any information loss, it does not necessarily reduce its dimension
in the first parameter: the number of constraints. Neither FMplex nor FM could
efficiently eliminate the desired variables. Moreover, in some cases, the elimination
process could not be terminated within a fixed running time. In other cases, the
coefficients in the returned system exceeded the threshold of manageable values for
further analysis. We suppose this is because of the complex operations done by FM-
plex internally for dealing with a large number of constraints. These numbers got so
big that it was also impossible to detect and remove the redundant constraints.

The problems mentioned above hindered us from getting even one layer further af-
ter applying the dimension reduction algorithm (for the realistic benchmarks, such as
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Drones and ACAS Xu). As the results after the elimination are already out of control,
we have two suggestions that can help to improve the performance if implemented
during the FMplex procedure:

1. Bind the numbers within certain ranges.

We have observed that once the numbers exceed a certain threshold, it becomes
increasingly challenging (sometimes impossible) to efficiently bind them back.
We attempted to apply the corresponding method in HyPro to bind the values
of the returned constraints, and we did not succeed. Already before the binding
procedure, the numbers exceeded the DBL_MAX threshold. After this, it is
impossible to bind them back.

2. Prevent the redundant constraint to appear in the system.

We tried to apply the removal of the redundant constraints on the result of FM-
plex using the linear solver GLPK. While we successfully identified redundant
constraints in some instances, allowing us to remove them and proceed with
fewer constraints, we encountered challenges in detecting redundancies in most
cases due to unbounded numerical values.

Indeed, a proactive approach to avoid adding redundant constraints can be very
beneficial. Some heuristics can be applied to remove redundant constraints dur-
ing FMplex. A practical and straightforward approach can be the following:
do not add those constraints to the system that are multiples of already exist-
ing constraints during the FMplex. This will not guarantee a redundancy-free
system afterward, but at this stage, it can significantly decrease the number of
returned constraints.

However, we think that even if the above-listed and also other improvements
are done on FMplex, it may still be challenging to achieve significant runtime im-
provements using dimension reduction in star-based reachability analysis of FNNs.
Nevertheless, with continued enhancements and optimizations, there is a possibility
of achieving more efficient analysis procedures with the dimension reduction method
that can provide valuable insights into the behavior of FNNs.

In particular, even if the analysis cannot be significantly accelerated, it can still
yield important information about the network’s behavior. Detecting dimensions
that violate safety properties, for example, can be crucial for identifying potential
vulnerabilities in the network. This information can be used to generate adversarial
examples, which can then be used as training data to improve the network’s pattern
recognition capabilities.

Therefore, while the dimension reduction method may not directly improve run-
time efficiency, it can still play a valuable role in enhancing the overall analysis process
and improving the robustness of FNNs.

The dimension reduction can also be performed not only at the end of each layer
but also after each neuron in a layer. This approach would involve checking for
changes in the generator matrix’s rank and number of columns after each projection
step. Furthermore, this approach might lean towards employing FM over FMplex,
as eliminating only one variable tends to be more favorable with FM. However, in
certain scenarios, FMplex may outperform FM. Therefore, it is crucial to develop
an implementation tailored for efficient single-variable elimination. This alternative
approach requires further implementation and evaluation to assess its effectiveness
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comprehensively. Unfortunately, due to time limitations, we were unable to implement
and evaluate this approach in our experiments.

Besides these applications, where an actual variable elimination is applied, our
implementation can be used differently. The ability to transform a star set into an
equivalent form efficiently opens up opportunities for various applications where a
desired representation of the star set is needed. We proved, that the transformation
of a star set returns another star set that is equivalent to the original one.

The experimental results show that the transformation of a star set to an equiv-
alent one is done very efficiently. It took an average of less than a millisecond on a
real-life benchmark (ACAS Xu). Moreover, the flexibility in choosing the transfor-
mation matrix G allows for customization based on specific requirements or desired
properties of the resulting star set. The only restriction on choosing G is that it needs
to be invertible.

Finally, the implementation of the dimension reduction method as it is now can be
used by the developers of FMplex. With the help of the efficient star set transforma-
tion operation, they can easily test their improvements and ideas on any star-set-based
benchmark.
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Appendix A

Proofs

This section contains additional proofs that were omitted from the thesis. These
proofs further support the main theorems and lemmas discussed throughout the thesis.
Therefore, the purpose of the supplementary proofs section is to be read alongside
the thesis, enhancing the reader’s understanding.

Proposition A.0.1. Given a matrix A in Rn×m n,m ∈ N : n < m. Prove there are
at least m− n linearly dependent columns in A.

Proof. Let rank(A) = r. Since r is the maximum number of linearly independent
columns, r ≤ min(m,n), therefore, we have r ≤ n. Now, consider the nullity of A:
nullity(A). The nullity is given by the rank-nullity theorem:

nullity(A) = m− r

Since r ≤ n, we have m − r ≥ m − n, which implies that nullity(A) ≥ m − n. The
nullity of A represents the number of linearly dependent columns in A. Therefore,
we have shown that there are at least m− n linearly dependent columns in A.

Proposition A.0.2 (Convex polytopes as stars). Any bounded convex polyhedron
P = {x | Cx ≤ d,x ∈ Rn} can be presented as a star.

Proof. The star set Θ represents the polyhedron P with the center c = [0 . . . 0]T ,
the basis vectors V = {e1, . . . , en} in which ei is the i-th basic vector of Rn, and the
predicate P(α) ≜ Cx ≤ d.

Proposition A.0.3 (Affine transformation). Given a star set Θ = ⟨c,V,P⟩, an affine
mapping of the star Θ with the linear mapping matrix W and offset vector b defined
by Θ̄ = {y | Wx+ b,x ∈ Θ} is another star such that

Θ̄ = ⟨c̄, V̄, P̄⟩, c̄ = Wc+ b, V̄ = [Wv1, · · · ,Wvm], P̄ ≡ P

Proof. By the definition of a star, we have Θ̄ = {y | y = Wc + b +
∑m

i=1(αiWvi)}
so that P (α1, . . . , αm) = ⊤ yields that Θ̄ is another star with the center c̄ = Wc+b,
basis vectors V̄ = {Wv1, . . . ,Wvm} and the same predicate P as the original star
Θ.
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Proposition A.0.4 (Intersection with halfspace). Given a star set Θ = ⟨c,V,P⟩,
with V ∈ Rn×m and a halfspace H = {x ∈ Rn | HTx ≤ g} with H ∈ Rnand g ∈ R.
The intersection Θ ∩ H is another star set Θ̄ with:

Θ̄ = ⟨c,V, P̄) with P̄ = P ∧ P ′,

where P ′(α) ≜ (HTV)α ≤ g −HT c, and V = [v1,v2, ...,vm].

Proof. The resulting star is Θ = {x | x = c +
∑m

j=1 αjv
j} s.t. (α1, . . . , αm)T ∈

P ∩ HTx ≤ g}. Since x = x +
∑m

j=1 αjv
j, the new constraint can be written as

HT (c + Vα) ≤ g, where α = [α1, . . . , αm]T . Consequently, the new predicate is
P ∧ P ′, P ′(α) = (HTV)α ≤ (g −HT c).
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