of Hybrid
hybr I d Systems
Informatik 2

The present work was submitted to the LUFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

AN INCREMENTAL ADAPTION OF THE
FMPLEX METHOD FOR SOLVING
LINEAR REAL ALGEBRAIC FORMULAS

Svenja Stein

Examiners:)
Prof. Dr. Erika Abraham
Jasper Nalbach

Additional Aavisor:

Prof. Dr. Christina Bising
Aachen, 24.05.2022

Abstract

Satisfiability modulo theories is the problem of deciding the satisfiability of
a Boolean formula whose atoms come from a background theory. We present
two procedures for solving SMT problems with sets of constraints from the
background theory of linear real arithmetic: The Fourier-Motzkin variable elim-
ination which repeatedly eliminates variables by combining all of their upper
bounds with all of their lower bounds and the Simplex algorithm which oper-
ates by pivoting so-called basic and non-basic variables in a tableau in order to
find an assignment for the variables that satisfies the given constraints. These
methods have recently been combined into the FMPlez method which behaves
similarly to the Fourier-Motzkin variable elimination, but chooses an assumed
greatest lower bound or a smallest upper bound to compare to all opposite
bounds and all other bounds of the same time. As such choices can be wrong,
it may be necessary to backtrack to previous decisions and try another choice.
In lazy SMT solving, we might have to check a set of constraints for satisfiabil-
ity on one call, while the next requires us to check this very set again, only in
conjunction with additional constraints. This is the incentive for presenting an
incremental version of the algorithm which reuses its previous results and mod-
els. Apart from adding incrementality, we presented appropriate data structures
and heuristics as well as different manners of backtracking. These aspects were
then implemented, tested and evaluated.

iv

Erklarung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbststindig verfasst und noch
nicht anderweitig zu Priifungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wortliche und sinngeméfe Zitate wurden als solche gekennze-
ichnet.

Svenja Stein
Aachen, den 24. Mai 2022

vi

Acknowledgements

I would like to thank Prof. Erika Abraham for the opportunity to write this thesis
and her extensive, patient and inspiring support for the theoretical side of it, as well
as Jasper Nalbach for the support in the technical aspects.

Additionally, I would like to thank my mother, my friends and my cat for keeping me
sane during this wondrous journey.

Contents

B Prelmnnarics

2.1 Satisfiability Modulo Theories|.

2.2 Background Theory: Linear Real Arithmetic

3 FMPlex

3.2 Combining Constraints|.,

3.3 Conflict Handling]

3.4 Obtaining a Model|]

3.5 Extension to Strict Operators and Equalities|]

4.1 Data Structures and Auxiliary Functions|.

4.2 Incrementality] oo

[Tmplementation and Testing]

.1 Implementation| o o o

5.2 Testing Results and Discussion|

[6_Conclusion|

0. ummary

11
11
12
13
17

23
23
24
25
29
29
30

33
33
35
38

43
43
44

49
49
49

51

viii Contents

Chapter 1

Introduction

One of the most fundamental satisfaction problems is that of Boolean satisfiability,
often referred to as SAT. SAT solving is one of the state-of-the-art technologies to
check the satisfiability of propositional logic formulas. A SAT solver receives a for-
mula over Boolean variables connected via operators such as conjunction, disjunction
or negation and checks if it is satisfiable, i.e. if there is an assignment of the formula’s
variables to either true or false so that the entirety of the formula evaluates to true
[MSM18]|. This problem was also the first to be proven as NP-complete [CooT]].
While SAT solving does have its areas of applications, certain problems require a
more expressive modeling language. Satisfiability modulo theories, commonly abbre-
viated as SMT, arose from combining Boolean formulas with non-Boolean variables,
function and predicate symbols from certain logical background theories such as the
theory of integers, the real numbers, or different data structures. SMT solvers and
their techniques, with the extended expressiveness of their corresponding formulas,
have proven useful in a variety of applications, including scheduling [DMBI11], pro-
gram verification, test-case generation, model-based development [BAMO09| as well as
theory-proving systems such as PVS [ORS92].

The focus of this thesis resides in the theory of quantifier-free linear real algebra, more
precisely in the satisfiability of conjunctions of linear real constraints on a set of vari-
ables. The possibly oldest approach to decide such a problem is the Fourier-Motzkin
variable elimination which was first proposed in 1827 by Fourier and more than a
hundred years later rediscovered in 1936 by Motzkin. The procedure eliminates each
variable x by stating that each lower bound on z is less than or equal to each upper
bound on x, and even strictly less, if one of the bounds is strict. However, this method
was largely regarded as inefficient, as it requires each upper bound on a variable to be
combined with each lower bound. This resulted in a doubly exponential worst-case
runtime, becoming infeasible even for low numbers of variables. Another technique
is the Simplex algorithm [Danl6]. It was originally developed for linear optimization
problems, i.e. optimizing the value of a linear function that is subject to various
linear constraints. It works by traversing from vertex to vertex along the edges of the
polyhedron induced by the linear constraints [Dan90]. Given that this also includes
determining if a feasible solution exists before optimizing it, this method can easily

10 Introduction

be adapted to be used in SMT solving.

These two methods have recently been combined into the FMPlex method in [Kob21].
Instead of combining every upper with every lower bound upon eliminating a variable,
one bound is assumed as greatest lower or, analogously, smallest upper bound for the
variable. It is then combined with every opposite bound and every bound in the same
direction. As this assumption may be incorrect, the algorithm requires backtracking
when an error in the choice of greatest upper or smallest lower bound is discovered.
Nevertheless, this reduces the Fourier-Motzkin elimination’s worst-case runtime from
doubly exponential to singly exponential.

This thesis intends to present an even further optimized version of the FMPlex algo-
rithm. One key to that is introducing incrementality. The dominant approach in the
field is lazy SMT solving. It is a collaboration between a SAT solver and a theory
solver, with the SAT solver checking the Boolean structure of the input formula and
consulting the theory solver when necessary to check feasibility in the theory. After a
successful intermediate theory check, the SAT solver might add a few constraints to
the ones already checked and then require a theory check for the consistency of the
conjunction of old and new constraints together. In these cases, it is beneficial to still
have the previous results stored instead of recomputing everything. Furthermore, we
deploy effective data structures and heuristics for choosing which variables to elimi-
nate via which and what kind of bound.

Chapter [2] introduces the basics of SMT checking, linear real arithmetic as the rel-
evant theory for this thesis, as well as the previously mentioned two approaches for
solving sets of linear constraints: the Fourier-Motzkin variable elimination and the
Simplex algorithm. Chapter [3| then presents the recently developed combination of
the former two, FMPlex, along with its characteristics and properties. We continue
with Chapter [4] where we introduce the novel incremental version of this algorithm,
including additional heuristics for further optimization. Chapter [p]covers the specifics
of an experimental implementation on top of the SMT solver SMT-RAT |CKJ™15|
and the evaluation of its results. We end the thesis with Chapter [6] with a brief
summary, discussion and an outlook on possible future work.

Chapter 2

Preliminaries

2.1 Satisfiability Modulo Theories

The description of an SMT problem consists of a Boolean combination of atoms that
originate from a certain background theory. The formula is usually given in con-
Junctive normal form (CNF) which is a conjunction of clauses. Clauses, in turn, are
disjunctions of literals, i.e. atoms or negation of atoms. The SMT solver itself consists
of a SAT solver interacting with a theory solver for the relevant background theory.

Most modern SAT solvers check the satisfiability of propositional logic formulas in
CNF based on the Davis—Putnam—Logemann—Loveland (DPLL) algorithm [DP60]
DLL62] which includes three key steps: decide, propagate and backtrack.
These steps are repeated until a satisfying valuation of the propositional variables is
found. In the decide step, the solver chooses a yet unassigned variable and assigns
a truth value to it. The subsequent propagate step determines the consequences of
that assignment decision in the context of the formula. A prominent deduction rule
for that is the unit clause rule: If all but one literal in a clause have been assigned to
false, then the last remaining literal must be assigned in such a way that it evaluates
to true in order to not falsify the clause and, in turn, the entire formula to be satis-
fiable [DMBI1I]. If we reach a state where no extension of our current partial truth
assignment can satisfy the formula, we have found a conflict. A conflict indicates that
one of the previous decisions was not correct. We need to backtrack and revert
decisions.

In SMT solving, the SAT solver works with a Boolean abstraction of the original for-
mula in which every atom from the background theory is replaced by a propositional
variable. The theory solver then receives a set of literals induced by the assigned
truth values of the propositional variables. Its task is then to check the conjunction
of these literals for satisfiability within the theory and report back to the SAT solver.
Should the theory solver determine that this conjunction is not satisfiable within the
theory, it will return a conflicting subset of these literals whose negation is abstracted
again and included as an additional clause to the SAT solver’s CNF formula. This

12 Preliminaries

negation is called a theory lemma [DMBI11] and causes the SAT solver to detect a
conflict and backtrack.

The crucial factor to differentiate eager from lazy SMT solving is when the SAT
solver calls on the theory solver. In eager SMT solving, the SAT solver first finds a
complete truth assignment for all Boolean variables so that the abstraction evaluates
to true, and then hands all induced literals to the theory solver. Lazy SMT solving on
the other hand means that after deciding on a variable assignment, propagating and
not finding a conflict in the Boolean abstraction, the SAT solver consults the theory
solver to determine if the already assigned (decided or propagated) literals obtained
so far are satisfiable. This allows for earlier backtracking of the SAT solver and
proves especially beneficial if the theory solver can work incrementally and process
additional constraints without recomputing the results of previous theory checking
calls. It is this characteristic that motivates the development and implementation of
an incremental version of the FMPlex method presented in this paper.

2.2 Background Theory: Linear Real Arithmetic

The background theory of an SMT solver determines what kinds of atoms appear in
its formulas. Here, we consider linear real arithmetic.

Definition 2.2.1 (Linear terms and constraints). A linear term over variables x, . . .,
Ty takes the form
airy+ ... +apx, +0

with coefficients a1,...,a, € Q, and a constant b € Q. A linear constraint is a
comparison of one term against another by some relation and generally takes or can
be rearranged into the form

a1x1+ ...+ apx, X0

with the coefficients and the constants as in the definition above and a relation <1 €
{<7 S7 :7 Z’ >7 #}'

For linear terms ¢; and ¢, it holds that

tih =t & t1<taNta <ty
and, for the negation of the equality, it holds that

t1#ty © t<tyViy <t

Given this equivalence, we will limit ourselves to < € {<, <, >, >}, although equalities
and their negations may also be handled more directly.

In the following, for simplicity, we restrict ourselves to weak inequalities first and
discuss strict inequalities later in Section [2.3.1

We say that a variable x; occurs in a constraint c if a; # 0 and write x; € c to denote
this fact. We call ¢ a lower bound on variable z; if a; < 0 and denote it with Ib(c, x;).
Analogously, if ¢ is an upper bond on z; as a; > 0, we write ub(c, z;).

