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Abstract

The great interest in solving the first ever NP-complete problem, i.e. the
satisfiability problem, has brought many groundbreaking innovations. Among
these innovations are SAT solvers which are tools that can be used to solve
many real-life problems algorithmically. Since their invention, there has been
a large body of researchers and other interested parties who have worked dili-
gently on refining these tools even in the context of competitions. Although
there is a large commitment in research to the satisfiability problem the subject
matter of it is not so prominent in the university context hence there is little
teaching material. In this bachelor thesis, we present our exercise generator,
which introduces one of the most innovative techniques in modern SAT solvers
namely conflict resolution. Furthermore, we discuss the question of what makes
a "good" exercise and analyze our generated exercises under this aspect.

To give a small outlook on other innovations that have emerged in the context
of the research area In satisfiability Checking, we look at other algorithms and
tools and provide examples for exercises for satisfiability-modulo-theories solving
(SMT) and cylindrical algebraic decomposition (CAD).
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Chapter 1

Introduction

In the fight against the COVID-19 pandemic drastic measures were taken that made
major disruptions in people’s lives. These measures included lockdowns and not least
bans on large events and closures of major institutions, including universities.

For the latter, this meant that lectures and even exams had to be moved to the
homes of students and lecturers, and online teaching had become a new standard.
With this sudden change, many problems and challenges arose for both students
and lecturers. While the absence of lecture halls for lectures was a sacrifice that
was met with compromise, it was a problem in the case of exams. The lecturers
now no longer had 100% control over what happened during the exam, since the
exam writers were not gathered in one place to write the exam. It was therefore no
longer completely comprehensible whether the students had worked on their exams
fairly without secretly accessing aids that were not allowed. Even if the exams were
proctored, there was not always a 100% guarantee that the entire exam situation
could be properly monitored. This vulnerable situation offered scope for cheating of
various kinds during the exam.

To counteract this there are only a few options that are not completely detrimental
to the exam writers because they often contain restrictions. One possible approach,
to prevent especially collaborative cheating and at the same time still maintaining a
relatively high learning effect on the study side is to individualize exams from student
to student. In order to be able to realize this approach of individualized tasks even
for larger events with hundreds of students it is helpful to resort to an automated
mechanism for this since doing it in the traditional way, which is by hand, is too time
consuming and inefficient.

In this thesis we want to present such an automated mechanism for generating
exercises, that can be used for exam preparation.

The context in which these exercises are to be generated is the lecture Satisfiability
Checking held by Prof. Dr. Erika Abraham, which is offered as an elective course
for computer science students at the RWTH Aachen University. In the course of
this lecture the students will learn about the satisfiability problem (SAT) and are
familiarized with decision procedures that can solve it and their implementation in
tools which are termed SAT solvers. To get a better gist of the functioning of SAT
solvers the students are given several tasks where they have to simulate how SAT
solvers decide instances of the satisfiability problem with pen and paper.

Our implementation, which is written entirely in the programming language JAVA,
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will include the implementation of the DPLL+CDCL SAT solving algorithm for check-
ing the satisfiability of propositional logic formulas. In addition we will also present
exercises for less lazy satisfiability-modulo-theories (SMT) solving for equality logic
and the real root isolation in the cylindrical algebraic decomposition (CAD) to solve
real arithmetic problems, which also are taught in this lecture, but for which we do
not provide an implementation.

This thesis will be structured as follows: we first clarify the context in which
the exercises, that we generate with our exercise generator can be embedded in the
preliminary Chapter [2] Then we give a short description of the algorithm addressed
in the exercises entering Chapter|3] This is then followed by an analysis of the quality
characteristics and discussion of alternative design options for the exercises. We then
present an example of the generated exercises, which when freshly generated will be
available for the students in the form of the TeX data format and can be parsed to
a PDF file, e.g. by using PDFLATEX. For the theory solver for less lazy satisfiability-
modulo-theories (SMT) for equality logic and the real root isolation in the context of
the cylindrical algebraic decomposition (CAD), we do not give a discussion, since we
only focus on the SAT solver in our implementation, which is why the rest should
only serve as an outlook for the time being.

For the implementation of our exercise generator we will only provide a description
in this paper but the original JAVA source code can be accessed via the following link
https://github.com/Greda96/SATcheckExercises


https://github.com/Greda96/SATcheckExercises

Chapter 2

Preliminaries

In this chapter we want to lay the foundation for the concepts that will be used in the
subsequent chapters. At the same time, we want to provide the context in which the
satisfiability checking algorithms incorporated in the exercises we want to create can
be embedded. In doing so, we enter the terrain of satisfiability checking and clarify
central terminologies such as the satisfiability problem, then we also introduce the
DPLL algorithm by giving an insight into the historical background and explaining
the functioning of the algorithm. We will also examine the main driving force of state-
of-the-art solvers namely Conflict-Driven Clause Learning and its combination with
the DPLL SAT solver. Furthermore, we learn about satisfiability-modulo-theories
(SMT) solving while focussing on the lazy approach. We will then conclude the
chapter with the cylindrical algebraic decomposition (CAD) and briefly explain how
it works while focusing on one particular part of the projecting phase, which is the
real Toot isolation by also providing an example exercise.

2.1 Fundamentals & Notation

For the further course of this reading, we assume a general knowledge of propositional
logic and the fundamentals of mathematics. However at the beginning, we want to
recapitulate some terms that will recur frequently in this work, not least also to
establish an agreement for the notation used throughout this thesis. For the latter
and also for Definitions, unless otherwise specified, we will mainly rely on [Abr22] and
IKS08].

Definition 2.1.1 (Literal, set of variables, set of literals). A literal is either a variable
x or its negation —x. Let ¢ be a propositional logic formula then we denote the set of
variables contained in ¢ as AP(p) and the set of literals of ¢ as lit(p).

Definition 2.1.2 (Clause, Conjunctive normal form (CNF)). A formula is in con-
Junctive normal form (CNF) if and only if it is a conjuntion of clauses, where a clause
s a disjunction of literals. More precisely, for a formula to be in CNF it must be of

the form
N <\/lw‘>ﬂ
i J
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where l;; represents the j-th literal of the i-th clause.

Example 2.1.1. Let ¢ := (—a VbV —¢c) A (aVd) A (—¢). Then ¢ is a propositional
logic formula in CNF consisting of the three clauses (—aV bV =c), (aV d) and (—c).
Furthermore the set of variables and literals of ¢ are respectively given by AP(p) =
{a,b,e,d} and lit(p) = {—a,a,b,—c,d}.

Definition 2.1.3 (Assignment). An assignment for a propositional logic formula ¢
is a potentially partial function o : AP — {false,true} (where AP denotes the set
of propositions or boolean variables). It can be convenient to write « as the set of the
literals that are mapped to true. An assignment « is said to be a full assignment for
o if all variables of ¢ are assigned a truth value by «, otherwise we call a a partial
assignment.

