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1. Introduction

With the late awareness of the detrimental impacts that could be caused by the rapid
climate change, investment in renewable energy has increased at a great rate. In fact,
investment in solar energy alone has grown by roughly fifteen-fold since 2004, leading
the way with 49% of global investment in renewable energy1.

Solar photovoltaic (PV) systems are at the heart of solar energy. In 2020, the global
capacity of PV systems has reached 707.5 GWp, the capacity that the world would
produce under ideal conditions, and is responsible for actual production of 135 GWp of
electricity worldwide. Some of the drivers behind this unprecedented demand on PV
systems is the rapid drop of their costs and reduction of CO2 emissions. Since 2010,
the prices of PV modules have declined by 90% as a result of technology advancement.
Moreover, a volume of 35 million tons of CO2 emissions has been avoided in Germany
(comparable to what was produced by countries such as New Zealand in the same
year2) thanks to the 5 GWp of installed PV systems’ capacity [1].

Figure 1.1: PV panels mounted on a roof of a building3.

To further encourage installing photovoltaic rooftops, in this thesis an output of a
virtual PV roof is simulated given an address of a building and few subjective param-
eters such as the number of residents and the maximum amount to be invested in PV
systems, the optimal size and minimum costs of a PV roof panel are estimated. The
simulation of PV roofs is also dependant on meteorological data, e.g. solar irradiation,
ambient temperature and on cadastral data e.g. the direction, the tilt and the area of
the roof.

1Global investment in renewables capacity was $303.5 billion in 2020, excluding large hydro, check
https://about.bnef.com/energy-transition-investment/

2Country profile https://ourworldindata.org/co2/country/new-zealand
3For license check https://pixabay.com/de/photos/solar-dach-sonnenenergie-2666770/
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1.1. Related Work

PV systems can be split into two categories, on- and off-grid systems. Off-grid sys-
tems incorporate the PV module or array which generate direct current (DC), DC-DC
converters (batteries), then in order to supply power for household appliances (the
electrical load) the DC has to be converted into alternating current (AC) through a
DC-AC converter (power inverter), whereas on-grid systems include power transformers
instead of batteries, net metering to be connected to the local utility grid. Whenever
the PV produced power is more than the current usage, the power is exported. In
case of power shortage, power from the utility grid is imported. Several tools for mod-
eling and simulating the behavior of PV systems are available either online such as
PV-Watts [9], PVGIS [47], PV-Online, PV*SOl [56] or offline such as PhotoVoltaic
systems (PVsyst) [38] and System Advisor Model (SAM) [14] and HOMER [11], see
Table 1.1 for a comparison.

Model Developer Description Availability
SAM NREL, USA Detailed performance and economic analysis. Free
PV-Watts NREL, USA Online performance and cost estimation. Free
PVsyst ISE, Switzerland Performance analysis and costs estimation. Chargeable
HOMER NREL, USA Optimization and sensitivity analysis. Chargeable
PV*SOL Valentine Software, Germany Performance and economic analysis. Chargeable

Table 1.1: Comparison of related tools.

In the following, the related work for each sub-system is discussed.

Photovoltaic cell models PV systems are characterized by their current-voltage
curve and their maximum power point (MPP) which are dependent on electrical parts
on the cell and module level as well as on the electrical load. There exists ample
literature for modeling PV systems such as the single-diode model (SDM) which con-
siders a series resistance, a shunt resistance and a linear independent current source
connected in parallel to a diode, thus assuming that one lumped diode describes the
characteristics of the PV system as developed by De Soto et al. [6]. There exists as
well a double-diode model (DDM) that takes into account the loss resulting form the
recombination at the depletion region of the P-N junction as explained by Sah et al.
[52]. A three-diode model (TDM) additionally takes into consideration the electrical
characteristics of the multi-crystalline solar cells and the leakage current through pe-
ripheries as presented by Nishioka et al. [41] and Khanna et al. [59]. Work done in
[4] approached the PV modeling through Neural Networks. This approach becomes
viable when an abundance of data is available.

While both DDM and TDM provide certain advantages, the cost of adding more
diodes increases the computational complexity of the simulation. The SDM strikes a
good balance between complexity and accuracy, which is one of the probable reasons
why commercial tools such as PVsyst also uses the SDM [51] or free but advanced
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tools such as SAM [58].

The SDM developed by De Soto et al.[6] is a five parameter model based on data
provided by manufacturers as well as semi-empirical correlation equations for the pre-
diction of the energy production given certain cell parameters and operating conditions.
Tian et al. [58] proposed a modified model for the current-voltage curve to account for
parallel and series connections in a PV array. While the SDM is relatively fast when
compared to other models, the optimization step adds another layer of computational
complexity pushing the need for a yet faster model. A simple efficiency model as used
in PV-Watts and other online PV modeling tools provides a good approximation.

Battery models Sometimes a battery storage is installed along PV modules. Esti-
mating the lifetime of the battery is critical to correctly estimate the overall costs of
such a system. If the battery has to be replaced too many times throughout the assess-
ment period, it could be more expensive to invest in batteries. The lifetime of any other
commodity depends on time. This is called calendar lifetime. The battery’s lifetime
is however also dependent on the frequency of charges and how deep each discharge
is (depth of discharge). Therefore, there is an upper limit for the number of cycles of
charging and discharging the battery before the battery reaches its lifetime end, mostly
before its calendar lifetime. Approaches to predict a li-ion battery’s behavior include
electro-chemical models [20] based on physics to predict when to recharge the battery
to avoid overcharge or undercharge, which also shorten the battery’s lifetime. Such
models provide reasonable fidelity but their need for very detailed input and compu-
tational complexity make them unsuitable for this application.

Models that are used for this application include capacity models as described in
[7]. The power extracted or inserted into such models correlates to the charge current
to the battery and the state-of-charge (SOC) of the battery. Applying different values
of current to the battery changes how much the battery discharges or charges e.g. by
changing polarity. To ensure a maximum benefit of the generated power, management
systems coupled with the batteries use storage dispatch strategies such as variants peak
shaving strategy [27]. An empirical approach to estimate the lifetime and minimize the
cost of battery storage done by [10] can be integrated in this work. The efficiency of a
roof mount PV system, that is how much of solar power is transformed into electrical
power, is not only governed by its electrical components and its geographical location
that determines the level of solar irradiation and temperature over the year, but also
by the roof tilt, on which it is to be mounted, its orientation and its available area, the
area of the roof that is not subject to constant shadow, caused by other neighbouring
buildings or trees, or incompatible surface such as a chimney [60].

Cadaster An initiative from the Landesamt für Natur, Umwelt und Verbraucher-
schutz (LANUV) of the Nordrhein-Westfalen (NRW) has made a solar cadastre dataset
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for the buildings’ roofs of the state including orientation, tilt and area. The solar cadas-
tre is based on high resolution laser scanner data which were transformed into a digital
map of surfaces. By intersecting this with a map of buildings, resulting in a list of
subsurface of the buildings with their tilt, orientation and area. Additionally, unsuit-
able surface elements such as chimneys, dorms and woody plants were recognized along
with the percentage of shadowing on the surfaces [32]. Thus, a good approximation of
the available area on the roofs has been made available.

Irradiance Using these pieces of information, the incident radiation, the radiation on
the tilted solar panel, can be calculated using the sum of direct and diffuse irradiance.
The literature has an abundance of models to estimate the diffuse irradiance on a tilted
surface. Isotropic or semi-isotropic models assume that the sky radiates with the same
intensity from all directions except for the direction of the solar disk. Such models
include Duffie [22], Liu and Jordan [34] and Koronakis [25]. Anisotropic models rely
on anisotropy indices that describe how solar irradiance changes in different directions.
Such models include Klucher [24], Hay and Davis [19] and Perez [44].

Optimization To work out the optimal size of a PV system, the total power of the
PV system and the capacity of the battery have to be chosen to satisfy the electrical
load. One method is to make simplified calculations based on monthly averages of
meteorological data as done by Barra et al. [29]. Another method is to use stochastic
features of the data such distributions and correlations of the actual data as presented
by Balouktsis et al. [3]. When considering an on-grid system, the goal is usually
to reduce the overall cost of electricity. Optimization for such systems required on
hourly or even sub-hourly measured values averaged over around a 10-years period
of meteorological data and load curve taken by an average citizen to carry out the
simulations. This method is used by the majority of PV tools nowadays such as PV-
Watts and SAM [9, 51].

1.2. Contribution

While SAM and PVsyst provide financial modeling, many of the aforementioned vari-
ables have to be modeled manually, which renders these tools suitable for engineers but
not easily accessible by the average stakeholder, a homeowner. Other easily accessible
tools such as PV-Watts or PVGIS are, on the other hand, intuitive and user-friendly,
but do not account for financial modeling. Moreover they do not deliver an optimal
design, a design that minimizes the overall costs of electricity [28].

In this work, a tool is developed to simulate and search for a techno-economic op-
timal design of a grid-connected PV-Battery open rack (fixed) systems. The Sun’s
apparent position is calculated for any time of year and meteorological information for
the region as well as cadastral information for the rooftop of the target building are
retrieved automatically. The average load curve is assumed as given by the federal as-
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sociation of the energy and water industry (BDEW) for a residential and a commercial
profile.

The simulation of PV panels is done using both an electrical model (SDM) and a
simple efficiency model. The simulation of a lithium-ion battery is implemented using
a simple round-trip efficiency model. The battery’s lifetime is estimated using a sta-
tistical method.

The financial model implemented in this work accounts for the present and future
costs of the PV-Battery system, the costs paid to grid and revenues from feeding (ex-
porting) the grid an excess of energy. Furthermore, the effect of the deviation of various
financial parameters is discussed to provide an overview of how these affect the optimal
design of the system.

Finally, the optimization process is, initially, approached by different optimization
methods and then a relatively fast heuristic approach is introduced that suits this
application. The optimization pipeline, while allows for a financially unconstrained
optimization, a financial limit on the equity is also possible.

1.3. Outline

Section 2 goes over the available data that shape the basis of this work. It provides
an overview of the available meteorological and cadastral data as well as describes the
used algorithms. Section 3 describes the methods used to simulate the PV systems
and to calculate the annual energy yield. Then the methods of finding an optimal size
of the PV roof panel are described in Section 4. Section 5 presents various study cases.
Finally, Section 6 provides a summary and discusses further work.
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2. Input Data

The output of a PV rooftop changes as many physical variables change. Some of which
are independent of the PV system (mainly meteorological data such as solar irradiance,
the PV panel orientation with respect to the Sun) or dependent on it which are mainly
the electrical specifications given by the manufacturer, such as the Maximum Power
Point (MPP). This section goes over the independent data, see Table 2.1.

2.1. Meteorological Data

In this section, data given by several meteorological services are compared and the
relevant information are then discussed.

Features Units Relevance DWD MeteoNorm NREL
Air temperature ◦C • ✓ ✓ ✓
Air pressure hPa • ✓ ✓ ✓
Cloud cover octa ✓ ✓
Mass mixing ratio (absolute humidity) g/kg ✓ ✓
Relative humidity % ✓ ✓ ✓
Precipitation mm or cm ✓ ✓
Dew point temperature ◦C ✓ ✓
Wind direction degree ✓ ✓ ✓
Wind Speed m/sec • ✓ ✓ ✓
Extraterrestrial horizontal radiation W/m2 ✓
Direct normal irradiance W/m2 ✓ ✓
Direct horizontal irradiance W/m2 • ✓ ✓
Diffuse horizontal irradiance W/m2 • ✓ ✓ ✓
Global horizontal irradiance W/m2 ✓ ✓
Clear-sky direct normal irradiance W/m2 ✓
Clear-sky diffuse horizontal irradiance W/m2 ✓ ✓
Clear-sky global horizontal irradiance W/m2 ✓ ✓
Solar zenith or altitude degree • ✓ ✓
Solar azimuth degree • ✓
Incoming infrared radiation W/m2 ✓ ✓
Outgoing infrared radiation W/m2 ✓ ✓
Ultraviolet radiation W/m2 ✓
Photosynthetic active radiation W/m2 ✓
Surface Albedo ✓ ✓
Illuminance1 lux ✓
Covered area Germany World World
Interval min 60 60 60, 30, 15
License free chargeable free

Table 2.1: Features provided by different meteorological datasets. Relevant data to
this work are marked with a bullet. In the following, either DNI or direct
horizontal irradiance is used.

The data used in this work is the Test Reference Years (TRY) given by the Deutscher

1Values for direct, diffuse and global illuminance.
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Wetterdienst (DWD) which provides hourly data for each variable over the course of
an average year for the period of 1995-1995 (8760 hours). It provides information
about the temperature measured 5m above ground and an hourly average of Diffuse
and Direct Horizontal Irradiance. The position of the Sun can be calculated given a
time of year as done in this work (see Section 2.2).
The Direct Normal Irradiance (DNI) is the amount of solar radiation per unit area
measured on a perpendicular surface to the sun while the Direct Horizontal Irradiance
is measured on a horizontal surface. So both can be calculated interchangeably given
the solar altitude angle (see Section 3.1). The Global Horizontal Irradiance (GHI) is
sum of direct and diffuse horizontal irradiance. Consequently, the data given by the
DWD covers the requirements of the meteorological data for this work.
The data is provided for each square kilometer (tile) in Germany. However, since this
work deals with residential areas, only the data from the closest tile to each ZIP code
in Germany is extracted resulting in 8178 distinctive tiles.

2.2. Sun Position

The algorithm to calculate the Sun’s position in this thesis is the SPA algorithm is
explained in [50]. The algorithm is based on the book The Astronomical Algorithms
by Jean Meeus [37], which is based on the Variations Sèculaires des Orbites Planè-
taires Theory which is developed by Bretagnon and Francou. The advantage of this
algorithm is its great accuracy to calculate the Sun’s altitude and azimuth angles in
the period from the year -2000 to 6000 with uncertainties of ±0.0003◦.

The calculations rely on a large set of (>2350) fixed parameters for Earth written
as period tables.

Earth periodic terms used in the calculation of Earth’s longitude and latitude angles
in the heliocentric model, i.e. position of Earth with respect to the center of the Sun.

Nutation periodic terms Since the Earth’s orbit is affected by the swaying motion
of Earth because of the Moon, the longitude and obliquity of Earth needs correction
from a model, where a planet has no moon.

In this section, the algorithm’s equation, which are dependent on these parameters
are not listed but can be accessed directly in the paper [50].

Julian day the Julian day djulian is calculated, which is the number of days since the
beginning of the Julian Period, Jan 1 of the year -4712 at 12 in Greenwich civil time.
The mean sidereal time at Greenwich v0 calculated given the Julian day djulian and
some fixed parameters.
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Earth and Sun Position The Earth’s heliocentric longitude λ⊕,helio and latitude
ϕ⊕,helio angles and the radius of the Earth’s orbit R⊕ in Astronomical Units (AU)
are calculated given the Julian day djulian and Earth periodic terms.

The Sun’s longitude λ⊙,geo and latitude ϕ⊙,geo angles are then calculated in the
geocentric model, i.e. the Sun position with respect to the Earth’s center.

λ⊙,geo = λ⊕,helio + 180◦

ϕ⊙,geo = −ϕ⊕,helio
(2.1)

Then, the nutation in Sun’s longitude ∆λ⊙,geo and in the obliquity of the ecliptic ∆ε
are calculated using the mean anomaly of the Sun, the mean anomaly of the Moon, the
mean elongation of the Moon from the Sun. These are calculated using the nutation
periodic terms and other fixed parameters.

The true obliquity of the ecliptic ε is calculated by first calculating the mean obliquity
of the ecliptic ε0 using fixed parameters and the Julian day djulian and the by

ε =
ε0

3600
+ ∆ε (2.2)

The Sun’s geocentric longitude without the correction for aberration λ′⊙ and the
apparent sidereal time at Greenwich v are calculated as

λ′⊙ = λ⊙,geo +∆λ⊙,geo

v = v0 +∆λ⊙,geo · cos(ε)
(2.3)

To correct for aberration, the Sun’s apparent longitude λ⊙ is calculated as

λ⊙ = λ′⊙ − 20.4898

3600 ·R⊕
(2.4)

Then, the Sun’s geocentric right ascension α⊙,geo and declination δ⊙,geo angles are
calculated

α⊙,geo = atan2
(sinλ⊙ · cos ε− tanϕ⊙,geo · sin ε

cosλ⊙

)
δ⊙,geo = arcsin

(
sinϕ⊙,geo · cos ε+ cosϕ⊙,geo sin ε · sinλ⊙

) (2.5)

The observer’s geocentric hour angle θHRA, geo is calculated as

θHRA, geo = v + λ− α⊙,geo (2.6)

where λ is the observer’s geographical longitude angle.
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The Sun

Earth’s center

PV Panel

φ⊙,geo

φ⊙,topo

Observer’s horizon

Figure 2.1: The Sun’s geocentric and
topocentric altitude φ⊙,geo
and φ⊙,topo respectively.

Topocentric Model After calculating the
Sun’s geocentric right ascension α⊙,geo and
declination δ⊙,geo angles, they need to be
transformed into a topocentric model, i.e.
the Sun’s position angles are calculated
with respect to the observer at the Earth’s
surface e.g. the PV panel (see Figure
2.1).

Calculation of the Sun’s topocentric right as-
cension α⊙,topo is calculated in the following
steps

(a) The equatorial parallax in the sun right
ascension

ζ =
8.794

3600 ·R⊕
(2.7)

(b) the angle θu

θu = arctan
(
(1− f⊕) · tanϕ

)
(2.8)

where ϕ is the observer’s latitude angle, f⊕ = 0.33581% is the Earth’s flattening
ratio.

