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Abstract

As wind farms expand near urban areas to meet the growing demand for renewable en-
ergy, evaluating their potential adverse effects on nearby buildings, particularly shadow
flickering exposure, becomes crucial. Calculating the annual and daily duration of
shadow flicker in residential areas, aligning with siting restrictions, is computationally
expensive. To address this challenge, we propose a framework to estimate the exposure
by leveraging pre-computed three-dimensional lookup tables and utilizing tri-linear in-
terpolation, allowing us to efficiently compute the exposure for a sizeable set of receivers.
Our approach yields a negligible method error with accuracy mainly depending on the
resolution of the lookup table. We apply spline interpolation and high-degree polynomi-
als to model the patterns within the lookup tables between different latitudes. Further,
we explore various approaches to compress and generate shadow maps more efficiently.
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Introduction

In 2023, Germany expanded its onshore wind energy capacity by adding 745 new wind
turbines with a total of 3,567 MW, marking a 48% increase in expansion compared to
the previous year. The decommissioning of 423 wind turbines offsets this growth with a
capacity of 534 MW [10]. The growing demand for renewable energy and wind power,
coupled with spatial constraints in densely populated regions, has led to a trend of ex-
panding wind farms closer to residential areas. The increased proximity of wind turbines
to residential buildings is under criticism for potentially resulting in adverse effects on
residents, such as shadow flicker and noise emissions. Current scientific studies, however,
suggest no negative implications of shadow flicker on human health even though frequen-
cies must remain lower than 2.5 Hertz to avoid nuisance [20, 26, 46]. Due to complaints
related to shadow flicker and further justifications such as species conservation, many
wind projects in Germany are currently subject to legal proceedings. The German state
of Bavaria, in particular, stands out with wind projects constituting 42% of their total
power output sued in 2019, followed by the states of Hessia and Baden-Wuerttemberg
[36]. Legal regulations designed to mitigate shadow flicker effects require us to account
for their impact in the evaluation of wind farm layouts, aligning with siting restrictions.

In this work, we are focusing on shadow flicker (”SF”) emissions. A position on the
ground experiences shadow flicker when the shadows of the moving blades of a wind
turbine cause a flickering effect on their surrounding areas as they rotate. Germany
and many other European countries impose annual and daily limitations on the max-
imum duration of exposure for residential buildings and other types of buildings. For
residential buildings, the annual limit is 30 hours with a maximum of 30 minutes per
day [6]. A turbine must be shut down whenever it exceeds these limitations, potentially
affecting efficiency. With the current implementation of the shadow cast module of the
site-planning project WindFarm3D at RWTH Aachen, determining SF exposure is com-
putationally expensive. We aim to reduce the computational effort, providing a fast and
reliable method for approximation.

▶ Related Work As wind energy projects expand closer to urban areas, frictions with
residents increasingly threaten to hinder the advancement of renewable energies, en-
couraging research into optimizing wind farm sites. Several papers have explored differ-
ent approaches to optimization, such as genetic algorithms, greedy algorithms, particle
swarm optimization, and more [1, 2, 3, 17, 33, 41, 42, 44]. In the following, we examine
related work that incorporates SF emissions in the optimization.

The calculations to analyze SF exposure on surrounding areas are well-established. Ap-
proaches essentially differ in their method of including SF exposure in the optimization
process. One approach, presented by Roscher in [38], includes the direct assessment
of SF emissions in the optimization loop. This straightforward method induces time-
consuming computations in each iteration, significantly slowing the optimization. Schel-
long et al. excluded turbine positions based on their distance to buildings [40]. Further,
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Dobrić et al. explored the calculation of priority values for SF exposure and reused
them when computing the objective in each optimization step [12]. There exist multiple
commercial tools such as windPRO and WindFarm that can compute SF emissions for
an existing wind farm layout but do not incorporate SF in the optimization. To the
best of our knowledge, no existing approaches aim to reduce the running time of SF
computations.

▶ Contribution This work introduces a novel method for efficiently approximating SF in
settings with multiple wind turbines. Our findings indicate that the error margin of this
method remains minimal in most settings when utilizing high-resolution lookup tables.
We present several approaches to model shadow maps using functions dependent on
latitude. We also explore alternative methods to compute shadow maps more efficiently
and reduce their memory requirements.

▶ Outline In Section 1, we cover the fundamentals of computing SF emissions, in-
terpolating within three-dimensional lookup tables, and constructing two-dimensional
matrices using spline interpolation and generative neural networks. Section 2 details the
computation of shadow maps for efficient SF approximation and the lookup and inter-
polation method given a wind farm layout with multiple turbines. Section 3 focuses on
reducing memory requirements and generating shadow maps using alternative computa-
tion methods. Further, Section 4 presents our implementation of these techniques within
our shadow cast tool. Finally, we validate our methods in Section 5, demonstrating low
error margins in most realistic scenarios.
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1 Preliminaries

In this section, we provide an overview of computing SF exposure through ray backtrac-
ing and estimating the duration of exposure using uniformly sampled solar positions.
We elucidate tri-linear interpolation within a three-dimensional cuboid, and spline in-
terpolation in a two-dimensional setting. Additionally, we introduce the fundamentals of
Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs)
in the context of processing and generating image data.

1.1 Shadow Flicker Computations

To evaluate the effect of SF on residential buildings, we compute the duration of expo-
sure throughout the year. We follow the common assumption of a worst-case setting: a
constantly clear sky, perfect turbine alignment towards the sun, and continuous opera-
tion of the turbine. The shadow cast by a wind turbine’s rotor depends on the ground
position relative to the rotor center, the rotor diameter, the turbine alignment, and the
sun’s position.

Two angles, the azimuth ϕs, and elevation θs, define the observer-centric solar position.
The azimuth angle represents the sun’s direction along the horizon, while the elevation
angle describes the sun’s height above the horizon. We generally write both angles in
degrees but use radians for SF calculations.

ϕs

θs

Sun

Figure 1: Projected shadow ellipse of a wind turbine on the ground, determined by solar
angles: azimuth ϕs and elevation θs.

We refer to the wind turbine as the emitter, while the position on the ground or building
is the receiver. We do not take into account the existence or lack of windows of residen-
tial buildings in our calculation and, therefore, model them with the greenhouse mode.
This approach accounts for SF flicker exposure from all cardinal directions, even if no
windows face the wind turbine and, consequently, no SF could be perceived by residents
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[23]. Additionally, we do not account for sun-blocking objects such as hills, houses, or
trees that might obstruct SF emissions from reaching the receiver.

1.1.1 Exposure Approximation

We aim to determine the SF exposure for a single receiver over an entire year and for
each individual day. Using ray backtracing, as described in Section 1.1.2, we assess
whether a specific ground position is exposed to SF at any given time t. To estimate
the duration of SF over a time interval, we sample solar positions uniformly throughout
that interval, check for SF at each sample point, and approximate the SF duration by
assuming constant exposure between consecutive samples. With N uniformly sampled
solar positions (ϕi, θi, ti), where each sample is separated by the sampling resolution ∆t,
we describe the existence or lack of SF using the following characteristic function:

1SF (i) =

{
1 if SF occurs at time ti

0 otherwise

Further, we approximate the duration of SF exposure for the time interval that we cover
with our discrete samples by multiplying all actual instances by the sampling distance:

Tapprox = ∆t ·
N∑
i=1

1SF (i)

To compute the annual SF exposure, we utilize samples of the solar position covering
the entire year. For the maximum daily SF, we calculate the SF exposure duration
for each day and then determine the maximum value across all days. The accuracy of
this approach is merely dependent on the sampling resolution ∆t, and it converges to
100% as ∆t → 0. This is because our method approximates the true SF exposure as a
Riemann sum1 over the sampled interval [a, b]:

T =

∫ b

a

fSF (t)dt = lim
||∆t||→0

N∑
i=1

1SF (i) ·∆t

In this expression, fSF (t) represents the function for SF at time t, similar to 1SF (i), which
equals 1 if SF occurs and 0 otherwise. We can construct 1SF (i) = fSF (ti). The integral
determines the total SF duration over the specified time period, while the Riemann sum
approaches the integral as the sampling interval ∆t decreases. Our function fSF (t) is
Riemann integrable since it is non-negative by definition, bounded on the interval [a, b]
and has a set of discontinuities with Lebesgue measure zero since only countably many
continuous instances of shadowing and thus discontinuities where shadowing begins or
ends may occur [32].

1A Riemann sum is a method of approximating an integral using a finite sum.
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1.1.2 Shadow Ray-Backtracing

Using ray backtracing2, we can accurately determine if a ground position experiences
SF at a given time. We trace a vector from the ground in the direction and with the
inclination of the solar rays to observe whether it intersects the turbine rotor. If true, the
sun’s rays would pass through the rotor, causing a shadow whenever the blades rotate.

We require the azimuth (ϕs,t) and elevation angle (θs,t) of the sun at time t, the position
protor = (xr, yr, zr)

T , hub height hr, and rotor diameter dr of the wind turbine, and the
position of a receiver as a point the ground pground = (xg, yg, zg)

T to perform the neces-
sary ray backtracing computations.

The vector
→
v sun denotes the direction of the solar rays from the sun at its current position

(ϕs,t, θs,t) to the ground, assuming the rays are parallel. We can make this assumption

due to the Earth’s large distance from the sun. The normal vector
→
nrotor, that together

with the position of the wind turbine’s nose, defines a plane spanned by the turbine’s
rotor. This plane is perpendicular to the sun’s azimuth angle whenever we compute the
worst-case setting. Thus, we assume the rotor always faces the sun. In a statistically
realistic setting, when the turbine’s rotor is directed towards the opposite of the wind
direction, we can replace the sun’s azimuth with the angle of the wind direction at time t.