Definition 2.1.4 (Satisfiability, contradiction, validity). Given a formula ¢, ¢ is
satisfiable if there exists an assignment that evaluates ¢ to true. An satisfying assign-
ment is also called model. If such an assignment does not exist ¢ is unsatisfiable, in
this case we refer to ¢ as a contradiction. If v is satisfied under all possible assign-
ments we say @ is valid (or a tautology). We write a |= ¢ to denote that v satisifies
w and o = @, if a does not satisify w. If v is a tautology we shortly write = .

Example 2.1.2. Let ¢ be the formula presented in Example[2.1.1], then ¢ is satisfi-
able, because the following assignment o : {a,b,c,d} — {false true} with a(c) = false
and a(a) = a(b) = a(d) = true, satisfies p. The formula @ is not valid because every
assignment « : {a,b,c,d} — {false,true} with a(c) = true evaluates ¢ to false.

Definition 2.1.5 (Resolution, resolvent). Assume literals ay,...,an, by..., by and
a variable x, then we call the following inference rule resolution:

(ay V...Va,Vz) (b1 V...Vby,V-x)
(al\/...\/an\/bl\/...\/bm)

(Resolution)

Furthermore we call (a1 V ...V a, Vb1 V...V by,), the resull of the resolution of
(a1 V...VapVz) with (by V...V by V), the resolvent of both clauses.

Example 2.1.3. Resolution involving the two clauses ¢y := (-a VbV —c) and ¢1 =
(a Vv d) gained from our CNF formula in Example yields

(ma VbV —c) (aVd)
(bV —cVd)

where (bV —c V d) is the resolvent of c¢o and c;.
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2.2 Satisfiability Checking

2.2.1 The satisfiability problem

The first ever NP-complete problem, the satisfiability problem, also known as SAT
problem or just SAT [CooTll, [ST12], poses the question whether a given propositional
logic formula is satisfiable.

A problem instance of the SAT problem, also called SAT instance is usually rep-
resented by a CNF formula (see Definition . This choice of representation for
the SAT instances is made for efficiency and simplicity reasons [DP60, [FMO09]. It
should be noted that this is not a restriction, because any propositional logic formula
can be transformed into a logically equivalent formula in CNF [KS0§]. An algorithm
that performs a satisfiability equivalent transformation in polynomial time, and is
therefore efficient is Tseitin’s encoding [Tse83].

2.2.2 SAT solvers

To check the satisfiability of a SAT instance a so-called SAT solver can be used. A
SAT solver implements an algorithm which receives a SAT instance as input and tries
to solve it by assigning suitable truth values to its variables which together should
satisfy the formula. If the SAT solver determines that the SAT instance is satisfiable,
it returns a satisfying assignment as output, otherwise it returns that the instance is
unsatisfiable (see Definition [2.1.4).

SAT solvers have reached a level of development that allows us to check large
SAT instances with up to millions of variables for satisfiability. This development
has been driven by the desire to solve real-life problems algorithmically, which has
led to a lot of attention being paid to research on the satisfiability problem [KS08|
ST12]. Since then, the areas of application of SAT solvers have included cryptography,
bioinformatics, planning, and digital circuit design, just to mention a few [MSLM21]
Abr22].

In general, contemporary SAT solvers can be divided into two classes. On the one
hand SAT solvers which are organized according to the DPLL paradigm and on the
other hand SAT solvers which are built according to the stochastic search approach
[KS08].

In our work we will focus on the first class, since the SAT solver we implemented
for the exercise generator is based on the DPLL SAT solver. The following subsection
is therefore dedicated to the DPLL paradigm.
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2.2.3 The DPLL paradigm

Algorithm 1 The DPLL algorithm

1: function DPLL(CNF formula ¢)
2 if -BCP() then

3 return UNSAT

4: end if

5: while true do

6 if -DECIDE() then

7 return SAT

8 end if

9: while -BCP() do

10: if -BACKTRACK() then
11: return UNSAT

12: end if

13: end while

14: end while

15: end function

Historical background

The theory underpinning modern SAT solvers dates back to the 1960s. Since com-
puters did not have so much computing power at that time, one had to fight with
scalability issues at the beginning when trying to solve the SAT problem. But also the
algorithm which was applied at the early stage was quite naive, mainly enumerating
all possible assignments for a problem instance. This corresponds to setting up a
truth table which is known to grow exponentially with the number of variables, with
a formula with n variables having a size of 2" in the worst case [FM09].

To increase efficiency, the computer scientist Martin Davis and the philosopher
Hilary Putnam came up with the idea of using CNF formulas for SAT solving, and
at that time they proposed rules that are now fundamental mechanisms for modern
SAT solvers [DP60]. These rules included the unit clause rule which we will explain
in more detail in Section Also, the algorithm of Davis and Putnam, DPP for
short, already included resolution (see Definition as a subroutine.

Later the computer scientists Donald Loveland and George Logeman refined the
DPP algorithm by choosing a recursive approach where they assigned the variables
of the formula the truth values true or false which led to the problem being divided
into subproblems [DLLG62].

This approach is equivalent to traversing a binary search tree where the nodes
represent the variables and where assignments are made along the branches of the
tree which are then understood as partial assignments. These assignments are initially
only guesses, since the truth values true or false are chosen randomly for a variable,
which is why this assignment of values in this manner is also called a decision. With
each such decision, a level of the tree at which it was made will associate what
is called a decision level. After each decision, propagation is used as a lightweight
method to detect implications, i.e. consequences of the previous assignment with the
new decision in form of further variable assignments. While recursively assigning the
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values true or false along the branches, and propagating their decisions a conflict can
occur, this is when the current assignment evaluates the formula to false. To resolve
this conflict the last decision has to be flipped, such that the alternative guess is made.
If both truth values were tried unsuccessfully on the variables, one goes back to the
previous decision. This procedure is referred to as chronological backtracking.

This extension of the DPP algorithm, which is presented as pseudocode in Al-
gorithm [T} is known ever since as the classical DPLL algorithm, where the acronym
"DPLL" stands for Davis-Putnam-Logeman-Loveland [EMQ9].

Main characteristics of DPLL

After we have made an excursion into the history of the origin of the DPLL algorithm,
we want to go into more detail and elaborate on the functioning of the algorithm by
describing its main methods. But before we do so, we will take a look at the following
definition.

Definition 2.2.1 (Status of a clause under a partial assignment). Given a partial
assignment and a clause c, then ¢ can have the following statuses:

o Satisfied, if at least one of the literals in c is assigned the value true.
o Unsatisfied or conflicting, if all literals in ¢ are assigned the value false.

o Unit, if all literals in c but one, which is unassigned, are assigned the value
false.

If ¢ does not have any of the above statuses, we say c¢ is unresolved.

Example 2.2.1. Let a = {a,~b,d} be a partial assignment. Then the following
holds:

aV bV d) is satisfied,

. (

e (—aV —d) is conflicting,
e (maVbVe) is unit and
. (

¢V e) is unresolved.

