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1 Introduction
As the impacts of climate change become increasingly apparent, renewable energy
sources have taken on greater significance than ever before. In Germany, 50 % of elec-
trical energy is currently generated from renewable sources, with the target to increase
this figure to 80 % by 20301.
However, several challenges must be addressed to achieve this goal. One major concern
is the intermittency of most renewable energy sources. To overcome this issue, cen-
tral receiver systems (CRS) offer a promising solution for storing thermal energy and
generating electricity even on cloudy days or at night. CRS technology uses mirrors
mounted on heliostats that reflect sunlight onto a receiver, as depicted in Figure 1,
which shows the Gemasolar plant in Spain with its 2650 heliostats. The concentrated
radiation heats a liquid, causing it to boil water and power an electricity-generating
turbine. The liquid can also directly be used in industrial processes.
The design and construction of such systems is a complex and costly process. Multiple
factors (e.g. location and weather) can significantly impact the plant’s efficiency, em-
phasizing the importance of accurate energy production simulation and optimization,
before its implementation. Optimizing a new CRS upfront is significantly more cost-
efficient than attempting to fix issues after construction. However, this process relies
on an accurate physical model that accounts for all relevant variables. Moreover, due
to the numerous variants of CRS that are typically tested during optimization, the
models must also be computationally efficient. Substantial advancements have been
made in the research of modeling and optimizating aspects of CRS design, ensuring a
more accurate and effective approach to this complex process.

Figure 1: Central Receiver System “Gemasolar” in Seville, Spain. The power plant
uses a single cylindric external receiver and 2650 heliostats. Taken from [6].

1https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien.html

1

https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien.html


1.1 Motivation
The requirements for central receiver systems (CRS) have changed in recent years2.
Most CRS have been built to last for decades in the same space, producing renewable
energy during their lifetime. This requires extensive landscaping and high initial de-
velopment costs. For temporary installations (e.g. a mine) that require large amounts
of heat or electricity, transporting this power to the site can be challenging. A new
approach is a mobile central receiver system (mCRS). This kind of system also con-
sists of receivers and heliostats like conventional CRS, but focuses on flexibility. Power
plants can be relocated without much effort to meet the local energy demand that is
only present for a limited time. These heliostats are called Tilt-and-Roll heliostats
(T&R) and are no longer big structures mounted into the ground with huge filaments
made of concrete, but rather small mirrors that are placed on the surface. This al-
lows mCRS to be redeployed to different locations where a renewable source of heat is
needed.
The heliostats used by mCRS are much smaller and lighter compared to conventional
heliostats. They also incorporate different shapes and mounting mechanisms, resulting
in new rotational axes. This changes the behavior of tracking algorithms used for these
heliostats. Tracking algorithms determine the angle at which the heliostat is aligned
with the sun and receiver to properly reflect sun rays. The mirrors are smaller and
inexpensive compared to heliostats in CRS.
Existing simulation tools only consider CRS and do not allow the simulation of Tilt-
and-Roll heliostats. Simulation tools can significantly reduce the cost and time it takes
to develop mCRS. We need to extend the existing heliostat model to be able to create
a digital twin of the Tilt-and-Roll heliostat used in mCRS. Rather than implementing
the exact heliostat shape, we opt for a flexible approach by allowing to define heliostat
facets as irregular polygons. This will enable easy testing of new shapes without a
need for additional programming. Another feature required for the simulation of Tilt-
and-Roll heliostats is the option to configure blind facets. Such facets do not reflect
any sunlight as they are not made of a reflective surface, but rather miscellaneous
objects such as servo motors or other mounting equipment. We opt to implement a
configurable reflectivity for each facet that can be set to zero to disable ray generation
for that facet.

1.2 Related Work
The original SunFlower ray tracer was introduced by Richter et al. in 2007 [19]. It
implements simulation and optimization tooling for the development of CRS. Simula-
tion considers the annual optical output of the complete power plant. There is also
the option to configure non-optical aspects of the CRS like electricity or heat produc-
tion. An in-depth overview is given by Hövelmann [13]. We will focus on the optical
model of the simulation. Optimization of CRS was implemented by Fischer [10] and
overhauled by Hövelmann [13]. The simulation of SunFlower uses bi-directional ray

2https://www.heliogen.com/technology/#heliostats-pg
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tracing with an analytic or Monte Carlo approach.
There exist other Monte Carlo ray tracers for CRS. We differentiate between forward
tracing and bi-directional tracing. Forward tracing generates rays on a plane above
the power plant site mimicking the sun. These rays are then traced and checked if
they hit a heliostat. Bi-directional tracing generates rays on the mirror surface and
traces them towards the sun and towards the receiver. Tonatiuh [4], MIRVAL [16] and
SolTrace [23] are forward tracing Monte Carlo ray tracers. STRAL [2] and TieSol [14]
are successors to the former and utilize bi-directional ray tracing. Due to the nature of
Monte Carlo simulations, the run time of such ray tracers is much higher than those of
analytic approaches. To improve the run time of Monte Carlo ray tracers, GPU imple-
mentations were introduced. The initial GPU realization for SunFlower was done by
Aldenhoff [1] and improved by Hövelmann [13]. TieSol [14] also uses GPUs to speed up
the simulation. Other GPU-based ray tracers include sbpRAY [11] and QMCRT [7].
All of the existing CRS simulation tools can only simulate azimuth-elevation tracking
heliostats, but not Tilt-and-Roll heliostats.