Variable-free constraints can be brought into the variable-free form of a < 0 with

Fourier-Motzkin Variable Elimination 13

a € Q. We then write true instead of the actual constraint if a is indeed less or equal
to 0, making it trivially true, and write false otherwise.

Definition 2.2.2 (System of Linear Inequalities). A system of linear inequalities over
a set of real variables X = {x1,...,x,} encapsulates m constraints over the variables
mn a matric A € QM*™ and a vector b € Q™. Given these and a vector x of these
variables, the system can be read as Ax < b, i. e.

ail ... Qip T a11T1 + ...+ a1xn, by

Ami --- QAmn Ty, Amp1T1 + -+ G Xn bm

Thus, we simply describe the system with (A,b).

As such, each row of this system corresponds to a single constraint and each column
of A correlates to a variable. A theory solver for linear real arithmetic receives just
such a system with the goal to determine if there exists a valuation of the variables
such that all constraints are fulfilled. A valuation is a function « : X — R, assigning
each variable a real value. If a valuation fulfills all constraints in a system, we consider
it a model of said system.

Example 2.2.1 (System of Linear Inequalities). Assume variables x, y, and the
following constraints:

—r—2y < =2
r—2y <
r4+2y <
—Jx+T7y <
6z +y < 18.

We can translate these into a matriz of coefficients and a vector of constant bounds
representing this system of inequalities:

1 -2 92
1 -2 3
1 2 (x> <|s5
3 7|V 7
6 1 18

To avoid confusion in the further course of this thesis, ¢ will only be used to denote
row / constraint indices, i.e. 1 < ¢ < m. Similarly, j will only denote column /
variable indices, 1 < j < n.

2.3 Fourier-Motzkin Variable Elimination
The Fourier-Motzkin variable elimination is named after Joseph Fourier, who first

proposed the method in [Fou27] in 1827 and Theodore Motzkin after he rediscovered
it in [Mot36] in 1936. It aims to reduce the number of variables in a given system of

14 Preliminaries

linear inequalities until we obtain a variable-free constraint system whose correctness
then decides the overall satisfiability of our original system. We do this by explicitly
eliminating one variable per step with the possible side result of eliminating further
variables implicitly. The variable order decides the order in which the variables are
to be eliminated. E.g. we can assume an order simply based on the variables’ indices,
e, 1 < ... < xy.

To eliminate a variable x, we start by dividing the current constraints into three sets:
U, L, and N. The set U comprises all upper bounds on x; and L all lower bounds on
xk, while N contains exactly those constraints in which the variable does not occur.
To distinguish between upper and lower bounds, we denote a lower bound [€ L as
lix1+. . .+lpz, < by, and analogously, an upper bound u € U as u1x1+. . .+ upxy < by.
To be able to eliminate the variable, we rewrite our lower bounds as

1 n
[3,0 o] <o
j=1.i#k

1b(1)

denoting the left-hand side as [b(l) Similarly, we also rearrange upper bounds into the

form
1 n
T < —— —U; - X; | + by
= T K 2)

J=1j#k

ub(u)

and call the right-hand side ub(u). These forms allow us to combine the two con-
straints into one while simultaneously eliminating xj:

() < ub(u).

This new constraint can of course be rearranged into the standard format for con-
straints again for the process to be repeated on other variables. The factors \l%l and
ﬁ may be chosen differently as long as both are positive and that choice creates the
same absolute value of the coefficients of zj, in both constraints [Kob21].

Viewed as rows of a constraint system, this combination corresponds to scaling (with
positive factors) and then adding the two rows representing the two constraints so
that the coefficient of the resulting row for x; is 0. This means that each constraint
newly created by this operation is a positive linear combination of the upper and the
lower bound that created it.

Henceforth, we will call this operation COMBINEUPPERLOWER (u, [,). To eliminate
a variable from the set of constraints, we extend the operation to our sets U and L.
The Fourier-Motzkin algorithm combines each upper with each lower bound. We de-
fine the operation COMBINEUPPERLOWERSETS(U, L, x},) which takes the set of upper
bounds U, the set of lower bounds L and the variable to be eliminated and returns
the set of constraints we obtain by executing COMBINEUPPERLOWER on every upper-
lower bound combination from U x L. The constraints resulting from that, united
with those from N, form a reduced system of inequalities that is the basis for the
elimination of the next variable.

Fourier-Motzkin Variable Elimination 15

Algorithm 1 Fourier-Motzkin Variable Elimination

Input: A

set of constraints C, over variables with ordering 21 < ... <)

Output: SAT or UNSAT
1 function FOURIER-MOTZKIN(C, 21, ..., Zp,)

2
3
4
5
6
7

fori—1tondo

U<« {ceC|zx€chublc,xr)}

L+ {ceC|xz,e€cNlblc,x)}

N+ {ceC|xy¢c}

C + N U coMBINEUPPERLOWERSETS(U, L, xi)
if false € C then return UNSAT

8 return SAT

It is worth noting that a variable may disappear before being explicitly eliminated.
In such cases, we speak of implicit elimination. Should the algorithm encounter a
trivially false constraint, we can conclude UNSAT. If we at any point or at the latest,
after n eliminations, arrive at a system consisting of only trivially true constraints,
we can conclude SAT.

Example

2.3.1 (Fourier-Motzkin Variable Elimination). We apply the Fourier-Motz-

kin variable elimination to our previous Example[2.2.1. We use the variable ordering
x < y to determine the order of our eliminations and choose the least common multiple
of the absolute values of the relevant coefficients as scaling factors.

We begin with variable x and divide the constraints in upper bounds, lower bounds
and non-bounds for it.

Uy $—2y < 3
=T = < -
Upg=<uz: z+2y < 5, Lz:{§1~ _?Z+27?/ < 72}
ws: 6ty < I8 B b

In this case, the non-bound set N, is empty. The constraint set we obtain by elimi-
nating x then is N, U COMBINEUPPERLOWERSETS(U,, L;,x):

Again, we
Uy -

Uy = {q U5 :
Ug

COMBINEUPPERLOWER (u1, 1) —4y < 1
COMBINEUPPERLOWER (u1, l2) Y < 16
COMBINEUPPERLOWER (ug, 1) | _ 0 < 3
COMBINEUPPERLOWER(ug,lo) () 13y < 22
COMBINEUPPERLOWER(us3,) —1ly < 6
COMBINEUPPERLOWER(us3, [2) 15y < 32

divide these constraints into upper, lower and non-bounds, this time for y:

y < 16 .
13y < 227, Ly={§3j _141y i é} Ny={ni: 0 < 3}
15y < 32 4 ¥y =

Combining the upper and lower bounds now leaves us with a set of variable-free con-

16 Preliminaries

straints:
COMBINEUPPERLOWER (uy4, [3) 0 < 65
COMBINEUPPERLOWER (4, l4) 0 < 182
COMBINEUPPERLOWER(us, [3) 0 < 101
COMBINEUPPERLOWER(us,ls) p =10 < 320
COMBINEUPPERLOWER(ug, [3) 0 < 143
COMBINEUPPERLOWER(ug, l4) 0 < 442
ni1 0 S 3

All of these are trivially true, thus we can conclude that the original set of constraints
1s satisfiable.

2.3.1 Expansion to Strict Relations

This algorithm can easily be adjusted to handling both strict and non-strict con-
straints. Whenever we combine an upper and a lower bound, we can derive the
relation type of the newly created constraint by looking at those of its parents. Here,
the strict operators are dominant. That means as soon as one of the original con-
straints has a strict operator, the new constraint will have the strict operator as well.
Otherwise, if both parent constraints have non-strict operators, the new constraints
receives a non-strict operator too.

2.3.2 Correctness

The reason as to why we can correctly conclude SAT and UNSAT in the previously
described manner is the following:

Theorem 2.3.1 (Solvability Equivalence of Reduced Systems [Dan72]). Given a

system of linear inequalities (A, b) over variables 1, ..., x, and its reduced system of
linear inequalities (A’,b') over xa,...,x, derived as described by eliminating xy, it
holds that

(A, b) is solvable iff (A’ V') is solvable.

Proof. Given a valuation for z1,...,x, that satisfies (A,b), it is easy to see it also
satisfies (A, V).
If we have a valuation for zs,...,z, satisfying (A’,?’), it also satisfies that all upper

bounds are greater than or equal to all lower bounds of z;. This includes that the
smallest upper bound is greater than or equal to the greatest lower bound, i.e. there
exists at least one value that is on or between these bounds. Then, we can extend the
valuation by assigning that value to x7. This leads us to a valuation for z1,...,z,
which now also satisfies (A,b). O

For later explanations on the FMPlex method and its different kinds of conflict, this
can also be restated as the feasibility theorem:

Theorem 2.3.2 (Feasibility Theorem [Dan72|). (A,b) is solvable iff there are no
non-negative weights v1,...,7vm € Q>¢ such that

Z%'bi>0 and Z%-aij:O forallj=1,...n
i=1 i=1

Simplex 17

Proof. Assuming we have a solution = (z1, ..., xz,) for (4,b), which implies its solv-
ability, and there does exist a set of non-negative weights v1,...,vm € Q>¢ satisfying
the conditions above, this would imply

ZZ(%‘%‘)%’ < Z%—-bi >0
1=1

i=1 j=1
which evaluates to

0z =0 < Y b >0,
=1

a trivially false constraint which is a contradiction to x being a solution to (A4, b).

The reverse direction of the proof is done via contraposition: if we assume that no
solution to (A,b) exists, then we can use the variable elimination to derive trivially
false constraints. As the procedure only uses non-negative linear combinations of
the constraints, we can thus obtain a non-negative set of weights that satisfies the
aforementioned conditions that confirms that such a set does exist. O

2.3.3 Efficiency

As this method always compares and combines all upper bounds on a variable with
all lower bounds on the variable, it is often considered inadequate for practical appli-
cation.

Theorem 2.3.3 (Fourier-Motzkin Complexity [Kob21]). The Fourier-Motzkin vari-
able elimination method has a doubly exponential worst-case complexity.

Proof. Let (A, b) be a system of linear inequalities with m constraints and n variables.
The worst case occurs if all constraints contain the variable to be eliminated and the
sets U and L have the same size, i.e. 2. Each elimination step then creates (%)?
constraints. If this situation occurs for every variable, we reach O((%Z)?") many

constraints. O

2.4 Simplex

In 1947, George Dantzig started developing and, later on, published what would be-
come known as the Simplex method [Dan90]. Today it is a widely known and widely
applied efficient tool in linear programming. This means that the general problem to
be solved with it usually consists of a linear objective function we want to maximize
or minimize whose variables are subject to a set of linear constraints. The algorithm
is split into two phases. The first one determines if there exists any feasible solution
while the second subsequently maximizes or minimizes the solution in regards to the
objective function. Thus, the procedure of the first phase lends itself to SMT solving,
where the mere existence of a solution suffices. The second phase will not be further
elaborated on as it is not relevant to our work.