Now we can turn to the functioning of Algorithm |1 The DECIDE() method chooses
an unassigned variable and assigns it a truth value. As we have already mentioned in
the preceding subsection this is also called a decision. In order to determine which of
the unassigned variables to choose next for a decision and which value to assign to it, a
decision heuristic can be established, which represents an ordering on the unassigned
variables. After having made a decision we internally count these, and increment
the decision counter everytime we make another decision. If DECIDE() returns false,
which is when all variables are assigned we return SAT, which means that the formula
is satisfied. With the BCP() method, also called boolean constraint propagation or
unit propagation the unit clause rule is iteratively being applied [MSLM21]. The unit
clause rule states that, if we find a unit clause we need to set the only unassigned
variable in it to true in order to be able to satisfy the clause. We say that this literal
is propagated because it is an implied assignment. We call BCP() in the beginning
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of the algorithm, because of the fact that a formula in its original form, before being
processed in the SAT solver, can already contain unit clauses, in this context meaning
clauses that contain only one literal. An example for such a formula is the formula
shown in Example which contains the unit clause (—c).

If we find unit clauses in the very beginning the decision level associated with this
propagation is the ground level or in other words decision level 0 [KS08 IMSLM21].
Furthermore we call the BCP() method after each decision, since an assignment made
by DECIDE() can trigger a clause to become unit (see Definition and therefore
imply a forced assignment. If the BCP() method reports a conflict, which is only
the case when an unsatisfied clause is detected, and we are not at the ground level,
the BACKTRACK() method is invoked. In the BACKTRACK() method we set the
decision level to the last decision level and erase the assignment at the current branch
by undoing it. After that we flip the assignment that is not yet being flipped and call
BCP() again. If BCP() detects a conflict at decision level 0, we return UNSAT which
means the formula is unsatisfiable.

In the following we introduce a notation that gives us a description of the state
of a literal that is being assigned during the SAT solving process [Abr22].

Notation 2.2.1 (Antecedent). For a literal | that is being assigned by a (partial)
assigment a we write antecedent(l) to indicate the reason for the assignment of I.
The antecedent of | can either be a clause ¢ which implied the assignment of | due to
the unit-clause rule, in this case we will write antecedent(l) = ¢, or if the assignment
of l is owed to a decision we write antecedent(l) = nil.

One way to visualize a partial assignment and to get a structural overview of the
repeated use of the unit-clause rule during SAT solving is to use an implication graph
[Abr22, IMSTLM21l, [ST12].

Definition 2.2.2 (Implication graph). An implication graph is a labeled directed
acyclic graph G = (V, E, L), where V is the set of nodes, which contains the currently
assigned variables as well as an additional node k, for the case we detect a conflicting
clause cconpi- L is a labeling function that assigns a label to each node. A node n
that represents that a variable x is assigned a value v € {0,1} (0 denoting false and
1 denoting true) at a decision level d, is labeled with L(n) = (z = vQd). We define
literal(n) = = if v = 1 and literal(n) = -~z if v = 0. Furthermore the edge relation E
is defined as

E = {(ni,nj) |ni,n; € V,n; # literal(n;) € Antecedent(literal(n;))}
U {(n, k) | n, k, ~literal(n) € ceonfi}

representing the set of directed edges where each edge (n;,n;) is labeled with
Antecedent(literal(n;)) if nj # k and with ccona otherwise.
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Example 2.2.2. Consider the CNF formula ¢ :== (aVd)A(aVbVc)A(bV —c) and
—_—— ———— N —

Co C1 C2
assume further the following decisions {a = 0Q@Q1,b = 0Q2}. The resulting implication

graph is now given by

a = 0@1 d=1Q1
co
)

c=1@2
b =0Q2

C2 C2

the implication graph shows that a conflict occurred at decision level 2 because the
clause co became conflicting under the current assignment.

2.2.4 Conflict-Driven Clause Learning

Based upon the DPLL SAT solver Conflict-Driven Clause Learning SAT solvers were
invented. These SAT solvers extend the original DPLL SAT solver by many new
techniques including clause learning and non-chronological backtracking which allows
for speeding up the search process [MSLM21] [ST12]. The two techniques mentioned
above are combined in a subroutine of the SAT solving process called conflict res-
olution, to which we will devote a separate section in this thesis. In the previous
section we have seen a representation of a partial assignment that was created dur-
ing the SAT solving process as an acyclic graph, another way to represent a partial
assignment that is used in CDCL SAT solvers is the so called t¢rail. A trail is a
stack in which the assignments of literals that are assigned the value true during the
SAT solving process are stored. Beside the literals also the reason of the assignment,
i.e. the antecedent (see Notation , is append to the trail. If a literal is taken
from the trail then this corresponds to undoing the assignment of true to this literal
[Knu06, HB20,, [GV20]. Another important concept that makes CDCL SAT solvers so
efficient are unique implication points. Assuming an implication graph with a conflict
node k a unique implication point, or UIP for short, is a node in the implication
graph other than s for which all paths from the decision node at the last decision
level to the conflict node, pass through it (the decision node is by definition also a
UIP). A UIP represents an alternative assignment to the most recent decision level
that would cause the same conflict. We are talking about a first Unique implication
point when we reach the first UIP from the viewpoint of the conflict node. If we
consider the implication graph from Example [2:2.2] then a = 0@1, b = 0@Q2 since they
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are decision nodes are UIPs. However, the implication graph does not contain a first
unique implication point, since not every path starting from the decison node b = 0@Q2
at the current decision level goes through one and the same node [MSLM21]. The
advantage of UIPs is that with them we learn small clauses [MSLM21], which we will
explain in more detail in the next section.

2.2.5 Conflict resolution

As mentioned previously conflict resolution is part of the CDCL algorithm and is used
when a conflict occurs during SAT solving. A conflict occurs when a clause under the
current assignment is evaluated to false but must be true for the entire formula to
become true. To resolve the conflict, the resolution method is used. The resolution
involves the conflicting clause (see Deﬁnition and a conflict clause. The conflict
clause is the antecedent of the literal, that was last assigned before the conflict occured.
We then perform resolution on the two clauses, eliminating the variable corresponding
to that literal. The goal of the resolution is to generate an asserting clause, i.e. a
clause that contains only one variable from the current decision level. If the resolvent
does not yet yield an asserting clause, it is processed in a further resolution step.
Just like in the initial resolution step we now combine the resolvent, which is also a
conflict clause, with the clause that implied the literal that was assigned last in it.
This process is then repeated until the termination criterion is met, i.e., when the
generated conflicting clause is asserting [KS08]. Reaching the asserting clause, which
is now a unit clause, corresponds to what is called to having "learnt" a clause, this
clause is then added to our original formula which we know now the asserting clause
is implied by [ST12, MSLM21]. In terms of the implication graph we are located at
the first unique implication point when learning the asserting clause [MSLM21]. After
the last resolution step, the decision level we need to backtrack to is determined. In
the state-of-the-art CDCL solvers in the case of the current decision level being larger
than 0, we backtrack to the second highest decision level in the asserting clause, i.e.
to a decision level other than the current decision level that contains at least one
of the variables in the asserting clause [KSO08| [ST12]. So we essentially backtrack
"'relative" to the asserting clause, and eventually need to skip decision levels, this
kind of backtracking is referred to as non-chronological backtracking [KS0§|. Doing
conflict resolution until reaching the first unique implication point assures us that we
backtrack far enough in the search tree [MSLM21]. If we have determined the level we
need to backtrack to we erase all decision levels that follow that backtracking level.
In the case we detect a conflict at decision level 0 the SAT solver returns false. After
backtracking we now need to propagate the learnt clause [MSLM21], Abr22, ST12)