→
v sun=

cos(θs,t) · sin(ϕs,t)

cos(θs,t) · cos(ϕs,t)

sin(θs,t)

 ,
→
nrotor=

sin(ϕs,t)

cos(ϕs,t)

0



We utilize both vectors to determine the intersection point of the sun vector with the
rotor plane. Subsequently, we compute the Euclidean distance of the intersection point
to the turbine center on the plane. This tells us how far the solar rays intersect the
plane away from the turbine center.

pintersect = pground +

(
− →

nrotor ·(pground − protor)
→
nrotor ·

→
v sun

)
· →
v sun

dintersect = ∥pintersect − protor∥2

If this distance is less than or equal to the rotor radius, the ground position is considered
to experience shadow flicker. For a single receiver, we utilize the computations above
for each sample of the solar position and determine the daily and annual SF duration as
described in Section 1.1.1.

2Ray backtracing involves projecting rays from a source to determine if they intersect with an object.
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1.2 Tri-linear Interpolation

Tri-linear interpolation is a method of interpolating values within a three-dimensional
space using known values at the vertices of a cube.

We aim to interpolate the value of some arbitrary point (x, y, z) ∈ R3 within the bound-
aries of a three-dimensional grid of uniformly sampled points. We interpolate using the
values of the eight nearest points within the grid, which form a three-dimensional cuboid.

Let the coordinates of the eight vertices of the cube surrounding the point (x, y, z) be
denoted as cabc, with abc ∈ {0, 1}3 and corresponding values ϕ(abc).

Further, let (x0, y0, z0) and (x1, y1, z1) be the coordinates of the two opposite vertices
c000 and c111. We define the normalized relative coordinates of our point (x, y, z) within
the cube as following:

u =
x− x0

x1 − x0

, v =
y − y0
y1 − y0

, w =
z − z0
z1 − z0

We interpolate using the formula for tri-linear interpolation:

f(u, v, w) = ϕ(000)(1− u)(1− v)(1− w) + ϕ(100)u(1− v)(1− w)

+ ϕ(010)(1− u)v(1− w) + ϕ(110)uv(1− w)

+ ϕ(001)(1− u)(1− v)w + ϕ(101)u(1− v)w

+ ϕ(011)(1− u)vw + ϕ(111)uvw

c000 c100

c010 c110

c001 c101

c011 c111

(x, y, z)

Figure 2: Illustration of trilinear interpolation within a 3D cube.

In a more intuitive geometric notion, as seen in Figure 2, we first interpolate along the x-
axis to find intermediate values at the faces of the cube, reducing the linear interpolation
to two dimensions. Next, we interpolate these intermediate values along the z-axis to
finally obtain our result using one-dimensional linear interpolation [7].
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1.3 Spline Interpolation

With spline interpolation in a two-dimensional setting, we interpolate between a set of
known data points using a piecewise polynomial function3 with a fixed degree. Com-
pared to high-degree polynomials, spline interpolation minimizes oscillations and avoids
the Runge’s phenomenon.

Given a set of data points (x1, y1), (x2, y2), . . . , (xn, yn), where xi are the input values
and yi are the corresponding output values, we aim to find a smooth function S(x) that
interpolates between these points. We construct a function S(x) such that each polyno-
mial segment Si(x) interpolates between two consecutive points (xi, yi) and (xi+1, yi+1).
E.g. for cubic splines, each segment Si(x) is a cubic polynomial [48]:

Si(x) = ai(x− xi) + bi(x− xi)
2 + ci(x− xi)

3 + di

To ensure the smoothness of S(x), we impose a set of continuity conditions for the splines
Si at each inner point xi. The spline function S(x) must pass through each data point
and the first derivative S ′

i(x) and the second derivative S ′′
i (x) must be continuous at each

inner point. Using these conditions and the equation for the spline, we can formulate a
system of linear equations for the coefficients ai, bi, ci, and di [31]:

Si(xi) = yi,

Si(xi) = di,

Si(xi) = Si−1(xi),

S ′
i(xi) = S ′

i−1(xi),

S ′′
i (xi) = S ′′

i+1(xi)

S ′′
i (xi) = S ′′

i+1(xi)

With the resulting spline function S(x), we can reliably interpolate any x within the
range of the given data. The function S(x) is continuously differentiable. Furthermore,
we can choose other splines depending on the desired complexity of our function. For
example, we can utilize quadratic splines, where each segment is a quadratic polynomial,
or higher-order splines for more complex approximations. In each case, the degree of the
polynomial and the corresponding continuity conditions must be adjusted accordingly.

Furthermore, we can smooth the spline representation by some smoothing factor s,
allowing for a trade-off between the adherence to the data points and the smoothness
of the resulting function. This is particularly useful when data sets are noisy data and
an exact interpolation might overfit. Thus, a smoothed spline often provides a more
generalized and robust approximation.

3A piecewise polynomial is a function composed of multiple polynomial segments.
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1.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are often used for image processing and clas-
sification tasks. CNNs can learn to abstract and interpret patterns in images. Their
architecture, as introduced by LeCun et al. in [4], consists of input, convolutional, pool-
ing, fully connected, and output layers, as shown in Figure 4. Each type of layer serves
a unique purpose in the network’s ability to process and comprehend visual data.

The convolutional and pooling layers augment the typical artificial neural network
(ANN), comprising the input, output, and fully connected layers. This allows for better
abstraction of image data. In general, neural networks are systems that adapt their
internal configuration in relation to an objective function [18]. Given training samples
encompassing input and output variables, we can train the network to learn the under-
lying function that generated the samples. We call this method of training supervised.
Generic neural networks work particularly well with numerical data but fail to learn
image data’s structural and spatial relations.

With convolutional layers, we extract meaningful information such as corners, edges,
shapes, and intensity patterns to evaluate them further using the fully connected layers
[43]. Convolutional layers employ multiple kernels, also known as filters, which are small
matrices with learnable parameters. Each kernel slides over the input image, performing
a convolution operation at every position. This linear operation generates a feature
map, where each pixel value in the feature map represents the kernel’s response to a
specific image region, as shown in Figure 3. Using multiple kernels, a convolutional layer
detects various patterns and structures. Typically, multiple successive convolutional
layers progressively detect increasingly complex features, allowing the network to build
detailed and hierarchical image representations.

0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

M

0 0 1
0 1 0
1 0 0

K

0 0 0 0 3
0 0 0 3 3
0 0 3 3 0
0 3 3 0 0
3 3 0 0 0

M×K

Figure 3: Visualization of convolution operation: initial matrix M, kernel K, and the
resulting matrix M×K.

After the convolutional layers, we apply pooling layers, also known as down-sampling
layers. By utilizing them, we aim to reduce the spatial dimensions of the feature maps.
With smaller feature maps, further computations are more feasible, and the number of
parameters in the network decreases. This helps the CNN prevent overfitting. In max
pooling, the maximum value is taken from a fixed-size window of cells from the previous
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layer, while in average pooling, the average value is taken. This process reduces the size
of the feature maps and retains the most important features detected by the convolu-
tional layers.

After several convolutional and pooling layers, the network flattens the extracted in-
formation and passes them to one or more fully connected layers4. These learnable
layers interpret the high-level features to perform the final classification. They combine
the features in complex ways to determine the class of the input image, outputting a
probability distribution over the possible classes [34].

Input

Convolution

Pooling

Convolution

Pooling

Flattening & Dense

Output

Figure 4: Exemplary visualization of a CNN. A first convolutional layer captures the
high-level features of the input image. Furthermore, a pooling layer down-
samples the information, and another convolutional layer extracts the final
features, which are flattened and passed to the dense layer that provides a
classification result.

4In fully connected layers, each neuron is connected to every neuron in the previous inner layer. They
are typically used to interpret features and return final predictions or classifications.
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1.5 Generative Adversarial Networks (GANs)

On the contrary, to generate images, another type of neural network called Generative
Adversarial Networks (GANs) is often used. GANs consist of a generator and a discrim-
inator component. The generator applies transpose convolutions or ”Deconvolutions”
to upsample numerical data into a structured image. The discriminator, on the other
hand, is a CNN that attempts to distinguish between real images from the training set
and forged images produced by the generator.

During training, the generator and discriminator compete against each other, as shown
in Figure 5. The generator aims to produce increasingly realistic images to trick the dis-
criminator. The discriminator, conversely, gets better at identifying real versus forged
images. By relying solely on the discriminator’s feedback, the generator learns how to
imitate the original images without access to the training data.

GANs are typically very difficult to train. The training process is often unstable which
results in problems such as vanishing gradients, where the discriminator becomes too
good at identifying the forged samples and the generator fails to learn [25]. To prevent
this phenomenon, we must carefully tune the hyperparameters or adjust the architec-
ture. Often, the learning rate of the generator is set higher than that of the discriminator
to ensure that both networks learn at a consistent pace and to prevent the discriminator
from overpowering the generator too quickly [16].

Discriminator

Generator

0 1

Training Data

...

Loss

Figure 5: The generator creates images that are fed to the discriminator alongside real
samples. The discriminator classifies these as real or fake and provides loss
feedback to the generator. This iterative process trains the generator to pro-
duce realistic images and the discriminator’s accuracy over time.

Additionally, we can constrain the generation process using additional information such
as class labels or continuous inputs, allowing for more control over the output. These
models are called Conditional GANs (CGANs). We pass the additional information to
the generator and the discriminator, ensuring that the discriminator gives appropriate
feedback considering the additional variable.
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2 Shadow Approximation

Computing the SF duration for multiple buildings using discrete solar position samples
is computationally expensive. The complexity depends on the number of buildings, tur-
bines, and the step size of the solar samples, as described in paragraph 2.1. We present
a method to approximate SF efficiently for multiple turbines and receivers as we neces-
sitate more feasible calculations to include SF as an objective within the optimization of
wind farm layouts. We utilize pre-computed lookup tables and tri-linear interpolation.
In the following we refer to the lookup tables as shadow maps.