(c) The term x is to correct for the Observer’s elevation is calculated by

x = cos θu +
E

r⊕,equatorial
· cosϕ (2.9)

where r⊕,equatorial = 6378140m is the Earth’s equatorial radius, and E is the
observer’s distance to the center of Earth in meters.

(d) The parallax in the Sun’s right ascension can now be calculated by

∆α⊙ = atan2
( −x · sin ζ · θHRA, geo

cos δ⊙,geo − x · sin ζ · cos θHRA, geo

)
(2.10)

(e) The Sun’s topocentric right ascension α⊙,topo is then given as

α⊙,topo = α⊙,geo +∆α⊙ (2.11)

The topocentric local hour angle θHRA, topo can be calculated as

θHRA, topo = θHRA, geo +∆α⊙ (2.12)
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And the Sun’s topocentric declination δ⊙,topo as

δ⊙,topo = atan2
( (sin δ⊙,geo − y · sin ζ) · cos∆α⊙
cos δ⊙,geo − x · sin ζ · cos θHRA, geo

)
(2.13)

where y is a term to correct for the observer’s elevation, similar to the term x in
Equation (2.9) and is calculated as follows

y = sin θu +
E

r⊕,equatorial
· sinϕ (2.14)

The Sun’s topocentric altitude angle without correction for atmospheric refraction
φ′⊙ is calculated as

φ′⊙ = arcsin

(
sinϕ · sin δ⊙,topo + cosϕ · cos δ⊙,topo · cos θHRA, topo

)
(2.15)

To correct for atmospheric refraction, the difference is calculated as

∆φ⊙ =
pambient

1010
· 283

273.15 + Tambient

· 1.02

60 · tan
(
φ′⊙ + 10.3

φ′
⊙+5.11

) (2.16)

where pambient and Tambient are ambient pressure in hPa and the ambient temperature
in Celsius degrees respectively. Finally the Sun’s topocentric altitude φ⊙ and azimuth
γ⊙ after correction for atmospheric refraction are given as

φ⊙ = φ′⊙ +∆φ⊙

γ⊙ = atan2

(
sin θHRA, topo

cos θHRA, topo · sinϕ− tan δ⊙,topo · cosϕ

)
+ 180◦

(2.17)

Hence, with a given time, geographical longitude λ and latitude ϕ angles, as well as
ambient pressure pambient and temperature Tambient the Sun’s position can be calculated
with a high precision.
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2.3. Cadastral Data

When a stakeholder considers investing in installing rooftop mount solar panels, it
is important to know the orientation and the inclination of the building’s rooftop,
since that has a huge impact on the irradiation received by the solar panels. For this
purpose, the calculation of these angles is done automatically by the user’s address
input. The state office for nature, environment and consumer protection of the NRW
state (LANUV) has done a fascinating work by recording Laser Detection and Ranging
(LIDAR) data of all buildings in the state of NRW and intersecting it with the a two
dimensional map of the cities. This resulted in a number of surfaces of rooftops for
each city in the NRW1 with a precision of half meter.

Parameter Description
geb id The ID of the building, the surface belongs to.
richtung The orientation of the surface where south is 180◦ and west is 270◦.
neigung The tilt angle of the surface.
gemeinde gn Name of the city, municipality, etc.

Table 2.2: Features of the surfaces provided by the LANUV cadaster that are used in
this thesis.

Data structure The data is available in GIS format and can be viewed as a list of
surfaces. Each surfaces has relevant information such as the surface tilt and orientation

City name
lat 50.68255 50.69893.json
...
lat 50.83287 50.85486.json

Building 1
...
Building k ≤ 1000

geb id
bounds
lon
lat
surfaces

surface 1
...
surface l

Figure 2.2: The structure of cadaster data after processing.

1Data licence Germany attribution Version 2.0 - https://www.opengeodata.nrw.de/produkte/
umwelt_klima/klima/solarkataster/photovoltaik/
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The surfaces have been grouped by the building they belong to. The position of
the shapes (polygons) is provided in European Terrestrial Reference System 1989
(ETRS98) coordinates, thus measured in meters. The bounds, i.e. the borders of the
surfaces defining the building, have been calculated and converted into World Geodetic
System of 1984 (WGS84) coordinates. The center of the building is stored as longitude
and latitude angles in WGS84 coordinates. The buildings have been then sorted in an
ascending order and every one thousand building has been stored in a json file that
has the minimum and the maximum latitude of the buildings it contains in its name
as in Figure 2.2.
Each building contains the building’s ID, bounds, and the list of the surfaces that
belong to the building. The list of surfaces has not been processed and includes all
information as provided by LANUV cadaster, especially the parameters in Table 2.2
as well as the geographical shapes (in ETRS98 coordinates) as in Figure 2.3. Each
surface contains a multiple of polygons. The first polygon is the shape of the surface,
and the following polygons are obstacles and unusable areas.

Search Once a longitude and a latitude of a building is given along a city’s name,
the algorithm checks if the dataset of the corresponding city exists, then it iterates
through the JSON files available and parses their names into a latitude range, if the
latitude of the corresponding building is inside the latitude range of one of the JSON
files, both the latitude and the longitude given are checked if they are in the bounds
of any of the 1000 buildings in the JSON file. If the given coordinates are found, then
the building object is returned.

21°33°

32°21°
N

E

Usable area
Obstacle

Figure 2.3: An example of a random building provided in the cadaster with the incli-
nation of each of the surfaces of its rooftop.

One of the advantages of this dataset, is that structures that make an obstacle for
the PV panels such as chimney are recognized and removed from the surfaces. Shadows
are cut from the surfaces of the rooftop.
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Maximum number of panels Assuming the all the modules are installed in parallel
to the azimuth (orientation) of the surface either horizontally or vertically (see Figure
2.4), the maximum number of modules that fit in each surface can be estimated using a
simple fitting algorithm. First the surfaces are smoothed out by averaging neighboring
nodes with a fixed critical distance, then for each surface with a slope in the range of
15◦ to 45◦ the algorithm iteratively checks whether for the current location an available
slot on the surface exist, i.e. if the slot is completely inside the surface and does not
intersect with any obstacle. See Figure 2.4. Surfaces with tilt angles from 0◦ to 5◦ are
considered flat surfaces and surfaces with a tilt angle from 5◦ to less than 15◦ is very
expensive to construct because of static reasons.

a) b) c)
Usable area
Obstacle

484

169

Usable area
Obstacle

Figure 2.4: a) Raw data from the stored cadaster dataset, here (LANUV). b) the sur-
faces of the building after smoothing. c) The maximum number of slots for
PV panels on each surface fit without intersecting with obstacles.

After this step is done, the simulation process sorts the surfaces by their mean an-
nual incidence irradiance and fills the given number of PV panels starting the surface
with the hgiher irradiance until it is completely filled, then moves to the next sur-
face. Note that this algorithm is only used for approximation of the maximum panels
that fit with an irregular shape, but it might underestimate the maximum number of
panels that fit in the surface. Implementing an algorithm with high accuracy needs
higher computational complexity making them not suited for this application. Thus,
a professional examination on the spot is required.
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2.4. Load profile

The load curve can be defined as the power requirement of a stakeholder in every time
step, e.g. hour. The scale and fluctuations of the load curve has big a effect on the
energetic and financial output of the system as will be demonstrated later sections,
see Figure 3.38 for a comparison. Thus, it is key to simulate how the load changes
over time in order to correctly predict the PV system’s output. In this work, both
residential as well as commercial buildings are accounted for.

Commercial profile
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Figure 2.5: An hourly-based load profile for general trade (g0) above and household
(h0) below on different days and in different seasons normalized by 1000
kWh per year [17].

Commercial load curve Commercial buildings show a regular and stable consump-
tion over the course of a season. It differs for the most part on the day of the week.
On working days more energy is consumed than on Sundays (see Figure 2.5). The load
profile given by the federal association of the energy and water industry (BDEW) is
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processed here into an hourly distribution for general trade buildings (g0) for a nor-
malized annual consumption of 1000 kWh per year. The load curve be then scaled
according to the total area of the building and its class. For example offices show a
tendency to consume 55 kWh/m2 on average while food retailers consume 230 kWh/m2

(see Table 2.3).

Commercial
Annual Energy

Consumption [kWh/m2]
Commercial

Annual Energy
Consumption [kWh/m2]

Bakery 500 Pharmacy 135
Food Retailer 230 Barber 130
Gastronomy 230 Dental practice 75
Butchery 190 Office 55

Non-food retailer 150 Medical Practice 42

Table 2.3: Average annual energy consumption per m2 of commercials by profession1.

The reasons for this wide diversity in commercials’ load come down to what each of
them uses. For example 82% of energy usage of bakeries comes from the backing process
and fridges. Food retailers consume 59 kWh/m2 a year of their total annual load for
illumination. Offices on the other hand only need 27.5 kWh/m2 for illumination. For
businesses that close on Saturday, a Sunday consumption is assumed instead.
The approximations per area gives a good hint for the average production, but there
is a considerable deviation for subjective reasons.

Residential load curve Residential buildings on the other hand show a gradual tran-
sition from one season to another. The load peaks to its highest on December 30 in
winter where it reaches 0.36% of the annual consumption and drops by 60% to its
lowest on July 18 in summer, as can be seen in Figure 2.6.
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Figure 2.6: An hourly-based load profile for residential buildings (h0) normalized by
1000 kWh per year, peaking on the weekends and dropping on working days
while showing a transitional tendency between seasons throughout the year
[17].

1For details, check https://evh.de/gewerbekunden/energie-sparen/energieberatung/

energiespartipps
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It is also important to note that the residential data in Figure 2.5 are data ex-
tracted and averaged from the same data in Figure 2.6 which explains the deviation
between seasons as opposed to the relatively steady power usage of commercial build-
ings. Scaling of residential buildings’ load is based on the number of people living in the
household and on two characteristics of the building. Houses, for example, consume
more energy than apartments do for the same number of residents. Another relevant
characteristic is whether warm water is heated using electricity or gas.

Annual Energy Consumption [kWh]
Number of residents Apartment House

1 2000 2900
2 3000 3800
3 4000 4800
4 4500 5500
5+ 5200 6800

Table 2.4: Average energy consumption of residential buildings by number of people
in the household in year 2021/22 assuming warm water is heated with elec-
tricity [5].

Consequently, the evaluation of the load at the h-hour of the year can be described as

Pload(h) = Pload, ref(h) · Eload/1000 kWh (2.18)

Where Pload, ref(h) is the normalized probability for the h-hour according to Figure 2.5
for commercial buildings and Figure 2.6 for residential buildings.
The Annual load is evaluated as follows:

Eload =

{
Annual load per m2 × Area for commercial buildings

Annual load per residents for residential buildings
(2.19)

annual load per residents is taken from Federal Ministry for Environment, Nature
Conservation and Nuclear Safety (BMUV) [5] (see Table 2.4) and the annual energy
consumption per m2 is taken from data provided by SWH. EVH (see Table 2.3). Here
winter, summer and transitional seasons are defined according to Table 2.5.

Season Period
Winter November 1st March 20th
Spring (transitional) March 21st May 14th
Summer May 15th September 14th
Fall (transitional) September 15th October 31st

Table 2.5: Definition of seasons as given by the BDEW [17].
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3. Simulation of a Photovoltaic System

In this section, the simulation of a PV system is presented. First the calculation of
incident radiation in Section 3.1 which follows from the calculation of the Sun’s position
in Section 2.2 Section 3.2 explains in depth the simulation of PV cells and derives the
Single Diode Model (SDM) and then the simple efficiency model. The calculation of the
annual energy output is presented in Section 3.2.3. The simple model of simulating the
energy storage is then presented in Section 3.3. The presented models are validated in
Section 3.4. Finally the financial model and the battery’s lifetime model are presented
in Section 3.5.

3.1. Incident Radiation

γ′

φ

θincidence
β

The PV surface

North

South

East

West

The Sun

Figure 3.1: The angle of incidence
θincidence, the altitude of the
Sun φ, the PV surface incli-
nation β and the azimuth of
the PV surface γ.

Before solar beams hit the surface of PV
panel, a fair amount of them diffract
and diffuse in the atmosphere resulting
in two types of solar radiation on Earth,
the direct radiation and the diffuse ra-
diation. As mentioned in Section 2.1
the solar radiation given by the DWD
dataset is measured on a horizontal sur-
face. Occasionally, the direct normal ir-
radiance (DNI) Idirect, N is given, which is
measured on a normal surface i.e. per-
pendicular to solar beams. The rela-
tionship between the DNI and the di-
rect horizontal irradiance Idirect, H is given
by

Idirect, H = Idirect, N · sin(φ⊙) (3.1)

where φ⊙ is the altitude of the Sun, see Equation (2.17). The global (total) horizontal
irradiance is the sum of both types of radiation

Iglobal, H = Idirect, H + Idiffuse, H (3.2)

Solar panels are usually not mounted horizontally rather on tilted rooftop with a
given orientation (azimuth). Therefore, the angle of incidence has to be calculated in
order to evaluate the solar radiation coming to the solar panel. The angle of incidence
θincidence can be calculated as follows [22]

cos θincidence = cosφ⊙ · sin β · cos(γ⊙ − γ) + sinφ⊙ · cos β (3.3)

where β is the inclination (tilt) of the panel, γ is the azimuth of the panel, where
North is origin and west is positive (see Figure 3.1).
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After calculating the angle of incidence θincidence, the solar direct radiation on the tilted
PV panel can be calculated geometrically as follows

Idirect, T = Idirect, H · cos θincidence
sinφ⊙

(3.4)

As regards to diffuse radiation on a tilted surface, several models exist to predict it.
Here the isotropic sky model by Duffie [22] is used

Idiffuse, T = Idiffuse, H · 1 + cos β

2
(3.5)

As the direct and diffuse beams hit the Earth’s surface, some of them reflect and reach
the PV panel as well. The radiations reflected from the ground can be described as

Ireflected, T = ralbedo · Iglobal, H · 1− cos β

2
(3.6)

where ralbedo is the reflectance of the surface (albedo). The value of albedo depends
on the material. Snow for example has a reflectance of 80% and fresh asphalt has a
reflectance of 4%.
Therefore, the global incident irradiance I on the PV surface is

I = Idirect, T + Idiffuse, T + Ireflected, T (3.7)
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Figure 3.2: Share of the compoentns of the incident radiation averaged over a year on
a panel oriented to the South γ = 180◦ by various inclination angles in
Aachen, Germany (50◦46’16.1”N 6◦03’05.4”E) based on the DWD dataset.
Albedo is assumed to be constant ralbedo =20%.

A wise choice of the inclination and orientation angles is critical for optimum in-
solation. The optimal azimuth in the northern hemisphere is true South, while the
inclination angle differs from place to another. For example in Aachen it is around 31◦

in this model, see Figure 3.2.
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3.2. Photovoltaic Model

−+

−+

−+

N-Region

Depletion Region

P-Region

Solar Beams

Metallic Contact

Figure 3.3: A cross section of a single
junction photovoltaic solar
cell.

Solar cells are semiconductor devices that
transform portions of the incident radiation
into electricity. Most solar cells are made of
mono-crystalline silicon, which have better ef-
ficiency than poly-crystalline silicon [30] and
are cheaper to produce than other more effi-
cient materials such as Gallium Arsenide [21].
Semiconductors are materials with electrical
conductivity that varies depending on their
temperature. Their conductivity is better
with lower temperatures. Silicon conductiv-
ity can be changed by doping silicon crystal
(of the order of 10−6) with atoms that have an
electron more on their valence shell, namely five valence electrons (pentavalent atoms)
such as phosphorus to create a slightly negatively charged region (n-region) and with
trivalent atoms such as boron to create a slightly positively charged region (p-region).
When n-region and p-region are joined in the same crystal together, a depletion region,
also called a junction, is created in between, as electrons from the n-region recombine
with atoms that have a deficiency of electrons in their valence shell (holes) in the p-
region region. This forms an electric field in the depletion region which causes electrons
to move only in one direction, from the p-region to the n-region (see Figure 3.3).

Power generation Both regions become in the valence band, a state where electrons
cannot be in a free state and hence move freely away from the atom. The energy
needed to allow the electrons to move from the valence band to the conduction band
is called the energy gap Eg which decreases as temperature rises, see Equation (3.9).
Incidence radiation is electromagnetic radiation which can be considered as discrete
energy units (photons). The energy of a photon is given by

Ephoton = h · fphoton (3.8)

where h is the Planck’s constant and fphoton is the frequency of the photon. Photons
with energy higher than the energy gap interact with electrons of an atom and bring
them to the free state (photons are absorbed) in the p- and n-regions as well as in the
depletion region. A photon with this energy can still only liberate one electron, the
rest of its energy is lost to the cell as heat [39].