2.3 Satisfiability-Modulo-Theories Solving

Seeing the success of SAT solvers which have the power to decide real-life problems
encoded in propositional logic, and having the need to solve ever more critical prob-
lems, researchers sought the opportunity to extend to more expressive logics, and this
is when the research field of satisfiability-modulo-theories solving, SMT solving for
short, was born. The logics SMT solving comprises are for example linear and non-
linear arithmetic, bit-vector arithmetic and the theory of equalities and uninterpreted
functions and many more [AKI?]. In this paper we will take a closer look at SMT
solving in the context of theory of equalities and uninterpreted functions. Just like in
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SAT solving, also in SMT solving we try to decide the satisfiability problem, but with
the crucial difference that the formulas we are checking are first-order logic formulas
over some theories.

Being an extension of propositional logic by theories, the formulas in satisfiability-
modulo theories also look structurally different and now also statements about equa-
tions and inequalities can be made, which can also be combined with the logical
operators, which we already know from propositional logic. Unlike propositional logic
formulas the variables in the theories, which can now come from structures (for ex-
ample R) in , can be quantified, i.e. the existence quantifier (3) and the all quantifier
(V) appear in them. Linear arithmetic formulas even allow for function operators like
multiplication, and also comparison predicates like > (to be interpreted here as the
usual "larger than"). An example of such a formula would be
4-234+7-22<0 A 20-2422 > 50withz € R. Equality logic extends propositional
logic with equalities and can introduce uninterpreted functions which we will exam-
ine in the next section. We call equalities and inequalities that are combined with
boolean operators constraints |[AK17].

These extensions make the language of the theories so expressive. With this
expressiveness we can now decide even more complex problems, because we are able
to encode even more [BKM14].

SMT solving can be divided into two branches in terms of the approach to the
solving process, namely Fager SMT solving and Lazy SMT solving [AKl?]. In the
following we want to concentrate on the workings in Lazy SMT solving, which is said
to be the "dominating" approach in SMT solving according to [Seb07] and [AK17).

2.3.1 Lazy SMT solving

Lazy SMT solving can also be subdivided into two different branches: less and full
lazy SMT solving [AKl?J, however, we will lay our focus on less lazy SMT solving. But
before we can do that we first want to define the theory for which we want to decide
the formulas. Since we want to create exercises for less lazy SMT solving for equality
logic with uninterpreted functions we explain what uninterpreted functions are and
then define the syntax and semantic of equality logic with uninterpreted functions.

Uninterpreted functions (UF)

Uninterpreted functions are, as the name suggests, function symbols that are not in-
terpreted, they have no meaning in the sense of semantics for mathematical functions
and are therefore not interpreted as part of a model of a formula [KS08]. Uninterpreted
functions must however fulfill a rule they must be consistent, i.e. for two input values
x,y with = y and an uninterpreted function F' must hold z = y — F(x) = F(y).
This rule is known as functional congruence [KS08| Abr22}. Roughly speaking, one
uses uninterpreted Functions to reduce a problem to a smaller problem by abstract-
ing a part of it, in this case the functions, (making them a "black box" so to speak),
which one hopes is irrelevant [AKl?J. Quite often the meaning of functions in proofs
is ignored to simplify the proof, so uninterpreted functions have a practical use, but it
should be emphasized that they make formulas weaker, a consequence of this is that
a formula that is a tautology is suddenly no longer a tautology after replacing the
functions in it with uninterpreted functions. To check whether a formula with unin-
terpreted functions is a tautology a reduction technique called Ackermann’s reduction
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is used. We will not discuss this here, but we refer to [KS08] for a more detailed
explanation of the reduction and other special properties of uninterpreted functions.

In the following we want to combine uninterpreted functions with the theory equal-
ity logic.

Definition 2.3.1 (Equality logic with uninterpreted functions (EQ+UF)).
Syntax: The signature contains

o variables x over an arbitrary (but "large enough”) domain D,
e constants ¢ from the same domain D,
e function symbols F' for functions of the type D™ — D,

o equality as predicate symbol

Term t u= ¢ | =« | F(t,...t)
Formulas p:= t=t | (eAe) | (—¢)

Semantics
as defined for first-order logic (note the uninterpreted nature of functions)

2.3.2 Less lazy SMT solving for EQ+UF

In less lazy SMT solving, the interaction of an SAT solver and at least one theory
solver takes place within the SMT solving process. A theory solver is practically the
pendant to the SAT solver for propositional logic, the only difference being that the
theory solver decides problem instances from a theory, i.e. in the case of equality logic
with uninterpreted functions a theory solver, which we will refer to here as EQ-+UF-
theory solver, solves equalities of uninterpreted functions [Abr22, AK17, Seb07]. In a
preprocessing step, an input formula F@*+UF is converted into a readable form for the
SAT solver. This encoding is done by replacing inequalities with fresh propositional
logic variables. We also call this abstracted formula boolean abstraction or boolean
skeleton and write <pf£+UF in this context. Now that @F@*TUF has been put into a
form readable by the SAT solver, it is fed into the SAT solver to decide it. If gpfb(;HUF is
satisfiable, then the SAT solver returns SAT as in the usual case, returning a fulfilling
assignment as a solution. Viewed in isolation, any assignment of a variable in the
boolean abstraction with true means that the associated constraint is addressed that
is underlying it, an assignment with false means the negation of this equality. After
the SAT solving process is completed, the less lazy EQ+UF theory solver is consulted,
which then checks the consistency of these inequalities, i.e. whether they are non-
contradictory in the theory. In the case of equalities of uninterpreted functions, we
check whether function congruence is guaranteed. If the less lazy EQ+UF-theory
solver determines that there is no conflict, then it asserts the satisfiability of our
input formula @FQ+UF If the less lazy EQ+UF theory solver finds a conflict then
it generates an explanation for this conflict. It sets up a so-called minimal infeasible
subset. From this minimal infeasible subset, we can then read the conflicting clause
by assembling the boolean variable corresponding to each inequality contained in the
infeasible subset, into a clause, which then forms our conflicting clause. As with SAT
solving, we now make a conflict resolution to resolve this conflict and finally add the
asserting clause to our Boolean abstraction [Abr22|.
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2.4 Cylindrical Algebraic Decomposition