A shadow map is a three-dimensional lookup table that captures the annual and max-
imum daily SF durations for various positions on the ground, assuming a wind turbine
located at the center of the map.

2.1 Shadow Map Architecture

To compute a shadow map, we initialize a uniform three-dimensional coordinate grid, as
shown in Figure 6. We set the size of both horizontal dimensions to twice the assumed
maximum shadow distance. As the intensity of SF decreases the farther one moves
away from the turbine, the intensity is diffuse enough at 15 times the rotor diameter
such that we do not have to consider distances beyond [20]. These large dimensions are
necessary to account for long shadows in all cardinal directions from our turbine in the
middle of the lookup table. In our case, we choose a standard maximum distance of
1500 meters for a turbine with a hub height of 100 meters and a rotor diameter of 80
meters. Furthermore, shadows beyond this distance typically occur only during periods
of low sun elevation, particularly dawn and dusk. German law allows us to disregard SF
for solar elevations lower than 3 degrees [27].

n layers

Grid Cell

Max. ShadowDistance

50m
0m

−50m
−100m

Figure 6: Three-dimensional shadow map comprising n layers from 50m to −100m with
a wind turbine in the center.
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For the z-dimension, we set the maximum height to the hub height subtracted by the
radius of the rotor. The hub height of a wind turbine is the distance from the ground
to the center of the turbine’s rotor, where the blades are attached. Higher layers are
most likely not useful since elevations reaching the height of the turbine’s rotor blade,
causing the turbine to stand in a valley, significantly affect the turbine’s efficiency and,
therefore, represent an unlikely scenario. Moreover, the elevation of the lowest layer is
site-dependent due to differing terrain roughness5. If the turbine stands on a higher ele-
vation in the terrain, we can increase the minimum height to account for lower buildings.
When computing a shadow map, we assume flat terrain for each layer. Only later, with
the interpolation between the layers, do we look at terrain information.

For each point in the grid, we require the relative x, y, z coordinates to the lowest leftmost
point within the grid in meters. This information is necessary to interpolate within three-
dimensional cuboids in our lookup table using relative positions in meters. Further, we
compute the annual and daily SF duration for every grid point, considering the wind
turbine in the center of the map.

▶ Shadow Map Parameters Our computed shadow map depends on the latitude of
our wind farm, the hub height and rotor diameter of the assumed wind turbine, and the
dimensions and resolution of the grid. We differentiate between the horizontal resolution
in grid points per meters on the x- and y-axis, and the number of layers, allowing us to
find a better trade-off between spatial complexity and accuracy, as further described in
paragraph 2.1. We do not consider the longitude as a relevant parameter since it only
influences the timing of shadow occurences and not the duration when ignoring earths
rotation around the sun. Thus, it has no significant impact on the mere duration of SF.

Figure 7: Annual shadow map for a wind turbine at the geodetic latitude 51◦N, with a
hub height of 100 m and a rotor diameter of 80 m.

5Terrain roughness refers to the intensity of variations in ground elevation.
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▶ Computational Complexity Let us consider a shadow map with a maximum shadow
distance of 1500 meters, a horizontal resolution of n simulation points per meter, and l
vertical layers. The shadow map comprises a total of l · (3000 · n+ 1)2 grid points. Fur-
ther, we generate m samples of the solar position per minute throughout the entire year,
resulting in a list containing m · 525600 samples. The higher the resolution parameters
n, l,m get, the larger our dimensions and amount of samples grow. For every grid point
and each sample of the solar position, we compute whether the position experiences SF,
as shown in Section 1.1.1. We assume the computation for a single solar sample has
complexity O(1) and does not depend on the size of our input values. Subsequently, the
computation has the following asymptotic complexity:

O
(
m · 525600 · l · (3000 · n+ 1)2

)
= O

(
mln2

)
The computational complexity grows polynomially concerning the number of solar sam-
ples, vertical layers, and horizontal resolution. Specifically, the complexity scales quadrat-
ically with the horizontal resolution n.

We differentiate between the number of layers and the horizontal resolution since the
areas experiencing SF vary strongly in size between different elevations. The shaded area
gets increasingly smaller for lower relative distances between the ground and the rotor
center on the vertical axis, especially for positions horizontally distant from the wind
turbine. Furthermore, we need to cover a significantly smaller dimension of merely a few
hundred meters on the vertical axis, from the hub height, including the rotor diameter,
to the minimum layer height. Consequently, we aim to find a good trade-off between
horizontal and vertical resolution and accuracy.

In practice, the computation of a shadow map with a reasonable choice of hyperparam-
eters can require up to multiple hours on a standard issue multi-core CPU computer,
even though we already take into account JIT compilation6 and parallelization to speed
up calculations, as further described in Section 4. However, we can utilize shadow maps
any number of times once pre-computed.

6JIT (Just-In-Time) compilation accelerates code execution by compiling code during runtime. In
commonly interpreted languages such as Python, code segments can be accelerated using JIT com-
pilation with special libraries.
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2.2 Shadow Flicker Lookup

We utilize the pre-computed lookup tables, our shadow maps, to efficiently estimate the
SF exposure for a wind farm layout with n wind turbines and m receivers. We look
up the annual and daily SF exposure in minutes for each receiver based on its relative
position to every turbine. In the following we elaborate on the interpolation approach
for one turbine and receiver and further with multiple emitters.

▶ Emitter-Receiver Interpolation Given a wind turbine and one single receiver, we look
up the annual and maximum daily SF exposure based on the receiver’s relative position
to the turbine. Since this position likely does not correspond exactly to any single grid
point within our shadow map, we use tri-linear interpolation, finding the SF values at
the eight nearest grid points on the shadow map, as detailed in Section 1.2. We consider
the wind turbine to be at the center of our shadow map with x = 0, y = 0, z = 0. We
further compute the receiver’s relative coordinates by moving in the direction specified
by the normalized relative position of the receiver, as illustrated in Figure 8. In simple
terms, we locate the receiver within our shadow map with the turbine at the center, find
the closest grid points, and apply tri-linear interpolation to estimate the SF exposure at
the receiver’s position.

Suppose the actual turbine’s hub height differs from the height used in the shadow map.
In that case, we adjust the z-coordinate of the receiver’s relative position: subtracting
the height difference if the turbine is lower and adding it if the turbine is higher. All
other parameters, such as rotor diameter, must be identical between the actual turbine
and the shadow map parameters. We then use tri-linear interpolation with the adjusted
relative position to determine the annual and daily SF exposure.
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Figure 8: Interpolation of SF duration for one emitter and receiver. The figure depicts a
shadow map centered on the wind turbine, showing shadow flicker exposure in
minutes at various grid points. The normalized relative position of the receiver
to the wind turbine is highlighted.
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▶ Exception Handling If a receiver’s relative position extends beyond the maximum
shadow distance on one of the horizontal axes, we assign a SF value of zero since the
intensity of emissions is low, as outlined in Section 2. For positions that fall outside the
highest or lowest vertical layers, we use bi-linear interpolation7 on the nearest horizontal
layer. In such situations, the assumption that the SF intensity is diffuse enough may not
hold true, given that the lowest considered layer might be only a few hundred meters
from the receiver, depending on vertical dimensions of the shadow map. Subsequently,
this approach improves accuracy compared to simply assuming no SF exposure. In
our implementation, we issue a warning when an exception occurs. Generally, if such
exceptions occur frequently, we recommend reconsidering computing a shadow map with
adjusted dimensions.

▶ Multiple Emitters Given a wind farm with multiple turbines, we estimate SF for a
single receiver by considering each turbine independently, as detailed in paragraph 2.2.
We determine the receiver’s position relative to each turbine, perform tri-linear inter-
polation to compute the SF exposure for each turbine-receiver pair, and then sum the
interpolated values from all turbines to obtain the total SF for the layout. Regulations
mandate evaluating SF from the receiver’s perspective, as multiple turbines can collec-
tively exceed allowable SF limits. If SF limits are exceeded, all turbines that further
cause SF for the receiver must be shut down.

×

×·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

0

0

0

0

0

0

0

0

5

5

0

5

0

0

0

0

15

20

0

0

0

0

0

40

80

0

0

0

0

0

15

20

0

0

0

0

5

5

0

5

0

0

0

0

0

0

0

0

0

(a) Two-dimensional shadow map with SF at
various points for a turbine in the center.
The figure indicates the relative positions
of both turbines to the receiver.
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(b) The figure depicts one receiver and two
turbines with relative positions. Both in-
terpolation results are aggregated to the
overall SF exposure.

Figure 9: Assessment of SF exposure for a receiver relative to two wind turbines: we
determine the receiver’s position relative to each turbine, reference the shadow
map to find the SF exposure along the direction of this relative position from
the shadow map’s center, and aggregate the exposure results for both turbines.

7Bi-linear interpolation, the two-dimensional counterpart to tri-linear interpolation, applies linear
interpolation sequentially in one direction and then in the perpendicular direction. [13]
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If wind turbines in a wind farm layout differ only in their hub height, the same shadow
map can be used for all lookups. We adjust for hub height differences by modifying the
vertical coordinate as described in the emitter-receiver interpolation in paragraph 2.2.
However, if turbines differ in other parameters, such as rotor diameter, separate shadow
maps must be assigned.

▶ Additive Method Error When simulating SF using discrete solar positions, as detailed
in Section 1.1.2, a ground position is marked as experiencing SF if at least one turbine
casts a flickering shadow on it. Hence, when simulating SF for one receiver and multiple
turbines, we consider a receiver to experience SF regardless of whether multiple turbines
are responsible for the exposure. However, with our additive approach of estimating SF,
as outlined in paragraph 2.2, whenever n turbines simultaneously cast flickering shadows
on a single receiver, we count these instances n times since we aggregate the respective
SF exposure of all turbines. Consequently, we overestimate the SF exposure. This error
source becomes more significant when the wind turbines are closely spaced and the sun
is at a low elevation, leading to extended shadows. In these scenarios it is more likely
that multiple turbines cast shadows on one receiver simultaneously. We analyze the
severity of this error in Section 5.