1.3 Contribution
The development of CRS and mCRS is a time and cost-intensive process. To facil-
itate this process, digital simulation can be used. In this thesis, we introduce new
functionality to enable the simulation and optimization of mCRS using Tilt-and-Roll
heliostats. To do so, the option to use irregular polygons is implemented. This is
a flexible approach to enable fast-paced development of mCRS without the need for
new programming. Furthermore, we introduce a novel algorithm that solves the ad-
ditional requirements by Tilt-and-Roll heliostats. The AABB tree, used extensively
during simulation, is adjusted to support both heliostat types. The measurement-
driven approach further increases the accuracy of simulations by using a scan of an
actual heliostat.

1.4 Outline of this Work
In this thesis, we mainly consider the optical model of (m)CRS. The aspects of the
optical model without heliostats will be described in Section 2. We will touch on
the different receiver types, environmental influences and sun shapes. In Section 3,
we follow up by introducing two heliostat models, an azimuth-elevation tracking and
a Tilt-and-Roll heliostat. For these models, we show different aiming strategies and
tracking algorithms. An explanation of relevant parts of the ray tracers is given in
Section 4. This includes the analytic and Monte Carlo ray tracer, AABB trees and
measurement-driven simulation. To validate our findings, we discuss multiple case
studies in Section 5. This includes the correctness and performance of our implemen-
tation. A final summary of our findings is given in Section 6.
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2 Optical Model
The optical model consists of various aspects and allocates the most computation
time for a simulation of central receiver systems. It is comprised of a predefined area
in which all heliostats are located, a receiver, on which all heliostats project solar
radiation and heliostats which consist of large mirror areas to project sunlight onto
the receiver. The location and environment of the CRS play an important role as it
determines the position and intensity of the sun. Molecules in the air and shading or
blocking by other heliostats can reduce the efficiency of one heliostat and introduce
optical losses. Multiple sun shapes are used to approximate the sun. We will discuss
the heliostat model in detail in Section 3.

Environmental Influences The location of the CRS can be defined by multiple pa-
rameters. These include the boundaries of the site and restricted areas within this site.
This is especially useful for the optimization of heliostat layouts.
All objects are placed according to a Cartesian coordinate system with positive x
pointing toward the east, positive y pointing towards the north and positive z pointing
towards the sky. The topography can be generated using data from the Space Shuttle
Radar Topography Mission [9]. The sun vector needed for simulation can be computed
using the sun’s azimuth γsolar and altitude angle θsolar as follows:

󰂓τsolar =

󰀳

󰁅󰁃
sin (−γsolar) · (− cos (θsolar))

cos (−γsolar) · cos (θsolar)
sin (θsolar)

󰀴

󰁆󰁄 . (1)

In addition, direct solar irradiation IDNI [3] can be calculated directly using the Me-
teorological Radiation Model (MRM) [15].

Receiver Receivers are towers with receiver panels mounted at the top to collect the
projected solar radiation (flux) by the heliostat and convert it into heat. To reduce
the shading and blocking effect of heliostats with other heliostats, the towers have a
predefined height. There are different types of receivers used in CRS, we differentiate
between the following three. A flat tilted receiver (Figure 2a) is defined by a tilted
rectangular receiver panel mounted at the top of the tower. A cylindric cavity receiver
(Figure 2b) is recessed into the tower. This optimizes the incoming angle of sun
rays. Cylindric external receivers (Figure 2c), like the one used in Gemasolar [6], wrap
around the top of the tower and can collect solar radiation from all directions.

Optical Losses There are different sources for the loss of solar radiation. We will
discuss some of them in the following.
The cosine effect is a result of the alignment of the heliostat to reflect sun rays onto
the receiver panel. As the heliostat is rotated and tilted, the area perpendicular to
the sun vector is reduced by the cosine efficiency. 󰂓τsolar describes the sun vector and 󰂓n
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(c) Cylindric external receiver

Figure 2: Common receiver types available in central receiver systems. Taken from [13].

the normal vector of the heliostat or respective facet. All vectors are normalized. The
calculation is as follows:

ηcos = 󰂓τsolar · 󰂓n. (2)

A major impact on the efficiency of a CRS can be attributed to shading and blocking.
Each heliostat can throw shade on other heliostats or block a reflected ray of another
heliostat. In addition, the tower can also throw shade onto heliostats depending on the
sun’s position. For cavity receivers, rays can be blocked by the ledge of the indentation.
The calculation of shading and blocking is the most computationally intensive part of
simulating a CRS in SunFlower.
Each heliostat that reflects solar radiation will also absorb a part of the radiation and is
subject to diffuse reflection that does not hit the intended receiver panel. In literature,
this is often modeled by a constant value [18]. We use a configurable reflectivity value
for each facet.
Another loss can be attributed to atmospheric attenuation. This is the result of
sun rays interacting with molecules in the air and thus a reduction in solar radiation.
We derive the atmospheric attenuation using a formula from Schmitz et al. [21] in
which d describes the distance between heliostat and receiver. The formula reads as
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follows:

ηaa =

󰀻
󰀿

󰀽
0.99321 − 1.176 · 10−4 · d + 1.97 · 10−8 · d2 , d ≤ 1000 m
exp(−1.106 · 10−4 · d) , d > 1000 m

. (3)

Determining the ideal reflected ray during a simulation is not a difficult task. This
will be shown in Algorithm 1. In practice, however, there are several possible errors
involved in aligning the heliostat according to the actual sun position and receiver.
The larger the distance between the receiver and the heliostat, the bigger the impact
of the alignment error. We differentiate between two errors: the horizontal and vertical
tracking errors. Both errors are modeled using Gaussian distributions [13, 20].