When talking about cylindrical algebraic decomposition (CAD), two things can be as-
sociated with it. On the one hand the mathematical object, i.e. the decomposition of
the n-dimensional real space R™ in the sense of the properties cylindrical and (semi)-
algebraic (see Definition and Definition , on the other hand the algorithm
for the construction of such a decomposition [Kre20]. Both the mathematical object
and the algorithm can be traced back to the mathematician and computer scientist
George E. Collins [Col75]. Inspired by the work of the mathematician Alfred Tarski,
who tried to develop a decision procedure to perform quantifier elimination over real
closed fields, but which was not practicable due to its too poor runtime and therefore
remained only as a theoretical relic, Collins tried to work on a more effective solution
[Tar98| [Kre20]. The CAD method originates as a sub algorithm of this alternative
solution by Collins [Jir95]. Although the CAD algorithm had its original use in real
closed fields, it could later be applied in the field of algebraic geometry. Because the
formulas over real closed fields were also well suited to solve problems in algebraic ge-
ometry, the use of the CAD method, which is known to be complete, turned out to be
very lucrative for this area of mathematics. According to [KaulQ] Collin’s quantifier
elimination method can even be regarded as a "general tool" to solve problems related
to special subsets of R™, namely semi-algebraic sets which are also called cells (see
Definition . The CAD algorithm is able to put the constructions of these cells
into a standard form, which as a side effect opens the possibility of solving further,
more complex, problems [Kaul0].

Definition 2.4.1 (Decomposition of R™). A decomposition of R™(n > 1) is a finite
set C of pairwise disjoint, regions (i.e. non-empty connected subsets of R™) in R™
with Jpece = R™. We call C a cell.

Definition 2.4.2 (Semi-algebraic). A decomposition C of R™ is semi-algebraic if
each C' € C can be constructed by a finite union, intersection and complementation of
solution sets of polynomial constraints p ~ 0 where p € Q[x1,...,x,] and

~E {Sv <7 =, 7&7 >a 2}

Definition 2.4.3 (Cylindrical). A decomposition C of R™ is cylindrical if either n = 1
or the set of projections of the regions in C to the first n—1 dimensions is a cylindrical
decomposition of R~ 1.

A decomposition of R™ is now called a cylindrical algebraic decomposition if it
has the characteristics described in Definition 2.4.3] and Definition 2421 A CAD for
an input set P = {p1,...,pm} C Q[z1,...,x,] of polynomials is now a CAD of R"
where the polynomials of each cell have a constant sign, i.e. either positive, negative
or zero. |Abr22, [CREIS].

2.4.1 Cylindrical algebraic decomposition method

The CAD construction is done in two phases, the projection and the lifting phase. In
the projection phase, we iteratively apply a projection operator to our set of polyno-
mials, starting with P, = {p1,...,pn} C Q[x1,...,2,]. At each successive iteration
in the projection phase, we then start with a polynomial set that emerges from the



22 Preliminaries

previous one reduced by one dimension through elimination of a variable. This kind
of working, using the previous result for the computation in the next iteration is
also called incremental [KAIQ}. We continue the projection until we end up with the
set P C Q[x1] containing only univariate polynomials. At this point it should be
mentioned that it is from that projection phase that the major flaw of CAD stems.
The repeated projection until reaching P; leads to an asymptotic complexity which
is double exponential in the number of variables [Kre20) [KS08]. The lifting phase is
then initiated by generating a CAD of R, i.e. for each p € P;. The exact explanation
of the construction of the CAD for the univariate case, where the so-called real root
isolation is used, will be postponed to the next section. The CAD created by the
real root isolation consists of the real roots of each p € P, and the open intervals
between them. Proceeding from there the CAD for R is used to build the CAD of
R™, which we do not discuss in detail in this thesis, because our main focus is on the
construction of the CAD for R in terms of the real root isolation. For the interested
reader we refer for example to [Jir95] for further reading on this topic.

2.4.2 Real root isolation

In the following we want to examine the construction of the CAD for univariate
polynomials using the real root isolation. But first we need to define our tool set.

Theorem 2.4.1 (Sturm’s theorem). Assume a square-free (no square factors, i.e.,
no repeated roots) univariate polynomial

p=arzt’ +ap_ 12" . Faxta e Qlz]
with le(p) # 0. For the Sturm sequence po,p1, ..., p with:
* Po=Dp;
e p1 =p' (where p’ is the derivative of p),

o p; = —rem(pi—a,pi—1) fori=2,...,1 (where rem is the remainder of the poly-
nomial division of pi—o by pi—1)

o rem(p—1,p1) =0
Let 0(¢) denote the number of sign changes (ignoring zeroes) in the sequence
20(C), p1(€),p2(C), ..., pi(¢). Then for each a,b € R with a < b the number of distinct
real roots of p in (a,b] is o(a) — o (b).
Definition 2.4.4 (Cauchy bound). Given a univariate polynomial
p=arzt" +ap_12" P+ . faxta € Q[x]

with le(p) # 0. If C € R is a (real) root of p (i.e. p(¢) =0) then

where C is called Cauchy bound.
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Example 2.4.1. Let p = 423 — 722 +20x+22. Thenlc(p) = az = 4,a2 = —7,a; = 20
and ay = 22. The Cauchy bound of p is then given by

|—7] |20] |22
C=1+max{ — =L 2L _1455=6.5.
{|4| ZIRAT

Furthermore we agree on the following notation from [Abr22].

Notation 2.4.1 (Interval representation). An interval representation (of a real root)
is a pair (p,I) of a univariate polynomial p with real coefficients and an open interval
I=(r)CR, lre QU{—00,00} such that I contains exactly one real root of p.

( » L r))

€Q[z] exactly one real root of p in the interval (I,r)
We now assume a set P = {p; ~1 ,...,px ~} of univariate polynomial constraints

where p; € Q[z1] and ~;€ {<, <, =,#,>,>,} for 1 <i < k, that is freshly produced
in the projection phase of CAD.

The interval I = [-C,C] with Cauchy bounds (where C' is the Cauchy bound of
p; contained in P) contains all real roots of the polynomials p1, ..., pk.

We start by splitting I into three sub-intervals [-C, — C],(—C,C),[C,C], which
now form our working set I’ := {[-C,—C],(—=C,C),[C,C]}. Then we successively pick
and remove one interval from I’ and count the real roots of p; contained in the chosen
interval using the Sturm sequence of p; as described in Theorem [2.4.1]

It should be reminded that Sturm’s theorem is defined for left open intervals
only, but we can still count real roots of a polynomial in an right open interval by
considering the following: for an interval (a,b), with a,b € R, if p;(b) > 0 then the
number of real roots contained in (a,b) equals the number of real roots contained in
(a,b]. If p;(b) = 0 then the number of real roots is o(a) — o(b) — 1, i.e. the number of
real roots of p; in (a,b] reduced by 1.

For point intervals [a,a] in I" we need to check if p;(a) = 0, if this is true then
we got a real root which is a. If for a polynomial p; the number of real roots in an
interval (a,b) is larger than 1, or if the interval contains two roots from two different
polynomials, we choose m with a < m < b and split that interval into three sub-
intervals (a,m), (m,m), (m,b) and set I' = I' U {(a,m), (m,m), (m,b)}.