Before we can begin applying the algorithm, we need to convert our system of inequal-
ities (A, d) into its slack form by converting the inequalities to equalities, introducing
additional variables which then are subject to corresponding inequalities.

18 Preliminaries

Definition 2.4.1 (Slack form [CLRS09]). Fach inequality in the system (A,b) of the
form

n
E a;jxj < b;
=1

can be rewritten as the two constraints

n
E ;L5 =S4 and S; S bi.

j=1
The resulting system of constraints is called the slack form of (A,b).

The newly introduced variable s; is then called a slack variable as it measures the
difference between the two sides of the original inequality. The new constraints are
satisfiable if and only if the original inequality is satisfiable. Thus, the slack form of
a system of inequalities is satisfiability-equivalent to the original system. However, it
proves more suitable for the algorithm.

2.4.1 Tableau Form

The simplex algorithm operates on a tableau T that represents the equalities of the
slack form. We adopt the notation from [Kob21| with only slight changes.

We denote the set of variables with X = {y1,...,y}. In our case, we have l =n+m
and X = {z1,...,Zn,51,..,8m}. Furthermore, the algorithm distinguishes between
basic and nonbasic variables. We denote the set of non-basic variables with N' C X,
and that of the basic variables with B = X \ N. Initially, these sets contain the
original variables and the slack variables respectively, i.e. N = {z1,...,z,} and

B={s1,...,Sm}-

For all variables in y; € B, the tableau has a row encoding an equation expressing the
basic variable as a linear combination of the non-basic variables: y; = Zyj en @ijYj-
Thus, the basic variables depend on the non-basic ones. They are recognizable by
their corresponding column only containing zeros except for a single —1 entry.

Additionally, we save upper and lower bounds for variables. If a variable y € X has
a lower (an upper) bound, we write it as I(y) (u(y)). The original variables have no
bounds (or, equivalently, —oo and +00), as their bounds have been transferred to the
slack variables, while the slack variables receive the very bounds we obtained when
converting our original system into slack form.

We use an assignment o : X — R indicating the current valuation of the variables. In
the beginning, it is set to a(y) = 0 for all y € X. This leads to all equations holding,
but some of the basic variables might violate their bounds. Conversely, non-basic
variables always satisfy their bounds, not just in our initial tableau, but at all points
of the procedure, making this an invariant of the algorithm.

Simplex 19

With that, we can construct our initial tableau:

X1 In S1 S92 Sm

a1 A1n —1 0 0
T — a1 a2q, 0 -1 0

ail A1n 0 0 -1

The tableau has the dimension of m x (n + m). In it, we can read a row i as
Z?=1 a;jr; —s; = 0. For y; € B and y; € N, we denote the jth entry in the
tableau row encoding y; with Tj;.

2.4.2 The Algorithm

Starting with the initial tableau, we begin to apply the algorithm. It changes the
tableau by pivoting and our current assignment by subsequent updating. Our expla-
nations follow the rules given in [KBD™ 17| which are summarized in Figure

For the pivot step, we require one basic variable y; € B, the leaving variable, and
one non-basic variable y; € N, the entering variable. The leaving variable y; has to
violate its bound with the current assignment, i.e. «(y;) < I(y;) or a(y;) > u(y;).
The operation switches these two variables , making y; non-basic and vice versa, by
changing the tableau accordingly. However, y; has to be a suitable candidate to be
pivoted with y;. It must not be guaranteed to violate its bound after the update
operation that will follow the pivoting. Thus, we consider y; suitable if it is in the
slack of y;:

slack™ (i) = {y; e N[(Ti; > 0 A aly;) <ul(y;) V(T < 0Aaly;) > Uy;)}
slack™ (i) = {y; € N[(Ti; < 0Aaly;) <uly;) V (Ti; >0 A aly;) > 1(yy))}

We use slack™ if y; violates its lower bound and slack ™ if y; violates its upper bound.
If we have found a suitable pair y; and y;, we remove y; from the basic variables and
add y; to them and set T' = pivot(T, 4, j). Furthermore, we move y; to the non-basic
variable set. As y; is now a basic variable, the row that until now was encoding y;
as a linear combination of non-basic variables has to be scaled with factor 7%7‘ SO
that it now encodes y; in the aforementioned manner. Following that, we replace
all occurrences of y; with its new linear combination in all other rows. This means
we add the newly scaled row to them in such a manner that all other entries in the
column of y; become zero. Note that this makes the column recognizable as that of

a basic variable since now, the only remaining non-zero entry is —1.

After the pivot step, the update step adjusts our current assignment to make v;,
which is now a non-basic variable, satisfy its bound and, in doing that, uphold the
invariant of non-basic variables always satisfying their bounds. Let § be a constant
that, added to a(y;), would put the variable between its upper and lower bound,
e.g. the difference between the current valuation and the violated bound. Then, we
update our assignment « to o = update(a,y;,5). We set o' (y;) = a(y;) + 0. As

20 Preliminaries

basic variables are expressed as linear combinations of non-basic variables which now
include y;, their assignments have to be adjusted to this change as well, scaled by
the coefficient of y; in their row. So for all y, € B, we set o' (yr) = a(yx) + T - 0.
For all remaining variables, i.e. all y € N\ {y;}, the assignment remains the same:
o (y) = a(y).

It is, of course, possible for basic variables that were previously well within their
bounds, to now violate them. We can then repeat the pivot and update steps to
fix their bounds as well. If, at any point, we reach a state where a basic variable
violates its bound but its slack set is empty, the Failure rule applies and we can
conclude UNSAT. If we however find all variables within their bounds after an update
step, the result is SAT as per the Success rule.

yi € B, aly) <ly;), y;€ slack+(yi)
T < pivot(T,i,7), B+ BU{y;} \{vi}

Pivot,

yi € B, aly) >u(y;), y; €slack™ (y;)
T < pivot(T,i,5), B+ BU{y;} \{v:}

vi ¢ B, (a(yi) < Uyi) A(yi) = a(ys) +6) Vv (alyi) > u(yi) Auly:) = a(y:) +96)

Pivots

Update a < update(a, y;, 0)
Fail vi € B, (ayi) <Uyi) Aslack™ =0) V (a(yi) > u(ys) Aslack™ = 0)
ailure UNSAT
Yy € X. U(y) < a(y) < u(y)
Success SAT

Figure 2.1: Rules for the Simplex algorithm [KBD™17].

Example 2.4.1 (Simplex Algorithm). Again, we use Example to demonstrate
the algorithm. Conversion into slack form introduces 5 new slack variables and trans-
fers the bounds onto them:

-1 -2 S1 S1 S -2
1 —2 S92 So S 3
1 2 (”5> =|ss|, |s3s < 5

-3 7 Sa S4 S 7
6 1 S5 S5 S 18

X Yy S1 S92 S3 Sq S5
-1 -2 -1 0 0 0 0
r -2, 0 -1 0 0 0
T=1|1 2 0 0 -1 0 0
-3 7 0 0 0 -1 0
6 1 0 0 0 0 -1

Simplex 21

the basic variables B = {s1,s2, 83, 84,55} and the non-basic variables N' = {z,y}
and the initial asssignment o which maps all variables to 0. Considering the slack
variables’ bounds, it becomes apparent that only s1 currently violates its bound. As
that bound is an upper bound, we determine the corresponding slack set: slack™(s1) =
{z,y}. We choose © to pivot with s1. As its entry in the first row, which has been,
until now, encoding s1, is already —1, no scaling is necessary. We then replace all
occurrences of x in the other rows with its new encoding in the first row and change
T accordingly:

x y S1 S92 S3 S4 S5
-1 -2 |-1 0 0 0 0
0 -4 -1 -1 0 0 0
T'=10 0 -1 0 -1 0 0
0 13 3 0 0 -1 0
0 —-11|,-6 0 0 0 -1

Now, we have B = {z, s2, 83,54, 55} and N = {s1,y}. To update o to o/, we choose
6 =—2 and set

o (s1) =a(s)) +6=-2

And adjust the basic variables’ assignments accordingly:

d(z)=alz)+(-1)-§ =2
a'(s2) =a(s2)+(-1)-6=2
o'(s3) = a(ss) +(~1) -6 =2
a'(sq) =a(sq) +3-8 =6
a'(s5) = a(ss) + (—6) -6 = 12

While for all other variables in N, in this case just y, the assignment stays the same.
Comparing this new assignment to the bounds we have, we see that none of the vari-
ables violate any bounds anymore and can conclude that the system is satisfiable.

2.4.3 Completeness and Efficiency

It is possible for the original Simplex algorithm to cycle infinitely on certain examples.
But given a variable ordering, we can execute it applying Bland’s rule [Bla77] to ensure
termination. Further pivoting rules have since been developed to increase efficiency
such as the sub-exponential Random Facet pivoting rule in [Kal92| which has since
been further improved [HZ15].

Using Bland’s rule, we can make the following statement about its runtime:

Theorem 2.4.1 (Simplex Complexity [KM72]). Dantzig’s Simplex algorithm has an
exponential worst-case complexity when using Bland’s rule.

Despite its exponential worst-case runtime, simplex has still found widespread appli-
cations as such a case rarely occurs in practice and the algorithm exhibits a polynomial
average-case runtime [Sch98|. As such, it is preferred over the Fourier-Motzkin vari-
able elimination and even algorithms like the ellipsoid method [Kha79] which have a
theoretical polynomial worst-case runtime but perform poorly in practice.

22

Preliminaries

Chapter 3

FMPlex

Again, we first assume only weak constraints and discuss the other constraint types
in Section The FMPlex method was presented in [Kob2I] in 2021 and aims
to combine the Fourier-Motzkin variable elimination with the Simplex algorithm to
reduce the former’s doubly exponential runtime. The application of it resembled the
computation of

Vu e U,l € L. 1b(l) <z, < ubu)

to eliminate variable xj on a given level with appropriate L and U. To reduce the
number of constraints, instead of combining every upper bound with every lower
bound upon eliminating, we choose one of the lower bounds [which we assume to be
a greatest lower bound (GLB). We then only combine this bound, however with all
upper and all other lower bounds, resulting in the computation of

VIl e L\ {I}. (") <Ib(l) A YueU. b(l) < zxp < ub(u)

which, due to the transitivity of the relation, is equivalent to the former. Analogously,
we also may choose an upper bound instead which we assume to be a smallest up-
per bound (SUB) which then is combined with all lower and all other upper bounds.
We call the chosen bound the eliminator of the level. Such a guess of an eliminator
might, however, be incorrect as it might not in fact be a GLB or SUB and thus lead
to trivially false constraints. These situations are not sufficient to conclude UNSAT,
but merely mean that we need to backtrack to the last relevant GLB / SUB choice
and try another eliminator.