2.3 Daily Shadow Flicker Map

With shadow maps we can effectively estimate the annual duration of SF with a man-
ageable error, as detailed in Section 5. However, using the same method to calculate the
maximum daily SF exposure can, in some cases, introduce significant inaccuracies. If
we look up and interpolate the maximum daily SF for each turbine relative to a single
receiver with the method in paragraph 2.2, we do not account for the exact days when
the daily maximum is reached for each turbine. For example, one turbine might cause
30 minutes of SF on January 1st, while another turbine casts no shadow on that day but
reaches a daily maximum of 25 minutes of SF on a different day in September. Since we
store only the 30 and 25 minutes of maximum daily SF for the relative positions within
our shadow maps without regarding any temporal information when these maxima are
reached, we would sum these values to 55 minutes, even though the actual daily maxi-
mum is merely 30 minutes.

To compensate for this error and provide a considerably more precise method for de-
termining the maximum daily SF, we can compute a shadow map with an alternative
structure that integrates the temporal component of the occurrences of SF exposure.
For every grid point, we additionally store the SF duration for each day, totaling 365
attributes. Figure 10 displays the temporal alternative axis of the structure.

Daily shadow maps require significantly more space. However, by utilizing unsigned
8-bit integers to store the daily duration of exposure, with 255 minutes as a reasonable
maximum value for a single grid point, we compensate for the additional space to some
extent. Additionally, when using a compression algorithm, we can further reduce the
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space required for the SF data, as the values of the individual grid points are multiples
of the sampling distance for the solar position. Moreover, many grid points are zero.
This results in less unique values which can be compressed efficiently.

Day

Figure 10: Visualization of the temporal axis of daily shadow maps for a single two-
dimensional layer. We invert the colors of the respective layer for better
visibility of the SF exposure.

▶ Interpolation Approach The method for calculating annual shadow flicker SF follows
a process similar to the one described in paragraph 2.2. We use tri-linear interpolation
to compute the SF for each day individually and aggregate these daily values to obtain
an annual total. This annual total can be combined with results from other turbines as
outlined in paragraph 2.2. In simpler terms, we utilize the approach in paragraph 2.2
for each temporal layer of our daily shadow map and aggregate the results. However, to
determine the maximum daily SF for n turbines and one receiver, we retain temporal
data from our daily shadow maps when aggregating with multiple turbines. By esti-
mating the SF emissions for each turbine on each day of the year, we create n arrays of
daily emissions, one for each turbine. We then sum these arrays element-wise and find
the maximum value from the resulting array to approximate the maximum daily SF for
all turbines. Consequently, we determine the SF exposure for each day regarding all
turbines and then find the maximum value instead of the other way around.

▶ Compatibility In Section 3, we explore approaches to generate shadow maps more
efficiently without the need to compute the SF exposure for each grid point using the
method in Section 1.1.1. We aim to reduce the computational complexity, as detailed in
paragraph 2.1. Further, we attempt to reduce the storage requirements of our shadow
maps by exploiting attributes such as approximate symmetry along the north-south
axis. Many of these methods are compatible with the structure of daily shadow maps
or can be adapted easily. However, some approaches, such as equatorial symmetry, are
incompatible due to the additional temporal information.
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3 Map Interpolation & Storage Reduction

As shown in paragraph 2.1, computing shadow maps is computationally expensive.
While it may seem counter-intuitive to use them due to the added inaccuracies when
interpolating, they become efficient when repeatedly evaluating SF for different wind
farm layouts at the same geographic coordinates, as the pre-computed shadow map can
be reused. This is particularly useful when incorporating SF in the objective of an
optimization algorithm. Nevertheless, this method does not yet achieve the required
computational efficiency to significantly accelerate SF simulations since we have to pre-
compute the shadow map first, causing a large computational overhead.

In this chapter, we explore alternative methods for efficiently inferring shadow maps
based on latitude. We aim to reduce the computational effort required to generate
valid shadow maps. Further, we want to reduce their spatial complexity by exploiting
attributes such as approximate symmetry along their north-south axis and the equator.

3.1 Geographical Dependence

The duration of SF cast by a wind turbine on the ground, disregarding the time of
occurrence throughout the day, is predominantly determined by the turbine’s latitude,
as described in Section 1.1.2. At the poles, shadowing occurs in all cardinal directions.
For several months, the solar elevation angle remains high, allowing for shadowing in
all directions. As we move closer to the equator, the range of cardinal directions where
shadowing is possible becomes more restricted to the east and west. Graphically, this
transition from the poles to the equator exhibits a highly uniform and predictable pat-
tern. We can observe this pattern in Figure 11.

▶ Weighted Mean Given a latitude lat and two samples of shadow maps for latitudes
latlower and latupper with latlower ≤ lat ≤ latupper, we aim to determine the shadow map
corresponding to lat. A simple method is to calculate the weighted mean of the matrices,
multiplying each map by its respective weight and adding them cell-wise. This approach
works well for small latitude differences but requires storing entire shadow map samples,
as shown in Figure 11. To be able to determine shadow maps for all possible latitudes,
we require a large number of samples with a small step size.

▶ Optical Flow Algorithms Given the predictable movement of the shadowed parts of
the lookup table, we employed more complex methods than merely the weighted mean
to reduce the added inaccuracy when interpolating between samples of shadow maps.
Optical flow is the apparent speed and direction of brightness changes in an image. Visual
computing algorithms can compute the optical flow to determine the direction and speed
of movement for all pixels between two or more frames. We use this information and
apply the computed movement with a weight factor, similar to a weighted mean. This
method additionally captures the spatial movement between the shadow maps.
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(a) Map at 90◦N (b) Map at 75◦N (c) Map at 60◦N

(d) Map at 45◦N (e) Map at 30◦N (f) Map at 0◦N

Figure 11: Shadow Maps showing the predictable transition of SF duration by a wind
turbine from 90◦N to 0◦N. The shadow patterns shift from all cardinal direc-
tions at the poles to predominantly east-west near the equator.
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3.2 Shadow Map Symmetries

We aim to exploit potential approximate symmetries in our shadow maps to reduce
storage requirements and computational effort by avoiding the calculation and storage
of redundant information. We examine symmetries along the north-south axis and the
equator, mirroring shadow maps between the northern and southern hemispheres, and
further evaluate their suitability in Section 5.5.

▶ East-West Symmetry We intend to reduce computational and storage requirements
by exploiting an assumed symmetry along the north-south axis, mirroring the SF pattern
within the individual shadow maps. We assume this symmetry since, for many locations
and times of the year, the angle of sunlight at sunrise has a corresponding mirrored
azimuth angle with a similar elevation at sunset, though this is not exact due to the
Earth’s tilt and orbital variations. In Figure 11 we can observe that the two-dimensional
shadow maps seem mirrored along an axis from lower center to the upper center. By
utilizing this assumed symmetry and storing as well as computing only one half of the
shadow map, we halve the storage and computational complexity.

However, if we compute the shadow map using discrete samples of the solar position, as
detailed in Section 1.1.1, we project many ellipses on the ground which may be slightly
shifted and asymmetrical regarding both mirrored sides due the approximate symme-
try of the azimuth and elevation not matching with the frequency of the solar samples.
This discrepancy can introduce minor inaccuracies but remains manageable within the
broader context of our storage optimization strategy. We validate the accuracy of ex-
ploiting this symmetry in Section 5.5.

▶ Equatorial Symmetry To infer shadow maps for all latitudes, we need to store multiple
samples ranging from 90◦N to 90◦S. We aim to reduce the range of samples required to
infer all possible shadow maps by exploring an assumed approximate symmetry along
the equatorial plane8. Hence, we investigated whether shadow maps at x◦N are approx-
imately equivalent to those at x◦S when mirrored. If we exploit this assumed symmetry,
we can store only half the amount of samples, potentially without losing the ability to
infer shadow maps for all latitudes.

The solar path is approximately mirrored along the equator, as shown in Figure 12, when
ignoring seasonal shifts. For instance, at latitude 45◦N, the solar elevation peaks in the
south, while at 45◦S, it peaks in the north. Since the computation of SF is dependent
on the solar position and we aggregate the results of the entire year and can thus ignore
the seasonal shift, we can derive the symmetry within our shadow maps from that. We
assume that mirroring a shadow map for latitude x◦N along the east-west axis provides
an estimate for the shadow map at x◦S, and vice versa.

8The equatorial plane divides the Earth into the northern and southern hemispheres.
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(a) Solar Path at 45◦N (b) Solar Path at 45◦S

Figure 12: Solar paths for latitudes 45◦N and 45◦S, showing the relation between azimuth
and elevation for the first day of each month in 2024. The north is azimuth
0◦, the south is 180◦.

In Section 5.5, we evaluate the error of exploiting the potential equatorial symmetry.
The assumed symmetry of the solar path is not perfect due to variations caused by
Earth’s axial tilt and orbital eccentricity.

▶ Orbital Eccentricity Earth’s orbit around the Sun is not a perfect circle but an ellipse.
Subsequently, the distance between the Earth and the Sun varies throughout the year,
with approximately 1.67% difference between the aphelion9 and the perihelion10 [8]. This
variation primarily affects the length of the seasons [35].