The electric field in the depletion region separates some of the liberated electrons
before they recombine. By connecting the p-region and the n-region in a circuit,
liberated electrons travel from the n-region through the circuit to the p-region and
recombine with holes, this flow of electrons is called photocurrent Iph. The band gap
depends on the material the cell is made out of as well as its temperature. R. Pässler
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[48] has given an approximation for the energy gap for semiconductors in eV as

Eg(T ) = Eg(0)−
α · Tphonon

2
·
(

p

√
1 +

( 2T

Tphonon

)p − 1
)

(3.9)

where t is given in kelvin unless otherwise mentioned, Eg(0) is the band gap at
absolute zero, α and p are parameters, tphonon is approximately the average phonon
temperature. Analogous to photons, a phonon is the quantized energy of vibration
in the crystal lattice. For example, of a mono-crystalline lattice. The parameters of
different semiconductor materials are given in Table 3.1. This approximation fits well
below 80◦ Celsius [53] which is enough for civil purposes

Semiconductor Eg(298.15) [eV] Eg(0) [eV] α Tphonon p
Silicon 1.124 1.17 0.318 406 2.33
Cadmium Telluride 1.528 1.606 0.310 108 1.97
Gallium Arsenide 1.427 1.519 0.472 230 2.44

Table 3.1: Physical parameters of different semiconductor materials used in PV systems
[48]. Values of energy gap at 25◦ is calculated by the given approximation.
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Figure 3.4: An equivalent circuit
diagram based on
Three-Diode Model of
a solar cell.

Energy losses In an ideal solar cell, the cur-
rent generated by the solar cell is proportional
to the incident radiation. Practically, this is not
the case. Incident radiation contains a wide spec-
trum of wavelengths, but only those with higher
energies than the energy gap of the electrons
Ephoton > Eg(t) are absorbed. For silicon, this
is equivalent to 1.1 µm at 25◦C. This puts a theo-
retical limit to the efficiency of the single junction
PV systems, for silicon this is 27%, for Cadmium
Telluride it is 27.5% of total incident radiation
[54, 39].

The current generated by the solar cell in ideal conditions is called photocurrent
Iph. The output current of the solar cell I is never equal to Iph due to electrical losses.
When electrons are liberated in the p- and n-regions, many of them recombine with
holes (recombination) before they travel through the circuit. Also a diffusion current
is generated where electrons travel from n-region to the p-region, despite the barrier
created in the depletion region, this loss of current is denoted by Id1 . Additionally,
the recombination process is not limited to the p- and n-regions but also occurs in the
depletion region [52]. The loss of current due to this reason is denoted by Id2 . Cur-
rent could also be lost due to recombination in defect regions and through peripheries
[41, 59] which is denoted by Id3 .

20



Since we are looking at the system in temperatures considerably higher than absolute
zero, losses take places in the form of two types resistance as well. The first happens
because of resistance in the way of the electrons in the p- and n-regions and in the
metallic contacts, this can be presented by a resistor in series and it is referred to as Rs.
The second type of resistance happens as electrons are shunted across the depletion
region, resulting in additional current leakage. This is referred to as Rsh and the leaked
current as Ish. Figure 3.4 is an equivalent circuit diagram for the solar cell with the
aforementioned current leakages and resistances.

3.2.1. Single-Diode Model

Iph

Rs I

Id

Rsh

Ish

U

Figure 3.5: An equivalent circuit
diagram for the Single-
Diode Model of a solar
cell.

Despite the fact, that the model with three diodes
provides accurate approximations, it is computa-
tionally exhaustive which makes it unsuitable for
the purposes of this work. Therefore, two assump-
tions are made to simplify this model. The first is
that the solar cells do not contain defect regions.
Thus, Id3 is removed. The second is that current
leakage in the depletion region is negligible for the
estimation of annual energy yield, thus, removing
Id2 also. The resulting model is called the Single-
Diode Model (SDM). Since only one diode is used.
Id is used instead of Id1 for simplicity. The equiv-
alent circuit diagram of the SDM can be seen in
Figure 3.5. This model, while delivers decent results [22] it only requires data usually
given by the manufacturer. It can also be extended into PV modules [36] and a PV
arrays [58].
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Figure 3.6: I-U curve by incident radiation at cell temperature 25◦C on the left and by cell
temperature at an irradiance of 1000 W/m2 on the right. The data is produced
by a simulation performed using this work for the module by BP solar model
PB3325T.

When the load is not connected to the module, an open-circuit voltage Uoc is pro-
duced, but no current flows. If the module is short-circuited, no voltage is produced,
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but the short-circuit current Isc flows. In both cases, no power is delivered by the mod-
ule. However, when the load is connected to the module, a certain voltage is produced
and some current will flow. The power delivered to the load, which is the product of
the voltage and current, can be evaluated using a current-voltage curve (I-U curve)
which changes according to cell temperature and incident radiation (see Figure 3.6).

The maximum power point (MPP) is when power delivered by the module at a given
temperature and radiation is on its maximum. It is near the knee of the I-U curve.
Since the generated power changes with the load demand, MPP tracking devices are
used to adjust the load so that the delivered power always close to MPP. Such devices
are based on MPP tracking (MPPT) algorithms to predict the optimal load demand
and adjusts the load accordingly. This is possible, since the house appliances are not
directly connected to the PV module in a DC-current rather through an a DC-AC
inverter. To estimate the MPP delivered by the PV cell, reproducing I-U curve given
cell temperature and incident radiation is key.

Testing Conditions Manufacturers usually provide relevant information by testing
the PV cells in the Standard Reference Conditions (SRC) and the Nominal Operation
Cell Temperature (NOCT). These conditions are listed in Table 3.2.

Parameters SRC NOCT
Ambient temperature 20◦C
Cell temperature 25◦C
Incident radiation 1000 W/m2 800 W/m2

Air mass 1.5 1.5

Table 3.2: Parameters in different testing conditions of solar cells. The cell temperature
is NOCT varies by each module.

Cell temperature Estimating cell temperature, also called operating temperature is
an important part of modeling a PV cell. It can be approximated through ambient
temperature tambient, incident radiation I and wind speed vwind as given by Sandia [14]

Tcell = Tambient +
(
exp(a+ b · vwind) +

dt

1000

)
· I (3.10)

where a, b, dt are construction parameters. In this application it is considered a =
−3.56, b = −0.075 and dt = 3 ◦C. If the wind speed is not available, a model by [36]
can used

Tcell = Tambient +
(TNOCT − 20◦C

0.8

)
· I (3.11)

Derivation of output current According to Kirchhoff’s law, the output current can
be calculated given the photocurrent Iph, the diode (leakage) current Id and the shunt
current Ish

I = Iph − Id − Ish (3.12)
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The photocurrent Iph changes linearly with the incident irradiation I, see Equation
(3.7), as well as with cell temperature. Id is the considered leakage current, modeled
by a diode, from which the model inherits its non-linear characteristics. The shunt
current Ish can be written as

Ish =
U +Rs · I

Rsh

(3.13)

Current flowing through the diode is temperature dependent and is given by the
equation

Id = I0 ·
(
e

Ud
nUT − 1

)
(3.14)

Where I0 is the reverse saturation current. Ud is the voltage across the diode. n is an
ideality factor. UT is the volt equivalent of temperature and is given by

UT =
k · Tcell

q
(3.15)

where Tcell is the diode’s temperature in Kelvin. k is the Boltzmann constant and q
is the elementary charge of an electron. By substituting Ud with U −Rs · I and using
Equation (3.15), Equation (3.14) becomes

Id = I0 ·
(
exp

(q · (U +Rs · I)
n · k · Tcell

)
− 1
)

(3.16)

The ideality factor n corresponds to various mechanisms responsible for moving the
electrons across the depletion region. Here we assume that it only relates to the
material of the semiconductor used and does not change with temperature or incident
radiation. Its value is between 1 and 2. When n is close to 1, it can be interpreted
that current the leakage is mainly due to diffusion. When it approaches 2, current is
leaked primarily in the recombination process in the depletion region, for silicon cells
it is usually close to 1.3 [49, 58].
Now substituting Equation (3.13) and Equation (3.16) in Equation (3.12) yields

I = Iph − I0 ·
(
exp

(q · (U +Rs · I)
n · k · Tcell

)
− 1
)
− U +Rs · I

Rsh

(3.17)

Photovoltaic array The SDM can be applied to PV modules and array. A PV
module is a group of PV cells connected in series. PV arrays are a group of PV
modules connected in series and in parallel. If Nc,module represents the number of cells
in series in a module and Nmodules, series represents number of modules connected in an
array in series, then we define

Ns = Nc,module ·Nmodules, series (3.18)

If we have Np modules connected in parallel, then the number of modules is

Nmodules = Np ·Nmodules, series (3.19)
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and Equation (3.17) becomes [58]

I = Np · Iph −Np · I0 ·
(
exp

(q · (U + Ns

Np
Rs · I)

Ns · n · k · Tcell

)
− 1
)
−

U + Ns

Np
Rs · I

Ns

Np
Rsh

(3.20)

where I and U are the current and the voltage of the array respectively.

The reverse saturation current I0 changes non-linearly with temperature. The reverse
saturation current at SRC temperature Tref is denoted I0,ref. With this reference, it
can be calculated at any cell temperature Tcell [39]

I0(Tcell) = I0,ref · (
Tcell

Tref

)3 · exp
(q · Eg(Tref)

k · Tref

− q · Eg(Tcell)

k · Tcell

)
(3.21)

The energy gap of electrons (see Equation 3.9) is multiplied with the elementary charge
q to convert its unit from [eV] into Coulombs.

The photocurrent Iph depends on both the incident radiation I and the cell temper-
ature Tcell

Iph(Tcell, I) = Iph, ref ·
I
Iref

·
(
1 + µIsc(Tcell − Tref)

)
(3.22)

where Iph, ref is the photocurrent at SRC temperature Tref and Iref is SRC incident ra-
diation. The parameter µIsc is the relative short-circuit current temperature coefficient.

The shunt resistance Rsh is mainly dependent on incident irradiation and can be
viewed as independent of temperature [18]

Rsh(I) = Rsh, ref ·
Iref

I
(3.23)

where Rsh, ref is the shunt resistance in SRC. The series resistance Rs on the other hand
is independent of both temperature and incident radiation, thus

Rs = Rs, ref (3.24)

Previous equations contained different parameters, unfortunately many of them are
not provided by the manufacturer. Table 3.3 contains parameters need for I-U curve
approximation and demonstrates which are typically provided by the manufacturer.
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Parameters Symbol Availability
Maximum Power Point in SRC Pmax, ref ✓
Efficiency ηPV ✓
Relative power temperature coefficient µP ✓
Short-circuit current in SRC Isc, ref ✓
Open-circuit voltage in SRC Uoc, ref ✓
Current at MPP in SRC Impp, ref ✓
Voltage at MPP in SRC Umpp, ref ✓
Relative short-circuit current temperature coefficient µIsc ✓
Relative open-circuit voltage temperature coefficient µUoc ✓
Series resistance in SRC Rs, ref

Shunt resistance in SRC Rsh, ref

Reverse saturation current in SRC I0, ref
Photocurrent in SRC Iph, ref
Ideality factor n

Table 3.3: Availability of required parameters to approximate the I-U curve of a solar
cell in different temperatures and radiation. As well as demonstrating which
are usually provided by the manufacturer.

When absolute temperature coefficients are provided, the relative coefficients can be
calculated by

µIsc =
µ′Isc
Isc, ref

, µVoc =
µ′Voc

Voc, ref

(3.25)

where µ′Isc and µ′Voc
are the absolute temperature coefficients for short-circuit current

and open-circuit voltage respectively.

Parameters Estimation On these grounds, it is critical to estimate the five unknown
parameters. The model presented by DeSoto et al. provides five equations which can
be simultaneously solved to estimate the parameters.

• The first equation is derived from Equation (3.20) in open-circuit conditions in
SRC, as the current I becomes zero, and the voltage provided becomes Voc, thus

Np · Iph, ref −Np · I0, ref ·
(
exp

( q · Uoc, ref

Ns · n · k · Tref

)
− 1
)
− Uoc, ref

Ns

Np
Rsh, ref

= 0 (3.26)

• The second equation is also derived from Equation (3.20) in short-circuit conditions
in SRC, as the voltage U becomes zero and the current becomes Isc, ref

Isc, ref = Np · I0, ref −Np · I0, ref ·
(
exp

(q · Isc, refRsc, ref

Ns · n · k · Tref

)
− 1
)
−

Isc, ref · Ns

Np
Rs, ref

Ns

Np
Rsh, ref

(3.27)

• The third equation is derived by substituting the voltage and current given by the
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manufacturer at MPP in SRC in Equation (3.20), which yields

Impp, ref = Np · Iph, ref

−Np · I0, ref

(
exp

(q(Umpp, ref + Impp, ref · Ns

Np
Rs, ref)

Ns · n · k · Tref

)
− 1

)

−
Umpp, ref + Impp, ref · Ns

Np
Rs, ref

Ns

Np
Rsh, ref

(3.28)

Since power is the product of current I and voltage U and its maximum MPP in SRC
is when U = Umpp, ref and I = Impp, ref then the derivative of the power function P with
respect to voltage is zero at MPP

∂Pref

∂Uref

∣∣∣∣∣
P=Umpp, ref·Impp, ref

= 0 (3.29)

• The fourth equation is

Impp, ref

Umpp, ref

=

q·Np·I0, ref

Ns·nkTref
· exp

(
q
(
Umpp, ref +Impp, ref

Ns
Np

Rs, ref

)
Ns·n·k·Tref

)
+ 1

Ns
Np

Rsh, ref

1 +
q·I0, ref Rs, ref

nkTref
· exp

(
q
(
Umpp, ref +Impp, ref

Ns
Np

Rs, ref

)
Ns·n·k·Tref

)
+

Rs, ref

Rsh, ref

(3.30)

• The fifth equation ensures that the relative open-circuit voltage temperature co-
efficient µUoc given by the manufacturer (see Table 3.3) is approximated well by the
model

µUoc · Uoc, ref =
∂Uoc

∂tcell
≈ Uoc(tcell)− Uoc, ref

Tcell − Tref

(3.31)

After some algebraic rearrangement we get

Uoc(Tcell) = Uoc, ref ·
(
1 + µUoc(Tcell − Tref)

)
(3.32)

By using Equation (3.32) in Equation (3.20) in SRC, fifth equation becomes

Np · Iph(Tcell, Iref)−Np · I0(Tcell)

(
exp

( q · Uoc(Tcell)

Ns · n · k · Tcell

)
− 1

)
− Uoc(Tcell)

Ns

Np
Rsh, ref

= 0 (3.33)

Where Iph(tcell, Iref), I0(tcell), and Uoc(tcell) are evaluated using Equation (3.22), Equa-
tion (3.21) and Equation (3.32) respectively. While the cell temperature tcell can be
freely chosen, it is recommended to be tref ± 10 Kelvin [6].

By simultaneously solving equations (3.26), (3.27), (3.28), (3.30) and (3.33), the five
unknown required parameters (see Table 3.3) can be estimated. After the parameters
are estimated, the I-U curve can be approximated by solving Equation (3.20).
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With that in mind, the current Impp and voltage Umpp at MPP can be estimated at
any operating temperature Tcell and incident radiation I by simultaneously solving the
following equations:

Impp = Np·Iph(Tcell, I)−Np·I0(Tcell)

(
exp

(q(Umpp + Impp
Ns

Np
Rs)

Ns · n · k · Tcell

)
−1

)
−
Umpp + Impp

Ns

Np
Rs

Ns

Np
Rsh(I)
(3.34)

and

Impp

Umpp

=

q·Np

Ns·n·k·Tcell
· I0(T ) · exp

(
q
(
Umpp +Impp

Ns
Np

Rs

)
Ns·n·k·Tcell

)
+ 1

Ns
Np

Rsh(I)

1 + qRs

n·k·Tcell
· I0(Tcell) · exp

(
q
(
Umpp +Impp

Ns
Np

Rs

)
Ns·n·k·Tcell

)
+ Rs

Rsh(I)

(3.35)

where Rsh(I) is evaluated as in Equation (3.23). Finally the output power point MPP
is

Pmax = Impp · Umpp (3.36)

Results The five equations were first solved using the non-linear least_squares

algorithm from python library scipy for different modules to estimate their missing
parameters (see Table 3.4).

Module Semiconductor Rs, ref [mΩ] Rsh, ref [Ω] I0, ref [nA] Iph, ref [A] n
KD210GX-LP mono-crystalline silicon 5.929 2.066 0.348 8.605 1.001
PB3-215 poly-crystalline silicon 6.390 1.543 0.400 8.138 1.000
PB3-220 poly-crystalline silicon 7.028 2.693 0.388 8.225 1.000
PB3-225 poly-crystalline silicon 6.455 2.698 0.393 8.323 1.000
PB3-235 poly-crystalline silicon 6.026 3.485 0.351 8.495 1.010

Table 3.4: Results of the estimated five parameters using the single-diode model with
five equations.
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Figure 3.7: Comparison of I-V curves by dependence on incident radiation at temperature 25◦C and
in 1 kW/m2 at 50◦C in blue for module SPR-X22-470-COM . This model’s prediction
on the left, data-sheet1on the right. Raw data was not available to calculate the MSE
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Some manufacturers provide more information about the module in NOCT (see Ta-
ble 3.2), we can use these information to test the model’s predictions. The data-sheets
for the modules in Table 3.4 provide parameters in NOCT, and a single-diode model
implemented by [58] have shared their results. Thus, we can compare the results of
this work to them.