Sun Shapes The sun can be represented using different sun shapes. SunFlower
currently supports four distributions [13]: Gaussian, Buie, Pillbox and custom. All
sun shapes modify the sun vector which is static otherwise. An extensive overview of
the different implementations is given by Hövelmann [13].
All aspects described until now will influence the result of the ray tracer. In the next
Section, we will describe the last part of the ray tracer, the heliostat model.

3 Heliostat Model
In the previous section, we introduced many aspects of the optical model for the
simulation of CRS. In this section, the most important part of the optical model,
heliostats, is discussed. First, we describe conventional, azimuth-elevation tracking
heliostats and their rotational properties. We continue with the Tilt-and-Roll heliostat,
describing its similarities and differences with azimuth-elevation tracking heliostats.
After that, we explain aiming strategies for the different receiver types. This will be
important when we introduce the tracking algorithm for both heliostat types.

3.1 Azimuth-Elevation Tracking Heliostats
Azimuth-elevation tracking heliostat models consist of several facets. Each facet is a
reflective area with the form of a rectangle like in the Gemasolar Power Plant [6]. These
facets can be mounted in different patterns. Each heliostat includes (servo) motors to
control each axis and align the heliostat with the sun and the receiver according to the
aiming strategy (see Section 3.4). [17]
In Gemasolar [6] each heliostat consists of a grid with 5 rows and 7 columns of rect-
angular facets with a gap of 0.04 m. Each facet has a width of 1.36 m and a height of
2.43 m. The heliostat is mounted on a horizontal bar which itself is mounted centered
on a pedestal. In Figure 3a, we can see a heliostat using a single large facet for easier
perception. Rotating along the orange axis enables the facet to be aligned with the
elevation of the sun, while the red axis is used to track the azimuth.

6



M

(a) Rotational axes of an azimuth-elevation
tracking heliostat. The red axis allows
tracking of the azimuth. The orange axis
enables alignment with the elevation of the
sun.

(b) Maximum expansion of an azimuth-
elevation tracking heliostat in both rota-
tional axes. Taken from [22].

Figure 3: Model of an azimuth-elevation tracking heliostat with one facet (marked in
dark blue) and a pedestal (marked in gray).

3.2 Tilt-and-Roll Heliostats
In contrast to conventional azimuth-elevation tracking heliostats, Tilt-and-Roll he-
liostats consist of only one reflective facet [22]. This facet is relatively small and uses
an inexpensive mirror to reduce the initial cost. The rotational axes of these heliostats
differ from those found in traditional azimuth-elevation tracking systems. In Figure 4a
we can see the told axis colored in orange and the roll axis in red. The mounting point
of the heliostat is at M of Figure 4a. The center of the heliostat facet which should
be perfectly aligned with the receiver is denoted with R. We will discuss the tracking
algorithm required for Tilt-and-Roll heliostats in Section 3.5. The bounding box is
shown in Figure 4b. There we can see a side view and a front view.
In the side view, the orange area denotes the bounding box. The dark blue line shows
an example position of the facet. The rotational range of the tilt axis is marked in red.
The extension of the bounding box results from turning the facet along the roll axis.
The front view shows the facet in the center as it is aligned with the horizon. If we
tilt back the facet, it becomes ever smaller until it cannot be seen from the front.
The bottom orange part of the bounding box is a result of the facet being tilted back
completely and then rotating the facet along the roll axis.
In Figure 5b, the top-down view of a potential heliostat field with 16 heliostats is
shown.
Depending on the location of the CRS, the availability of space can be a limiting factor.
In most CRS, the location is chosen to provide enough space for the desired amount
of heliostats. In most cases, this is far away from urban centers. [22]
With mCRS the aspect of space plays a much more important role as the location is not

7



R

M

(a) Rotational axes of a Tilt-and-Roll helio-
stat. The red axis is used to roll the facet.
The orange axis is used to tilt back the
facet. The yellow box represents a miscel-
laneous object.

M M

Front viewSide view
(b) Bounding box of a Tilt-and-Roll heliostat.

On the left, we can see the side view with
the bounding box marked in orange and an
example position of the facet in dark blue.
On the right, the front view is depicted.
In the center, we can see the facet marked
in dark blue. Above and below the facet,
the bounding box is denoted in orange. In
both views, the mounting point is labeled
M.

Figure 4: Model of Tilt-and-Roll heliostat and the corresponding bounding box with
one facet (marked in dark blue) and a pedestal (marked in gray).
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(a) Ground coverage of azimuth-elevation

tracking heliostats. This is a top-down
view of closely packed heliostats. Each
heliostat is aligned parallel to the ground
with the bounding box drawn around it.
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(b) Ground coverage of Tilt-and-Roll he-
liostats. This is a top-down view of closely
packed heliostats. Each heliostat is aligned
parallel to the ground. Point M marks the
mounting point of the facet and pedestal.
The facet is colored dark blue and the ad-
ditional bounding box area is marked with
orange.

Figure 5: Comparison of ground coverage of azimuth-elevation tracking and Tilt-and-
Roll heliostats.

specified by the best location in terms of available space and sunlight, but rather by the
deployment which it is meant to supply with power or heat (e.g. a mine). The ground
coverage of a heliostat model describes its space efficiency concerning the maximum ex-
pansion in all rotational axes. We can determine the expansion by rotating the heliostat
in both rotational axes, creating a bounding box. For an azimuth-elevation tracking
heliostat, this can be seen in Figure 3b. The bounding box of azimuth-elevation track-
ing heliostats requires that all heliostats be placed at a significant distance from each
other. This results in a low ground coverage of azimuth-elevation tracking heliostats.
Tilt-and-Roll heliostats improve upon this problem by using different rotation axes,
thus increasing the ground coverage. This makes Tilt-and-Roll heliostats well-suited
for usage in mCRS.