If we end up with exactly one real root from p; that is contained in an interval (a,b)
we remember that real root, which we denote as (p;, (a,b)) according to Notation[2.4.1]
Note that for point intervals [a,a] there is no real root representation, we simply write
[a,a], since it already contains the exact representation of the real root which we can
explicitly designate as a. Otherwise we proceed counting the real roots contained in
an interval from I’ until I’ = (), which implies that all real roots are isolated |Abr22].
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Chapter 3

Automated Exercise
(GGeneration

Having laid the foundation for the current chapter, we can now turn to the heart of
this thesis, namely the automated exercise generation.

3.1 Why an Exercise Generator?

As we have already explained in the Introduction, the exercise generator can be a
solution to the problem of cheating in exams. In this thesis, however, the focus is
mainly on exercises which we want to provide for exam preparation. The problem
with the classical approach of many teachers and lecturers to provide only a few or
even only one exercise sheet for learning is that this is not adapted to the workflow of
each student. While for one student it is sufficient to access and grasp the methods
to be learned with a single exercise sheet, another student needs more assignments
to understand and consolidate the concepts of the lecture. Now this student could
take this exercise sheet and solve it repeatedly, but solving it once and consulting the
solution before solving it again can lead to the fact that the student has familiarized
himself with only this task and has internalized it so far that the bias arises to have
understood the exercise type and the underlying theory, whereas only this specific
task has been internalized [BRIM14]. It would normally require further tasks to test
whether the student is really able to solve the that particular exercise type correctly.
With an exercise generator a student has the possibility and also the choice to generate
tasks for practicing at any time, and as often as he wants so a personal workflow is
guaranteed [AGK13].

In Figure 3.1 we demonstrate how the workflow of a learner with an exercise
generator as exam preparation aid can look like compared to when it is not used.
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(a) workflow without exercise generator (b) workflow with exercise generator

Figure 3.1

3.2 Related Work

There are several papers that refer to the generation of automated exercises in dif-
ferent contexts, for example [NESGS16], [AGK13|] and [Ganl8]. However, to our
knowledge, there are hardly any papers on automated exercise generation for Satisfi-
ability Checking. In fact, our research has shown that only Dr. rer. nat. Johannes
Waldmann from HTWK Leipzig who implemented an exercise generator for his lecture
Constraint programming, has addressed exercise generation in this context [Joh14].

3.3 Conflict Resolution in SAT Solving

3.3.1 Quality characteristics

The tasks we create are intended to practice and consolidate the lecture material and
are therefore addressed to learners. We want to help the learner with our task and
not work against him and in order to avoid the latter, it is necessary to work out some
criteria in advance that contribute to the quality of the exercise and to examine them
more closely. With increasing demands on the quality of an exercise, the criteria to be
considered also become more diverse. Therefore, the creation of a good task requires
more refinement and effort. In doing so, we define our objective and set requirements
for the problem presented in the task, the task definition and the solution of the task.

3.3.2 Objective

In our opinion, the goal, which every author of an exercise should pursue, is that the
exercise should provide a didactic surplus and help the learner to better understand
the underlying lecture material. Therefore, it is important to avoid as much as possible
any disturbing factors or obstacles that might arise from the exercise itself and distract
from this goal. In the following we will list and explain more detailed the objectives
for our exercise.
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Time required

Our task should be solvable in a reasonable time frame. Normally, our task should be
solvable in less than half an hour. We made this estimation after first checking some
problem instances by hand. This estimation is also realistic due to the fact that the
problem instances we produce for our exercises are not large. However it should be
noted that learners who are not familiar with the topic of the exercise will need more
time to look up the necessary information to solve the exercise.

Writing effort

The problem instances we use in our conflict resolution task are not large and not very
complex and therefore do not produce long solutions, the writing effort is therefore
reasonable.

Working material and tools

As mentioned earlier, we do not use complex problem instances for our exercise, which
are of reasonable size, therefore the learner does not need to take any additional
material such as another tool (SAT solver or similar) to help solve the task. The
task is manageable by hand and in a reasonable amount of time. It only requires the
lecture notes for reference and as an aid in case of a gap in understanding. The tasks
are also printable since we deliver a PDF file and can therefore be solved on paper.

Learning target

Our exercises are intended to teach students one of the driving methods in modern
DPLL+CDCL SAT solvers, namely the conflict resolution.

3.3.3 Problem

The problem that we present in our exercise should be one that is relevant. We present
computational tasks or tasks where an algorithm is to be performed practically, which
is why our problem does not include quiz questions about the theory underlying the
conflict resolution. It is important to present problems that can be solved with the
content presented in the lecture. The problem should be variable because the learner
should get the intuition for solving the problem type no matter how the problem
instance looks like. If the problem instances look the same from exercise to exercise,
they are likely going to produce similar solution. Moreover variability ensures that
learning does not become too monotonous. Concretely in our case this means that
the formulas in our task should look different from task to task. The fact that some
formulas can produce a solution of the same length is unavoidable but in the end the
solution will not be exactly the same in most cases. This means that the learners
should rarely get the same asserting clause several times in a row as solution to
the conflict resolution. The problem should be realistic, i.e. the scenario presented
in it should also be possible in the context of the DPLL+CDCL algorithm. The
supposed conflict should therefore really be a conflict that could happen during the
SAT solving process given the formula presented in the exercise. In order to ensure
this we have used flags which during SAT solving only give us formulas that actually
cause a conflict. In addition we have identified and removed formulas from our formula
dictionary that superficially fulfill the criteria but are not useful because they produce
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too short calculation paths, e.g. through conflicts on decision level 0. This means
that the solution should also be solvable which is not guaranteed by problem instances
that are not considered for the conflict resolution, due to unsatisfiability.

3.3.4 Task definition

In order to introduce the problem to the learners, the problem must be presented in
the context of the task. Ideally, the task definition should not leave any questions
open. It should clearly state what needs to be done, this means in particular that the
task should leave no room for interpretation. As we have explained in our objective,
we want to avoid that obstacles arising from the task distract from the essential,
namely from learning the material. All instructions given in the task should therefore
be clear, precise and understandable. Last but not least, the instructions in the task
should be recognizable, i.e. it must be obvious to the learner where the presentation of
the problem ends and the instructions for solving the task begins. Since an exercise
must contain (proper) instructions, the main requirement is that they are present
where necessary.

3.3.5 Solution

A task should of course also have a solution in order to maximize the learning effect.
Without a solution the student cannot understand if he has solved the task correctly
or why he was not able to finish it. In addition, this prevents the learner from teaching
himself wrong things, because he is led to believe that he has solved the task correctly,
because without a solution it is often difficult to determine every mistake. And since
sources of error can be caused by carelessness as well as by gaps in knowledge, it
is important that the learner can clearly identify them in order to get a chance to
eliminate the source of error even before he is put to the test in the form of an exam
and they happen there. The solution should be correct and complete, so that the
student does not learn anything wrong which can also have fatal consequences and
above all negatively affect the learning effect. Also, a good readability is conducive
to better understand the proposed solution approaches, so the solution should be well
structured and it should be easy to follow how the task should have been solved. To
make sure that the students have solved the task correctly, they can consult our given
solution.