3.1 Notation

To simplify explanations, we adjust our representation of constraints. We choose a
format where all constraints have a 0 on the right-hand side. A constraint ¢ is now
represented by a vector

c=(a1,...,an,b|dy,...,dn).

24 FMPlex

The first section of this vector represents the constraint itself:

<iaj-xj> +b <0,

j=1
whereas the second part determines what linear combinations of the original con-
straints resulted in the constraint. We call these entries derivation coefficients. That

means for the original constraints cj,...,c), with the form
* * * * * *
c =(az,. .., a5, b [dy, ... di,)

it holds that d; =1 and Vk # 4. d,, =0 forall 1 <i <m.
Then, for any other constraint ¢ derived via the FMPlex method from these original
ones, we can also read c as:

S, <(iayj.:cj) +b;> <0,
i=1 j=1

The derivation coefficients always stay correct as we consider them part of the repre-
senting vector. This means any scaling of a constraint in this form also scales these
coefficients and any additions of two constraints includes the addition of their coeffi-
cients.

3.2 Combining Constraints

As in the original Fourier-Motzkin variable elimination, we intend to convert one set
of constraints into another by eliminating a variable until we have only trivially true
constraints or a trivially false constraint. However, in this method we choose an as-
sumed greatest lower bound or smallest upper bound to combine with all opposite
bounds and all other bounds of the same direction. For simplicity, we will limit our
explanations to GLBs as the handling of SUBs is done analogously.

On a given level, we choose a GLB and remove it from the set L since it now holds
a special position. The combination of an upper bound with the GLB is still the
standard upper-lower bound combination as in the Fourier Motzkin variable elimina-
tion as the GLB is, after all, still a lower bound. Their result is still computed the
same way: Given that we want to eliminate variable xj, we scale the bounds with
appropriate positive factors so that the coefficients of the variable match and then
combine them. In terms of our adjusted notation, that is equivalent to multiplying
the vectors with the factors and simply adding them up.

The combination of the GLB with another lower bound, however, is a little different.
Apart from the scaling with the positive factors, it requires us to multiply the elim-
inator with —1, transforming it into an upper bound to be able to combine the two
constraints.

In the case that we have only upper or only lower bounds on a variable, i.e. U =) or
L = () , we may simply ignore all of them in our further computation as we can always
choose a value for x; that is small or large enough to satisfy these constraints. The
eliminator is technically a GLB if we only have upper bounds and an SUB if we only
have lower bounds, but as there is no actual choice to make, we set the eliminator to
L in either case.

Conflict Handling 25

3.3 Conflict Handling

As before, we might encounter trivially false constraints. But not all of these indi-
cate that the original constraints are unsatisfiable. As we recall from the Feasibility
Theorem 2.3.2] to prove the unsatisfiability of the original system, it is a necessary
and sufficient condition that there exists a non-negative linear combination of the
original constraints evaluating to a trivially false constraint. In the Fourier-Motzkin
algorithm, this was a given for all trivially false constraints as all of our operations
only scaled with positive factors and added constraints. Thus, all resulting constraints
were such a non-negative linear combination.

This algorithm however includes multiplications with —1, namely in same-bound com-
binations. Therefore, it is possible for the trivially false constraint to include negative
coefficients for the original constraints that it resulted from. In this case we do not
have a non-negative linear combination of original constraints that would allow us to
conclude UNSAT. Instead, this merely indicates that we have, at some point, chosen
an unsuitable GLB.

This leads us to distinguish between two types of conflicts: global conflicts and local
conflicts. To differentiate between them, we need to know the combination of original
constraints that resulted in a given constraint. To keep track of this, we have intro-
duced the derivation coefficients in our representation of a constraint earlier.

A global conflict occurs when we encounter a trivially false constraint that would
have also been created within the original Fourier-Motzkin algorithm. It is recogniz-
able by the derivation coefficients of the constraint being either entirely non-negative
or entirely non-positive. In this case we can deduce UNSAT. Note that the deriva-
tion coefficients might not have always been non-negative or non-positive during the
application of the algorithm, but that does not invalidate their non-negativity or non-
positivity for this constraint.

In case of local conflict, on the other hand, the opposite is true: The constraint has
both negative and positive derivation coefficients. It is not sufficient for an UNSAT
answer. Rather, we need to re-evaluate our choices of assumed GLBs along the way
that lead to the constraint, i.e. we need to backtrack.

The possible choices of GLBs for each variable mean that the FMPlex algorithm op-
erates within a decision tree, starting in the root node at level 1, and descending to
the next level with each decision, each option for the GLB representing a child of
the current node. When we need to backtrack, we want to know the last relevant
node for the involved constraint. To keep track of the last level of the decision tree
where it was part of a same-bound combination, we introduce the conflict level of a
constraint ¢. It is denoted cl(c). Since same-bound combinations are the only kind
that introduces negative factors to the coeflicients, it is these we want to backtrack
to if the constraint is part of a local conflict. Its initial value is 0 to indicate it has
not been in any same-bound combination at all yet.

Upon combining two constraints, the conflict level of the resulting constraint is de-
termined by the type of combination. A same-bound combination of two constraints
on a given level sets the conflict level to that level. Upon a combination of an upper
with a lower bound, the resulting constraint inherits the greater of its parents’ conflict
levels, i.e. the one denoting the more recent same-bound combination.

26 FMPlex

The different types of combinations and their effect on the resulting constraint now
yield the extended combination operator FMPLEX COMBINE}

Algorithm 2 fmPlexCombine

Input: The set of lower bounds L, the assumed GLB ¢ ¢ L, the set of upper bounds
U, the variable to be eliminated xj, the current level [vi

Output: The set of constraints resulting from the elimination of x; with ¢ as GLB

1 function FMPLEXCOMBINE(L, ¢, U, xy, lvl)

2 if c= 1 then

3 return ()

4 else

5 Constraint set R = ()

6 for ue U do > Upper-lower
7 Constraint ¢je, = Ile\ -u+ ﬁ -c

8 cl(Cnew) + maz{cl(c),cl(u)}

9 R+ RU{cpew}

10 for [€ L do > Same-bound
11 Constraint ¢pe, = ﬁ iy - ﬁ e

12 cl(cnew) < Wl

13 R+ RU{cnew}

14 return R

Now, if we encounter a local conflict, we can, at the furthest, backtrack to the last
same-bound combination that occurred in the derivation of the trivially false con-
straint and choose a different assumed GLB, following another branch from that node
in the decision tree. In case we have no more choices for the GLB left, we backtrack
one additional level at a time until we reach a level where there are other choices still
available. We repeat this process whenever we come upon a local conflict. Should we
have to backtrack to the first level and it has no more GLB choices, it means that we
were unable to choose a GLB for each variable in a consistent way as all possibilities
have been exhausted. We consider this a global conflict as well. A global conflict
results in an immediate UNSAT answer, while a set of only trivially true constraints
leads to a SAT conclusion.

The following example illustrates the necessity of this separate handling of local con-
flicts.

Example 3.3.1 (Conflict Handling). We consider two constraint sets with the same
two lower bounds ly and ly on the only variable x but with a different upper bound in

Conflict Handling 27

each, making the first system unsatisfiable and the second satisfiable:

li1: —xz+4 < 0 li: —z4+4 < 0
Cunsar =4 l2: —2+8 < 0,p, Coar=q1lk: —-xz+8 < 0
up: x—4 < 0 ug: 2x—20 < 0

Transformed into the new constraint format, these yield

X b d1 d2 d3
-1 4 1]1 0 o =0 (1)
(-1 8|0 1 o) =0 (Iy)
1 —4/0 0 1 =0 (u)

x b d1 dg d3
-1 4 |1 0 0 d=0 (1)
(-1 8 |0 1 0) o = (o)
2 —20/0 0 1 =0 (up)

Assume that we first choose 1y als GLB for x in both systems. The upper-lower
combinations Iy +uy and 2 - 11 + ug both result in trivially true constraints. However,
the same-bound combination —ly + Iy (which is the same in both systems) results in

b dy dy ds
(4]-1 1 0) d=1

This is a trivially false constraint. However, it is only a local conflict, recognizable by
its derivation coefficients of mized signedness. We observe that this occurs in both the
unsatisfiable and the satisfiable constraint system. Were it to be treated the same way
as a global conflict, we would now falsely conclude UNSAT for the satisfiable system.
Thus, we need to backtrack in both systems. As there is only one GLB choice we
made before, we move back to it and now choose ly as GLB instead. The result of the
same-bound combination l1 — lo is now trivially true. For the satisfiable system, the
upper-lower combination yields another trivially true constraint and we can conclude
SAT. For the unsatisfiable one, the upper-lower combination results in

b dy dy ds
(4]0 1 1) d=0

which is trivially false and, unlike the false constraint before, has only positive deriva-
tion coefficients. It is thus a global conflict that allows us to deduce UNSAT.

Thus we observe that local conflicts do not possess any kind of significance in regards
to the satisfiability of a given constraint system. They can occur in both satisfiable
and unsatisfiable systems whenever a wrong choice for an eliminator has been made.
We can now apply the algorithm to larger examples as well.

Example 3.3.2 (FMPlex Algorithm). We convert our previous Example into

28 FMPlex

the new constraint format and initialize the conflict levels:

X Yy b dl d2 d3 d4 d5

-1 -2 2 1 0 0 0 O =0
1 -2 =3 0 1 0 0 O =0
1 2 -5 0 O 1 0 O =0
-3 7 -710 0 O 1 O =0
6 1 -18|0 0 0 0 1 =0

We start on level 1. Again, our first variable to eliminate is x and we divide the
constraints into upper, lower and non-bounds of it:

1 -2 =310 1 0 0 O (uq)
U. — < 1 2 -5 10 0 1 O 0) (u2)
“\6 1 -18{0 0 0 0 1
-1 -2 2|1 0 0 0 O (lh)
Ly=\-3 7 -7/0 0 0 1 0 (I2)
Again, N, is empty. We choose l1 as our assumed greatest lower bound. Applying

FMPLEXCOMBINE, albeit with the scaling method of the least common multiple of
coefficients, the result of the elimination is

Yy b di dy d3 dy ds

—4 -1 1 1 0 0 0 cd=0
0 -3 1 0 1 0 0 cl =

—-11 -6 6 0 0 0 1 cl =
13 13| -3 0 0 1 0 cd=1

The first three rows result from standard upper-lower combinations of the constraints
of Uy with ly. All parent constraints have a conflict level of 0, thus theirs is 0 as
well. The last row however is the result of the same-bound combination of l1 and Iy
and shows how such a combination introduces a negative derivation coefficient, in this
case —3. The conflict level of the constraint is thus set to level 1.