▶ Earth’s Axial Tilt The axis of Earth’s rotation lacks 23.5 degrees from being fully
perpendicular to the plane of the elliptic, which is an imaginary plane defined by the
Earth’s movement round the sun [5]. In combination with the orbital eccentricity, this
tilt is the primary reason for the different seasons. The Earth orbits around the Sun and
different parts of the planet are exposed to dissimilar amounts of sunlight throughout the
year. When the northern hemisphere is tilted toward the Sun, it experiences summer,
as sunlight reaches this region more directly. Conversely, when the southern hemisphere
is more directly tilted toward the Sun, the northern hemisphere experiences winter.

▶ Solar Path Asymmetry As the length of the seasons varies due to Earth’s orbital
eccentricity, the topocentric solar path, which is dependent on the Earth’s axial tilt rela-
tive to the movement around the sun, becomes asymmetrical regarding the hemispheres.
Consequentially, the shadow maps at x◦N and x◦S are not perfectly symmetric.

9The point in Earth’s orbit when it is at its greatest distance from the Sun.
10At the perihelion, the Earth’s orbit is closest to the Sun.
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3.3 Alternative Generative Methods

We aim to infer shadow maps for all latitudes without the need to save samples and
interpolate between them. With the methods in Section 3.1, utilizing samples of high-
resolution shadow maps, we require a substantial amount of storage. Further, transfer-
ring multiple shadow maps between computers seems impractical. In the following, we
intend to combine the storage and the ability to determine shadow maps for all latitudes
in one efficient data structure.

3.3.1 Polynomial Fit

We compute a polynomial for each grid point that models SF duration for that spe-
cific position as a function of latitude. To infer a shadow map for some latitude, we
compute the function values for each grid point. For ease of notation, we summarize
the individual polynomials pxyz : [−90, 90] → R for the grid points xyz as a function
generating the entire shadow map, f : [−90, 90] → Rn×n×l, where n is the dimension
of the horizontal axes and l is the number of layers, as described paragraph 2.1. With
this approach, there is no need to store individual samples of shadow maps. Instead,
we store the polynomials for the grid points and employ a data structure similar to the
initial shadow map. Each grid point holds the polynomial coefficients axyz,k. When
using NumPy arrays, as detailed in Section 4, all data points are required to have the
same dimension. Thus, we choose the degree of our polynomials before training.

After choosing the fixed degree d as a hyperparameter, we aim to minimize the squared
error of the function value pxyz(lat) and true SF duration Tlat,xyz for some sampled
latitudes lat, given by the error function E. This process generates the polynomial
pxyz(x) for each grid point xyz.

E =
∑

lat∈[−90,...,90]

|pxyz(lat)− Tlat,xyz|2, pxyz(lat) =
d∑

k=0

ak,xyz · latk (3.1)

In practice, we utilize the discrete SF Tapprox instead of the true SF duration T , as
detailed in Section 1.1.1. Throughout the different latitudes, the accuracy of Tapprox

might vary, depending on the sampling distance of the solar position, which potentially
leads to oscillations in the training data. Since we flatten those inaccuracies, if our
polynomial does not overfit, it may not perfectly match the data used for training.

▶ Runge’s Phenomenon Typically, we assume that a higher degree polynomial reduces
inaccuracies and allows us to get a better representation of the SF exposure. However,
increasing the polynomial degree can lead to Runge’s phenomenon, where the polynomial
oscillates significantly between the sample points, especially near the edges of the training
interval. Even though the representation of SF in the central region, near the equator,
improves, the result close to the endpoints, at the poles, potentially oscillates [24]. Since
we require an accurate representation of the SF and cannot alter our training interval
[90,−90], we aim to mitigate this potential error in the following.
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3.3.2 Spline Interpolation

Using spline interpolation, rather than fitting high-degree polynomials, enables us to
achieve a low interpolation error margin even though the splines themselves are based
on low-degree polynomials [21]. We elucidate the concept of spline interpolation in Sec-
tion 1.3. Employing natural cubic spline interpolation circumvents Runge’s phenomenon.
We explored this method since it typically leads to more stable and reliable results, es-
pecially at the extremities of the training interval, such as the latitudinal regions near
the poles. This stability is crucial in applications where precision at the boundaries is
as important as it is within the central regions [24].

Instead of the coefficients of a high-degree polynomial, as described in Section 3.3.1,
each grid point holds the vector of knots, the B-spline coefficients, and the degree of
the spline, adding one additional dimension to the architecture. To avoid saving all
data points as knots with splines in-between, we generate a smooth representation of
the SF duration for the grid point by applying the smoothing algorithm described by
P. Dierckx [11]. Nevertheless, storing a reasonably precise spline representation of our
function typically requires more storage than fitting a high-degree polynomial.

3.3.3 Generative Adverserial Method

When applying the methods described in Section 3.3.1 and Section 3.3.2, we must eval-
uate large polynomials or spline representations with many spline segments for each grid
point. Both methods merely focus on each position’s separate SF exposure without con-
sidering spatial information such as their surrounding values. They are computationally
more feasible than calculating the SF from scratch, but we aim to reduce the necessary
computations further. In the following, we introduce a method that is able to generate
shadow maps without the need to evaluate function values for each grid point.

By considering shadow maps as gray-scale images where each grid point has a normalized
value in the interval [−1, 1], we can train a conditional generative adversarial network
(CGAN), as described in Section 1.5, to learn a representation of the maps’ structure
given some latitude. We train a network for each layer of our shadow map separately to
reduce the generation process to two-dimensional images and thus decrease the amount
of data points we require for training. Nonetheless, CGANs still require a substantial
amount of data points surpassing the number of samples we can compute in a reasonable
time. We generated additional samples using weighted mean or optical flow to fill the
spaces between samples to overcome this issue.

▶ Model Architecture The generator network takes a continuous label input, the lat-
itude, transforms it through a series of dense layers, and reshapes it into a 15x15x256
feature map. Several transposed convolutional layers then process this feature map to
increase the spatial resolution. Finally, the network produces an output through a con-
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volutional layer to generate a single-channel image. As a demonstration of feasibility,
we generate two-dimensional shadow maps with dimensions 60x60. The discriminator
network, designed to distinguish between real and generated images, begins with con-
volutional and pooling layers that downsample the input image. It flattens the features
and concatenates them with a dense representation of the continuous input. The com-
bined features pass through several dense layers, before a final dense layer outputs the
classification result. The discriminator learns to determine whether a shadow map is
valid or forged and associated with the correct latitude.

The CGAN combines the generator and discriminator, feeding the generator’s output
along with the continuous input into the discriminator. The discriminator is set to
non-trainable whenever we update the generator’s weights during the CGAN training
process. This architecture allows the generator to learn to produce realistic shadow
maps conditioned on the label input.

▶ Training Process We train the discriminator and generator separately in each epoch,
with a batch size of 48. The discriminator’s loss is the sum of the loss when predicting the
forged versus real samples. The generator’s loss quantifies how well the discriminator can
distinguish real images from fakes. In the first epochs, the generator learns that shadow
maps have higher values in the center of the map while the outer edges experience none
or less SF. The generator learns general structures and patterns within Shadow Maps
in the following epochs. However, the model generates only a reduced set of possible
shadow map patterns with insufficient quality due to mode collapse. This phenomenon
is due to limited control over the discriminator. The current research presents two main
approaches to solving this problem: using multiple generators or using a better and more
precise metric to differentiate fake from authentic images [28].

(a) Epoch 1 (b) Epoch 50 (c) Epoch 230 (d) Epoch 400

Figure 13: Evolution of generated shadow maps over training epochs for latitude 45◦N .

▶ WCGANs & Gradient Penalty Wasserstein-GANs (WGANs) are a variation of GANs
that aim to improve training stability and mitigate issues such as mode collapse. Instead
of using a discriminator that outputs whether an input image is real or faked, WGANs
use a critic that scores the realness of the input. The loss function is based on the
Wasserstein distance, providing smoother gradients and more reliable convergence. This
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modification allows the generator to receive more informative feedback, leading to a new
improved objective function for the critic [14]. The objective encompasses a gradient
penalty term. Essentially, this term encourages the critic to assign intermediate scores
to samples between real and generated data.

We utilize a conditional WGAN with gradient penalty, passing latitude as input for the
generator and additional input for the critic. Given this variation of the objective with
the previous overall architecture of the generator and critic, we obtain higher-quality re-
sults and the generator returns maps for all latitudes, learning the association between
patterns within shadow maps and the latitude.

(a) Epoch 200 (b) Epoch 350 (c) Epoch 950

Figure 14: Evolution of generated shadow maps over training epochs using the WCGAN.

Once the training process is successfully completed and convergence is acceptably stable,
our generator can approximate shadow maps using a single forward pass with the given
latitude, allowing us to infer them with a significant speed-up.

We can discard the discriminator and retain only the generator with its weights. Based
on the architecture we used for demonstration, the generator requires approximately
38 megabytes of memory. However, employing more lightweight generators can fur-
ther reduce this requirement. For exemplary purposes, we trained a model that in-
fers two-dimensional shadow maps, thus we need to train a model for each layer of
our three-dimensional lookup tables. By incorporating additional parameters, such as
ground height or using three-dimensional models, we can generate entire shadow maps in
merely one forward-pass. Moreover, it is possible to include parameters such as different
rotor diameters, allowing for further abstraction.

Despite computational limitations in generating large amounts of samples for training
the GANs, we are able to produce exemplary shadow maps that closely resemble actual
shadow maps. While they are not yet fully optimized for practical use, they demonstrate
promising potential for further development.
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3.4 Continuous Shadow Flicker

As a more precise alternative to the discrete compution of SF, as described in Sec-
tion 1.1.1, we propose further research to adopt a continuous methodology. In the
following, we broach our proposed approach.