3.3.6 Presentation of the exercise

In the following, we will present an example of our generated exercise for conflict
resolution, explain the task definition and the structure of the task sheet, and discuss
our design decisions. Subsequently, we present the solution sheet.
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SATcheck - Exercise#6

Topic: Conflict Resolution, DPLL+CDCL

RWTH AACHEN UNIVERSITY — JULY 3, 2022

Exercise Timer

‘ Starting Time ‘ End Time ‘ Duration ‘

‘ ‘ ‘ ...min ‘

(How long did the exercise take you?)

Task

Consider the following propositional logic formula in CNF":
co: (AV-B)Ac1: (CV-DV—=A)Acz: (CVD)Acg: (BV-CVA) Acy:(AV-D)

Furthermore assume the following trail:
DLO : —
DL1:-A:nil,-B:cy,~C:c3,D:co

We have encountered a conflict at the current decision level. Apply conflict resolution to ¢4 till
the first unique implication point. How many new clauses (i.e. clauses that are not already contained
in the original formula), are generated during the whole resolution process? Write down the clauses in
a row separated by a comma e.g.: clausel, clause2, ... clauseN.

3(?"Hint(s)
o Read the task carefully.

e Recall the definitions of the terms conflicting clause, conflict clause, first unique implication
point.

Your solution goes here:
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Place for scratchwork:

(hopefully this is sufficient for you.)
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In the title of the sheet, we have also printed a number (next to "Exercise"),
this number is consecutive and is incremented with each freshly generated task. The
purpose of assigning such an ID to the exercise sheets is to distinguish them from other
exercise sheets. If the student generates several exercise sheets at once, he should have
the possibility to manage them. Since the corresponding solution sheet has the same
ID, it is also easier to assign the tasks to the solution sheet correctly and quickly.
In addition, the numbering also has advantages on the developer side, because if a
student contacts us with an error, we can look up the formula that produced this error
in the formula dictionary where the generated exercises are stored during runtime of
our program, and check it again, which simplifies the bug search. Below the header
of the sheet in the left corner is a table designed to mimic a timer. In this timer, the
learner can enter when he started the exercise sheet and when he finished or stopped
it. In addition, he can also enter the time in minutes that he took to solve the task.
This has the advantage that if the student records the time for several tasks, he can
track exactly how long it took him from exercise sheet to exercise sheet. In addition,
a student can also report a problem instance that, contrary to our wishes, could not
be solved in a reasonable time or was impossible to solve. The "timer" is then followed
by the description of the problem. In our task, we provide a formula in CNF and the
associated trail at the time of the conflict that occurred during SAT solving. This
is followed by the problem statement, which briefly states the scenario, i.e. that a
conflict has occurred and which clause is conflicting. Then the question is formulated
and the learner is also told what to do and how to indicate the solution. We then
conclude the task with a box with hints where we remind the student of the terms
that are important and which he should recall to be able to solve the exercise. At the
end, we also give the student some space to write on the exercise sheet and clearly
mark the place designated for writing down the solution and intermediate steps. The
solutions of the exercises should not be so long that they fill the entire space, but
the student should of course be given the necessary space in case of mistakes and in
the case that he needs to restart the formulation of his solution or to make further
remarks.
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SATcheck - Solution#6

Topic: Conflict Resolution, DPLL+CDCL

RWTH AACHEN UNIVERSITY — JULY 3, 2022

Exercise Timer

‘ Starting Time ‘ End Time ‘ Duration ‘

‘ ‘ ‘ ...min ‘

(How long did the exercise take you?)

Task

Consider the following propositional logic formula in CNF":
co: (AV-B)Ac1: (CV-DV—=A)Acz: (CVD)Acg: (BV-CVA) Acy:(AV-D)

Furthermore assume the following trail:
DLO : —
DL1:-A:nil,-B:cy,~C:c3,D:co

We have encountered a conflict at the current decision level. Apply conflict resolution to ¢4 till
the first unique implication point. How many new clauses (i.e. clauses that are not already contained
in the original formula), are generated during the whole resolution process? Write down the clauses in
a row separated by a comma e.g.: clausel, clause2, ... clauseN.

3(?"Hint(s)
o Read the task carefully.

e Recall the definitions of the terms conflicting clause, conflict clause, first unique implication
point.

Your solution goes here:

3 new clause(s) were produced during the whole resolution process. The clause(s) is/are given by:

(AVC),(BV A),(A)
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3.4 Implementation

class SATsolver parse class TeXgenerator

formula | numberOfConflictsToGenerate

exerciselatexTemplate

formulaGenerator ()

DPLL CDCLalgo (formula)

‘ solutionLatexTemplate
trailToLateX (trail)
solve generatelatex (formula)

formula

lz] How many exercises do you want to generate?

OK ‘ Cancel |

write formula read formula

ConflictFormulaDictionary

Figure 3.2: Organization of the exercise generator

Our exercise generator, written entirely in the programming language Java consists
of two classes: SATsolver and TeXgenerator.

SATsolver contains our SAT solver DPLI_CDCLalgo, with whose help we ob-
tain the problem instances for our exercises. In our task we want to practise conflict
resolution, for this purpose we provide a formula that produces a conflict during SAT
solving, by now we will refer to those formulas as conflict formulas, for the sake of
simplicity. By using a boolean variable as flags that we put into the BCP method,
because that is where the conflicts are first detected, we remember the formula. At
the point where the flag is set, we store the formula in a .txt file which serves as
"dictionary" of conflict formulas. In TeXgenerator, the SAT solver is invoked and
a conflict formula is passed to it which is retrieved from the conflict formula dictio-
nary. The formula as well as the produced trail are then translated into LATEX code
and written into our LATEX template which we have defined within TeXgenerator
for the exercise and solution. When running the code inside TeXgenerator class,
the exercise and solution are simultaneously generated and stored as .tex files to the
relative path of the users file system in the computer. The produced LATEX files have
a default name which is "ExerciseX" for the exercise sheet and "SolutionX" for the
solution sheet, where "X" represents the number of the generated sheet.

In Figure [3:2] we have visualized the dependency between the SATsolver and
TeXgenerator class.

3.4.1 DPLL_CDCLalgo

For the implementation of our SAT solver, we have followed the basic structure of
the DPLL+CDCL SAT solver (see ,Algorithm’@ presented in the lecture Satisfiability
Checking held by Prof. Dr. Erika Abrahdm |[Abr22].
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Algorithm 2 The CDCL algorithm

1: function CDCL(CNF formula ¢)
2 if -BCP() then

3 return UNSAT

4: end if

5: while true do

6 if -DECIDE() then

7 return SAT

8 end if

9: while -BCP() do
10: if -RESOLVE__CONFLICT() then > Conflict resolution
11: return UNSAT
12: end if
13: end while
14: end while

15: end function

In the following, however, we will explain the internal of the main building blocks
of our implementation of the SAT solver: BCP () and decide () and trail.