We continue to level 2 and divide our constraints in preparation to eliminating y.

g, = (13 =13[=3 0 0 1 0) (u)

—4 —1|1 1 0 0 0\ ()
Ly=\-11 =66 0 0 0 1) (L)
N, = (0 =3[1 0 1 0 0 (m)

We choose l3 as the assumed GLB for y and obtain
b di doy ds d

iy
=8
ot

—65 | 1 13 0 4 0 =1
<—13 13 =11 0 O 4) cl=2
-3 1 0 10 O =0

Obtaining a Model 29

The first constraint receives its conflict level from the maximum of its parents conflict
levels, 1 and 0. The conflict level of the second row is set to 2 as it is a result of
a same-bound combination, while the constraint not containing y retains its conflict
level as it is not part of any combination.

As all of these constraints are trivially true, we can now conclude SAT.

3.4 Obtaining a Model

Once we have concluded SAT via the algorithm, computing a model is relatively easy.
We start on the second-to-last level of the branch in the decision tree that led us to
the set of trivially true constraints and iterate over each level back towards the root
of the decision tree. On each level, we first substitute all variables occurring in the
eliminator (except the one being eliminated on the level) with their assignment. This
is always possible as each such variable falls into one of two categories. Either it has
been eliminated on a level further down in the tree, which means we already have
computed its assigned value, or it is one that has been implicitly eliminated along
with the variable being explicitly eliminated on this level and can thus be assigned an
arbitrary value. Then, we solve the eliminator for the variable that was eliminated
with it and set its assignment on the resulting bound. This is correct as the previous
SAT result has confirmed that the eliminator is indeed a greatest lower or a smallest
upper bound and it does not conflict with the opposite bounds. For the special case
of there only being one type of bound on the level and the eliminator being L, we
substitute all variables except for the one being eliminated in all bounds, solve them
all for the variable and assign to it the greatest bound if we had only lower bounds
or the smallest bound in case there were only upper bounds.

By repeating this process until we reach the root of the decision tree which contains
the original bounds, we obtain an assignment fulfilling the original set of constraints.

Example 3.4.1. We obtain an assignment « for the previous constraint system based
on the obtained constraint systems in Ezample[3.53.3

For the last variable which was eliminated, y, we use the GLB chosen on its level, I3,
and solve for the variable:

dy-1<0 & 025 <y

Thus we set a(y) = —0.25, putting it right on the bound. Moving up to the next level,
we use the GLB 1y and substitute y with a(y) to solve for x:

—x—2-(-025)+2 <0 & 25< =z

We can set a(x) = 2.5 and have thus created a model of the original constraint system.

3.5 Extension to Strict Operators and Equalities

To extend the FMPlex algorithm to strict operators, we can adopt the rules given
in Section for the upper-lower combinations and simply treat a strict operator
as dominant over a non-strict one in any case. For same-bound combinations, this is
different. If we compare two lower bounds, we assume one of them to be the greatest
lower bound for the variable to be eliminated, i.e. it is greater than or equal to the

30 FMPlex

other bound. Then, the only case that requires a strict operator in the resulting
constraint is when the eliminator is non-strict and the other bound is strict. As the
strict bound excludes equality, it cannot be equal to the eliminator as in that case it
would not actually be the GLB. All other cases allow us to simply use a non-strict
operator for the combination.

The obtainment of a model has to be slightly modified as well. Should the eliminator
end up being a strict bound, we cannot put the assignment’s value on that bound
but rather have to put it between the bound and all bounds of the opposite kind.
For that we not only substitute all other variables in the eliminator but also those
in all the opposite bounds and evaluate them. We can then put the value anywhere
between the eliminator and the smallest upper bound if the eliminator is a GLB or
the greatest lower bound if the eliminator is a SUB. Note that in this case, finding the
most restrictive of the opposite bounds is just a comparison of variable-free bounds as
we have substituted all variables with their assignment except for the one eliminated
on the level.

With both strict and non-strict inequalities at our hands, we can now additionally
handle equalities and their negations, as these can be expressed as inequalities.

3.6 Properties

3.6.1 Similarities to Simplex

While the algorithm is an obvious variation of the variable elimination, the similarities
with Simplex do not immediately become apparent. But upon closer inspection, there
are crucial parallels. The elimination of a variable x with an eliminator ¢ in FMPlex
corresponds to pivoting x with the slack variable that was introduced to convert ¢ into
slack form. Both operations result in matching constraints which only might differ
by a scalar factor. The only further difference is that Simplex retains the tableau row
that, prior to the pivot operation, expressed the slack variable while in FMPlex, the
eliminator is no longer included in the set of resulting constraints [Kob21].

Example 3.6.1. We review the result from the first FMPlex elimination applied in
Ezample[3.3.9 and the result of the first pivot operation in Example[2.].1 The FMPlex
algorithm eliminates x by using —x — 2y < —2 as eliminator. The Simplex algorithm
selects sy, the slack variable belonging to that same constraint, to pivot it with x.
Ignoring the first row of the Simplex tableau which still holds the constraint used, we
can now revert the Simplex constraints’ slack forms to their original forms, extract
the inequalities from both results and see that they are, in fact, the same:

—4y
0
—11y

13y 13

VAN VAN VAN VA

Thus, the choice of an eliminator in FMPlex to eliminate a variable corresponds to
moving the eliminator’s slack variable into the non-basis in the Simplex algorithm by
pivoting it with the variable. A notable difference between these operations is however
the selection of eliminators / slack variables: the Simplex algorithm limits itself to
those non-basis variables which violate their bounds, while the FMPlex algorithm

Properties 31

does not. It instead backtracks in order to correct choices that did not work out and
result in local conflicts.

3.6.2 Correctness and Termination

It remains to show the correctness of the algorithm as well as its termination.

Theorem 3.6.1 (FMPlex Correctness). The FMPlex algorithm is correct, i.e. if it
returns SAT, the formula on which it is called is satisfiable and if it returns UNSAT
then the constraint set is unsatisfiable.

Sketch of Proof. To prove that a SAT answer of the algorithm implicates the satisfi-
ablity of the checked formula, we assume that FMPlex returns SAT after being called
on a given formula. This means that the current branch consists only of correct
choices for greatest lower or smallest upper bounds and that those do not conflict
with the bounds of the opposite direction. Thus, all upper and lower bounds can
be satisfied at the same time and we can construct an assignment for the occurring
variables just as described in Section that proves the satisfiablitiy of the formula.
The other direction of the proof can be given by showing that an UNSAT answer im-
plicates that the given formula is not satisfiable. If we have returned UNSAT, then we
have encountered a trivially false constraint that can be created by a positive linear
combination of the original constraints. The coefficients of that combination can then
be obtained from the derivation coefficients of the false constraint. These are, as per
the Feasibility Theorem [2.3.2] sufficient to prove the formula’s unsatisfiability. Should
we have returned UNSAT due to backtracking to level 1 and finding that we have no
untried choice of a GLB left, it means that there is no way to choose GLBs for the
variables so that it does not evoke conflicts as the conflict level based backtracking
does not skip any sub-trees where we could have found a SAT answer. Thus, if the
system were satisfiable, such a combination of GLBs for all variables would have been
found. O

Theorem 3.6.2 (FMPlex termination). The FMPlex Algorithm delivers an answer
in finite time.

Proof. Let again m be the number of constraints and n the number of variables. As
mentioned before, the algorithm operates on a decision tree. On each level, at least
one variable gets eliminated, limiting the maximal depth of the tree to n + 1 as we
will have have only variable-free constraints on this level and we will either return
SAT or backtrack. The number of branches of a given node is limited by the amount
of choices we have for an eliminator. The initial amount of constraints m is finite.
As the constraint chosen as eliminator does not appear on the next level or, in case
of bounds of only one kind, we discard one or more bounds moving to the next level,
the number of constraints — and, by extension, the number of possible eliminators
— on a level can only decrease upon going further down along a branch in the tree.
This means that the decision tree is finite. Every branch is only visited once, so the
algorithm always terminates, at the latest after iterating over the entire tree. O

32 FMPlex

3.6.3 Efficiency

The FMPlex algorithm succeeds in reducing the doubly exponential complexity of the
Fourier-Motzkin variable elimination.

Theorem 3.6.3 (FMPlex Complexity [Kob21l|). The FMPlex algorithm exhibits a
singly exponential complexity.

Proof. We again assume an initial formula consisting of m constraints over n vari-
ables. The root of the tree, containing the original constraints, can choose at most m
eliminators, each leading to a different node, for which at most m — 1 constraints are
generated. Then any of these nodes on level 2 can choose at most m — 1 eliminators
with m — 2 constraints each, and so forth. Like previously mentioned in the proof of
Theorem the tree’s depth is limited to n + 1. This results in at most

n

(m)-(m—1)-...-(m—n)<m

total constraints, i.e. only singly exponentially many. O

Chapter 4

Incremental FMPlex

We present the novel contribution of this thesis, which is an incremental FMPlex ver-

*

sion for a total of m original constraints cj, ..., ¢}, and a total of n occurring variables
Z1,...,ZTy. The original constraints are, due to the nature of lazy SMT solving, not
all available immediately but can be added and removed from the set of currently
considered constraints.

For understandability and readability, this description will be limited to eliminations
via lower bounds. Using only upper bounds for eliminations can be done analogously.
The actual implementation combines both, requiring an additional decision for which
kind of bound to use for elimination whenever choosing a variable to eliminate. This
is not included in the algorithm presented here, but the heuristic for that decision will
be touched on in Section Consequently, we also assume that if we only have one
type of bound for a variable on a level, that type is upper bounds, but the opposite
case can be handled analogously as well.

The implemented theory solver module interacts with its surroundings via a number
of functions, namely [ADDCONSTRAINT|and [REMOVECONSTRAINT|for managing which
constraints are to be checked for satisfiability as well as the main algorithm
for executing the satisfiablity check and GETMODEL, which can be called after a
successful check to obtain a model that fulfills the constraints.

4.1 Data Structures and Auxiliary Functions

Based on the decision tree that is induced by the choices we are able to make for the
greatest lower bound, our overarching data structure is a vector that represents the
current branch of the tree our execution is in. We continue to call each entry in it
a (tree) level. Only storing the current branch suffices as we neither need parts of
the tree we already visited that we have already deemed unfit to obtain a solution
from, nor do we need to pre-compute the entirety of what is still ahead. As we are
eliminating at least one variable per transition from level to level, eventually reach-
ing a variable-free set of constraints which we then evaluate, this requires the vector
representing the branch to contain at most n + 1 levels.

34 Incremental FMPlex

For each level ¢ with 1 <7 < n + 1, we have various variables:
e (;, the set of constraints that are not or not yet relevant on the level,

o 1z, € {x1,...,2,, L}, the variable to be eliminated on the level. The special
value | appears in the case that it is not yet decided which variable this will be,
that the level is not currently in use, or we are on a level with only variable-free
constraints.

e ¢;, the lower bound on zj, that we currently assume to be the greatest lower
bound on that variable. This too can be L if no constraint is chosen yet or we
only have upper bounds on the level.

e Li°d° the set of lower bounds on xy, on the level that have not yet been tried
out as greatest lower bound.

o Ldome the set of lower bounds on zj, on the level which we have already tried
out as assumed greatest lower bounds but which lead to local conflicts and were
thus deemed unfit for that role.

e [L,;, the set of all lower bounds on zj, on the level.

e U;, the set of all upper bounds on zj, on the level.

e N;, the set of all constraints in which xx, does not occur.

o Additionally, for each constraint ¢ on a level, we save its conflict level ¢l(c).