Module model SRC NOCT
Pmax Vmpp Impp Voc Isc Pmax Vmpp Impp Voc Isc

PB3-215 data-sheet 215.0 29.10 7.40 36.50 8.10 154.8 25.90 5.92 33.20 6.56
this work 215.2 29.17 7.38 36.51 8.10 156.9 26.32 5.96 33.19 6.58
[58] 215.3 29.10 7.40 36.50 8.10 156.6 26.21 5.98 33.20 6.63

PB3-220 data-sheet 220.0 28.90 7.60 36.60 8.20 158.0 25.70 6.08 33.30 6.64
this work 219.5 28.96 7.58 36.61 8.20 160.0 26.18 6.11 33.29 6.66
[58] 219.6 28.90 7.60 36.60 8.20 160.3 26.07 6.15 33.30 6.71

PB3-225 data-sheet 225.0 29.10 7.70 36.60 8.30 162.0 25.90 6.16 33.30 6.72
this work 224.0 29.16 7.68 36.61 8.30 163.0 26.33 6.19 33.29 6.74
[58] 224.1 29.10 7.70 36.60 8.30 163.3 26.23 6.23 33.30 6.79

PB3-235 data-sheet 235.1 29.80 7.89 37.20 8.48 169.2 26.50 6.31 33.80 6.87
this work 235.1 29.80 7.89 37.20 8.48 172.7 26.93 6.41 33.87 6.94
[58] 235.1 29.80 7.89 37.20 8.48 171.3 26.84 6.38 33.85 6.94

KD210GX-LP data-sheet 210.0 26.60 7.90 33.20 8.58 148.0 23.50 6.32 29.90 6.98
this work 210.1 26.60 7.90 33.20 8.58 151.5 23.80 6.37 29.98 6.97
[58] 210.1 26.60 7.90 33.20 8.58 149.9 23.72 6.32 29.90 6.98

.

Table 3.5: Validation of the model results with the data-sheet and a model by Tian et al.[58]

As can be seen in Table 3.5 the estimation of MPP is quite accurate in SRC and
NTC. However in Germany and more accurately in Aachen only barely a week gets
more irradiance than 800W/m2, in fact around 76% of the year get irradiance less than
400W/m2 when the sun is up. Thus, it is important to consider the low irradiance
conditions (see Table 3.6). Figure 3.7 compares the I-U-curves of the module SPR-
X22-470-COM as estimated by this model and as given by the data-sheet.

Module model SRC NOCT Low Irradiance
Pmax Vmpp Impp Pmax Vmpp Impp Pmax Vmpp Impp

SPR-X21-470-COM data-sheet 470.0 77.60 6.06 356.0 73.00 4.88 90.6 74.40 1.22
this work 470.4 78.31 6.01 381.2 74.07 5.15 90.5 75.20 1.20

SPR-X20-445-COM data-sheet 445.0 76.50 5.82 337.0 71.90 4.68 85.6 73.00 1.17
this work 446.8 78.24 5.71 362.5 73.74 4.92 84.7 74.02 1.14

SPR-E19-410-COM data-sheet 410.0 72.90 5.62 311.0 68.70 4.53 78.7 69.4 1.14
this work* 411.2 74.80 5.50 329.1 69.91 4.71 76.7 69.75 1.10

Table 3.6: Comparison the model results with the data-sheet of different modules in low
irradiance. Low Irradiance is 200 W/m2 at operating temperature of 25◦C.

1https://us.sunpower.com/sites/default/files/sp-x-and-e-series-residential-solar-panels-

supplementary-technical-spec_0.pdf
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3.2.2. Simple Efficiency Model
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Figure 3.8: Comparison between
SDM simulation and
linear approximation
of MPP for SPR-X22-
470-COM.

The SDM introduced earlier makes many analyti-
cal information for the PV module accessible and
provides relatively accurate results. However ev-
ery calculation point needs an optimization which
hurdles it from being fast enough to be included
in another optimization algorithm in online appli-
cations.
If the MPP is considered as a function of cell

temperature tcell and irradiance I, it becomes ev-
ident that a linear approximation is a possible so-
lution for a faster approximation (see Figure 3.8).
Equation 3.22 shows a linear relationship be-

tween photocurrent Iph and both irradiance and
cell temperature. It could be assumed that the
diode current and the series resistance are negli-
gible Id → 0, Rs → 0 as well as that the shunt
resistance is big Rsh → ∞. Thus, Equation (3.12)
becomes

I ≈ Iph (3.37)

In this case, Equation (3.36) can be written anal-
ogous to Equation (3.22) as

Pmax = Nmodules ·Pmax, ref ·
I
Iref

·(1+µP (Tcell−Tref))

(3.38)
where Iref and tref are the irradiance and cell tem-
perature as given in Table 3.2. Pmax, ref is the max-
imum power in SRC and µP is the power temper-
ature coefficients.

Sometimes, only the efficiency of the module per
unit area in SRC ηPV is given, in this case, the area of the module Amodule is required.
The approximation of the maximum power becomes

Pmax, ref = ηPV · Amodule · Iref (3.39)

The simplicity of this model allows for embedding it in many online applications such
as in the online optimization algorithm in this work.
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3.2.3. Annual Energy Output

When a PV module is connected directly to the house appliances through an inverter,
there will be an excess of energy (energy surplus) during peak hours if the load is not
high enough and this excess of energy reduces the system’s efficiency in an off-grid
system. A reduction of profitability is dependent on the grid feed-in tariff for on-grid
system. Figure 3.9 illustrates this concept. Excess of power during peak hours is
colored in blue and power deficit is colored in red. From midnight until around 5 am,
the load is at minimum. Hence, there is a relative balance of power because the panels
do not produce power in these hours either. During daytime there is an excess of power
which is lost and in evening a deficiency of power becomes clear.
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Figure 3.9: The power balance between generated power by PV modules and the load.
The data was simulated by the efficiency model for the typical load of one
person living in a house with two AE335HM6-60 modules by AE SOLAR.

The power balance is calculated as follows

Pbalance(t) = PAC(t)− Pload(t) (3.40)

where Pload(h) is the energy consumed by the load at the t-th hour of year given by
the corresponding load profile, see Equation (2.18) and PAC(t) is the AC power output
calculated with a simple inverter efficiency model

PAC(t) = ηinverter · PPV(t) (3.41)

where ηinverter is the efficiency of the DC-AC inverter and PDC(t) is the maximum
power point of the PV system, that is the power that can be produced by the PV
array at that hour of year under the given meteorological conditions

PDC(t) = Pmax(It, Tcell,t) (3.42)

where Ih and tcell, h are the incidence radiation and cell temperature at the h-th hour.
The cell temperature is calculated as given by Equation (3.10). Pmax can be calculated
either by Equation (3.38) or Equation (3.36).
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The annual energy output is defined as the amount of energy generated the PV ar-
ray. In case of the simulation in Figure (3.9) for example, the annual energy output is
778.65kWh. Only 643.43kWh were actually used by the load and the rest is an excess
of energy which is exported to the local grid or stored in a battery if present.

In this respect, the annual output energy can be defined as the energy that can be
produced by the PV system considering only the meteorological and electric constraints
as

EDC, annual =
8760∑
h=1

PDC(t) (3.43)

and the annual energy output AC can be expressed as

EAC, annual =
8760∑
t=1

PAC(t) (3.44)

Moreover, the energy output that is delivered to the load is described by

EPV→Load = EAC, annual −
( 8760∑

t=1

Pbalance(t)
∣∣∣
≥0

)
(3.45)

which is the difference between the energy output AC produced by the PV array and
the energy surplus (see Figure 3.10).
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Figure 3.10: Comparison between annual energy output and annual energy output delivered
to the load in different cities in Germany. The data was simulated by the simple
efficiency model for the typical load of one person living in a house with a 120W
MPP module.

Simulation of commercial buildings can be seen in Figure (3.11).
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Figure 3.11: The energy balance between generated energy by the PV system and the load
for the typical load of commercial buildings (g0) for an office (left) and a non-
food retailer (right) of area 25m2 with a 120W MPP module.

See Figure 3.12 an overview of the data flow in the system.
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Figure 3.12: Overview of the data flow in the system for every time step and for each
rooftop’s surface.
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3.3. Battery Storage Model

Energy generated during the day can be stored in a battery for later use. Batteries store
energy by transforming electric energy from and into chemical energy. The prominent
types of battery used with PV systems is the Lithium-Ion Battery, as it allows for
storing large quantities of electrical energy. It has recently become more popular
because of the decrease in its costs and light weight [13]. Other alternatives are the
lead-acid and nickel-cadmium batteries.
Storing electro-chemical energy in a lithium-ion battery is a based on an important

attribute of lithium atoms (Li). Lithium atoms have only one electron on their covalent
bond. When a lithium atom is in a free state, it becomes conductive and loses the
electron instantly (non-equiliberium state). However, when they are a part of metal
oxide molecule such as (LiCoO2) they become stable (equilibrium state) and require
more energy to get in the free state.

A typical lithium-ion battery has three main parts, the cathode which is a metal
oxide such as (LiCoO2), the anode which is carbon such as graphite (LiC6) and in
between theere is an electrolyte, which is typically ethylene carbonate ((CH2O)2CO).
Since ethylene carbonate is an insulator, electrons do not flow through it, whereas
lithium ions (Li+) can.

Charging process Applying an external voltage between the cathode and the anode
results in a voltage difference between the anode and the cathode. This forces lithium
atoms to leave the metal oxide in the anode to form lithium ions (Li+) and electrons
(e−). The formed lithium ions (Li+) pass through the electrolyte to the cathode. The
electrons (e−), on the other hand, move through the external circuit to the cathode.
Hence pushing the lithium ions to non-equilibrium state. After removing the external
circuit, some lithium ions reach the equilibrium state by passing through to the cathode
leaving electrons behind in the anode. This creates a voltage difference stopping more
lithium ions to recombine with the metal oxide in the cathode. This process is called
charging.

Discharging process When an external load is connected, electrons have to pass
through it to compensate for the voltage difference caused in the charging process.
As this happens, more lithium-ions pass through to the cathode and keep the voltage
steady. This keeps going on until there are no more lithium-ions in the anode. This
process is called discharging. Each charging process followed by a discharge process is
called a cycle.

Capacity The amount of energy that can be delivered by battery is called the avail-
able capacity. When the current withdrawn from the battery is nominal, the capacity
becomes nominal Cbat,nom which both are given by the manufacturer. However the
nominal capacity decreases with time due to decreasing of the battery’s calendar life-
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time and by the number of cycles elapsed (degradation). By the end of its lifetime the
capacity reaches 80%.

Battery’s lifetime The battery’s lifetime can be affected by its calendar lifetime
Nbat,time which can be assumed to be 20 years as well as by the number of full cycles
elapsed (see Figure 3.13). Several regression models approximate the lifetime of the
lithium-ion battery such as . A comparison of tthe models by [35], [10], [62] and by
Battery university1 can be seen in Figure 3.13. An approximation of the number of
full cycles of lithium-ion batteries as given by [35]

Nbat, cyc = β0 ·DOD−β1 · exp
(
β2 · (1−DOD)

)
(3.46)

where DOD is the depth of discharge and β0, β1 and β2 are parameters.
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Figure 3.13: Cycle life of a Li-ion battery by Model 1 [35], Model2 [10], Model 3 [62]
and by Battery university1 and a mean model.

By averaging the values of the aforementioned models we get the following param-
eters β0 = 1036, β1 = 0.5618 and β2 = 1.7957 for a mean regression model. This,
gives an MSE of 0.02%. This curve gives 3753 cycles at 50% DOD. Using a battery
storage in a PV system reduces the energy surplus and allows for maximum use of PV
potential.

1https://batteryuniversity.com/article/bu-808-how-to-prolong-lithium-based-

batteries
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Topologies Battery Energy Storage Systems (BESS) can be coupled with a PV sys-
tem in different topologies. The AC-coupled BESS is connected to the household load
via a bidirectional inverter which controls the energy flow from and into the BESS.
Another inverter is connected to the PV system for tracking the MPP. While allowing
for a flexible installation, the efficiency of this model is not optimum because of high
number of conversion stages. This is usually used for large-scale utilities. A common
way for household systems is DC-coupling. The number of conversion is reduced by
sharing the same inverter. The PV system and the BESS are connected to each other
by DC-DC converters. In the following, a DC coupled BESS is assumed.

The power discharged from or stored in batteries correlates to the charge current
applied to the battery and to the state-of-charge (SOC) of the battery. Applying dif-
ferent values of current to the battery changes how much the battery discharges or
charges e.g. by changing polarity. To ensure a maximum benefit of the generated
power, a management system is usually coupled with the battery system. This uses
storage dispatch strategies such as variants peak shaving strategy.

Modeling A simple model to simulate the battery along with grid export and import
meters would be to store the energy and extract it using a simple round-trip efficiency
equation. The battery storage is charged

EBESS(t) = EBESS(t−1)+min
{
Pbalance ·ηBESS, SOCmax ·Cnom−EBESS(t−1)

}
(3.47)

if the following criteria are met

Pbalance > 0 and EBESS(t− 1) < SOCmax · Cnom (3.48)

where EBESS(t) is the energy stored in the battery at the h-th hour of year, SOCmax is
a user-specified maximum state of charge and ηBESS is the round-trip efficiency of the
battery.

Similarly, the battery is discharged

EBESS(t) = EBESS(t− 1)−min
{
− Pbalance, EBESS(t− 1)− SOCmin · Cnom

}
(3.49)

if the following criteria are met

Pbalance < 0 and EBESS(t− 1) > SOCmin · Cnom (3.50)

where SOCmin is a specified minimum state of charge. The energy delivered to the load
by the battery EBESS→Load can be calculated by monitoring the energy flowing out of
the BESS when discharging.
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Figure 3.14: Power balance across the system through the hours of day. The load profile
here is scaled to 1500kWh and six PV modules with peak of 300W each. The
battery capacity is 2kWh with 10% minimum SOC and 95% maximum SOC.

Additional criteria for discharging is used to prevent two cycles a day. This is to
maximize the lifetime of the battery. Therefore, discharging is only allowed outside
the charging hours

tstart = min(t) such that Pbalance(t− 1) < 0 and Pbalance(t) > 0

tend = max(t) such that Pbalance(t) > 0 and Pbalance(t+ 1) < 0
(3.51)

where t is the hour of day.
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3.4. Model Validation

In this section, the model is validated in a standalone installation, i.e. no BESS is
installed. Then the model is validated with a coupled BESS.

3.4.1. Photovoltaic Model

To validate the model presented, the results given by the model and different other
tools are compared.

SAM tools The System Advisor Model (SAM) is an open-source tool developed
by the NREL to simulate renewable energy systems. It allows the simulation of a
photovoltaic system with custom weather data and load profile. Thus, the tool is well
suited to compare the model in this work with. The exact same weather data and load
profile are used for both models. Furthermore it provides several simulation models.
For the validation of standalone PV system, the PVWatts-Standalone and the PV-
Standalone models are compared. The PVWatts-Standalone is the model used in the
online tool PVWatts. The Detailed PV-Standalone is a detailed model which includes
electrical models for different parts of the system. The DWD dataset was converted
into NSRDB format which SAM can read. The year was set to 2008. This is relevant
to the calculation of the Sun’s position in SAM which in turn affects the panels output.

PV*SOL PV*SOL is a simulation tool with an online version, the premium version is
chargeable. In this section, the results are compared to the online version of PV*SOL
which unfortunately does not allow for uploading custom weather data or load profile.
It has its own weather data for a given location and it has its own load profile which
can be re-scaled. Hence the comparison here will be bit less fair.

Table 3.7 provides the settings that were used for the tools in this validation step.

Parameter Symbol Value
MPP Pmax, ref 0.3 kW
Temperature power coefficient µP -0.351%
Cell temperature in NOCT TNOCT 41◦%
Region Aachen, Germany (50◦46’16.1”N 6◦03’05.4”E)
Number of modules Nmodules 6
Efficiency ηPV 19.9%
Module area Amodule 1.5075 m2

Annual load energy Eload 1500 kWh
Inverter efficiency ηinverter 99%
Albedo ralbedo 20%
Panels azimuth γ 205◦

Panels tilt β 21◦

Table 3.7: System Design and simulation settings for validation.
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The simulation profile for SAM was set as Photovoltaic, PVWatts/Detailed PV
Model, Distributed Residential Owner. The losses out of soiling, shading or wiring
where disabled. The hourly values were interpreted to be half an hour ahead (+0.5)
only for validation purposes, since SAM does not allow this to be changed, as opposed
of half an hour behind (-0.5) to match the DWD dataset.

Results Figure 3.15 provides a visualization of the simulated energy output given by
this work and SAM tool by NREL.
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Figure 3.15: Comparison of the power output AC and the energy delivered to the load
as a result of the simulation by this work, SAM PVWatts, and SAM
detailed model.

For the annual values see Table 3.8.

Parameter PV*SOL PVWatts SAM Detailed This work
DC output - 1970.00 kWh 1975.83 kWh 1975.88 kWh
AC output 1765 kWh 1950.32 kWh 1956.07 kWh 1956.12 kWh
AC output delivered to load 417 kWh 660.48 kWh 679.27 kWh 679.28 kWh
Energy surplus 1348 kWh 1289.84 kWh 1276.77 kWh 1276.84 kWh

Table 3.8: Comparison of annual results by different simulation tools and this work.
The data gathered in SAM is from the sum of hourly data of the following
tables AC inverter output power, electricity from system to load, and Elec-
tricity to grid.

In the following, only SAM’s Detailed PV-Standalone model is compared.

Error Analysis Since the difference in Watt units is dependent on the system’s max-
imum power, the error percentage is calculated as

Error(t) =
Pref(t)− PThesis(t)

Pref(t)
(3.52)

Using different models for the calculation of any part of the system might result in
a considerable error as will be demonstrated in the following sections.
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Incident radiation The DC output of the system Pmax is proportional to the incident
radiation. Figure 3.16 shows an overview of the error between the model implemented
in this work and SAM tools.
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Figure 3.16: The error of incident radiation between SAM tools and this work.