3.3 Coordinate Systems
We use multiple coordinate systems with different alignments and origins to model all
aspects of a heliostat. All coordinate systems use meters as the unit of length (one unit
in the coordinate system is equal to one meter in the real world). First, we have the
global coordinate system that is used to define the position of the receiver tower and
each heliostat. Then, each heliostat has a coordinate system that is used to determine
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the position of each facet in relation to the heliostat. Finally, each facet also has its
own coordinate system to determine the position of each piece of the facet. Pieces are
described in Section 4.4. To allow the projection of points from one coordinate system
to another, we use two vectors that show the direction of the relative x axis 󰂓ax and
relative y axis 󰂓ay respectively. The normal vector 󰂓n can be calculated using the cross
product of both vectors.

󰂓n = 󰂓ax × 󰂓ay (4)

All vectors need to be normalized to properly project coordinates.

󰂓n′ = 󰂓n / 󰀂n󰀂 (5)
󰂓a′

x = 󰂓ax / 󰀂ax󰀂 (6)
󰂓a′

y = 󰂓ay / 󰀂ay󰀂 (7)

x, y, z are the coordinates to be projected. The variable 󰂓g will contain the projected
point.

󰂓g = 󰂓a′
x · x + 󰂓a′

y · y + 󰂓n′ · z (8)

Using these coordinate systems, we can project the coordinates of a piece to global
coordinates by first projecting it to the heliostat coordinate system using the axes of
the facet and then further projecting it to the global coordinate system using the axes
of the heliostat. These coordinate systems will be important for the implementation
of measurement-driven simulation in Section 4.6.3.

3.4 Aiming Strategy
The aiming strategy is part of the tracking algorithm and determines to which point
the heliostat tries to reflect sun rays. The target differs depending on the type of
receiver that is used in the power plant. It is beneficial for a receiver to distribute the
received power evenly across the receiver surface to more easily transfer the heat to the
fluid running through the tower. In Figure 2, we can see three different receiver types
that are used by CRS. The flat tilted receiver in Figure 2a consists of a circular tower
and a flat receiver piece mounted on the outside of the tower at a specified height. In
Figure 2b, we can see a cavity receiver. It consists of a cylindric tower with a circular
cavity. For this type of receiver, the aiming strategy is not as simple as using the
center of the receiver because different heliostats that reflect sun rays onto the receiver
can either hit the body of the tower or hit the receiver at a suboptimal angle. The
cylindric external receiver consists of a tower and a receiver panel that spans around
the body of the tower. This can be seen in Figure 2c. For this type, we also do not
have a fixed center that can be used for heliostat tracking. For optimal absorption
efficiency, the ray should hit the receiver perpendicularly.

Flat Tilted Receiver With this type of receiver, we align the center of the heliostat
with the center of the flat receiver panel. The angle of impact will depend on the
position of the heliostat.

10
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(a) Suboptimal alignment of a heliostat with a
cavity receiver. The rays, reflected by the
heliostat, are blocked by the body of the
tower. Adapted from [1].
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(b) Optimal alignment of the heliostat with
the receiver, by choosing a different piece
of the receiver panel, as the aim point. Al-
ways the farthest piece from the heliostat
is chosen. Adapted from [1].

Figure 6: Comparison of aim points for a heliostat using a cavity receiver.

Cylindric Cavity Receiver In this case, we need to consider the body of the tower as
it can block incoming sun rays if the heliostat is not aligned properly, like trying to hit
the center of the panel. In Figure 6, we can see two figures that each show a top-down
view of a tower with a cavity receiver, a heliostat and a sun. The circular receiver
panel is discretized into smaller pieces. These pieces are also used for generating the
flux map that we see in Figure 18. In Figure 6a, the heliostat is aligned to track the
center of the receiver panel. In this situation, the reflected ray will be blocked by the
outer body of the receiver. In Figure 6b, the heliostat is set up to track the piece that
is farthest from its position, resulting in an improved aim point. Rays reflected by the
heliostat are much less likely to be blocked by the body of the tower. These figures
only show a top-down view. The vertical axis can be considered analogically.

Cylindric External Receiver The cylindric external receiver has a circular tower
body. The receiver panel is wrapped completely around the top of the tower as can be
seen in Figure 2c. The receiver panels will be discretized into pieces that are rectan-
gles. In Figure 7, we can see a circular tower body and an externally wrapped receiver
panel that is discretized into 12 pieces. In addition, we have two heliostats that are
each aligned to track piece 6 and 7 respectively.
For this receiver type, the alignment strategy also plays a vital role in correctly pro-
jecting sun rays onto the receiver panel. We cannot use the center of the top of the
tower structure as it would lead to sun rays being reflected to the underside of the
receiver panels. This is a result of heliostats usually being placed much lower than
the receiver panel. We once again use the different pieces that were created during
discretization. For each heliostat, we determine the closest receiver piece and use the
center of said piece as a tracking point. This will result in a close to optimal angle and
collection of sun rays.

11
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Figure 7: Aim point definition for heliostats when using a cylindric external receiver.
The piece closest to the respective heliostat is chosen instead of the center.
This results in an improved angle of the ray at the receiver panel facilitating
the absorption of flux. Taken from [1].