If L; # 0, then it is compromised of ¢; and the sets containing the already tried and
the not yet tested lower bounds: L; = L% u {¢;} U Léme. Otherwise, we set
Li _ Liitodo — Lglone _ @

The division of lower bounds into L{°% and L%°"¢ is necessary for us to know which
subtrees of our decision tree have already been visited and which have not. This
means that if a current ¢; has turned out to not work as greatest lower bound, it is
added to Lé°™¢, and the next one will then be chosen from Li°%°.

The theory solver initializes all levels with C; = U; = L; = Li°d° = Ld°n¢ = () as well
as ¢; = 1 and xp, = L. A global variable maxLvl is used to keep track of the deepest
currently used level and is accordingly initialized with 0.

Furthermore, the theory solver possesses two sets of original constraints: C and C™¢",
containing all currently considered original constraints and new original constraints,
respectively. A constraint is regarded as new if it does not appear in the branch yet.
This occurs if it either has been added after the last CHECKSAT call or the branch
has been reset. It always holds that C"*"* C C and both sets are initially empty.

The two sets can be accessed by the [ADDCONSTRAINT| and [REMOVECONSTRAINT|
functions. For the sake of simplicity, we assume that no constraint is added twice,
and that only constraints that are actually in C' get removed. If the main algorithm
CHECKSAT returns SAT, it empties C"" to be able to keep track of the next new
constraints. If the branch has been reset, all elements of C' are added to C™¢* again
since we will have to compute an entirely new branch at the next call of CHECKSAT.
A total reset of the branch occurs either due to an UNSAT return value by CHECKSAT
or due to removal of an original constraint that had already been incorporated into
the branch. A total reset is achieved by calling RESETBELOW/(0), while a partial reset

Incrementality 35

below a certain level ¢ with 1 <7 < n+ 1, as we need it for local conflicts, is done by
calling RESETBELOW (4).

Algorithm 3 Adding and removing constraints

1 function ADDCONSTRAINT(constraint c)
2 C+ CU{c}

3 C’new — Cnew U {C}

4 cl(c) =0

[6)]

function REMOVECONSTRAINT(constraint c)

6 if ¢ € C™% then
7 Cnew e Cnew \ {C}
8 C+ C\A{c}

Algorithm 4 Emptying levels below a threshold

1 function RESETBELOW(Iv])
2 for all levels ¢ with vl <i<n+1do
3 T, +— L

4 Ldome g

5 Ltodo g

6 Li«+ 0

7 U, + 0

8 ci — L

9 maxLvul < vl

4.2 Incrementality

4.2.1 The Main Algorithm

Incrementality is the most influential factor on the shape of the core algorithm. We
achieve incrementality by trading in the recursion of the original version for a loop
iteration. It operates on the aforementioned vector that represents the current branch
within the decision tree. This vector persists even between calls of the CHECKSAT()
function so that when we add more constraints after a successful call, we can reuse
our previous results. Thus, the algorithm is developed to be able to handle the case
that there are already constraints on a level that have already been processed in a
previous call. The intention is to only compute what is actually necessary, i.e. the
constraints that have newly reached this level.

An aspect of this is realized by the runtime variables and which are sets
of lower and upper bounds respectively which we provide as parameters to FMPLEX-
CoMBINE. We call them combination sets. They are separate from a level’s U; and

Lcomb Ucomb

36 Incremental FMPlex

L; for the purpose of avoiding recomputation of all combinations if it is not necessary.
This enables us to incorporate new constraints into our current branch, i.e., level by
level, we apply the combinations that previously led us to a set of trivially true con-
straints to see if these combinations still lead to only trivially true constraints. Thus,
whenever new constraints ’arrive’ on a level, the two sets enable us to only combine
those constraints within these sets with the current eliminator. Of course, if we just
chose a new eliminator, we need to apply FMPLEXCOMBINE to all constraints on the
level, old and new. For that case, we keep a flag r to indicate if we need to recompute
the combinations with a new eliminator.

We iterate over the vector with the lvwl variable which indicates the level we are
currently working on, starting on level 1. Initially, we hand over the newly added
constraints in C™*" to Cy. The C; sets of the levels can be understood as a sort of
connection point between the levels. As long as we are not working on the level they
are always empty. When they receive new constraints from the level above, they pass
the constraints relevant for their level on to the corresponding sets, L™ and U™,
Additionally, we add the remaining non-bounds to IN;, however without removing
them from C;. Then, the C;;1 set receives the union of the constraints remaining
in the C; set and the results of the FMPLEXCOMBINE operation on the relevant con-
straints of the current level. It is important for the utilization of incrementality that,
at this point, C; and not N; is passed on to C;11. The reason for that is that the
constraints in N; \ C; have been passed to the following level in previous calls of
CHECKSAT already and we do not need to process them there again.

We enter the loop which repeats as long as we cannot conclude SAT), i.e. as long as
Cly; contains anything other than trivially true constraints. Lines 5 to 14 describe
the conflict handling. If there is at least one trivially false constraint in Cj,;, we
call ANALYZEANDBACKTRACK to compute the backtrack level. If there is a global
conflict, it returns the special value of 0. As we start on level 1, there is no such level,
thus the main algorithm interprets that as the signal for a global conflict. Based on
the return value, we react accordingly. In case of a global conflict, we reset the entire
branch, add all constraints in C' back to C™¢" and return UNSAT. If we only had
a local conflict, the lvl variable now indicates the level we backtracked to. As we
backtracked here because an eliminator choice led to a conflict, we choose our next
eliminator from the Lf;’ld" set and move the last eliminator into L;il?l”e. With a new
eliminator, we also set the r flag to true.

If we did not have a conflict but entered a level greater than maxzLvl in the current
loop iteration, we execute lines 16 and 17. We have to choose a variable zy,,, to be
eliminated on this level and increment maxz Lvl.

Reaching line 18, we are now on the level we want to work on and it is guaranteed
to have a variable chosen to eliminate. We then sort any constraints in Cj,; in which
2, occurs into the combination sets, based on the type of bound they are, and
remove them from Cj,;. The remaining non-bounds in the set are copied to Ny,;. We
also add the newly received upper and lower bounds, now in U™ and L™, to the
level’s sets of bounds, Uj,; and L% respectively.

If the L'°9 set now contains lower bounds, but ¢, is still set to L, we either just

newly reached the level, or it was previously a level of only upper bounds but now is

Incrementality 37

not anymore. In this case, too, we need to choose a new eliminator from Lfgldo and

set the r flag.

Should the flag be set, we now execute lines 29 to 32 and change the contents of the
combination sets. L™ receives all lower bounds of the level and U™ all upper
bounds. Cj,; receives all non-bounds we saved in Ny,; as the level below has been reset
and thus all non-bounds are new bounds for it. Finally, we reset the flag. This way,
if we are only on a level to incorporate new constraints into a branch already present
from a previous CHECKSAT call, and that level has an eliminator that worked on that
previous call, only these new constraints will be contained in the combination sets as
we can simply use our previous results from the other constraints. Should we have
chosen a new eliminator on this level, either because the level has just been created
or it no longer has only bounds of one type or we backtracked to it, the combination
sets include all upper and lower bounds on the level.

All that remains to do now is call the [FMPLEXCOMBINE| operation with the combi-
nation sets, the eliminator and the variable to eliminate. We then add the union of
its result and the new unused constraints in Cj,; to Ciy41 on the next level. We
empty Cj,; and increment the [vl variable by 1 to move on to the level to which we
just passed the new constraints, where we start the loop iteration anew as long as we
cannot conclude SAT.

4.2.2 Checking Previous Models

Another way to utilize incrementality and previous results is when after a SAT result,
we have computed a model. If the constraints added since do not contain any new
variables, we can check if the computed model per chance also satisfies the new
constraints as well. If it does, it implies that the old and new constraints together
are still satisfiable and we can immediately return SAT instead of even entering the
actual execution of the main algorithm. This offers us a quick check for the chance of
not having to incorporate the new constraints into the branch for the time being. It
however might be possible that we still have to do that later on at another SAT call
and the model not fitting does not allow any conclusions regarding the satisfiability
of the extended formula.

Example 4.2.1. Consider again the constraint system (A,b) from Ezample
with the model a(x) = 2.5, a(y) = —0.25 obtained in Example |3.4.1f Assume we
receive the additional inequalities

120 — 17y
2z + 39y

35

<
< —4

and want to know if these are satisfiable in conjunction with the constraint system.
Then, instead of immediately launching into FMPlex, we can substitute x and y with
their respective assignments and obtain

34.25 < 35
475 < —4,

38 Incremental FMPlex

which are both trivially true. Thus the model is also a model for the two new con-
straints and we can conclude SAT.

4.3 Heuristics

The algorithm offers several leverage points where different heuristic choices can be
applied. When we first come onto a new level 4, it only has its set C; initialized. To
continue, we have to choose a variable and, in the implementation which eliminates
both via upper and lower bounds, a direction for the elimination: which variable do
we eliminate with an eliminator of which bound type? Then, if the level includes both
kinds of bounds for a variable, we additionally need to choose an eliminator from the
candidates we have not yet tried, not just once, but whenever we backtrack to a level.
Furthermore, it is also possible to deploy an alternative mode of backtracking.

4.3.1 Variable Choice

As long as we have variables in the constraints of a level, we always need to choose
one of them to be eliminated. In the actual implementation, we additionally need
to decide if we want to choose assumed GLBs or assumed SUBs as eliminators. We
also refer to this as the direction in which the variable is eliminated. It is worth
mentioning that on the same level in different branches of the tree, we may choose
different variables and directions. This means that the variable ordering may vary
from branch to branch.

The approach we chose aims to minimize same-bound combinations and consequently
the number of backtracking operations we might have to execute. A secondary goal
is to also minimize the total amount of constraints where possible. We make the
decisions on the basis of the C; set of a level which at the time of variable choosing
contains all constraints of the level. For a variable z let #u(z) = [{c € C; | ub(c,z)}|
denote the number of upper bounds for the variable that are in C;, and, analogously,
let #1(z) = [{c € C; | Ib(c,z)}| be the number of lower bounds in the constraint set.
We choose the variables according to the following priority list:

1. If we have variables with only one type of bound, e.g. if #u(z) = 0 or #I(x) = 0,
these have precedence. If we have multiple of this kind, we choose the one with
the largest number of total bounds. The reason for that lies in the fact that
variables which only have one type of bound allow us to ignore all of these
bounds further down in the decision tree, effectively decreasing the number of
constraints we have to take into consideration. We do not need to choose a
direction in this case as we set ¢, = L.