The DC output is also slightly affected by the cell temperature. Figure 3.17 demon-
strates the errors in cell temperature.

Cell temperature Both the model in this work as well as SAM’s Detailed PV-
Standalone model implement Sandia cell temperature model, which is dependent on
incident radiation, ambient temperature and wind speed. Since the last two come di-
rectly from the same meteorological data, the error in cell temperature between the
Detailed PV-Model and the model in this work, comes mainly from the error in the
incident radiation.
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Figure 3.17: The error of cell temperature between SAM tools and this thesis.

DC power Figure 3.18 shows how the DC output is affected by the different models
since all models used for comparison here implement the same simple efficiency model,
see Equation (3.38). SAM, additionally, supports much advanced models, such as the
SDM demonstrated in Section 3.2.1.
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Figure 3.18: The error of DC output between SAM tools and this work.

Figure 3.18 suggests that the model implemented in the thesis and SAM’s Detailed
PV-Standalone model agree to a good accuracy in terms of DC power generated from
solar irradiation.

AC power The implementation of the inverter in SAM Detailed PV-Standalone is
based on an empirical model by Sandia [14] while the model in this work assumes an
AC output always proportional to DC, see Equation (3.41) as does PVWatts-detailed
model. Figure 3.19 demonstrates the resulting error of AC output. However, a greater
deviation in the error happens when using the full capabilities of the inverter model
in SAM, such as wiring losses. Note that AC losses here happen only because of the
inverter’s efficiency and not other independent losses.
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Figure 3.19: The error of AC output between SAM tools and this work.

The error of the electricity delivered to load can be seen in Figure 3.20. The models
agree to a good degree when the AC output power is higher than the load, as the
system delivers exactly the power required by the load profile. Whereas, when the
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Figure 3.20: The error of electricity delivered to load between SAM tools and this work.

load is higher than AC output power, the error becomes affected directly by the error
in the AC output.

Power balance Even though the error in power balance is low when compared to
SAM’s Detailed PV-Standalone model, some peaks appear. Peaks greater than 1%
error occur in 6 hours out of 8760 hours in a year. Peaks greater than 0.1% occur in
46 hours out of 8760 hours in a year.
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Figure 3.21: The error of power balance between SAM tools and this work.

See Table 3.9 for comparison of MAE and max error between this work and SAM’s
Detailed PV-Standalone model.
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Variable MAE Maximum Error
Sun azimuth 0.00011% -0.00089%
Sun altitude 0.00013% 0.12738%
Angle of incidence 0.00003% 0.00049%
Direct incident radiation 0.00216% -0.36072%
Diffuse incident radiation 0.00005% 0.00049%
Global incident radiation 0.00023% -0.00689%
Cell temperature 0.00011% 0.04073%
DC output power 0.00128% -0.00820%
AC output power 0.00128% -0.00823%
AC power delivered to load 0.00049% -0.00823%
AC power surplus 0.00314% -0.76583%∗
Power balance 0.00470% -0.76583%∗

Table 3.9: Comparison of MAE and maximum error between SAM tools and the model
in this work by changing the implementation of different parts of this work.
∗ Power values less than 0.5W are excluded from the MAE and maxium error
(8 hours out of 8760 hours of a year), since different inverter models are used, a
larger deviation is expected, but does not have a big impact on the system as a
whole.

Since AC power surplus is just the positive values of the power balance, the maximum
error is also large because of the aforementioned reason. When excluding the power
values less than a Watt, the maximum error for both variables is 0.5431To understand
how different sub-models of the system affect the DC output, the same criteria are
kept and only one sub-model is changed in Table 3.10 and compare the resulting error.

Model MAE Maximum Error
Base model 0.00128% -0.00820%
Sun position with Almanac [40] 0.61887% -3104.73%
Cell temperature by [36] 0.08897% 1.91071%

Table 3.10: Comparison of MAE and maximum error of the DC output between SAM
tools and the model in this work by changing the implementation of dif-
ferent parts of this work.

As can be seen in Table 3.10, different sub-systems result in a much larger error.
Using a different Sun’s position algorithm result in an error larger by two orders of
magnitude and a different model for cell temperature results by an error 70 times
larger. Hence, the Almanac algorithm for the calculation of the Sun’s position is not
used, rather the NREL’s SPA algorithm introduced in Section 2.2.

3.4.2. Battery-Coupled Model

The validation in this section is done using only SAM tools, since the free version
of PV*SOL does not provide a battery-coupled system to simulate. PVWatts does
not provide corresponding dispatching strategy. The SAM model used here is Energy
Storage, Detailed-PV Battery, Distributed Residential Owner. The same settings are
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used for PV as in Table 3.7. The battery parameters are as shown in Table 3.11.
Note that the dispatching strategy for the validation allows for multiple cycles a day.
Whereas the model does not allow this normally. In the following, some comparisons
would also be made for the dispatching strategy in this work, which only allows for a
maximum of one cycle a day to increase the lifetime of the battery.

Parameter Symbol Value
Capacity Cnom 2 kWh
Round-trip efficiency ηBESS 94.5%
Coupling DC-Coupling
DC-DC conversion efficiency∗ 99%
Inverter efficiency cutoff∗ 100%
Minimum SOC SOCmin 10%
Maximum SOC SOCmax 95%
Storage Dispatch∗ Input grid power target (zero)

Table 3.11: BESS design parameters.
∗ Some variables are only available in SAM but are default in the architec-
ture design of this work.

A monthly distribution of energy delivered to the load by the battery can be seen
in Figure 3.22.
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Figure 3.22: Comparison of monthly energy delivered by the BESS to the load.

The model for the battery storage implemented in this work is different from the
electrical model implemented in SAM’s Detailed PV-Battery model. Hence, the error is
not as low as the standalone model. The dispatching strategy also plays an important
role on when and how much the battery delivers energy to the load. A slightly different
strategy algorithm could, therefore, counts for a considerable error. Thus, in this
section of validation. The dispatching strategy is approximated to the input grid power
target zero strategy that SAM’s Detailed PV-Battery provides. For a reference only,
the error is also computed with the dispatching strategy of one cycle a day provided
in this work.
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Figure 3.23 demonstrates the error in the state-of-charge of the battery throughout
the year.
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Figure 3.23: The error of the battery state of charge.

Table 3.12 provides an overview of the errors of the different variables for the model.
The rest of the values are identical to Table 3.9. An increase in the error of AC power
delivered to the load by the PV is noticeable. With SAM’s Detailed PV-Battery model
0.09%, in comparison the error was 0.0005% with SAM’s Detailed PV-Standalone
model.

More Than One Cycle A Day One Cycle A Day
Variable

MAE Maximum Error MAE Maximum Error
DC output power 0.00128% -0.00820% 0.00128% -0.00820%
AC power delivered to load by the PV 0.09181% -100.000% 0.09181% -100.000%
AC power delivered to load by the BESS 0.85859% -100.000% 7.87411% -1500.59%
Battery SOC 1.45011% -26.9059% 5.46148% -180.469%

Table 3.12: Overview of MAE and maximum error of different variables between SAM’s
Detailed PV-Battery and the model in this work under the same dispatching
strategy and under the assumption of one cycle a day (SAM still assumes more
than a cycle a day).

A comparison of the state-of-charge level of the BESS can be found in Figure 3.24.
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Figure 3.24: Comparison of average state-of-charge of the BESS throughout the year.
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Figure 3.25: Comparison of annual energy flow through the system by SAM detailed
model and this work.

See Figure 3.25 for a comparison of annual values of energies. SAM detailed model
has an electrical evaluation of the inverter and the battery. Therefore, the losses are
evaluated in many steps and more complicated to be shown on the figure above.

Use case 2 For a wider overview, some of the previous parameters are changed as
shown in Table 3.13, the rest of the parameters are as previous use case. The values are
chosen as they demonstrate a bigger difference in the annual values than other values.

Parameter Symbol Value
Capacity Cnom 4 kWh
Number of modules Nmodules 10
Annual load energy Eload 4500 kWh

Table 3.13: Design parameters used for use case 2.

Table 3.14 shows a comparison of error for different different simulation variables for
use case 2.

Variable MAE Maximum Error
DC output power 0.00128% -0.00836%
AC power delivered to load by the PV 0.00069% -0.00872%
AC power delivered to load by the BESS 1.33577% 100.000%
Battery SOC 0.91163% 23.31867%

Table 3.14: Overview of MAE and maximum error of different variables between SAM’s
Detailed PV-Battery and the model in this work.

Figure 3.26 compares the annual energy flow of the system by SAM’s Detailed PV-
Battery model and the model in this work for this use case.
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Figure 3.26: Comparison of annual energy flow through the system by SAM’s Detailed
PV-Battery model and this work for use case 2.

The annual AC output of SAM’s PV-Battery model is 3205.8 kWh whereas the
model in this work has an AC output of 3260.2 kWh meanwhile the DC output of
both systems is roughly the same. Hence, an error emerges from the electrical model
in SAM’s Detailed PV-Battery model and the simple efficiency model in this work.
Inverter’s efficiency is usually dependent on both temperature and the PV DC output.
By comparing Figure 3.26 and 3.14, it can be deduced that this error has no effect on
the AC power delivered to the load. However, this together with the error emerging
from the electrical model of the battery in SAM’s Detailed PV-Battery, the annual
energy delivered to the load by the BESS is affected. As result the annual energy
exported to the grid is affected as well.
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3.5. Financial Model

When designing a PV system, the decrease of expenditure on electricity is of an eminent
importance for the stakeholder. Thus, the main factors considered here are the buying
and selling rates from the grid, the cost of producing solar energy and the cost of
energy storage. The calculation of costs for producing solar energy is presented in
Section 3.5.2 and for storing energy considering degradation and lifetime is presented
in Section 3.5.3. Both of the costs are then incorporated together to calculate the total
costs compared with the costs of the local grid in Section 3.5.1.

3.5.1. Levelized Cost of Electricity

The levelized cost of electricity (LCOE) is the total cost paid for one kWh of electricity,
whether it is imported from the grid or produced on site. A reduction in the mean
cost of electricity follows from revenues by exporting to the grid. This, however, is
supported in Germany for only 20 years. The LCOE is given as [61]

cLCOE =
Cimport − Cfeed-in + CBESS + CPV

Eload

(3.53)

where Cimport are the annual costs paid to grid for importing electricity, Cfeed-in are
the annual revenues from exporting to the grid, CBESS are the annual costs for energy
storage, and CPV are the annual costs for producing solar energy. The annual costs
of energy imported from the grid is given by

Cimport = cgrid ·
(
Eload − EPV→Load, BESS︸ ︷︷ ︸
Energy imported from grid

)
(3.54)

where EPV→Load, BESS is the annual energy delivered to the load and to the BESS by the
PV and the cost of a kWh charged by the grid cgrid. The annual revenues by exporting
energy to the grid is given by

Cfeed-in = cfeed-in

(
EAC, annual − EPV→Load, BESS︸ ︷︷ ︸

Energy exported to grid

)
(3.55)

where cfeed-in is the feed-in tariff rate, i.e. the revenue of one kWh exported to the grid.
The annual costs of storing energy can be described as

CBESS = cLCOE, BESS · EPV→BESS (3.56)

where cLCOE, BESS is the levelized cost of stored energy. The annual costs of producing
solar energy

CPV = cLCOE, PV · EAC, annual (3.57)

where cLCOE, PV is the levelized cost of solar energy. The energy consumed by the load
from the PV and the BESS is

EPV→Load, BESS = EPV→Load + EPV→BESS︸ ︷︷ ︸
=EBESS→Load/ηbat

(3.58)
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Both the electricity and feed-in rates are given by the government and are discussed
in Section 3.5.4. The calculations of cLCOE, PV and cLCOE, BESS follow in Section 3.5.2
and Section 3.5.3 respectively.

3.5.2. Levelized Cost of Solar Energy

The levelized cost of solar energy is defined as the ratio of the overall cost of the system
with respect to its lifetime output [31]

cLCOE, PV =
Csystem

EAC, lifetime

(3.59)

where Csystem is the costs for purchasing and maintaining the system, EAC, lifetime is
the lifetime energy output of the system. If the value of the energy output is level
over its lifetime then it could be calculated by simply multiplying the annual energy
output EAC, annual with the lifetime of the system NPV, years in years. Conversely, the
money that is present now has more value than the money received in a month, since
the money now can be invested and make profit immediately. The value of the output
energy of the system decreases over time. This decrease is measured by the discount
rate rdr, PV, real (real). If the inflation rate rinflation is considered, the nominal discount
rate rdr, PV can be given as [55]

rdr, PV = (1 + rdr, PV, real) · (1 + rinflation)− 1 (3.60)

Accounting for these is key to correct evaluation of the cost of energy. To account
for that in terms of the value of output energy, the annual output energy is divided by
the capital recovery factor (CRF), which is given as [55]

rCRF, PV =
rdr, PV · (1 + rdr, PV)

NPV, years

(1 + rdr, PV)NPV, years − 1
(3.61)

hence

EAC, lifetime =
EAC, annual

rCRF, PV

(3.62)

The cost of the PV system can be split up in equity Cequity, PV that is paid now as well
as follow-on investments for operation and maintenance CO&M that are paid annually

Csystem = Cequity, PV + CO&M, NPV (3.63)

since future value of money changes, calculation of the net present value (NPV) of
the O&M costs is required. The NPV coefficient is derived from [55]

αNPV =

NPV, years∑
n=1

(1 + rinflation)
n−1

(1 + rdr, PV)n
(3.64)

and equity is described here as

Cequity, PV = Cmodule ·Nmodules + Cadditional (3.65)
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where Cmodule is the cost of one module and Nmodules are the number of purchased
modules and Cadditional are additional costs that includes installation and inverter costs,
and installation fees. Additional costs are relative to the installed modules, see Table
A.1. Now by putting it together Equation (3.59) becomes

cLCOE, PV =
Cequity, PV + CO&M · αNPV

EAC, annual

· rCRF, PV (3.66)

Here it is assumed that the real discount rate for a PV system is rdr, PV, real is 4% [15]
and the lifetime of a PV system NPV, years to be 25 years.

3.5.3. Levelized Cost of Stored Energy

To financially optimize the battery’s capacity, an analysis of energy balance is emitted
first after being converted to days, see Equation (3.40) and Figure 3.9 as described in
[10] as opposed to previously in hours since one cycle per day of the BESS is considered
here. Once this is done, a distribution of NE surplus energy classes is calculated as
follows

Esurplus,i =
Esurplus, max

NE

· i (3.67)

where Esurplus,i is the floor energy of the i-th class and Esurplus, max is the maximum
energy surplus, see Figure 3.27.
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Figure 3.27: Energy surplus and energy deficit distributions with one resident and dif-
ferent number of 60Wp modules.

Estimation of the battery’s lifetime is key to determining its optimal capacity. As
discussed in Section 3.3 the depth of discharge (DOD) is an important variable to
consider. The DOD of i-th class is given as

DODi = min
{Esurplus,i

Cnom

, 1
}

(3.68)

An estimation of the battery’s lifetime can be calculated considering the analysis energy
balance and both the calendar lifetime NBESS, cal and the number of cycles NBESS, cyc

as follows

NBESS, days =

NE∑
i=1

psurplus, i ·min
{
NBESS, cyci , NBESS, cal

}
(3.69)

49



where psurplus, i is the probability of the i-th class of energy surplus and NBESS, cyci is
the equivalent number of full cycles for the i-th class calculated using equations (3.46)
and (3.68). It is noted that here NBESS, cyci and NBESS, cal are given in days.
The lifetime of the battery in years is given as

NBESS, years =
NBESS, days

365.25
(3.70)

and the lifetime energy stored by the battery is given by

EBESS, lifetime =
EPV→BESS

rCRF, BESS

(3.71)

where EPV→BESS is the annual energy stored in the battery, rCRF, BESS is the cost
recovery factor of the battery, calculated analogously to Equation (3.61) considering the
lifetime of the battery NBESS, years and the real discount rate of the battery rdr, BESS, real

which can be assumed to be about 3% for residential use [33]. Note, that this excludes
the inflation rate rinflation. Finally, the levelized cost of stored energy is the ratio
between the lifetime costs of the battery with respect to its lifetime output and is
given by [45]

cLCOE, BESS =
cBESS · Cnom

EBESS, lifetime

(3.72)

where cBESS is the cost of one kWh of a lithium-ion battery.
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Figure 3.28: On the left, the cost of storage by profile using 60Wp modules and their optimal
capacity, i.e. with minimum levelized cost of stored energy. On the right, the
cost of stored energy by year of operation with an expected lifetime of 7 years.

The equity of the whole system can be now calculated as

Cequity = Cequity, BESS︸ ︷︷ ︸
=cBESS·Cnom

+Cequity, PV (3.73)

See Figure 3.28 (b) for the increasing of cost of storage in dependency of the battery’s
age. The results follow from the model simulated in Section 3.4.2 assuming an inflation
rate of rinflation=2.6%, see Table A.1.
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3.5.4. Financial Parameters

In this section, the values for four financial parameters are discussed for the simulation
of an “average year” within the analysis period.

Electricity retail rate by year The current electricity retail price in Aachen as of
September 2021 is cgrid, today =31.09 ct/kWh, see Table A.1. With a rgrid, annually =2%
of annual increase rate[61] the average price over 25 years would be cgrid =39.82 ct/kWh
which is calculated as follows

cgrid =
1

Nanalysis

·
Nanalysis−1∑

n=0

cgrid, today · (1 + rgrid, annually)
n (3.74)

where Nanalysis is the number of years in the analysis period, n is the n-th year of the
analysis period.
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Figure 3.29: Cost of electricity imported from the grid annually and average cost of imported
electricity within the scope of 25, 15 and 10 years on the left. Change of feed-in
tariff on an annual basis and the average feed-in tariff on the right.
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Figure 3.30: Feed-in tariffs in
Germany since 2021
and a projection
until 2023.