One limitation of this implementation is the restricted flexibility for configuring the
discretization. For all other receivers, we can increase the amount of pieces that are
generated during discretization without any consideration for correctness. This leads
to a flux map with a greater resolution which proves to be useful for the development of
CRS. If we increase the number of vertical pieces, the tracking point for each heliostat
will move further to the bottom edge of the receiver panel as we always choose the
closest piece and heliostats are usually placed lower than the receiver panel. In the
worst case, all heliostats will track the lower edge of the receiver panel and roughly
half of the reflected sun rays will hit the tower body instead of being collected by the
receiver panel.
Thus, for the cylindric external receiver, the configuration parameters need to be cho-
sen carefully as they can influence the correctness of the simulation.
Next, we discuss tracking algorithms for heliostats. There, we use the aim point defined
by the aiming strategy to align the heliostat with the sun and the receiver.

3.5 Tracking Algorithm
In this section, we introduce a new tracking algorithm required to work with the
new rotational axes that are part of the Tilt-and-Roll heliostat model (discussed in
Section 3). For the simulation and thus the generation of rays, we need to know the
center of the heliostat and the aligned normal vector. The aim point of each heliostat
is defined by the aiming strategy.

Azimuth-Elevation Tracking With azimuth-elevation tracking heliostats, the center
of the mirror area is fixed and does not change with the rotation of any axis. To
obtain the normal vector, we first calculate the vector 󰂓vaim from pcenter to aim point
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pcenter

󰂓n
vaim

vsun

paim

Figure 8: Visualization of the perfectly reflected sun ray based on a normal vector 󰂓n,
the heliostat’s center pcenter and an aim point paim.

paim determined by the aiming strategy.

󰂓vaim = paim − pcenter (9)

We obtain the normal vector 󰂓n by adding this vector to the reversed sun vector. All
vectors 󰂓vaim and 󰂓vsun need to be normalized.

󰂓n = 󰂓vaim − 󰂓vsun (10)

In Figure 8 we can see a 2D representation of this algorithm. The labels for each vector
and point correspond to the names of the variables in the equations. A pseudo-code
implementation is given in Algorithm 1 with procedure ALIGN.

Tilt-and-Roll Tracking With Tilt-and-Roll heliostats, the center of the heliostat de-
pends on the tilt angle. Thus, the computation is not as trivial as with azimuth-
elevation tracking heliostats. We introduce an iterative procedure in Algorithm 1.
The mounting point M is used as an initial center. Next, we iteratively calculate the
center of the heliostat based on the current normal vector and then recalculate the new
normal vector for this new center. The calculation of the center based on the normal
vector is done in GET_CENTER_MIRROR. We define two possible epsilons (break-
conditions of the while-loop) that are based on the distance between the previous and
current center point 󰂃p or the angle between the current and previous normal vector 󰂃a

respectively. If this epsilon reaches a specified limit, we break out of the while loop and
use the last calculated normal and center as return values. The complete algorithm
using the distance between the last two centers can be found in Algorithm 1.

Center based on Normal Vector In the method GET_CENTER_MIRROR we
calculate the center of the mirror based on a targeted normal vector 󰂓nhel. We need to
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Algorithm 1 Iterative tracking algorithm for heliostats.
1: procedure align(center, sun, aim_point)
2: dir_receiver = (aim_point - center).toNormalized();
3: normal = (dir_receiver - sun).toNormalized();
4: return normal;
5: end procedure
6: procedure get_center_mirror(hel, normal)
7: sky = Vector(0,0,1);
8: plane_normal = cross_product(hel.tilt_axis, sky).toNormalized();
9: in_plane = normal - (dot_product(plane_normal, normal)) * plane_normal;

10: rot = rotational matrix that turns π
2 along plane_normal;

11: res = (rot * in_plane).toNormalized();
12: return hel.mounting_point + ((hel.mirror_height / 2) * res);
13: end procedure
14: procedure align_tnr(sun, hel, rec)
15: center = hel.mounting_point;
16: previous_center = center + Vector(0,0,EPSILON);
17: normal = Vector(0,0,1);
18: while (previous_center - center).norm() >= EPSILON do
19: previous_center = center;
20: normal = ALIGN(center, sun, rec);
21: center = GET_CENTER_MIRROR(hel, normal);
22: end while
23: return center, normal;
24: end procedure
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tilt back the heliostat as such that the normal vector is perpendicular to the mirror.
For this, we first define the vector 󰂓vtilt which points in the direction where the heliostat
tilts back. The plane planehel is based on the vector of the mounting point M and is
spanned by 󰂓vtilt and the vector that points towards the sky 󰂓vsky = (0, 0, 1)T . The scalar
value Mh denotes the total height of the mirror facet.

󰂓nplane = 󰂓vtilt × 󰂓vsky (11)
󰂓n′

plane = 󰂓nplane / 󰀂󰂓nplane󰀂 (12)

After this setup, we can project 󰂓nhel onto planehel and obtain 󰂓ninplane.

󰂓ninplane = (x, y, z)T = 󰂓nhel − (󰂓n′
plane · nhel) (13)

Using the rotational matrix r with angle α = π
2 rad,

r =

󰀳

󰁅󰁃
x2(1 − cos α) + cos α xy(1 − cos α) − z sin α xz(1 − cos α) + y sin α

yx(1 − cos α) + z sin α y2(1 − cos α) + cos α yz(1 − cos α) − x sin α
zx(1 − cos α) − y sin α zy(1 cos α) + x sin α z2(1 − cos α) + cos α

󰀴

󰁆󰁄 (14)

we then rotate 󰂓ninplane by 90° ≡ π
2 rad and normalize it.

󰂓res = r · 󰂓ninplane (15)
󰂓res′ = 󰂓res / 󰀂 󰂓res󰀂 (16)

This vector points along the mirror facet. To calculate the center of the mirror, we
stretch this vector by half of the height of the mirror and add it to M.

pcenter = M + (Mh / 2) · 󰂓res′ (17)

Finally, we obtain the center pcenter corresponding to the given normal vector.