2. If we only have variables with both kinds of bounds, we then choose in such a way
that we have as few same-bound combinations as possible. The variable chosen
is the one with the smallest min{#u(z), #l(x)}, and we decide to eliminate via
upper bounds if #u(x) < #I(z) and via lower bounds otherwise.

4.3.2 Eliminator Choice

Whenever a level eliminates a variable that has both upper and lower bounds, we
need to — possibly repeatedly — choose an eliminator. This essentially means that
we need to find a criterion by which we can order the set of possible eliminators. The

Heuristics 39

approach we present does this by comparing how many of the original constraints
go into them, then give preference to those with less original constraints to keep the
linear combinations as compact as possible.

4.3.3 Backtracking

When we encounter a local conflict, we have to decide which level we want to back-
track to. Whichever heuristic we deploy, it might happen that we land on a level on
which the set of remaining eliminator candidates is empty. This happens if all possible
eliminator choices on a level have been tried and resulted in a local conflict but the
incorrect choice was not at the last same-bound combination, but rather another at
one further up in the tree. In that case, we move back further, one level at a time,
until we reach one for which that is not the case. However, apart from this case, we
must not backtrack further than the conflict level of a constraint as this might mean
skipping sub-trees in which we could have obtained an answer.

One option, as mentioned in Section [3.3] is making use of the conflict levels of con-
straints, yielding the ANALYZEANDBACKTRACK|algorithm as addition to be called by
the algorithm.

We iterate over all trivially false constraints on a level. If we come upon a global
conflict, we immediately return the special value 0. Otherwise, we save the smallest
conflict level, i.e. the furthest one from our current level, as backtrack level. From
that backtrack level, we then - if necessary - go further back as long as the L!°% set
of the backtrack level is empty.

An alternative to this is always just going back as few levels as possible, i.e. a single
level plus any additional levels we need to go back because of exhausted eliminator
choices. This approach enables us to reach possible global conflicts faster as they
might occur in direct sibling nodes of the one we found a local conflict in. Addi-
tionally, we do not actually have to compute the conflict levels of constraints upon
combination, no matter which kind.

40

Incremental FMPlex

Algorithm 5 The main algorithm for checking satisfiability

1 function CHECKSAT

2
3
4
5
6
7
8
9
0

1
11
12
13
14

15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32

33
34
35

36
37

vl + 1
C1 + CLuCnew
while Cy,; € {true} do

if false € C},; then > In case of conflict

lvl + ANALYZEANDBACKTRACK(Cy);

if vl = 0 then > Global
RESETBELOW/(0)
crer « C
return UNSAT

else > Local
CHOOSENEXTCONSTRAINT({vl)
RESETBELOW ({vl)

r < true

else if (vl > maxzLvl then > New level reached
Tk, S CHOOSENEXTVARIABLE(C}y)
maxLvl < maxLvl + 1

Leomb < {c € Oy | Ib(c,2;)}

Ueomb « fce Cpy | ub(e, z)}

Clvl — Cl’ul \ (LCOTnb U Ucom,b)

Niyi = Nii U Cryg

Lig = L u Leom

Uyl = Uy UU ™

if cj,0 = L A Lio4° £ () then
CHOOSENEXTCONSTRAINT(lvl)
Lcomb — Lcomb \ {Clvl}

r < true

if r = true then > Recomputation with new eliminator
Lcomb — le;)lne U L}fgldo
Ucomb — Ulvl
Clot < Nl
r < false

Crois1 + Crprp1 U CrpyU PMPLEXCOMBINE(LO™ | ¢pp, U™ 2y)
Olvl — @
vl + +

cnew)
return SAT

Heuristics

41

Algorithm 6 Determining the backtracking level

1 function ANALYZEANDBACKTRACK(C}y;)
bt Level < vl

for each trivially false constraint ¢ = (ay,...,an,b | dy,..

2

3

4 if di,...,d,, >0o0r dq,...,d, <0 then
5 return 0

6 else

7 if cl(c) < btLevel then

8 bt Level + cl(c)

©

. todo _
while Lj?%° =0 do

10 btLevel < btLevel — 1

11 return btLevel

. ,dm) in Clvl do

42

Incremental FMPlex

Chapter 5

Implementation and Testing

5.1 Implementation

An experimental implementation of the incremental method has been developed on
top of the SMT Solver SMT-RAT |[CKJ™15] in the programming language C++.

5.1.1 Differences to Theory

There are a number of differences between theory and implementation, most of them
being simplified for the explanation of the basic principle in this thesis while being
adapted for higher time and memory efficiency in the actual implementation.

For example, the branch in the implementation is not a vector, but instead a list of
levels so as to only use the storage space we need. What were sets of constraints in
the algorithm presented here have been implemented as lists of constraints as well.
For the constraints themselves, the pre-existing SimpleConstraint data type has been
used. The conflict level of a constraint is given as a list iterator indicating the cor-
responding element in the branch list. Derivation coefficients are implemented as a
map as we, unlike assumed here in the paper for simplicity, do not know the possible
total number of constraints the theory solver would receive for checking. The map
was therefore an obvious choice as we can add new derivation coefficients easily and
only need to keep track of those necessary.

Another crucial difference, as already touched upon in Section is that we elim-
inated not solely via assumed GLBs but also via assumed SUBs to provide more
adaptability, which is why the choice of a variable to eliminate also brought the
choice of a direction with it.

The implementation has furthermore been created in such a way that possible addi-
tions and extensions, especially further heuristics for variable, direction and eliminator
choices may be integrated easily, should the need arise. To allow a comparison be-
tween the utilization of incrementality and the lack thereof, it can be turned on and
off via the settings of the module.

44 Implementation and Testing

5.2 Testing Results and Discussion

The implementation was tested on the quantifier-free linear real arithmetic bench-
mark set from SMT-LIB [BETI6|, containing 1753 individual benchmarks. They
were modified only by replacing equalities with two weak inequalities as described in
Section [3:5] The tests were conducted on the High Performance Cluster of RWTH
Aachen University with a time limit of 5 minutes and a memory limit of 5 Gigabyte.
The Standard configuration deploys incrementality, the previously presented heuris-
tics and the previously discussed ANALYZEANDBACKTRACK backtracking mode. For
a general overview of the overall effect of the presented improvements of the algo-
rithm, we first test it against a None configuration that uses neither incrementality,
nor heuristics, nor the conflict level based backtracking.

Following that, we compare it to three different configurations, each missing only
one of the presented aspects: The No-Incr configuration without incrementality, the
No-Heu configuration where we do not apply heuristics and always choose the first
variable and constraint we can find and the One-Step configuration that uses the
alternative backtracking mode of only backtracking as far as absolutely necessary.

The possible results of an instance are

e MO: The given memory has been exceeded and the instance could thus not be
solved,

e TO: The given time has been exceeded and the instance could thus not be
solved,

e SAT: The instance was correctly determined to be satisfiable,
e UNSAT: The instance was correctly determined to be unsatisfiable,

e WRONG: The instance was incorrectly determined to be satisfiable or unsatis-
fiable and

e SEGFAULT: An error occurred during execution of the algorithm.

As the latter two results WRONG and SEGFAULT did not occur for any of the
configurations, they will be omitted in the following evaluation.

Table gives a first overview of the amount of instances solved per configuration
while Figure [5.1] shows the total runtime for the number of solved instances.

713
125
141
668
743

Configuration | MO | TO | SAT | UNSAT | Total Unsolved | Total Solved
Standard 358 | 682 426 287 1040
None 167 | 1461 49 76 1628
No-Heu 195 | 1417 56 85 1612
One-Step 354 | 731 403 265 1085
No-Incr 216 | 794 431 312 1010

Table 5.1: An overview of the different configurations

45

Testing Results and Discussion

—— (Standard, runtime)
(None, runtime)

—— (No-Incr, runtime)

—— (No-Heu, runtime)

—

200
One-Step, runtime)

runtime

100

\
600

T T
0 200 400
number of solved instances

Figure 5.1: Performance profile in regards to runtime

5.2.1 Overall Effects

Both Table 5.1 and Figure [5.1] illustrate the severe difference in solved instances and
required runtime between the Standard configuration and the None configuration

which does not apply any of the presented improvements. It becomes obvious that the
former is performing significantly better than the latter. The greater part of unsolved
instances of the None configuration can be attributed to timeouts: In comparison
to the Standard configuration, 589 instances that were originally solved now created
timeouts, almost all timeouts were carried over and there were an additional 191

instances that, instead of exceeding memory limits, now also created timeouts.

300 4 D @08 10 Ot 00 D @ ® /'/ I"
. e 60 ’:l
200 - . ;
o) .7 o 40 !
g p <1 i
3 L’ 5)
z . z ;
100 + P ‘ 20 !
. #
- ®
0 /" 0 :'
T T T T T T T T T
0 100 200 300 0 100 200 300 400
Standard Standard
(b) Number of generated constraints

(a) Runtime

Figure 5.2: Standard and None configuration in comparison

The instances that were solved by both configurations seem to behave similarly, as

shown in Figure [5.2

However, each of these instances consisted of at most a single

CHECKSAT call and, with a few exceptions, barely generated constraints, thus not

offering a reliable basis to make a conclusive statement on.

Implementation and Testing

46

5.2.2 Heuristics: Variable, Direction and Eliminator Choice

Surprisingly, testing revealed the heuristics for variable, direction and eliminator
choices to be the most influential factor on the performance of the algorithm. Out of
the configurations which each have a single improvement area disabled, the No-Heu
configuration exhibited the strongest deviation from the Standard configuration. This

becomes evident in Table 5.1 and both Figures 5.1 and [5.3]

No-Heu

300 | Smem@omue csm oo meco ® g Ir'
. 60 ’:l
200 -
. g 40 /
p =3 .
s - Z !
100 P ‘ 204
. .
B o
0 = . o+ ¥
T T T T T T T T
0 100 200 300 0 100 200 300 400
Standard Standard
(a) Runtime (b) Number of generated constraints

Figure 5.3: Standard and No-Heu configuration in comparison

The results moreover bear a striking resemblance to these of the None configuration
with only slight variations, further corroborating the crucial impact these heuristics
have on the overall performance. The majority of the differences in the number of
timeouts and exceeded memory between the Standard and the None configurations
can thus be attributed to the heuristics.
On one hand, this implies that efficiently chosen variables, directions and eliminators
are decisive for the runtime of a problem instance. On the other hand, the 163 in-
stances that exceeded the memory limit in the Standard configuration but resulted
in timeouts without the heuristics are of note as well: They indicate that, while the
heuristics allow for a significant reduction of runtime, they pose a considerable contri-
bution to memory usage. On this set of benchmarks however, this might be considered
negligible as there were no cases of MO results from the Standard configuration that
were actually solved in the No-Heu configuration as well as numerous additional time-
outs. Whether this holds up for other problems remains an open question.
Again, the instances solved by both configurations consisted of very few or even no
CHECKSAT calls at all and do not lend themselves to any further substantial conclusion

except for the importance of heuristics for the algorithm.