Feed-in tariff by year According to the Renewable
Energy Sources Act (EEG) in Germany, the feed-
in tariffs are only considered for the period of 20
years1 and exports to grid afterwards are not com-
pensated. Based on historical data, see Table A.1,
the current feed-in tariff is cfeed-in, today = 6.53 and
has been decreasing by fluctuating rates (between
5% and 30%) from 57.40 ct/kWh to 6.53 ct/kWh
as of April 2022. Since 2021 January, the have been
steadily decreasing by rfeed-in, annually ≈15% annually
(rfeed-in, monthly ≈1.457% monthly). We calculate the
average feed-in tariff over Nanalysis years as follows

cfeed-in =
1

Nanalysis

·
min(Nanalysis,20)−1∑

n=0

cfeed-in, today · (1− rfeed-in, annually)
n (3.75)

1
https://www.bmwi.de/Redaktion/DE/Artikel/Energie/foerderung-der-erneuerbaren-energien.html
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Hence, the average feed-in tariff over 25 years is cfeed-in =1.67 ct/kWh, see Figure
3.29. The monthly decease is accounted for in simulation. The feed-in tariff through
the months of the first year could be approximated by

cfeed-in(m) = cfeed-in(0) · (1− rfeed-in, monthly)
m (3.76)

where m is the month of year starting from m = 0.
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Figure 3.31: Illustration of monthly feed-in compensation by the grid when the de-
creasing rates of feed-in tariffs are considered and when not.

see Figure 3.31 for a comparison of the monthly compensation calculated for the
model simulation in Section 3.4.2. It is also important to note, that the feed-in tariffs
apply only if at least rself-consumption, min ≥30% of the produced energy is consumed
locally for each month1 see Equation (3.81) for the calculation of self-consumption.
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Figure 3.32: Cost of energy storage per
kWh by year of operation.

Cost of battery by year The battery’s life-
time is usually much less than PV system’s
lifetime. As a result, the battery is expected
to be replaced several times through the years
of operation. If a battery is expected to have a
lifetime of 13 years for example, then it has to
be replaced twice within an analysis period of
25 years. As the costs of lithium-ion batteries
decrease, throughout the years, the average
price of the replacement years is considered.
The cost of the battery in 2018 was ranging
from 800 to 1300 EUR/kWh incl. VAT [12]
and it ranges today from 500 to 1200 EUR/kWh incl. VAT [26]. If the cost of a battery
today per one kWh cBESS, today =850 EUR/kWh incl. VAT with an annual decrease
rate of rBESS=8% [42], its cost in fourteen years will drop down to 288 EUR/kWh.

1
https://www.gesetze-im-internet.de/eeg_2014/__9.html accessed on Apr. 16, 2022
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That means the average cost of storage will be 607 EUR/kWh, see Figure 3.32. Hence

c′BESS, ref(NBESS, years) =
1

Nanalysis

·
Nanalysis−1∑

n=0

cBESS, today · (1− rBESS)
n−(n fmod NBESS, years)

(3.77)
where fmod is the float modulo operator. The function c′BESS, ref provides a step-wise

curve. To smooth out the curve we define

α′ = NBESS, years − floor
(
NBESS, years

)
(3.78)

Hence α′ is the floating number after the decimal point. Thus, the mean cost of one
kWh of a lithium battery is

cBESS, ref(NBESS, years) = (1− α′) · c′BESS, ref(NBESS, years) + α′ · c′BESS, ref(NBESS, years + 1)
(3.79)
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Figure 3.33: Cost of energy stor-
age per kWh by ca-
pacity as of 20191.

Cost of battery by capacity The cost of lithium-
ion battery per kWh cBESS is also dependent on its
nominal capacity Cnom. Based on the prices given
in Figure 3.33. The decrease in the cost of storage
per kWh is approximated with a linear regression
model normalized by a reference cost of storage per
kWh

cBESS = cBESS, ref·
(
1.0249406−0.024941·Cnom

)
(3.80)

where Cnom is the nominal capacity of the battery
in kWh and cBESS, ref is the reference cost of storage
per kWh. See Table 3.15 for different average prices
by number of years.

Parameter Symbol Today 5 years 10 years 15 years 20 years 25 years
Grid rate [ct/kWh] cgrid 31.09 32.36 34.04 35.84 37.77 39.83
Feed-in tariff [ct/kWh] cfeed-in 6.53 4.84 3.50 2.65 2.09 1.67

Table 3.15: Levelized values of different parameters by assessment period.

3.5.5. Sensitivity Analysis

Assuming financial parameters as shown in Table 3.16, the mean cost of electricity
was evaluated by the size of the PV-Battery system as in Figure 3.34 for the scope of
15 and 25 years. For this simulation, the irradiation data for Aachen (50◦46’16.1”N
6◦03’05.4”E) with PV panels oriented to true south and an inclination of 35◦ summing
up to 1129.8 kWh/m2 annually (see Figure 3.42) were used. The sizes of PV and

1
https://www.energie-experten.org/erneuerbare-energien/photovoltaik/stromspeicher/preise
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Battery are normalized by the annual load i.e. if the annual load is 4500kWh then
PV system size of 1 Wp/kWh corresponds to a PV system of maximum power point
of 4500Wp in SRC. A battery size of 1 Wh/kWh corresponds to a battery capacity of
4.5 kWh.

Parameter Symbol Value
Price of PV panels Cmodule/Pmax, ref 1400 EUR/kWp
Inflation rate rinflation 2.5%
Real PV discount rate rdr, PV, real 4%
Real Battery discount rate rdr, BESS, real 3%
Monthly shrinking rate of feed-in tariff rfeed-in, monthly 0%
Operation and maintenance costs CO&M 1% of PV costs

Table 3.16: Financial parameters used.

The minimum and maximum state of charge of the battery is SOCmin=20% and
SOCmax=95%. The battery’s round-trip efficiency is considered to be ηBESS=92%.
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Figure 3.34: Mean cost of electricity by size of system within the scope of 15 years
(35.8 ct/kWh limit of profitability) and 25 years (39.8 ct/kWh limit of
profitability).
• Minimum levelized cost of electricity.

Figure 3.34 suggests a different size of the system when considering a different scope
of years. As the feed-in tariffs tend to decrease, the profitability of exporting excess
energy shrinks while it becomes more profitable to store this energy for use at night. In
the following, single parameters are changed to see the effect they have on the levelized
cost of electricity in a scope of 25 years.

Lifetime of the battery To see the difference in the lifetime of the battery, the curve
described in Equation (3.46) is scaled to mathch 5000 and 7000 cycles respectively. As
can be seen in Figure 3.35 and Figure 3.36, a longer expected cycle life of the battery
would results a slightly more profits. This is mainly because of reduction in the number
of replacements of the battery.
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Figure 3.35: Levelized cost of electricity by the cyclic lifetime of the battery.
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Figure 3.36: Lifetime of the battery by the cyclic lifetime of the battery.

In the following, a cycle life with 3750 cycles at 50% DOD is assumed.

Shape of load curve The shape of the load curve have a noticeable impact on the
optimum size of the PV system (see Figure 3.37). Despite having the same annual
load overall, the difference in the distribution of load throughout the day has a direct
effect on how much the battery can charge and discharge and thus on the profitability
of the battery.
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Figure 3.37: Levelized cost of electricity by load curve.

Inflation rate The inflation rate, as in Figure 3.38, plays another important role
in determining of the PV-Battery system. A higher inflation rate rinflation than the
corresponding increasing rate of electricity rates cgrid means less profitability of the
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system and thus smaller system size. However, usually high inflation also entails higher
electricity rates.
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Figure 3.38: Levelized cost of electricity by inflation rate.

In the following, an inflation rate of 2.5% is assumed.

Mean cost of the battery per kWh A lower average cost of the battery per kWh is
a key factor in have a large battery size. This is also limited by the feed-in tariff. A
lower feed-in tariff encourages a bigger size of the battery. (see Figure 3.39)
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Figure 3.39: Levelized cost of electricity by cost of battery.

In the following a battery cost of 850 EUR/kWh is assumed.

Feed-in tariff finally, the average feed-in tariff, while has an impact on the minimum
levelized cost of electricity, the impact on the sizing of the system is rather subtle as
can be seen in Figure 3.40.
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Figure 3.40: Levelized cost of electricity by feed-in tariff.

As can be seen above, along insolation, many financial factors have a vital role in
optimizing the size of the system.

Rule of minimum self-consumption as mentioned in Section 3.5.4, the feed-in com-
pensation is only applied for a maximum of 70% of the produced energy. A comparison
of this limit can be seen in Figure 3.41
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Figure 3.41: Levelized cost of electricity by minimum self-consumption rule.

The difference in system design because of this constraint is not of a great importance
as can be seen in Figure 3.41.

Assessment Criteria It is important to assess the PV-Battery system in terms of
energy to determine its performance. Two assessment criteria are used. Self-sufficiency
and self-consumption.

Self-consumption is the share of produced energy consumed by the load and can
be described as

rself-consumption =
EPV→Load + EPV→BESS

EAC, annual

(3.81)

Self-sufficiency is the share of load covered by the produced energy which is de-
scribed as

rself-sufficiency =
EPV→Load + EBESS→Load

Eload

(3.82)
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To visualize how both assessment criteria change by PV-Battery size, a simulation is
done on the system assuming 85% DOD of the battery.

0.0 0.5 1.0 1.5 2.0 2.5
PV system size [Wp/kWh]

0.0

0.5

1.0

1.5

2.0

2.5

B
at

te
ry

ca
p

a
ci

ty
[W

h
/
k
W

h
] 90%

80%

70%

60%

50%

40%

30%

20%

Self-consumption

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.5 1.0 1.5 2.0 2.5
PV system size [Wp/kWh]

0.0

0.5

1.0

1.5

2.0

2.5

B
at

te
ry

ca
p

a
ci

ty
[W

h
/
k
W

h
] 80%

70%

60%

50%

40%

30%
20%

10%

Self-sufficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.42: Self-consumption and self-efficiency by system size.

Figure 3.42 presents how both criteria change by the system size. It suggests that a
system with 1 Wp/kWh achieves 39% self-consumption as well as 43% self-sufficiency
without an energy storage. It can also be interpreted that with 1 Wh/kWh storage,
the system achieves 58% self-consumption as well as 64% self-sufficiency. While these
graphs are normalized to the total load, they still differ by the user profile, i.e. weather
profile and the shape of the load curve, in this work, there are two residential and
commercial profiles (see Section 2.4 and Figure 3.37).
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4. Optimization of the Photovoltaic Power Plant

In this section, the methods and procedures for optimizing the PV array size and the
battery’s capacity to store the maximum amount of energy produced by the PV are
discussed.

4.1. Objective Function

A design of a rooftop-mount photovoltaic power plant in this scope is a tuple of num-
ber of panels Nmodules of peak power Pmax, ref and a temperature coefficient µP and a
lithium-ion battery of capacity Cnom.
An optimum design with this respect is a design that minimizes the overall costs of
energy either produced by the system or imported from the grid for the lifetime of the
system

(N̂modules, Ĉnom) = argmin
(Nmodules,Cnom)

{
Ctotal, kWh(C, Nmodules, Cnom)

}
(4.1)

where C is the set of the simulation inputs. For simplicity, the function will be written
without C in the following sections. The total cost of energy (see Equation 3.53) has
been chosen as the objective function as it takes into account the following factors

• The lifetime costs of the system, including the lifetime of the battery.

• The ratio of energy the system produces with respect to the total load.

• The electricity rates, the energy deficit that the household has to purchase from
the grid, and the energy surplus that the system exports to the grid.

4.2. Constraints

Maximizing the profitability of the system is limited by different constraints. The most
relevant of which are

Geometrical Constraints The maximum output of each PV module is limited by the
amount of insolation it receives, which is yet contingent on the climate of the region
of interest for comparison see Figure 3.10. Higher ambient temperature play also a
fair amount of reducing the overall output of the system. Considering the battery
is installed inside the house with roughly constant room temperature throughout the
year, the impact of temperature on the battery is neglected. For perspective on the
meteorological impact on PV output refer to Figure 3.8.
The amount of insolation is not only limited by the climate of the region, but also
dependent on the architecture of the building, i.e. the tilt and orientation of each
panel, which is assumed here to be fixed on the roof. Naturally the best orientation
for the northern hemisphere is true south and depending on the latitude the optimal
tilt of the panel differs, for comparison see Figure 3.2. Another geometrical constraint
is the usable roof area, the area on which the PV modules can be installed.
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Load Profile The behavior of an average individual is not expected to be significantly
changed and this is defined by the number of residents in a residential building with
their grade of power usage. Whether a separate house or an apartment is considered
changes the scale of the hourly load. Additionally if a heat pump is used by electricity
this adds to the load, for a short comparison see Tables 2.4 and Table 2.3.

Storage Capacity The choice of a battery’s capacity comes down to its variable
lifetime and energy efficiency. A financial factor is also decisive here. For maximum
benefits the battery is assumed to charge during daytime and discharge in the evening.
This allows for one cycle a day which is assumed here.

Optional Financial Constraints For most stakeholders there is an upper bound to
how much of investment they seek to make now. Thus, the initial costs of the overalls
system is optionally considered here as a constraint. Note that the initial costs do not
include follow-on costs such as battery replacement or costs of operation and mainte-
nance (O&M). If a maximum investment Cmax, invest is set, then there is a maximum
number of PV panels Nmodules, max and a maximum capacity of Cbat, max

Nmodules, max =
Cmax, invest

Cmodule

, Cnom, max =
Cmax, invest

cBESS, ref

(4.2)
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4.3. Optimization Routine

The problem described in Section 4.1 can be approached using different methods.
Here a simple heuristic method and Newton’s method are explained and then further
methods are compared. The target function cLCOE(Nmodules, Cnom) is written as L(x, y)
in this section for simplicity.

4.3.1. Heuristic Method

As can be seen in section 3.5.5, there is only one optimum. Additionally, the number
of panels is always a natural number and the battery’s capacity is usually a multiplier
of 0.6kWh. Thus, a heuristic method can be used

Unconstrained optimization In general, the heuristic method evaluates neighboring
“cells” while assuming that the optimum is on the right side of the starting point.

1 i npu t : f l o a t x 0 , f l o a t x step , f l o a t y step , f unc f
2 i npu t : i n t max steps , f l o a t t o l
3 output : f l o a t , f l o a t
4 beg in
5 x , y ← x 0 , 0
6 s t ep s ← 1
7 wh i l e s t ep s ≤ max steps :
8 curr ← f (x , y )
9 dx , dy ← 0 , 0

10
11 i f f ( x+step x , y+step y ) < curr :
12 dx , dy ← x step , y s t ep
13
14 e l s e :
15 i f f ( x+x step , y ) ≤ curr + t o l : dx ← x s tep
16 e l i f f (x−x step , y ) ≤ curr + t o l : dx ← −x s tep
17 i f f (x , y+y step ) < curr + t o l : dy ← y s tep
18
19 x , y ← x + dx , y + dy
20
21 i f dx = dy = 0 :
22 break
23
24 s t ep s ← s t ep s + 1
25 r e tu rn x , y
26 end

Figure 4.1: Heuristic search in pseudocode.

As can be seen in Figure 4.1, the algorithm has a flexible movement on the Nmodules

axis (x-axis), but can only increase the Cnom if it is more profitable with a given
tolerance. The algorithm is tested with different resolutions (x and y steps) for this
use case and the number of iterations needed are compared.
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Figure 4.2: Optimization procedure using heuristic method with different resolutions
and starting points.

It is evident from Figure 4.2 that a good resolution is needed for this method to
work properly. Also a starting point where it is more likely that the optimum is on
right saves more time, hence a small number of panels. The case of resolution where
x_step=0.5 and y_step=0.6 with a starting point in x_0=5 is a good example where
the algorithm takes longer time. A good starting point is, therefore, x_0=2.

Constrained optimization If the maximum amount of investment is less than the
value that purchases two PV modules, then, clearly one PV module is the optimal
design. Otherwise the starting point of x_0=2 is within the search space as defined
in Equation (4.8). Therefore, a detection whether the optimal design violates the
constraints is possible once the algorithm surpasses financial constrain line.
If that is the case, analogously to Section 4.3.2, the algorithm optimizes only along the
financial constraint line. The financial constraint line can be defined by the number of
modules as

Cnom(Nmodules) =
1

cBESS

·
(
Cmax, invest − Cmodule ·Nmodules

)
(4.3)
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Note that the capacity here is not necessarily a multiplier of y_step. The subtraction
of the modulo of the result with y_step gives the maximum capacity that is a multiplier
of y_step and does not violate the financial constraints.

Cmax, invest = 1800 EUR
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Figure 4.3: constrained optimization procedure using heuristic method with different
resolutions and different constraints.

It can be seen in Figure 4.3, that the algorithm does not need many iterations to
find an optimum even with constraints. The results of each iteration are saved and the
design with the minimum loss is returned. This is for the case the algorithm diverges
because of the tolerance given.