Calculation of Epsilons To calculate the distance between the current pcenter =
(x, y, z)T and previous center p′

center = (x′, y′, z′)T , we can use the euclidean distance:

󰂃p =
󰁴

(x − x′)2 + (y − y′)2 + (z − z′)2. (18)

The angle between the current 󰂓nhel and previous 󰂓n′
hel normal vector is given by

󰂃a = acos( 󰂓nhel · 󰂓n′
hel󰁴

norm(󰂓nhel) · norm(󰂓n′
hel)

). (19)

In this section, we described two heliostat models and their properties. We explained
fundamental concepts for tracking the sun and reflecting sun rays onto a receiver. In
the next section, we discuss our ray tracers and illustrate the concepts used to make
efficient and accurate ray tracing possible.
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4 Ray Tracer
SunFlower offers multiple ray tracers with different accuracy and performance charac-
teristics. These include analytic, Monte Carlo, convolution and integrated convolution
ray tracers. A complete overview of these is given by Hövelmann [13]. All ray trac-
ers are available as an implementation on the CPU and GPU. In Section 4.3, the
CUDA implementation of the ray tracers is discussed. We will focus on the analytic
and Monte Carlo ray tracer. The overall purpose of a ray tracer is to determine the
intercept power of each heliostat. All ray tracers consist of multiple parts: object dis-
cretization, ray generation, shading, blocking and statistic creation. For discretization,
all ray tracers use pieces as the foundational shape. In the existing implementations,
pieces are either rectangles or triangles. Some parts of the ray tracers, especially in
the CUDA implementation, rely only on rectangles as the underlying shape. With the
introduction of the irregular polygon as a facet shape, we need to have ray tracers
that rely solely on triangles. The shading aspect of a ray tracer checks if a ray should
be generated at the specific point in the first place by tracing towards the sun and
checking for collisions. Blocking is done similarly, but by tracing the ray towards the
receiver and checking for blocking by other heliostats. This is called bi-directional ray
tracing. To reduce the number of shading and blocking checks we first generate a list
of candidates for each heliostat and later for each facet. Each ray tracer also generates
statistics for each heliostat. At the end of a simulation, each heliostat’s performance
is analyzed. In addition to the new shape, we also introduce a new positioning system
for facets and the ability to create blind facets that do not generate rays as they are
not reflective.
As each heliostat model is an abstract and not a perfect representation of the actual
heliostat, we also created the option to use a scan of a heliostat facet for ray generation
instead of the model.
First, we explain the intercept power of a heliostat’s piece and continue with the an-
alytic and Monte Carlo ray tracers, then we discuss CUDA acceleration of said ray
tracers. After that, discretization and the concept of AABB trees are introduced.
Furthermore, we illustrate our implementation of measurement-driven simulation.

Intercept Power Each piece of a heliostat obtained by discretization (see Section 4.4)
has a certain intercept power. This describes the energy (or flux) Pint,piece that is re-
flected onto the receiver by that piece. It depends on multiple factors: the Direct
Normal Irradiation IDNI, representative piece area Apiece, cosine efficiency ηcos, reflec-
tivity ηref, atmospheric attenuation ηaa, intercept efficiency ηint and whether the ray
was shaded or blocked. ηsb is either one or zero depending on shading and blocking of
the ray that was generated by the respective piece. The calculation is as follows:

Pint,piece = IDNI Apiece ηcos ηref ηaa󰁿 󰁾󰁽 󰂀
=:Preflected

ηsb ηint. (20)
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4.1 Analytic Ray Tracer
The analytic ray tracer is the simplest ray tracer delivering a balance of performance
and accuracy. It generates rays on top of each facet and traces them in two directions
(bi-directional ray tracer). One ray is traced towards the sun to check for shading
and the other ray is traced towards the receiver to check for blocking. Each ray is
traced ideally, without any artificially added fluctuations that try to mimic real world
deviations (e.g. diffuse reflection). Thus, this ray tracer produces deterministic results.

Convolution Method The previously mentioned ray tracer uses representative rays
that are traced to determine the intercept efficiency of the receiver.
The convolution method uses a different approach. It projects the receiver onto the
image plane using a perspective projection [13]. Every projection only requires one
matrix multiplication and computes the local coordinates of the image plane. There
is also an integrated convolution method available. Both are described in detail by
Hövelmann [13].

Shading & Blocking Calculations The configuration of shading & blocking is essen-
tial to achieve accurate and fast results. Using one ray for each heliostat facet would
produce invalid results in most cases as it is a very simple approximation for a large
area. To improve accuracy, facets can be discretized into a configurable amount of
pieces. Each piece then generates a ray and has a smaller representative area. This
dial can be used to set the trade-off between lower run time and higher accuracy.
To reduce the overall run time of the simulation, we pre-calculate potential shading
and blocking candidates for each sun position. This significantly reduces the amount
of shading and blocking checks required for each ray.
Next, we explain how we mimic real world deviations in the simulation by using a
Monte Carlo-based ray tracer.