Given two continuous functions, ϕs and θs, which return the solar azimuth and elevation
angles, respectively, based on the hour h since the beginning of the year and geograph-
ical coordinates, latitude and longitude, we can integrate them into the definition of
the sun vector and the turbine’s rotor normal vector in Section 1.1.2. Subsequently, we
can compute the distance between the intersection point and the turbine center for the
given rotor and position of the receiver. Overall, this results in a continuous function
d : R9 → R with nine parameters.

We can fix the geographic coordinates, the positions of the turbine rotor, and the receiver
as point on the ground, subtract the rotor radius from our constructed function, and
find all roots of the to determine when shadowing either commences or ends. Visually,
we identify exactly those instances where the intersection point of the traced vector with
the turbine plane enters or exits the turbine rotor, touching its edges.

S = {h ∈ R | d(h)− rrotor = 0}
Following from the geometric nature of the shadow’s projection and the continuous
movement of the sun across the sky, there must always be an even number of roots. We
evaluate the function on the interval of each day of the year individually. Whenever we
find no roots, we expect no shadowing and return a daily SF duration of zero. Otherwise,
we add the distances between all pairs of roots (hi, hi+1)∀i ∈ {0, 2, n− 1} and multiply
with 60 minutes to get the duration of SF in minutes:∑

i∈{0,2,...,n−1}

(hi+1 − hi) · 60

Finding the roots of d(h) analytically is infeasible. Instead, we propose the use of nu-
merical solvers to approximate the solutions with arbitrary precision. We suggest the
acceleration of function queries by compiling d with its nine parameters into efficient
callable function code and fixing all but h for the solver. Additionally, we propose the
use of domain knowledge about the earliest time of sunrise and latest time of sunset to
limit the interval for the root solver.

In a typical setting, where only two or no roots lie within a single day, the worst-case
number of roots to find is 365 ·2. Depending on the numerical root solver, we require an
approximately constant number of function queries to find a single root with acceptable
precision. Consequently, we decouple the computational complexity of the SF calcula-
tions from the sampling distance of solar sample.
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4 Implementation

The content of this work is implemented in Python as part of an optimization software
for wind farm layouts. By integrating our new methods, we aim to accelerate the com-
putation of SF and, thus, evaluate the effect of turbine shutdowns in the optimization.

This section presents the details of implementing this work’s data structures and algo-
rithms. We elaborate the role of external tools and Python libraries required for running
and accelerating our implementation. Even though our algorithms can be implemented
more efficiently in low-level languages such as C++, we choose Python due to the large
number of libraries facilitating computations such as the solar position.

4.1 Project Architecture

WindFarm3D is a wind farm project planning tool designed to improve siting layouts
and is currently in development at our chair. It encompasses many modules, e.g., exam-
ining general site suitability, noise propagation, and SF emissions. Our implementation
only concerns the project’s SF module, which is mainly involved in the optimization
process, the computation of energy loss due to turbine shutdowns, and the subsequent
validation of the resulting layout to meet siting restrictions and regulatory constraints.

Site Selection
Layout

Optimization
Layout

Validation

Shadow Flicker

Figure 15: Relevant parts of the project architecture. The shadow flicker module con-
cerns both the optimization and subsequent validation of wind farm layouts.

The program’s workflow is divided into several logical steps. Initially, the user selects a
target region for which they want to find an optimal wind farm layout. The system then
automatically retrieves the geographical data for the selected region and discards unsuit-
able areas, e.g., those that do not meet the minimum required distance from residential
buildings. Subsequently, we employ an optimization algorithm to generate a wind farm
layout. The algorithm incorporates SF and noise propagation using pre-computed pri-
ority masks derived from shadow maps and lookup tables for noise propagation [37].
Further, the algorithm considers wake decay11 using the Jensen model and minimum
spacings between turbines. The project offers multiple optimization algorithms.

11Wake decay is the gradual reduction in turbulence intensity behind a wind turbine as the disturbed
air stream returns to a more uniform state.
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Finally, we validate the generated layout to ensure that it meets regulatory requirements,
including maximum annual and daily SF exposure regarding all receiver positions in the
vicinity. Using the results of the shadow cast simulation, we calculate the energy loss
due to SF whenever a turbine must be shut down.

4.2 External Tools & Libraries

We use various external tools to compute shadow flicker. Most importantly, we utilize
NumPy arrays for computing and storing shadow maps, allowing us to address sets of
grid points more precisely with slicing, dimensional, and integer array indexing, return-
ing subarrays without copying the underlying data [22]. This is particularly useful for
implementing the tri-linear interpolation and, e.g., exploiting the symmetry of shadow
maps. The arrays store the relative coordinates and SF duration using 32-bit floating
points. However, for the spline interpolations, we store pickled tuples that hold the list
of knots and coefficients due to different amounts of knots when applying smoothing. We
store shadow maps using NumPy’s npy-format or the corresponding compressed version.

▶ JIT & Parallelization To enhance the efficiency of iterative computations with our
NumPy arrays, such as the ray backtracing with the solar samples, we employ JIT-
compilation and parallelization with the Numba library. Numba is a just-in-time com-
piler for array-oriented computations that accelerates program execution compared to
interpreted Python code. Utilizing Numba allows us to achieve performance comparable
to that of compiled code [29]. Additionally, when computing the continuous shadow
cast, we utilize JIT compilation to create a fast callable function for the intersection
distance, thus decreasing the overhead of the numerical root solver queries.

▶ Curve Fitting We use several methods to fit smooth functions on data points within
this work. To generate polynomials describing the SF duration as a function of lat-
itude, we use NumPy’s polyfit function. We call this function on a one-dimensional
array holding the data points and receive all polynomial coefficients as return values.
Subsequently, we utilize the poly1d method to evaluate the function values. We apply
the splrep and splev methods from the SciPy library for spline interpolations. SciPy
contains a broad pallet of algorithms for scientific computing [47]. Similarly to polyfit
and poly1d, splrep generates a spline representation given a list of data points and some
smoothing factor s. Subsequently, splev evaluates the returned spline representation for
some x. Both NumPy and SciPy use Python wrappers for C-compiled code, enabling
faster computation than possible with mere Python-interpreted code.

▶ Map Architecture We utilize NumPy arrays to store the spline representations of our
grid points, as described in Section 3.3.2, requiring all fields to have the same dimension.
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The smoothing algorithm within SciPy’s splrep returns spline representations with dif-
ferent amounts of knots, depending on the complexity of the underlying function. For
instance, a grid point with a value of zero for all latitudes would result in a small spline
representation. Consequently, we store the tuples containing the knots, coefficients and
degree as objects within our NumPy array.

▶ Optical Flow To determine the optical flow between two Shadow Maps, we utilize
the OpenCV library. It contains a broad range of algorithms for visual computing tasks
and provides an interface for the underlying C++ implementations [9]. Specifically,
we utilize the calcOpticalFlowFarneback method that implements Gunnar Farneback’s
algorithm for dense optical flow of two single-channel images. The algorithm approx-
imates the neighborhood of the two images with quadratic polynomials and examines
how these polynomials change under translation. By observing the polynomial transfor-
mations, the algorithm estimates the displacement fields, which represent the motion of
each pixel between the two frames [15].

▶ GAN For the Generative Adverserial Network (GAN), comprising the generator and
discriminator, or alternatively critic for the WGAN, we utilize the Keras interface to
define the architecture and loss functions. The flexibility of the Keras interface enables
us to perform experiments with different layer configurations, activation functions, and
optimization strategies. In the backend, we use Tensorflow, providing efficient data
structures, fast implementations of various optimizers and GPU-support [30].

▶ Continuous Shadow Flicker We use the computer algebra system SageMath, built
on top of Python, to generate the continuous shadow cast function from the various
components [39]. We define the individual functions using symbolic variables and join
them to the overall function d. SageMath simplifies the function and outputs the result
as a string. We could use SageMath’s very powerful numerical root solvers. However,
evaluating each function query with symbolic variables causes an immense computational
overhead. Hence, we utilize the returned function string, manually change some minor
aspects of notation, and insert it into the source code to create an executable Python
function. We JIT-compile this code to generate a fast callable function.
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5 Validation & Case Study

In this section, we validate the results of our approximation method against the already
existing implementation of the SF simulation. We assume the correctness of the project’s
implementation of the ray backtracing in Section 1.1.2 and the estimation of SF dura-
tion, as described in Section 1.1.1. We looked at the possible sources of inaccuracies
that might cause us to over- or underestimate the SF exposure for a single receiver. In
particular, we examined the error of interpolating SF duration within shadow maps, the
aggregation of SF duration when considering multiple turbines, the estimation of the
maximum daily SF for multiple turbines, and the suitability of the alternative methods
to generate shadow maps more efficiently.

We utilized a Vestas V80-2.0MW wind turbine with a hub height of 100m and rotor
diameter of 80m, similar to the validation approach by Rácz [37]. Further, aligning with
German regulations, we disregarded SF exposure for instances with the solar elevation
angle lower than 3 degrees, as outlined in Section 3.

5.1 Test Sites

Depending on the phenomena studied, we used terrains with varying properties, partic-
ularly the intensity of variations in surface elevation. For a single turbine, we position
it at the center of the terrain segment. When simulating multiple turbines, we select
terrain dimensions such that each turbine is at least half the maximum shadow distance,
as defined in Section 2.1, far from the boundaries. We utilized terrain segments based
on geographical data at the geodetic coordinates 50.86187◦N, 6.085465◦E.

Figure 16: Surface contour of elevations within the coordinates 50.80721◦N to
50.91653◦N and 6.0065◦E to 6.16443◦E, encompassing the city Herzogenrath.
The plot was generated using [45]. Dimensions are approximately 11−12km.
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To examine errors caused by height differences between emitter and receiver, we utilize
the rough terrains in Figure 17. Both are sampled from the area in Figure 16 to rep-
resent a typical surface structure. The first terrain exhibits deviations of ±65 meters
in elevation. The second terrain has a rougher surface structure with deviations of ±80
meters in elevation. Whenever the elevation is irrelevant, or we compare the magnitude
of the error when including or disregarding the ground elevation, we utilize a flat terrain
with a constant elevation of 0 meters at all positions.