4.3.2. Newton’s Method

Unonstrained optimization In an unconstrained optimization, the algorithm’s goal
is to find an optimum in a 2-dimensional plane. We consider the first and the second
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derivatives of the target function, which are calculated as follows

∂L(x, y)
∂x

=
L(x′, y)− L(x, y)

x′ − x
∂L(x, y)

∂y
=

L(x, y′)− L(x, y)
y′ − y

(4.4)

where x′ = x−x0, y
′ = y−y0 and x0, y0 are small numbers and can be interpreted as the

resolution of the optimization problem. Here we use x0 = 0.2, y0 = 50. Even though
not any multiplicand of 0.2 is physically possible, but this could also be interpreted
as the installed peak capacity of the PV. It is also important to calculate the hessians
smoothly. The second derivative of the loss function is calculated analogously with
respect to the first derivative. In the following, two optimization strategies are related.
A financially unconstrained optimization and a financially constrained optimization.
For every i-th step of the optimization routine, the hessians are calculated as follows

dxi :=
∂L(x, y)

∂x

/∂2L(x, y)
∂x2

dyi :=
∂L(x, y)

∂y

/∂2L(x, y)
∂y2

(4.5)

Even though this section has no financial constraints, there are physical constraints,
i.e. there are no negative numbers of a battery’s capacity or a negative number of
panels. Additionally, the minimum number of panels is one. Therefore, the hessians
are separately clipped if x− dxi < 1 or if y − dyi < 0

dxi := xi−1 − 1, or

dyi := yi−1
(4.6)

In this way, the hessians will not point to “invalid” values. The variables are iteratively
updated as

xi := xi−1 − α · dxi

yi := yi−1 − α · dyi
(4.7)

where α is close to one, for example 0.95.
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Figure 4.4: Trace and convergence of the optimization path using Newton’s method.
The algorithm needed 17 iterations.
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As a convergence criterion, the optimization process stops once the difference in the
target function smaller than a threshold ktres for the last ntres consecutive iterations.
The size (x, y) along with the corresponding target function L(x, y) are stored in every
iteration. Finally, when the algorithm successfully terminates, the size with the min-
imum target function is returned. A maximum number of iterations guarantees the
termination of the algorithm in a case of a divergence, see Figure 4.4.

Constrained optimization As described in Section 4.2, in most cases, an investor is
tethered to a maximum possible investment Cmax, invest to be paid now. In this case,
the search space is defined as

S = {(Nmodules, Cnom)|Nmodules · Cmodule + Cnom · cBESS ≤ Cmax, invest} (4.8)

Here assuming Cmax, invest does not include additional costs on equity such as instal-
lation costs and inverter costs. With this definition, the optimal design might exist
outside the search space. If it is inside the search space, then not much changes from
Section 4.3.2. But if it is outside the search space, then the optimal design with this
regard, exists on the upper line, see Figure 4.5.
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Figure 4.5: Optimization procedure using Newton’s method with different financial
constraints.

The algorithm proceeds here as in 4.3.2. In every iteration, the algorithm checks
whether the equity of the new design exceeds the maximum investment. If not, then
nothing is done. Otherwise, the algorithm becomes a 1-dimensional optimization along
one axis, i.e. the x-axis. The values of the y-axis are evaluated using the linear equa-
tion of the upper limit of the investment Cmax, invest.

A comparison between both the heuristic method and Newton’s method are com-
pared along with other optimization strategies in Section 5.4.2.
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5. Case Study

In this section, three scenarios are generated using buildings from the cadaster. The
results of finding an optimal design for this scenario are then discussed. The assess-
ment period considered here is 25 years as given in Table 3.15. Input and efficiency
parameters are given in Table 5.1.

Parameter Symbol Value
Price of PV panels Cmodule/Pmax, ref 1400 EUR/kWp
Battery round-trip efficiency ηBESS 92%
Inverter efficiency ηinverter 97%
Panel size 1m×1.6m
Panel maximum power point in SRC Pmax, ref 300 Wp
Operation and maintenance (annually) CO&M 1% ·Cequity, PV

1

Additional costs Cadditional 200 EUR
Real battery discount rate rdr, bat, real 3%
Real PV discount rate rdr, real 4%
inflation rate rinfl 2.5%
Monthly shrinking rate of feed-in tariff ifeed-in, monthly 1.457%

Table 5.1: Simulation parameters.

The minimum and maximum state of charge optimized for are (SOCmin = 10% and
SOCmax = 95%) respectively.

5.1. Case study 1

Input data The considered annual load of 4500 kWh/a corresponds to four residents
living in an apartment with an electrically heated water, see Table 2.4.
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Figure 5.1: Surfaces of the given building
by annual radiation and possi-
ble slots for PV panels.

Parameter Value

Address
Eupener Str. 270
52076 Aachen

Annual load 4500 kWh

Table 5.2: Simulation parameters for
case study 1.

1https://www.solaranlage-ratgeber.de/photovoltaik/photovoltaik-

wirtschaftlichkeit/photovoltaik-kosten accessed on Apr 12, 2022.
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Table 5.2 provides the address of the building and the annual load. Given the
cadastral and meteorological data, the annual irradiation of each surface is calculated
using steps described in Sections 2.2, 2.3 and 3.1. As can be seen in Figure 5.1, a
maximum of five panels can fit in the surface with maximum irradiation.

Overview The system is evaluated with different system designs as can be seen in
Figure 5.3. The most profitable design is Ĉnom=4.2 kWh of usable battery storage
and 3.0kWp of installed PV power, i.e. N̂modules =10 modules. With this design the
levelized cost of electricity is cLCOE=32.37 ct/kWh. The stakeholder consumes 80% of
the generated power and 54% of the load is covered by the system.
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Figure 5.2: Levelized cost of electricity by design with a profitability limit of 39.83
ct/kWh on the left and assignment of panels for each surface of the rooftop
for the optimal design on the right.
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Figure 5.3: Self-consumption and self-sufficiency by design.
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Parameter Symbol Value
Number of modules Nmodules 10 modules (3 kWp)
Battery’s capacity Cnom 4.2 kWh
Equity Cequity 6705.09 EUR
Mean battery estimated price cBESS 549 EUR/kWh
Levelized cost of electricity cLCOE 32.37 ct/kWh
Levelized cost of solar energy cLCOE, PV 13.51 ct/kWh
Levelized cost of stored energy cLCOE, BESS 31.40 ct/kWh
Self-consumption rself-consumption 80.3%
Self-sufficiency rself-sufficiency 53.7%
Estimated battery life NBESS, years 13 years and 3 months
DC output energy EDC, annual 3182.3 kWh
AC output energy EAC, annual 3086.8 kWh
Energy covered by the PV EPV→Load 1717.9 kWh
Energy covered by the battery EBESS→Load 698.8 kWh
Energy exported to grid 609.3 kWh
Energy imported from grid 2083.3 kWh
Battery loss 60.8 kWh
DC-AC conversion loss 95.5 kWh
Annual bill without system (levelized) 1792.35 EUR
Net annual bill with system (levelized) 820.38 EUR
Annual investment in electricity with system 1456.65 EUR

Table 5.3: The annual results of the optimal design.
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Figure 5.4: Share of PV output power by destination on the left and share of load by
source on the right.

As can be seen in Table 5.3 with the optimal design, it is estimated that 335 EUR
can be spared annually by investing in such a design. The grid bill is also reduced
down to 45.8%. Figure 5.7 provides a visual overview on the energy distribution.
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5.2. Case study 2

Input data The considered building here is a the Moss bakery in Ahornstr of Aachen,
Germany. Its estimated area is 50m2 yielding an annual load of 25,000 kWh, see Table
2.3. The corresponding load curve is (g0), see Figure 2.5.
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Figure 5.5: Surfaces of the given building
by annual radiation and possi-
ble slots for PV panels.

Parameter Value

Address
Ahornstr 35
52074 Aachen

Annual load 25,000 kWh

Table 5.4: Simulation parameters
for case study 2.

Similar to study case 1, the incident radiation for each of the surfaces is calculated
first. Since there is only one usable surface of the rooftop here, only this surface is
taken into account.

Overview The levelized cost of electricity is evaluated with the range up to invest-
ing in 28 panels. However, as can be seen in Figure 5.5, a maximum of 18 panels
can be installed according to the shape given by the cadastral data. Thus, the sim-
ulation assumes a maximum of only 18 operating panels. This, in a way, acts as a
“penalty function” for the optimization process. It could be seen in Figure 5.6 that
the most profitable design is using the maximum capacity and no battery installed.
The reason for this, is because the self-consumption of this design is already 95%. The
self-sufficiency is, however, only 21%, see Figure 5.7.
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Figure 5.6: Levelized cost of electricity by design with a profitability limit of 39.77
ct/kWh on the left and assignment of panels for each surface of the rooftop
for the optimal design on the right.
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Parameter Symbol Value
Number of modules Nmodules 18 modules (5.4 kWp)
Battery’s capacity Cnom 0 kWh
Equity Cequity 7760.00 EUR
Mean battery estimated price cBESS -
Levelized cost of electricity cLCOE 34.44 ct/kWh
Levelized cost of solar energy cLCOE, PV 13.46 ct/kWh
Levelized cost of stored energy cLCOE, BESS -
Self-consumption rself-consumption 95.4%
Self-sufficiency rself-sufficiency 20.9%
Estimated battery life NBESS, years -
DC output energy EDC, annual 5647.3 kWh
AC output energy EAC, annual 5477.9 kWh
Energy covered by the PV EPV→Load 5227.9 kWh
Energy covered by the battery EBESS→Load 0 kWh
Energy exported to grid 249.9 kWh
Energy imported from grid 19,772.1 kWh
Battery loss -
DC-AC conversion loss 169.4 kWh
Annual bill without system (levelized) 9957.50 EUR
Net annual bill with system (levelized) 7871.34 EUR
Annual investment in electricity with system 8610.0 EUR

Table 5.5: The annual results of the optimal design.
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Figure 5.7: Share of PV output power by destination on the left and share of load by
source on the right.

Table 5.5 shows that with the optimal design, roughly 1348 EUR can be spared
annually by investing in such a design. The grid bill is also reduced down by 21%.
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5.3. Case study 3

Input data The considered scenario here is three families of annual load 4500 kWh
each. The corresponding load curve is the residential curve (h0), see Figure 2.5.
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Figure 5.8: Surfaces of the given building
by annual radiation and possi-
ble slots for PV panels.

Parameter Value

Address
Am Neuenhof 7
52074 Aachen

Annual load 13,500 kWh

Table 5.6: Simulation parameters for
case study 3.

As can be seen in Figure 5.8, the maximal number of PV panels that could fit on
the rooftop are 34 panels.

Overview As can be seen in Figure 5.9, the optimal design is investing in 33 panels
(9.9 kWp) and a size of the Li-ion battery is 16 kWh. This design will result in a
levelized cost of electricity of 31.36 ct/kWh.
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Figure 5.9: Levelized cost of electricity by design with a profitability limit of 39.83
ct/kWh on the left and assignment of panels for each surface of the rooftop
for the optimal design on the right.

In such a design, the achieved self-consumption and self-sufficiency are 87% and 34%
respectively as can be seen in Figure 5.10 and Figure 5.11. A value of 1144 EUR can
be annually spared by investing in such a system.
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Figure 5.10: Self-consumption and self-sufficiency by design.

Parameter Symbol Value
Number of modules Nmodules 33 modules (9.9 kWp)
Battery’s capacity Cnom 16 kWh
Equity Cequity 20,199.36 EUR
Mean battery estimated price cBESS 384 EUR/kWh
Levelized cost of electricity cLCOE 31.36 ct/kWh
Levelized cost of solar energy cLCOE, PV 13.94 ct/kWh
Levelized cost of stored energy cLCOE, BESS 24.22 ct/kWh
Self-consumption rself-consumption 80.8%
Self-sufficiency rself-sufficiency 56.0%
Estimated battery life NBESS, years 14 years and 4 months
DC output energy EDC, annual 9896.5 kWh
AC output energy EAC, annual 9599.6 kWh
Energy covered by the PV EPV→Load 5257.8 kWh
Energy covered by the battery EBESS→Load 2302.2 kWh
Energy exported to grid 1839.4 kWh
Energy imported from grid 5940.0 kWh
Battery loss 200.2 kWh
DC-AC conversion loss 296.9 kWh
Annual bill without system (levelized) 5377.05 EUR
Net annual bill with system (levelized) 2337.48 EUR
Annual investment in electricity with system 4233.6 EUR

Table 5.7: The annual results of the optimal design.
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Figure 5.11: Share of PV output power by destination on the left and share of load by source
on the right.
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5.4. Discussion of Results

In this section, the results from previous sections are first compared another online
tool and then the optimization process is discussed.

5.4.1. Comparison with other tools

In the following, the results are compared with the tool provided by rechnerphoto-
voltaik1 with “Photovoltaik Rechner (Experte)” calculator. This tool simulates the
photovoltaic system by installed peak power Nmodules · Pmax, ref and self-consumption.
The self-consumption rate was set to the nearest ten, as only this is allowed by this
tool. The other inputs are set as in accordance with optimal design for each case study.

Mean Value
Case study Parameter Symbol

Rechnerphotovoltaic This work
AC output energy EAC, annual 3097.3 kWh 3086.8 kWh
Energy covered by the system EPV, BESS→Load 2477.8 kWh 2416.7 kWh
Energy exported to grid 619.5 kWh 609.3 kWh

1

Annual bill reduced by 981.6 EUR 972.0 EUR

AC output energy EAC, annual 5290.3 kWh 5477.9 kWh
Energy covered by the system EPV, BESS→Load 5025.8 kWh 5227.9 kWh
Energy exported to grid 264.5 kWh 249.9 kWh

2

Annual bill reduced by 1991.0 EUR 2086.2 EUR

AC output energy EAC, annual 9909.48 kWh 9599.6 kWh
Energy covered by the system EPV, BESS→Load 7927.6 kWh 7560.0 kWh
Energy exported to grid 1981.9 kWh 1839.4 kWh

3

Annual bill reduced by 3140.6 EUR 3039.6 EUR

Table 5.8: Comparison of results with the tool rechnerphotovoltaik.

Table 5.8 compares the results in this work for the previously introduced case studies
with the results by the Rechnerphotovoltaic tool. A noticeable deviation emerges when
the annual load energy is bigger as in case study 1 and 2.

1https://www.rechnerphotovoltaik.de
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5.4.2. Optimization strategies

in the following, four different optimization strategies are compared, among of which
the heuristic method described in Section 4.3.1. Each method was tested with different
“initial guesses” (or initial designs). The results can be seen in Table 5.9. For all of the
optimization strategies a local cache was used to reduce time needed for simulations in
case of repetition of design. The methods are benchmarked with the first case study,
see Section 5.1.

Method
Initial design(s)
[module, kWh]

Steps Simulations
Time
[s]

Optimal design
[module, kWh]

Optimal cost
[ct/kWh]

(12, 12) 19 95 7.97 (6.4, 0.42) 32.60
(5, 5) 9 45 3.69 (6.2, 0.01) 32.66
(4, 5) 31 135 11.13 (9.4, 2.86) 32.85
(4, 1) 12 60 5.15 (6.2, 0.00) 32.65

Newton

(2, 0) 8 40 3.2 (6.2, 0.00) 32.65
(3, 1), (2, 0.5) 22 154 12.61 (8.1, 2.33) 32.41
(5, 5), (4, 4) 18 126 11.13 (7.7, 2.00) 32.42
(6, 6), (4, 4) 35 246 21.25 (9.4, 3.96) 32.39
(9, 9), (8, 8) 28 196 17.6 (9.2, 4.10) 32.40

Secant

(20, 10), (19, 9) 19 133 11.5 (9.6, 4.14) 32.38
(5, 2.5) 346 331 29.37 (8.6, 2.78) 32.40
(5, 5) 216 192 16.09 (10.1, 4.24) 32.36
(2, 0) 426 404 36.05 (8.0, 2.14) 32.41
(2, 2) 229 205 17.55 (7.8, 2.06) 32.41

Powell

(5, 5) 633 602 49.84 (10.0, 4.22) 32.36
(15, 0) 8 31 2.16 (10.0, 4.20) 32.37
(10, 0) 8 25 1.71 (10.0, 4.20) 32.37
(5, 0) 8 18 1.36 (10.0, 4.20) 32.37

Heuristic1

(2, 0) 9 14 1.09 (10.0, 4.20) 32.37
(15, 0) 9 36 2.88 (8.0, 2.10) 32.42
(10, 0) 9 31 2.36 (8.0, 2.10) 32.42
(5, 0) 9 24 1.96 (8.0, 2.10) 32.42

Heuristic2

(2, 0) 9 17 1.33 (8.0, 2.10) 32.42
(15, 0) 15 56 4.47 (10.0, 4.20) 32.37
(10, 0) 16 46 3.65 (10.0, 4.20) 32.37
(5, 0) 16 30 2.43 (10.0, 4.20) 32.37

Heuristic3

(2, 0) 49 24 2.02 (10.0, 4.50) 32.39
(15, 0) 12 26 1.92 (10.0, 4.80) 32.43
(10, 0) 7 16 1.18 (10.0, 4.80) 32.43
(5, 0) 5 10 0.73 (9.0, 3.60) 32.40

Heuristic4

(2, 0) 10 17 1.23 (11.0, 7.20) 33.34

Table 5.9: Results of different optimization strategies

For all the heuristic methods used, the tolerance tol was set to 0.01 ct/kWh and the
steps of module numbers was set to one with the exception for method Heuristic3 it
was set to 0.5. Different steps of usable battery capacity were used. For the method
Heuristic1 a step of 0.6kWh, for Heuristic2 and Heuristic3 a step 0.3kWh, for
Heuristic4 a step of 1.2kWh were used.
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The Newton’s method is very dependent on the initial guess. As can be seen in
Table 5.9, the number steps needed for Newton’s method to converge is minimal when
the initial guess is close to the optimum. However it converges sometimes to a local
optimum and it take a long time to do so.