4.2 Monte Carlo Ray Tracer
The analytic ray tracer does not consider real-world deviations when it comes to re-
flecting rays off a heliostat’s surface. The Monte Carlo ray tracer extends the analytic
implementation by introducing small fluctuations to each ray. An example using a
Gaussian normal distribution can be seen in Figure 9. There, we perturb a ray (marked
in red). The heliostat is colored in dark blue and the receiver in light blue. Monte
Carlo simulations require the law of large numbers to counter the introduced fluctua-
tions and still obtain an accurate result. Thus, each ray is perturbed multiple times
and each perturbed ray is independently checked. This increases the processing time of
the ray tracer compared to other solutions. Another bottleneck for performance is the
generation of pseudorandom numbers for ray perturbation. As we generate millions
of rays per simulation, we might need to generate billions of pseudorandom numbers
depending on the configuration.
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Figure 9: Perturbation of a ray using Monte Carlo simulations. The heliostat is shown
in dark blue, the Gaussian distribution in black and the receiver in light blue.
The red line represents a possible perturbed ray. Adapted from [12].

4.3 CUDA Acceleration
Aside from a few setup tasks, the computation of shading and blocking for each ray
(and in extension heliostat) is independent from all other rays (and heliostats).
A CPU consists of a few high-performing cores with large caches. Each core works
independently. GPUs in contrast contain many slower cores with smaller caches for
each core. This makes GPUs beneficial for highly parallel computations [24].
CUDA-based GPUs use threads. A group of 32 threads is called a warp. Each warp
has shared caches for all threads and a small amount of registers for each thread3.
Threads in one warp cannot branch as they share one common program counter. This
makes CUDA programming quite different compared to programming on a CPU [1].
The initial implementations of ray tracers in CUDA was done by Aldenhoff [1] and
improved on by Hövelmann [13].

4.4 Discretization for Accelerated Shading & Blocking
The existing ray tracer implementations are not complete and some require rectangles
as the foundational piece for part of the ray tracing process. We will change these
implementations to only use triangles for heliostats in all aspects of the ray tracer.
Triangles are suited well as a foundation shape, as all polygons including triangles and
rectangles, can be cut into a list of triangles. This process is called discretization.
Triangles are also well suited for collision detection as a strict intersection test is
possible in constant time [1]. These triangles will be discretized further to achieve a
specific ratio. These smaller pieces can then be used for ray generation. Given the
existing shapes of facets (rectangular, regular polygon, triangle), discretization into
triangles is not complex. For rectangular facets, we can cut the rectangle in half and
retrieve two triangles (see Figure 10a). We do not need to further process triangular

3https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
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(a) Discretization of a rectangle facet into two
triangles.

(b) Discretization of a regular polygonal facet
with 8 corners into 8 triangles.

Figure 10: Discretization of simple shapes.

facets. For regular polygons, we split the polygon by drawing a line from every corner
to the center. This creates n triangles for a regular polygon with n corners. This can
be seen in Figure 10b.
With irregular polygons this process is more involved as the algorithm needs to
consider every possible layout of the points that make up the polygon. There are
many different approaches that we will not discuss further. Due to its simplicity and
support for polygonal holes, we chose the ear-cut (also called ear-clipping) method [8].
This method is based on the concept of ears. An ear is a triangle formed by three
points of the polygon if two edges between the three points exist as part of the polygon
and the third potential edge is contained within the overall polygon [8]. Considering
Figure 11b, we can identify two ears: {1, 2, 4}, {1, 3, 4}. If we choose the points {2, 3, 4}
we can still span a triangle but the edge (2, 3) (marked with a dotted line) would not
be contained inside the polygon and thus this triangle does not qualify as an ear.
To discretize an irregular polygon, we first determine all ears of the given polygon
and iteratively cut them from the polygon by removing a corner. There exist different
heuristics for choosing which ear to cut. For a more detailed overview of the ear-
clipping method, refer to Eder et al. [8]. An example discretization of a Tilt-and-Roll
heliostat facet is show in Figure 11a. Now, we have discretized each facet into a list
of triangles. These triangles can then be used to construct an AABB Tree. This is
described in the next section.
For ray generation, we need to further discretize each triangle into multiple smaller
triangles to fulfill a configurable precision level. These triangles are then used to
generate a ray in the center of each piece. Each triangle needs to be discretized evenly,
otherwise the result will no longer be representative. We use a naïve algorithm that
divides the triangle in half, creating two new triangles in the process. This is repeated
until the configured density is reached.
A disadvantage of this algorithm is the fact that it only allows to discretize triangles
into 2i (i ∈ N0) smaller triangles and does not allow an exact number of sub triangles.
The advantage is a perfect distribution of triangles across the area. In Figure 12, we
can see a triangle that is discretized into 23 = 8 smaller triangles with each center
marked by a dot.
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(a) Possible discretization of a facet of a Tilt-
and-Roll heliostat using an irregular poly-
gon as a shape. We receive four triangles
(each marked with a different color) that,
when combined, make up the whole facet.

1

2

3

4

(b) Irregular polygon with four corners. The
triangles spanned by {1, 2, 4}, {1, 3, 4} are
ears. The triangle spanned by {2, 3, 4} is
not an ear.

Figure 11: Discretization of an irregular polygon using the ear-cut method.

Figure 12: Even discretization of a triangle into 8 smaller triangles. The center of every
triangle is marked.
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Figure 13: Axis-aligned bounding box of a triangle in 3D space. The triangle is colored
in red. The bounding box is denoted in gray.

4.5 AABB Tree
Now that we have seen how a facet’s shape is discretized into triangles, we explain how
we use these triangles for efficient collision detection.
An axis-aligned bounding box (AABB) describes an over-approximation of a
complex object (triangles in our case) by drawing a box around the maximum expansion
of the object in each direction (positive x, negative x, ...) as can be seen in Figure 13.
We can use this AABB as a stand-in for the triangle to check if the box is intersected
by a ray. This check can be done in constant time [1] whereas directly checking
the triangle would be more computationally expensive. In combination with a tree
structure, multiple triangles can be grouped into an AABB tree.