(a) Flat Terrain (b) Realistic Terrain 1 (c) Realistic Terrain 2

Figure 17: Terrain profiles used for validation. The realistic terrain maps are both sam-
pled from the geographic area shown in Figure 16. Dimensions are 3 kilome-
ters on both axes.

If not stated otherwise, we validate using a shadow map with a horizontal resolution
of 0.1 simulation points per meter on the horizontal axis and 0.1 simulation points per
meter vertically. The highest layer is approximately 100 meters above ground height,
and the lowest layer is approximately 100 meters below the ground.

5.2 Discretization Error

When we utilize a shadow map to estimate the SF exposure of a receiver relative to
a single wind turbine, as described in Section 3, the projected position of the receiver
within the map is likely not within the discrete set of grid points12. With our approach,
we look up the nearest grid points and perform a tri-linear interpolation. This causes
an error dependent on the resolution of the shadow map and the abruptness of changes
in SF exposure for adjacent positions.

To evaluate the severity of this error, we ran two validation approaches. First, we uti-
lized a three-dimensional grid with the same dimensions as our shadow map. For every
cuboid formed by eight adjacent grid points of the test grid, we randomly chose a posi-
tion within that cuboid. We used tri-linear interpolation to determine the SF for that
position and, conversely, computed the actual SF exposure using ray backtracing. This
ensures that we account for variations across the entire map, including extreme differ-
ences in elevation. We determined the average error for various resolutions of shadow

12In a dense coordinate space, the probability of randomly choosing a point that is within a discrete
set of points is zero because they occupy no measurable area.
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maps, as shown in Table 1. With a higher resolution, the average error considering all
grid cells decreases. Furthermore, the error is highest in the vicinity of the turbine where
we usually find no residential buildings, as indicated in Figure 18.

As a second approach, we used the terrains shown in Figure 17. We randomly selected
points on the horizontal plane and determined their elevation from the terrain map.
Similar to the first approach, we approximated the SF using tri-linear interpolation and
compared it to the actual SF obtained via ray backtracing. We calculated the relative
error by finding the absolute difference between the estimated and actual SF durations,
summed over all points, and divided by the total actual SF.

Table 1: Average relative and absolute errors for annual SF approximation using different
grid resolutions. Resolutions are given in simulation points per meter.

Vertical & Horizontal Res. ( 1
m
) Avg. Rel. Error (%) Avg. Error (min)

1/15 4.6728064 14.0679

1/10 3.0273383 8.9183

1/8 2.2420904 7.2906

1/7 2.1577294 6.4439

Table 2: Average relative and absolute errors for annual SF approximation regarding the
terrains in Figure 17.

Error Metric Flat Terrain Realistic Terrain 1 Realistic Terrain 2

Avg. Abs. Error (min) 8.1399 7.6006 6.5744

Avg. Rel. Error (%) 3.2139 2.5405 2.4181

(a) Flat Terrain (b) Realistic Terrain 1 (c) Realistic Terrain 2

Figure 18: Absolute deviation (min) of approximated annual SF from actual SF exposure
regarding different terrains from Figure 17.
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5.3 Additive Method Error

Potential inaccuracies arise when we aggregate the interpolated SF regarding a single
receiver and multiple turbines, as described in Section 3. For a specific solar position,
a receiver is either affected by SF or not, irrespective of the number of turbines con-
tributing to the effect. Our method assumes that a receiver only experiences SF from
one turbine simultaneously. Whenever this assumption is violated, an error occurs. This
error is most likely to occur when turbines are positioned very closely together, and the
sun is low in the sky, resulting in extended shadows. In practice, turbine placements
are usually three to nine times the rotor diameter apart [19]. Under such conditions,
the error of the annual SF duration is minimal. Regarding only this error, our method
overapproximates the duration of SF.

We utilized two exemplary wind farm layouts to demonstrate the error. We aligned
our shadow map with the positions where we examined the SF duration to avoid an
additional interpolation error, as explored in Section 5.2.

(a) Scenario 1 with distances of ap-
prox. 1600 to 2000 meters.

(b) Scenario 2 with distances of ap-
prox. 200 to 400 meters.

Figure 19: Additive method error of annual SF under different turbine spac-
ing scenarios. Scenario one (a) and Scenario two (b) demonstrate
the small error, as described in Table 3.

Table 3: Average absolute and relative deviation caused by the additive method error
for turbine layout scenarios in Figure 19.

Error Metric Scenario 1 (realistic) Scenario 2 (narrow)

Average Absolute Error (min) 0 16.88

Average Relative Error (%) 0.00 2.5272

We utilize two exemplary wind farm layouts to demonstrate the error. We align our
shadow map with the positions where we examine the SF duration to avoid an addi-
tional interpolation error, as explored in Section 5.2.

31



If two turbines are placed next to each other, the method error can emerge along the axis
that directly connects the two turbines. This stands because when the solar azimuth
aligns with this axis, the shadow from one turbine potentially overlaps and intersects
with the shadow from the other turbine. Further, there is a margin around this hypo-
thetical axis that is determined by the distance between the turbines and the potential
length of the shadows in that direction, which occur when the sun is low in the sky.

Our findings indicate that the error of aggregating the annual SF for multiple turbines
is not existent or negligible in realistic scenarios. In scenarios where wind turbines are
positioned very closely, as shown in Figure 19b, the error is manageable with 2.5272%.
Regarding the maximum daily SF duration, the error should not differ from the annual
SF. However, when aggregating the maximum daily SF duration as a single value, we
introduce large inaccuracies, as described in Section 5.4.

5.4 Maximum Daily Aggregation

In Section 2.3, we describe the concept of daily shadow maps that encompass an ad-
ditional temporal axis, allowing us to obtain more precise results when computing the
maximum daily SF for a receiver regarding multiple turbines.

We illustrate the error using an example wind farm layout with reasonably spaced tur-
bines. The area significantly impacted by maximum daily SF is much larger in com-
parison to the annual SF. This leads to more intersections and thus widespread errors.
Maximum daily SF affects a larger area since it doesn’t vary much between frequently
and infrequently shadowed areas throughout the year. Figure 20 displays the area cov-
ered by maximum daily SF and the corresponding error. We utilize the same definition
of the relative error as in Section 5.2.

(a) Accurate maximum daily SF for
three turbines.

(b) Difference of actual max. daily SF
and aggregated values.

Figure 20: The aggregation of the maximum daily SF causes an avg. relative
error of 9.9033% and avg. absolute error of 2.112 minutes. Di-
mensions are in meters.
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Due to the high additional relative error of 9.9033%, as shown in Figure 20, we do not
recommend to aggregate maximum daily SF values of multiple turbines. However, the
error vanishes with our alternative map architecture, as outlined in Section 2.3. With
the alternative architecture, the maximum SF exposure can still be affected by the errors
described in Section 5.2 and Section 5.3.

5.5 Map Interpolation & Symmetries

We introduced several methods to efficiently derive shadow maps without computing
the SF for each grid cell, as described in Section 3. Our goal is to evaluate how much
these inferred shadow maps deviate from the actual ones to determine which approaches
are suitable in realistic scenarios.

Weighted Mean

To estimate shadow maps between latitude steps, we used a weighted mean for each
grid point independently, as detailed in Section 3.1. This simple method doesn’t ac-
count for spatial relationships like adjacent grid points or changes in SF patterns across
latitudes. To validate, we utilized the shadow maps from 90◦N to 90◦S in integer steps
and determined the map at x using weighted mean with the maps from x− 1 and x+1.
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Figure 21: Relative error in annual SF when utilizing weighted mean between maps at
latitude x− 1 and x+ 1 to compute shadow map for latitude x.

We computed the relative error by subtracting the generated map from the actual map,
summing the absolute differences, and dividing by the sum of the actual map at latitude
x. We can significantly reduce the error by choosing a smaller step size between the
shadow map samples. In practice, we can increase the sampling distance for intervals of
latitudes with greater relevance.

In Figure 21, we can see that the error differs between distinct intervals of latitude.
In proximity to the poles, the error is low. Around latitudes 70◦N and 70◦S, the error
peaks and decreases when moving closer to the equator. Overall, the error ranges from
approximately 2% up to 5%. If we require precise shadow maps for latitudes higher than
50◦N and 50◦S, we can increase the sampling distance for these regions to decrease the
error when interpolating.
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Polynomial Fitting & Spline Interpolation

In Section 3.3.1, we fitted high-degree polynomials to model the SF exposure of each
grid point as a function of latitude. Alternatively, in Section 3.3.2, we utilized spline
interpolation to avoid Runge’s phenomenon. With these two approaches, we intended to
minimize storage by avoiding the need to store shadow maps for multiple latitude steps.
However, neither approach can represent the shadow maps used as training data without
introducing inaccuracies based on the degree of the polynomials or the smoothing factor
for the spline representations. To validate the severity of the added inaccuracies, we ap-
plied both methods with shadow map samples at even latitude steps between 90◦N and
90◦S as training data. Further, we derived shadow maps at all integer latitude steps and
compared them with the actual shadow maps for the respective latitudes. We utilized
different degrees and smoothing factors to demonstrate the development of the errors
and the trade-off between accuracy and dimension, as shown in Table 5 and Table 6.

This trade-off between the dimension of the map of polynomials and the accuracy of the
derived shadow maps, as shown in Table 5, is characterized by the degree and the error
metrics. Storing a shadow map that utilizes polynomials with degree d to describe SF
as a function of latitude for each grid point is comparable to storing shadow maps for d
latitudes when comparing the spatial requirements. We cannot describe the relationship
as easily for the spline interpolation since the returned spline representation depends
on the complexity of the underlying function in combination with the smoothing factor.
However, a significant advantage is that we describe cells that constantly experience no
SF with very simple spline interpolations. Contrarily, we would fit a high-degree poly-
nomial for these cases, irrespective of the function’s complexity.