The Secant’s method, on the other hand, delivers an optimum mostly very close to
the global optimum. But it takes relatively more time than Newton’s does.

One advanced method is the Powell’s [46]. It can clearly be seen that the optimal
design it delivers is very accurate. This, unfortunately, comes with a big time cost
which is not very suitable for this online application. Moreover, optimizing over ra-
tional numbers is not the best option, since the number will be rounded to a natural
number in the end, at least for the number of modules.

A realistic approach by heuristically optimizing over the natural numbers of modules
and a multiplier of 0.6 of a usable capacity seems to provide a balance between the
number of simulations and an acceptable optimal design.

The average simulation time is less than a tenth of a second, thus an exhaustive
search with a maximum number of panels of Nmax, panels and a maximum capacity of
the BESS of Cnom, max would require less than Nmax, panels · Cnom, max· 0.1 seconds.
To compare with the heuristic model, we assumed the maximum number of panels

and maximum capacity correspond with the optimal design and the same resolution is
used.

Resolution (Panels, kWh) Exhaustive Search Heuristic Method
(1, 1.2) 3s <2s
(1, 0.6) 6s <3s
(1, 0.3) 12s <3s
(0.5, 0.3) 24s <5s

Table 5.10: Time comparison between exhaustive search method and heuristic method.

As can be seen in Table 5.10, the exhaustive search method delivers an optimal
model with a realistic resolution in the best case faster than Powell’s method and
ensures that the optimum with the given resolution is found. However, the fact that
with unconstrained optimization, the capacity of the BESS is unconstrained. Despite,
the fact that the maximum number of panels are constrained by the geometrical shape
of the rooftop, the optimal design lies on average much less than that, resulting in
even more simulations needed. The difference in the time is because the computational
complexity of the exhaustive search is in O(Nmax, panels · Cnom, max) while that of the
heuristic search is in O(Nmax, panels + Cnom, max).
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6. Conclusion

6.1. Summary

In this work, a simulation and optimization tool for estimating an optimal design of a
grid-connected photovoltaic (PV) open rack panels system, optionally coupled with a
battery energy storage system (BESS) was developed. Important data for the simula-
tion of PV rooftops were collected and processed. These include hourly meteorological
data over all Germany from the German Weather Agency (DWD), cadastral data for
the rooftops of the buildings in the state of North Rhine-Westphalia (NRW) including
geographical coordinates, tilt angle and orientation of each surface from Landesamt
für Natur, Umwelt und Verbraucherschutz (LANUV), hourly parameterizable curve of
the load power for both residential and commercial profiles. These data-sets, together
with a sun position calculation algorithm, are the underlying data input used to simu-
late the hourly power of the different components of the PV systems, including a BESS.

A simulation of the PV modules was implemented using both an electrical model,
namely the single-diode model (SDM) that approximates PV panels maximum power
by their electrical parameters and a simple efficiency model that approximates the
maximum power by an efficiency or a reference maximum power point. The results of
the SDM were validated by a similar paper by NREL [58] and data-sheets, see Table
3.5 and Table 3.6. The simulation of the BESS was done using a simple model with a
round-trip efficiency model and a simple dispatching strategy that allows one cycle a
day for optimal lifetime of the battery. Furthermore, the hourly results of the system
as a whole were successfully validated by the results of SAM tools in Section 3.4. Annual
results were also compared to PV*SOL.

To optimize for a techno-financial objective, a financial model is incorporated to the
system in Section 3.5. The financial model accounts both the present and future costs
of the PV-BESS system as well as costs paid to the local grid and feed-in revenues
from exporting excess energy to the local grid. To account for the costs of the BESS,
a lifetime model of the BESS is incorporated to the financial model. Different itera-
tive optimization algorithms were introduced in Section 4 a simple heuristic approach
was introduced to optimize in a practical time. The optimization process is optionally
constrained by a maximum amount of investment. Moreover, the optimization results
were compared for the number of simulations needed and the optimal design achieved
in Section 5.4.2.

Finally, a thorough case study on three different profiles was presented and compared
with the results from a tool by photovoltaicrechner.
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6.2. Future Work

Input data Only the cadastral data of the NRW state are included in this work.
Users from other states will have to input three variables, the tilt, orientation and
the usable area of each surface of their rooftop. Providing cadastral data-sets for the
remaining states in Germany will save users from around Germany time to have an
estimation of an optimal model for their needs.

Additionally, the temporal resolution used in this work is in an hourly intervals.
Datasets with more temporal resolution help acquiring more stable results.

Diffuse Radiation Model The model used in this work to calculate the diffuse ra-
diation is isotropic. It assumes that the sky radiates with the same intensity from
all directions except for the sun itself. It, therefore, ignores the possibility that clouds
might cover some parts of the sky. Implementing an anisotropic model such as Klucher
[24] or Perez [44] would benefit from the cloud cover index provided in the meteoro-
logical data-set.

Battery Model The simple BESS model used in this thesis does not take into account
the power of the battery and the chemical nature of the battery. A more detailed BESS
model such as the model used in SAM [8] make incorporating a simulation of a battery’s
lifetime [57] and a battery management system (BMS) possible. Incorporating the
simulation of a BMS allow for the use of today’s used dispatching strategies of the
battery such as the peak shaving strategy [27].

Inverter Model The simple efficiency model for the inverter implement in this work,
ignores the maximum AC and DC power output or losses occuring because of consump-
tion at night. A more accurate inverter model also accounts for the AC-DC conversion
efficiency with respect to the output power. Such models are the inverter model by
Sandia [23] or by Inverter Park Load Curve by NREL [14].

Webservice While the model is fully implemented, mainly in Python, and has a basic
mock application programmin intergace (API). It is not yet accessible for end-users.
Hence a fully integrated API and a web application are required to make it convenient
of end-users to utilize.
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Nomenclature

I PV cell’s current, see Equation (3.12)

I0 Reverse saturation current, see Equation (3.21)

Id Diode (leakage) current, see Equation (3.14)

Iph Photocurrent, see Equation (3.17)

Ish Shunt current, see Equation (3.13)

I0,ref Reverse saturation current in SRC

R⊕ Radius of Earth’s orbit, see Section 2.2

µP The relative power temperature coefficient, see Table 3.3

µIsc The relative short-circuit current temperature coefficient, see Table 3.3

µUoc The relative open-circuit voltage temperature coefficient , see Table 3.3

h Planck’s constant

k The Boltzmann constant

q The elementary charge of an electron

djulian Julian day, see Section 2.2

NBESS, days Lifetime of the battery in days, see Equation (3.69)

α⊙,geo The Sun’s geocentric right ascension, see Equation (2.5)

α⊙,topo The Sun’s topocentric right ascension, see Equation (2.11)
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∆ε The nutation in the obliquity of the ecliptic, see Section 2.2

∆λ⊙,geo The nutation in Sun’s longitude, see Section 2.2

δ⊙,geo The Sun’s geocentric declination, see Equation (2.5)

δ⊙,topo The Sun’s topocentric declination, see Equation (2.13)

λ The observer’s geographical longitude angle

λ⊙ The Sun’s apparent longitude, see Equation (2.4)

λ⊙,geo The Sun’s geocentric longitude, see Equation (2.1)

λ⊕,helio Earth’s heliocentric longitude, see Section 2.2

ϕ The observer’s geographical latitude angle

ϕ⊙,geo The Sun’s geocentric latitude, see Equation (2.1)

ϕ⊕,helio Earth’s heliocentric latitude, see Section 2.2

θHRA, geo The observer’s geocentric hour angle, see Equation (2.6)

θHRA, topo The observer’s topocentric hour angle, see Equation (2.12)

φ′⊙ The Sun’s topocentric altitude angle without correction for atmospheric
refraction, see Equation (2.15)

v The apparent sidereal time at Greenwich, see Equation (2.3)

β Surface inclination (tilt), see Table 2.2

γ Surface azimuth (orientation), see Table 2.2

γ⊙ The Sun’s azimuth angle, see Equation (2.17)

θincidence Angle of incidence, see Equation (3.3)

φ⊙ The Sun’s altitude angle, see Equation (2.17)

ηBESS Battery’s round-trip efficiency

ηinverter Inverter’s DC-AC efficiency

ηPV Solar cell efficiency, see Equation (3.39)

Cmax, invest Maximum amount of investment

Cadditional Additional costs, including inverter and installation costs

CBESS Annual costs of energy storage

86



Cequity, BESS Equity of the BESS system, see Equation (3.73)

Cequity, PV Equity of the PV system, see Equation (3.65)

Cequity Equity of the PV-BESS system, see Equation (3.73)

Cfeed-in Annual reveneues from exporting to grid, see Equation (3.55)

Cimport Annual costs from importing from grid, see Equation (3.54)

CO&M, NPV Net present value of future operation and maintenance costs

CO&M Annual operation and maintenance costs

CPV Annual costs of solar energy

Csystem Lifetime cost of the PV system including additional and future costs,
see Equation (3.63)

cBESS, ref Mean cost of one kWh of lithium-ion battery, see Equation (3.79)

cBESS, today Current cost of one kWh of lithium-ion battery

cBESS Mean cost of one kWh of lithium-ion battery adjusted with capacity,
see Equation (3.80)

cfeed-in, today Current feed-in tariff

cfeed-in Mean feed-in tariff, see Equation (3.76)

cgrid, today Current electricity retail rate

cgrid Mean electricity retail price, see Equation (3.74)

cLCOE, BESS Levelized cost of stored energy, see Equation (3.72)

cLCOE, PV Levelized cost of solar energy, see Equation (3.66)

cLCOE Levelized cost of electricity, see Equation (3.53)

t Hour of day

tend The hour of day where charging the battery ends, see Equation (3.51)

tstart The hour of day where charging the battery begins, see Equation (3.51)

pambient Air pressure

Tambient Ambient temperature

Tcell Cell temperature (operating temperature), see Equation (3.10)
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TNOCT Ambient temperature in NOCT, see Table 3.2

Tref Cell temperature in SRC, see Table 3.2

PAC AC power output, see Equation (3.41)

Pbalance Power balance, see Equation (3.40)

PDC DC power output, see Equation (3.42)

Pload Load power, see Equation (2.18)

Pmax Maximum power of a solar cell, see Equation (3.38)

EPV→Load Energy delivered to load directly by the PV, see Equation (3.45)

EPV→BESS Annual energy delivered to the BESS by the PV system

EPV→Load, BESS Annual energy delivered to the load and the BESS by the PV system

EAC, annual Annual AC energy output, see Equation (3.44)

EAC, lifetime Lifetime AC energy output, see Equation (3.62)

EBESS, lifetime Lifetime stored energy in the BESS, see Equation (3.71)

EDC, annual Annual DC energy output, see Equation (3.43)

Eload Annual load energy, see Equation (2.19)

Ephoton Energy of a photon, see Equation (3.8)

Eg Band gap energy, see Equation (3.9)

Amodule Area of solar cell module

vwind Wind speed

Nmodules, series Number of solar modules connected in series

Nmodules Number of solar modules

Np Number of solar modules connected in parallel

Ns Number of solar cells connected in series in all modules, see Equation
(3.18)

Nc,module Number of solar cells connected in series in a module

Rsh Shunt resistor in SDM

Rs Series resistor in SDM
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rBESS Annual decrease rate in the cost of the lithium-ion battery

rCRF, BESS Cost recovery factor for the BESS system

rCRF, PV Cost recovery factor for the PV system, see Equation (3.61)

rdr, BESS, real Real discount rate of the BESS

rdr, PV, real Real discount rate for PV

rdr, PV Nominal discount rate for PV, see Equation (3.60)

rfeed-in, annually Annual decrease rate in feed-in tariff

rfeed-in, monthly Monthly decrease rate in feed-in tariff

rgrid, annually Annual increase rate in electricity retail rate

rinflation Inflation rate

DOD Battery’s depth of discharge

SOC Battery’s state of charge

SOCmax Battery’s maximum state of charge, see Equation (3.47)

SOCmin Battery’s minimum state of charge, see Equation (3.49)

ralbedo Albedo (Ground reflectance ratio)

U PV cell’s voltage

UT The volt equivalent of temperature, see Equation (3.15)

Ud Voltage across a diode, see Equation (3.15)

I Global incident irradiance, see Equation (3.7)

Iref Incident radiation in SRC, see Table 3.2

Idiffuse, H Diffuse horizontal irradiance (DHI)

Idiffuse, T Diffuse irradiance on a tilted surface, see Equation (3.5)

Idirect, H Direct horizontal irradiance, see Equation (3.1)

Idirect, N Direct normal irradiance (DNI), see Equation (3.1)

Idirect, T Direct irradiance on a tilted surface, see Equation (3.4)

Iglobal, H Global horizontal irradiance (GHI), see Equation (3.2)
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Ireflected, T Reflected irradiance on a tilted surface, see Equation (3.6)

Nanalysis Analysis period in years

NBESS, cal Calendar lifetime of the battery in years

NBESS, cyc Cycle lifetime of the battery in cycles

NBESS, years Lifetime of the battery in years, see Equation (3.70)

NPV, years Lifetime of the PV system in years

Acronyms

AC Alternating Current
BDEW Bundesverband der Energie und Wissenschaft
BESS Battery Energy Storage System
BMS Battery Management System
BMUV Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz
CRF Cost Recovery Factor
DC Direct Current
DDM Double Diode Model
DHI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance
DOD Depth of Discharge
DWD Deutsche Wetterdienst
EEG Erneuerbare Energien Gesetz (Renewable Energy Sources Act)
ETRS98 European Terrestrial Reference System 1989
GHI Global Horizontal Irradiance
GIS Geographical Information System
JSON JavaScript Object Notation
LANUV Landesamt für Nature, Umwelt und Verbraucherschutz
LCOE Levelized Cost of Energy
LIDAR Laser Detection and Ranging
MAE Mean Absolute Error
MPP Maximum Power Point
MPPT Maximum Power Point Tracker
NOCT Nominal Operating Cell Temperature
NPV Net Present Value
NREL National Renewable Energy Laboratory (USA)
NRW North Rhine-Westphalia
O&M Operation and Maintenance
PV Photovoltaic
SAM System Advisor Model
SDM Single Diode Model
SOC State of Charge
SPA Sun Position Algorithm
SRC Standard Reference Conditions
TDM Three Diode Model
TRY Test Reference Years
WGS84 World Geodetic System of 1984
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A. Appendix

Parameter Symbol Unit Value Reference
Albedo ralbedo % 0.2 [16]
Inverter efficiency ηinverter % 96 [9]
Battery’s round-trip efficiency ηBESS % 92 [10]
Cost of a PV module Cmodule EUR 1400 ·Pmax, ref [2]
Current cost of one kWh of a lithium-ion
battery

cBESS, today EUR 850 (500 - 1200) [26]

Operation and maintenance costs CO&M EUR 1% ·Cequity, PV
1

Additional costs Cadditional EUR/kWp 185 (150-220) 2

Current electricity rate cgrid, today ct/kWh 31.09 3

Current feed-in tariff cfeed-in, today ct/kWh 6.53 4

Annual decrease rate in the cost of a
lithium-ion battery

rBESS % 8 [42]

Real discount rate of the PV rdr, PV, real % 4 [15]
Real discount rate of the BESS rdr, BESS, real % 3 [33]
Inflation rate rinflation % 2.6 5

Annual increase rate in electricity rate rgrid, annually % 2 [61]
Annual decrease rate in feed-in tariff rfeed-in, annually % 15 4

Monthly decrease rate in feed-in tariff rfeed-in, monthly % 1.457 4

Calendar lifetime of the BESS NBESS, cal year 25 [10]
Lifetime of the PV NPV, years year 25 [43]

Table A.1: Default values for single value parameters of the system.

2017 2018 2019 2020 2021 2022

Year

1

2

3

4

5

6

7

In
fl

at
io

n
ra

te
[%

]

Figure A.1: Cost of the lithium-ion battery without BMS from 2010 until 20225 .

1https://www.solaranlage-ratgeber.de/photovoltaik/photovoltaik-wirtschaftlichkeit/photovoltaik-

kosten accessed on Apr 12, 2022.
2https://www.photovoltaik-angebotsvergleich.de/photovoltaik-kosten.html accessed on Apr 20, 2022.
3https://www.stawag.de/fileadmin/stawag/content/Dokumente/Strom/Preisblatt_StromSTAR_2021.pdf

accessed on Apr 12, 2022.
4Based on historical data from https://www.wegatech.de/ratgeber/photovoltaik/foerderung-finanzierung/

einspeiseverguetung/ accessed on Apr 20, 2022.
5Averaged annually from year 2017 to 2022 from data by https://de.statista.com/statistik/

daten/studie/1046/umfrage/inflationsrate-veraenderung-des-verbraucherpreisindexes-zum-vorjahr/ and
https://de.statista.com/statistik/daten/studie/1045/umfrage/inflationsrate-in-deutschland-veraenderung-

des-verbraucherpreisindexes-zum-vorjahresmonat/ accessed on Apr 20, 2022.
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Figure A.2: Cost of the lithium-ion battery without a BMS from 2010 until 20221.

1https://de.statista.com/statistik/daten/studie/534429/umfrage/weltweite-preise-fuer-lithium-

ionen-akkus/ accessed on Apr 20, 2022.
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