BCP ()

For our BCP () method we follow the approach of [Zha96] and propagate unit clauses
as follows: if the formula contains a unit clause u then delete all clauses that contain
the only literal [ € u, we thus imitate the assignment of the truth value true to this
literal. We remove the clauses since they are already satisfied with the assignment
of [ to true (recall Definition . In addition, delete —I in each clause in which it
occurrs. We thus imitate the assignment to the truth value false, because =l can no
longer contribute to the satisfiability of the formula and is therefore being discarded.

decide()

The decision heuristic we choose in the decide method is fixed and static. The vari-
able order arranges the unassigned variables in ascending or lexicographic order. For
decisions we always make assignments to the truth value false, this value is constant
and does not change during SAT solving. For assignments we proceed in the same
manner as in the BCP method but in reversed order, since for decisions we only make
assignments to variables. We encode the assignment of a variable d to the value false
in the case of a decision by deleting d in every clause in which it occurs, at the same
time we remove every clause in which —d occurs because the assignment of d to the
value false implies that its negation —d now has the value of true which we want to
encode accordingly.

trail

For our assignments we mantain a trail which is represented as a stack. To the trail
only literals that have been assigned the value true are appended along with the
reason for the assignment, i.e. the antecedent of the literal.
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3.4.2 formulaGenerator ()

Located inside the SATsolver class our formula generator formulaGenerator ()
generates formulas randomly. The length of the clauses as well as the length of the
formulas vary, whereby we specify a range for both. The literals, which we model
internally as integers can take the value from -5 to 5, which are encoded as upper
case alphabetic letters, i.e. A...E. This encoding happens inside SATsolver class
where the LATEX code for the trail is parsed as well as in the TeXgenerator class
for building the LATEX formulas. The minimum size of a clause is 1 and the maximum
size is 6. The formulas are then encoded in the TeXgenerator class.

Note that the following exercises, for less lazy SMT solving for equality logic and
the real root isolation for CAD, which are inspired by [Abr22|, are not exercises
generated by our exercise generator, they are just drafts and serve as an outlook. For
this reason we do not showcase them using the generated exercise sheet template (like
shown in Section to make this difference clear.

3.5 Less Lazy SMT Solver

Example Exercise

Consider the propositional logic formula with equalities:

©PQ =2y = 21 A (— (g = 23) V 11 = 22)A

$4:I3/\(I1:I3\/I4:I2)

Furthermore the Boolean abstraction of @ is given by:
aq A (_|CL2 V (13) VAN as N (a4 V a5)

Now a less lazy SMT solver solves the formula for satisfiability
as presented in the lecture. If the SAT solver makes a decision,
it chooses the unassigned variable a; with the lowest index and
assigns it false. After which decision level in the SAT solver does
the Theory solver receive the first (in)equalities that need to be
checked for consistency?

Write down the number of the decision level.
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3.6 Real Root Isolation

Example Exercise

Consider the polynomial p = 22 + 2 + 1 and its sturm se-
quence pg, p1, p2 specified in the table of sign changes below.

Sturm sequence \iazlues ; t
pr=2x+1 =3 | +5
P2 = —%

# sign changes o(-)

We started filling out the table of sign changes for p but couldn’t
finish it. Please help us count the real roots in the interval

(—2;2].




Chapter 4

Conclusion

4.1 Discussion

Designing a good exercise is not easy per se and requires considerable effort. This
difficulty often arises after the assignment has been already handed out for prac-
tice, when students have problems, decoding the instructions in the exercise. What
was considered a well thought exercise for the author of the exercise may still raise
questions in a student. Reasons for this are, for example, that the student does not
understand a definition of a term or a mathematical concept that is being mentioned
in the exercise but was not defined within the lecture, but which the task author as-
sumes that the student should know because it should be "fundamental knowledge",
for example. Therefore, one has to try to anticipate what the majority of the students
is likely to know, which is not easy. To be on the save side, these terms can be defined
in the problem definition or an example can be given. However, we must be aware
that students may have different levels of knowledge, which is why it is difficult to
make the exercise clear to each student, in terms of assessing the quality criteria,
this means that "good" here can only be measured approximately, meaning that we
may not be able to meet the requirement that the exercise should leave no questions
unanswered for each student, which is our main goal. However, for a task that raises
"too many" questions for a larger group of students, we can better determine how
high its quality is.

4.2 Future Work

We can improve our exercise generation overall on different levels. First of all we
could allow for more variability. This concerns in particular our problem instances.
For example we could allow different encodings for variable names like a,b,c,d,e and
X1, %2, T3, T4, Ts (or capitalized Xp,X5,X3, Xy, X5). We could also mix up different
variable encoding inside a formula like y1, y2, 23, 24, 25. Remains reserved nevertheless
are the names cg, c1, co, c3 ... because they are encoding the clauses of the formulas.
Boolean variables are first of all only "names" and a different name does not change
the algorithm in which the formula containing the variables plays a role, i.e. conflict
resolution. In addition, students should understand the principle behind conflict
resolution and not be put off by the fact that a variable is not a letter from the
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alphabet as usual. We could now discuss whether we should extend the length of the
formulas in order to introduce more variability and thus also allow more variables,
but then the question arises whether this still brings a didactic surplus if the students
have to work with longer formulas. As mentioned at the beginning, we want to
help the students to understand the lecture material and not to burden them with
a long task that could lead to frustration, since longer formulas inevitably lead to
more errors when doing the conflict resolution by hand. Longer formulas could be
generated to be included e.g. in context of bonus tasks related to a recent lecture.
Because in this case it is about the fact that the students should make an effort
to gain these points, which are usually added to the students’ exam score. Though
not brought to realisation yet, we started examinining how to add incrementality to
our formula generator by re-using already generated conflict formulas. We made, for
instance, the observation that if we delete a literal that occurs only once in an entire
formula conflict formula, the new formula that results from it still produces a conflict
during SAT solving. Furthermore importing and exporting the formulas from the
conflict formula dictionary has a negative effect on runtime. An improvement would
be to parse the formulas directly after importing them from the SATsolver class
instead of first fetching them from the formula dictionary and passing them on to
SATsolver again from inside TeXgenerator. We can provide preparatory tasks
to introduce conflict resolution. More general we could provide exercises of different
levels of difficulty and parameterize the exercise generator accordingly. In the first
difficulty level, we can give problem to test and strengthen the fundamental knowledge
of the task type and help the students to learn the necessary definitions to solve the
exercises asking to do a conflict resolution. In this "preparatory level', assuming the
conflict formula and the trail at the time of the conflict are given, we ca ask the
student what the conflicting and conflict clause are, because this is the starting point
of the conflict resolution. This has the advantage that if the students make the same
mistake over and over again in the actual conflict resolution exercise, they may realize
that they lack knowledge about how to proceed in the conflict resolution and that he
has not yet understood the definitions correctly. The introduction of such levels also
contributes positively to the personal workflow of the learner because he can either
start with simple tasks or possibly fall back on them if they realize that they still
have gaps in their knowledge about the conflict resolution [AGKI3].
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