5.2.3 Heuristics: Backtracking Modes

As outlined in Figure the Standard configuration with conflict level based back-
tracking mostly outperformed the One-Step configuration in regards to runtime. The
reasoning for the latter was that, given a local conflict, just backtracking as little as
possible might allow us to find a potential nearby global conflict faster than in the
conflict level based backtracking. However, apart from the slightly greater number of

Testing Results and Discussion 47

unsolved instances, largely due to timeouts, there is only a single (UNSAT) instance
which was unsolved in the Standard configuration but solved in the One-Step config-
uration, suggesting that this is not the case.

-106
300 4 0002 W WO WO B X [
- 3,
o 200
ffé . 5. 2
. o
o . =
100 o
i 7 14
% o
4
o # c® ot et
/\ T T T 0 Py S
0 100 200 300

0 0.5 1 1.5 2 2.5 3

Standard Standard 10
(a) Runtime (b) Number of generated constraints

Figure 5.4: Standard and One-Step configuration in comparison

Figure [5.4] further confirms that this backtracking mode does not provide us with
any advantage, or at least not with one that is sufficient to outweigh the additional
runtime and generated constraints that are arise when deploying this method. We
thus conclude that the backtracking according to the conflict levels of the trivially
false constraints has proven itself to be more beneficial.

5.2.4 Incrementality

The comparison between the incremental Standard and the non-incremental No-Incr
configurations produced the unexpected result of the non-incremental version overall
faring better than the incremental version. One remarkable aspect is that the No-Incr
configuration produced less MO results but more TO results. Of the 182 instances
with differing results, 143 ended in an MO result for the Standard version but a TO
result in the No-Incr configuration. Yet, the total number of instances solved by the
latter is higher with most of the additionally solved ones being unsatisfiable.

The scatter plots of Figure [5.5] further illustrate that the non-incremental version of
the algorithm generally tends to outperform the incremental approach in regards to
both runtime and number of generated constraints.

In the implementation, the only additional step the No-Incr configuration takes is
resetting both the branch and the current model at the beginning of a CHECKSAT
call, otherwise both versions proceed in the same manner. One possible reason for
the differing performances would thus be that testing a previous model costs more
resources than it eventually saves. This, however, was disproven by further testing.
Whether or not the model of a previous call is tested or not showed to have very little
to no effect on runtime and generated constraints, only saving approximately as much
time as it requires to be applied.

48 Implementation and Testing

-106
300 ‘ L
- H 14 ///’
e ° L
5 200 ,/,’ 8 _ ///
= . ° S
: ’ :
e -)
100 4 //, e Z 0.5 1 ////
7] //’/
.’ ai®e® Q¥ . H /3‘“
04 /‘! R a] o ‘fg’. .
T T T T -
1 2 T T T T T T
0 UOSt 4 dOO 300 0 0.2 0.4 0.6 0.8 1
andar

Standard .106

(a) Runtime (b) Number of generated constraints

Figure 5.5: Standard and No-Incr configuration in comparison

The main cause of the No-Incr configuration being more efficient are thus likely the
heuristics for variable and direction choices. If a previous CHECKSAT call returned
SAT, we retain the created decision tree branch in the incremental version and later on
merely incorporate additional constraints into that tree, i.e. all decisions for variables
and directions that have been made in the tree so far must be adhered to as long
as we do not backtrack above them and reset the nodes below in the branch. This
entails that we have to adhere to these decisions even if the heuristics would no longer
deem them ideal given the additional constraints of the next call of CHECKSAT. This
can result in the decision tree becoming unnecessarily large and, in turn, increased
runtime for iterating through it. In contrast, the non-incremental version always
completely rebuilds the decision tree in each call. This means the algorithm can, at
each node, make more informed choices with its heuristics as they can consider the
entire current set of constraints and does not have to follow previous choices that
were based on only a subset of these constraints that were available in a previous
CHECKSAT call. Figure further supports this. The smaller instances that required
less time and generated constraints mostly result in similar behavior for both versions,
but the larger the instances, the more efficient the No-Incr configuration proves itself.
The resulting advantage effects the results in a number of ways: Firstly, there are less
MO results in the non-incremental version as the decision trees in each CHECKSAT call
are kept as small as possible while this does not happen. Secondly, if we disregard the
MO results turned into TO results, there are also less timeouts, resulting in a greater
total number of solved instances which generally also were completed in less time and
with fewer generated constraints.

Of course this raises the question if this result would still look similar if no heuristics
were used. However, as already mentioned in Section the instances that are
solved without heuristics are so few and so small that this would not be viable to
obtain any kind of reliable statement about that.

Chapter 6

Conclusion

6.1 Summary

We presented the FMPlex algorithm for satisfiability checking of sets of linear real
constraints as a combination of the Fourier-Motzkin variable elimination and the
Simplex algorithm to reduce the former’s doubly exponential runtime. It eliminates
variables by choosing an assumed greatest lower or smallest upper bound for them
and combining these with the other bounds of the given variable. As such choices can
be incorrect and lead to conflicts that however do not allow us to conclude UNSAT
immediately, we introduced the notion of backtracking.

As a theory solver for a lazy SMT solver, this algorithm is expected to profit from
incrementality. Making use of appropriate data structures, we thus presented an
incremental version of it that reuses previous results and, if available, models. Fur-
thermore, we introduced heuristics for choosing variables, directions and constraints
to eliminate them with on a given level of the algorithm as well as two kinds of back-
tracking modes.

After a short description of the implementation of the incremental version and its
differences to the theory given in this thesis, we presented the results of testing the
experimental implementation on a set of benchmarks. While the heuristics for vari-
able, direction and eliminator choice had an unexpectedly large impact on perfor-
mance improvement and the conflict level based backtracking offered an additional
moderate speed-up, the incremental version actually fell behind the non-incremental
version. We arrived at the conclusion that this can most likely be attributed to the
shape and size of the tree in later CHECKSAT calls where the incremental version has
to adhere to previous choices of variables and directions while the non-incremental
one can choose these anew tailored to the actual set of constraints in every call.

6.2 Future Work

There are various aspects of this method still offering potential for further research.
One of these is whether incrementality can possibly still be of use under different cir-
cumstances or with different or additional heuristics. As mentioned in Section
such heuristics may be easily added and tested. To utilize it even further, it also might

50 Conclusion

prove beneficial to adapt the algorithm in such a way that removing a constraint does
not necessitate resetting all previous results.

Furthermore it might be worth investigating the utilization of models of previous
CHECKSAT calls in regards to what it means when a constraint is satisfied by a model
even if not all new constraints are satisfied by it and if it could be used to make the
model testing actually improve efficiency.

While this thesis treated equalities and their negations by converting them into equiv-
alent Boolean combinations of inequalities, the algorithm might benefit from a more
specific and direct handling as e.g. equalities always represent a GLB and an SUB.

Bibliography

[BAMO09)

[BFT16]
[Bla77]

[CKJ*+15]

|CLRS09)]

[CooT1]

[Dan72]

[Dan90]

[Dan16]

[DLL62|

[DMB11]

[DP60)

Nikolaj Bjgrner and Leonardo de Moura. Z3'°: Applications, enablers,
challenges and directions. In Sizth International Workshop on Constraints
in Formal Verification Grenoble, France, 2009.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

Robert G Bland. New finite pivoting rules for the simplex method. Math-
ematics of Operations Research, 2(2):103-107, 1977.

Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Abraham. SMT-RAT: An open source C-++ toolbox for strategic
and parallel SMT solving. In International Conference on Theory and
Applications of Satisfiability Testing, pages 360-368. Springer, 2015.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to Algorithms. MIT press, 3. edition, 2009.

Stephen A. Cook. The complexity of theorem-proving procedures. STOC
71, page 151-158, New York, NY, USA, 1971. Association for Computing
Machinery.

George B Dantzig. Fourier-Motzkin elimination and its dual. Technical
report, STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH,
1972.

George B Dantzig. Origins of the simplex method. In A History of Sci-
entific Computing, pages 141-151. Association for Computing Machinery,
1990.

George Dantzig. Linear programming and extensions. Princeton University
Press, 2016.

Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM, 5(7):394-397,
1962.

Leonardo De Moura and Nikolaj Bjgrner. Satisfiability modulo theories:
Introduction and applications. Commun. ACM, 54(9):69-77, sep 2011.

Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM (JACM), 7(3):201-215, 1960.

52

Bibliography

[Fou27]

[HZ15|

[Kal92]

[KBD*17]

[Kha79]

[KM72]

[Kob21]

[Mot36]
[MSM18]

[ORS92]

[Schog]

Jean-Baptiste-Joseph Fourier. Analyse des travaux de ’académie royale
des sciences pendant ’année 1824, partie mathématique. Histoire de I’Acad
emie Royale des Sciences de I’Institut de France, 7, 1827.

Thomas Dueholm Hansen and Uri Zwick. An improved version of the
random-facet pivoting rule for the simplex algorithm. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC
"15, page 209-218. Association for Computing Machinery, 2015.

Gil Kalai. A subexponential randomized simplex algorithm. In Proceedings
of the Twenty-fourth Annual ACM Symposium on Theory of Computing,
pages 475-482, 1992.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochen-
derfer. Reluplex: An efficient SMT solver for verifying deep neural net-
works. In International Conference on Computer Aided Verification, pages
97-117. Springer, 2017.

Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear pro-
gramming. In Doklady Akademii Nauk, volume 244, pages 1093-1096.
Russian Academy of Sciences, 1979.

Victor Klee and George J Minty. How good is the simplex algorithm.
Inequalities, 3(3):159-175, 1972.

Paul Kobialka. Connecting simplex and fourier-motzkin into a novel quan-
tifier elimination method for linear real algebra. Master’s thesis, RWTH
Aachen University, 2021.

Theodore Samuel Motzkin. Beitrdige zur Theorie der linearen Ungleichun-
gen. Azriel Press, 1936.

Joao Marques-Silva and Sharad Malik. Propositional SAT Solving, pages
247-275. Springer International Publishing, Cham, 2018.

Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype
verification system. In International Conference on Automated Deduction,
pages 748-752. Springer, 1992.

Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1998.

	Introduction
	Preliminaries
	Satisfiability Modulo Theories
	Background Theory: Linear Real Arithmetic
	Fourier-Motzkin Variable Elimination
	Simplex

	FMPlex
	Notation
	Combining Constraints
	Conflict Handling
	Obtaining a Model
	Extension to Strict Operators and Equalities
	Properties

	Incremental FMPlex
	Data Structures and Auxiliary Functions
	Incrementality
	Heuristics

	Implementation and Testing
	Implementation
	Testing Results and Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