The error in Table 5 grows smaller as the degree increases. However, this trend gets
increasingly slower considering the average and the maximum error. Overall, we do
not recommend using polynomials to derive shadow maps. To reduce the error to a
reasonable level, we require polynomials with a substantially high degree, defeating the
purpose of reducing storage. On the other hand, spline interpolation seems to be a more
suitable alternative. The error is generally much lower in comparison to the polynomial
approach, as shown in Table 6. Further, the error only marginally increases as we choose
a higher smoothing factor.

Table 4: Computing time of a shadow map with horizontal dimensions of 3km
and −100m to 100m vertically.

Resolution ( 1
m
) Computation [sec] Polynomial Evaluation [sec]

1/25 5781 2.434

1/50 849 0.871
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Table 5: Average and maximum relative error percentages for polynomial
fitting with varying degrees. Higher-degree polynomials provide a
closer fit to the shadow map data, reducing both the average and
maximum relative errors. However, the rate of error reduction di-
minishes at higher degrees.

Relative Error (%)

Degree Average Maximum Minimum

5 28.9697 35.1406 11.3409

8 23.5409 30.0814 7.5750

10 19.4858 23.1586 7.5575

11 18.5317 22.6815 4.6813

14 14.9567 18.7149 4.8915

15 14.4683 18.5205 4.8581

25 9.0379 11.7616 3.1140

30 7.5702 10.2662 2.6355

35 6.2874 8.4338 1.8340

Table 6: Relative error metrics for spline interpolation with varying smooth-
ing factors. Mere interpolation has the smallest error. The error
decreases as the smoothing factor increases up to a certain point.

Relative Error (%)

Smoothing Factor Average Maximum Minimum

0 (Interpolation) 1.0645 2.1847 0.0000

50 2.6269 8.1133 0.0801

75 1.1738 2.4465 0.0935

100 1.1356 2.2193 0.1056

150 1.1384 2.2044 0.1266

200 1.1481 2.2069 0.1423
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Accuracy of Symmetries

In Section 3.2, we examined assumed symmetries within shadow maps or their samples
across latitudes. These symmetries, while useful for reducing computations and storage,
introduce errors due to their imperfectness. We aim to quantify the difference between
the reconstructed and actual shadow maps.

▶ East-West Symmetry For the east-west symmetry, we assumed a mirrored SF pattern
along the north-south axis in the middle of our shadow maps. As shown in Figure 22, we
computed the difference between both halves of a shadow map considering the annual
and maximum daily SF.

(a) Annual SF for 45◦S (b) Annual Difference (c) Max. Daily Difference

Figure 22: Reducing spatial complexity in shadow maps by exploiting sunrise-sunset
symmetry halves storage needs while preserving essential data. Relative er-
rors are 2.562% annually and 4.585% daily, given a map for 45◦S with a
resolution of three meters and time steps of 10 minutes.

To compute the error between the constructed shadow map, utilizing symmetry, and
the original map, we first subtract the original map from the constructed map and take
the absolute value. We then sum the absolute differences across all cells and divide by
the sum of the original matrix, yielding a relative error of 2.562% for the annual SF and
4.585% for the maximum daily SF, as show in Figure 22. Alternatively, by dividing the
sum of absolute differences by the number of cells, we obtain the average deviation of
0.3592 minutes for the maximum daily shadow flicker and 6.5854 minutes annually.

▶ Equatorial Symmetry We assumed a symmetry between samples of shadow maps
along the equator such that shadow maps at x◦N are identical to those mirrored at x◦S.
We show that this assumed equatorial symmetry in Section 3.2 is not fit for use. Given
samples of shadow maps for latitude steps of one, we compared the differences between
shadow maps at x◦N and x◦S for all integer steps of latitude. We used maps with a
resolution of approximately 0.07 simulation points meters on the horizontal axes. Fur-
thermore, we validated the annual SF at ground height with 0 meters.
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To measure the relative difference, we subtracted both maps cell-wise, took the sum
of the absolute values, and divided them by sum of the SF values from the respective
map in the northern hemisphere. For all samples, the deviation ranges from 6.4319% to
7.9536% with an average of 7.1598%.
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Figure 23: Comparing hemispheric differences under equatorial symmetry assumptions.

In paragraph 3.2, we elaborated on a possible reason for the imperfectness of this assumed
symmetry, causing the high error. Consequently, we do not recommend to use this
symmetry to reduce the dimension of shadow maps.

5.6 Case Study Herzogenrath

To illustrate the error of our approximation approach in a realistic setting, we demon-
strate the computation of SF for a wind farm layout and multiple receivers using the
geographical information of the German city Herzogenrath. We simulate the SF regard-
ing four wind turbines and 10236 receivers. We presume a wind farm layout, as shown
in Figure 24b, and compute the SF exposure for the receivers marked in Figure 24c. We
compute the SF using a shadow map with 1

7
grid points per meter on all axes, conversely,

ray backtracing for the individual positions with the exact solar position.

(a) Terrain (b) Wind Farm Layout (c) Receivers

Figure 24: Realistic wind farm layout showing terrain and building data for the German
city Herzogenrath. Dimensions are in meters.
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In Figure 25, we show that we can approximate the SF for a large set of receivers with
only a negligible additional error in a realistic setting. In our example, we get an average
error of approximately 2.2467% regarding the total exposure of SF for all receivers.

(a) Approximation (b) Actual SF (c) Difference

Figure 25: Approximated and actual duration of SF exposure for the wind farm layout
in Figure 24. The additional relative error is 2.2467%.

▶ Performance On a 3.2Ghz ARM-based CPU with eight cores, the approximation of
the annual SF regarding the four turbines and 10236 receivers takes approximately 1.72
seconds. If we compute the actual SF with a sampling frequency of 10 minutes for the
solar position, we require approximately 694.50 seconds on the same system with our cur-
rent implementation. Hence, our approach accelerates the SF computations significantly.

We assume a similar computational performance of our approach with the maximum
daily SF. We can disregard the error of aggregating maximum daily SF as single values
if we utilize the shadow map architecture in Section 2.3. Furthermore, there are no
differences in the likelihood of discretization and method error. Subsequently, we assume
a similar error for the maximum daily SF.
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Conclusion and Outlook

As this work’s principal achievement, we introduced a new algorithm for estimating SF
exposure using three-dimensional lookup tables in Section 2. We can estimate SF for
a receiver regarding a single turbine or a wind farm encompassing multiple turbines.
The novel approach enables us to, e.g., include SF more efficiently in optimizing and
generating wind farm layouts. We have shown in Section 5.2 that our approach yields
no or negligible method errors in realistic layouts. Further, the discretization error can
be reduced using shadow maps with higher resolutions. Due to the high computational
efficiency of our approach, we can compute the SF exposure for a large number of re-
ceivers instead of a reduced set of representative receivers. Moreover, we have pursued
multiple approaches in Section 3 that allow us to infer shadow maps for arbitrary lati-
tudes without the need to compute SF exposure for each grid point individually. This
makes the estimation of SF even further feasible and prevents extensive computational
overhead. Additionally, we examined the spatial properties of our shadow maps and
deemed an approximate symmetry along the north-south axis suitable to reduce the
memory requirements of shadow map samples.

Future Work

More research needs to be done concerning different methods to incorporate SF in the
optimization and, consequently, the trade-off between losses in AEP13 and keeping SF
emissions as low as possible. To achieve that, we require fast computations of SF, both
the annual and the maximum daily exposure. In the following, we broach relevant fields
where we deem a need for further research.

We utilize the method in Section 1.1.2 to compute a shadow map. Hence, for each grid
cell, we check whether SF occurs for every solar position sample. Given the solar posi-
tion, we could significantly accelerate the computations by selecting cells as candidates
when they lie in an area that qualifies for shadowing. After selecting the candidates,
we could precisely check for SF using ray backtracing. We suggest further research
incorporating this candidate preselection but also regards differences in elevation and
subsequently does not introduce a new source of inaccuracy.

In Section 2.3, we describe an alternative architecture for shadow maps that incorporate
an additional temporal axis to avoid errors when aggregating maximum daily SF for
multiple turbines. However, this method significantly expands the dimensions of our
shadow map. We suggest further research to find a better trade-off between accuracy,
spatial, and computational complexity of estimating the maximum daily SF.

Due to the high computational complexity of precomputing shadow maps, we were
merely able to generate shadow maps with a resolution of 1

7
grid points per meter in all

13Annual Energy Production (AEP) is the total amount of produced energy of a wind farm.
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dimensions. Consequently, we propose further simulations to determine the discretiza-
tion error of high-resolution shadow maps.

Computing the exact SF exposure remains computationally inefficient, especially with
a high sampling resolution of the solar position. Conversely, small deviations due to
the discreteness can accumulate over a year with a lower sampling resolution, leading
to potential misestimations about whether a turbine exceeds SF limits. As a potential
solution to that problem, we have broached a continuous approach to compute SF in
Section 3.4 that is independent of the sampling resolution. We suggest more research in
that direction to make SF computations more efficient and precise at the same time.

We utilized different approaches, such as polynomial curve fitting and spline interpola-
tion on the individual grid points, and generating an entire shadow map using a genera-
tive neural network to make the computation of shadow maps more feasible and avoid a
significant computational overhead. For the neural network, we suggest hyperparameter
optimization and experimentation with different architectures and parameters to reach
the full potential of this method. Additionally, we propose further research on alterna-
tive methods that might capture the spatial transformation of the SF patterns between
different latitudes in a better and more direct manner.
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