AABB Tree An AABB tree consists of nodes and leafs. Each node has an AABB
property and up to two child leaves. A leaf represents a single triangle. For easier
comprehension, Figure 14a only shows two dimensions. The concept is analogous for
three or more dimensions.
In Figure 14a, we can see three triangles that represent areas we want to test for
collision with a ray. The AABB of each node contains all AABBs of all of its (recursive)
child nodes. The corresponding AABB tree is shown in Figure 14b. Nodes 1, 2 and 3
are leafs. Node 5 is the root. Testing each triangle individually does not scale well with
an increasing number of triangles. This tree structure of AABBs allows us to generate
a list of collision candidates which can then be used for strict collision testing.
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(a) AABB tree in 2D space. Three objects (tri-
angles) of interest are contained in the area
(labeled with 1, 2 and 3). The gray area
(labeled with a 4) is a result of the com-
bination of triangle 2 and triangle 3. The
brown area (labeled with a 5) stems from
combining triangle 1 and area 4.
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(b) Corresponding AABB tree as a data struc-
ture. Node 5 is the root node. Nodes 4
and 1 are its child nodes. Node 4 consists
of nodes 2 and 3. The leafs 1, 2 and 3 each
contain a triangle.

Figure 14: Example AABB Tree using three triangles as objects. The tree consists of
5 nodes.
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(a) Combining nodes 2 and 3 to node 4. Point
p does not collide with any tree node and
the collision detection can abort.
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(b) Combining nodes 1 and 3 to node 5. It
seems like point p might collide with one
triangle, even though it does not. Thus
the tree is traversed further, introducing
computational overhead.

Figure 15: Comparison of AABB tree construction. The construction and thus layout
of the tree is important for efficient tree traversal.

Tree Construction The layout of the tree is essential for efficient collision testing as
it has to be done for each generated ray with all shading & blocking candidates. In the
worst case, each node has at most one child which results in linear traversal run time
in comparison to logarithmic run time in a flat tree where nodes are evenly distributed.
In general, we can differentiate between two approaches for tree construction, bottom-
up and top-down. In the bottom-up approach, we generate a leaf for each triangle
and iteratively combine two nodes into an upper node until exactly one node is left.
This node will become the root of the tree. The top-down approach constructs the
tree by iteratively adding leaf nodes into the tree and traversing the tree to find the
best location for the newly added node. The advantage of the bottom-up approach
is the performance of construction, but this method requires a given strict structure
of leaf nodes such that nodes that are close to each other can be combined. Such a
fixed structure is not given for all configurable heliostat shapes. In Figure 15, we can
see two possible combinations. In Figure 15a, we combine node 2 and node 3 to node
4. In Figure 15b, we combine node 1 and node 3 to node 5. By comparing the two
possibilities, we can see that in Figure 15a the area that is not actually covered by
any triangles (marked in gray) is much smaller than the area in Figure 15b (marked
in brown).
If we now test a point like p, the AABB of the combined node 4 will not be a hit and
thus, this path of a potential tree will not be traversed further. In comparison, p will
be counted as a hit of the AABB of node 5. As a result, this path will be traversed
further. This problem extrapolates itself the more nodes are added to the tree. Hence,
the construction of the tree must combine nodes that are placed close to each other.
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The top-down method inserts each node iteratively and tries to find the best location
for each node in the tree. This is done with a heuristic considering the area of an
AABB that is not covered by any of the possible child nodes. An implementation
inspired by an existing realization4 is given in Algorithm 2.

Collision Detection and Tree Traversal The most computationally intensive part
of CRS simulation is the tracing of sun rays. Thus, an efficient method for collision
detection is essential for fast simulation. In the previous paragraph, we discussed the
construction of an AABB Tree for efficient collision detection. In the following, we will
show an iterative algorithm that is used to traverse the AABB tree and generate a list
of collision candidates. The algorithm can be seen in Algorithm 3 and requires two
input parameters: the tree we want to traverse and the ray that should be checked for
collision. The method will return a list of collision candidates (triangles in this case)
that need to be checked for strict intersection. We initialize a stack with the root node
of the tree as the only element. Then we loop over the stack’s elements until the stack
is empty. For each iteration, we check if the AABB of the current node at the top of
the stack intersects with the ray. If it does, we need to consider it further for traversal.
We then check if that node is a leaf. In this case, we have a leaf node whose AABB
intersects with the ray. This implies that we can add its triangle to the list of collision
candidates to check for strict collision later. If the node is not a leaf, this indicates
that at least the left child is populated and thus needs to be considered. We add the
left child node to the stack. The right child node does not have to be populated. As a
result, we first have to check if it is populated and then add it to the stack if necessary.

4.6 Measurement-Driven Simulation
In Section 4.2, we presented the Monte Carlo ray tracer, an extension of the analytic
ray tracer that incorporates realistic imperfections. To optimize the focus of heliostats,
two widely employed techniques have been developed: facet canting and mirror curva-
ture. Facet canting modifies the positioning of facets on the heliostat to improve the
reflection direction. Mirror curvature alters the shape of the mirror to a curved config-
uration, thereby refining the focal point. For both methods, mathematical models are
used. This results in a perfect representation of curvatures. In real world heliostats,
these curvatures cannot be produced with such high accuracy. Especially when us-
ing inexpensive mirrors like in Tilt-and-Roll heliostats, this discrepancy between the
digital model and the real world heliostat can lead to inaccurate simulations. In this
section, we first describe facet canting and mirror curvature. Next, we explain the
concept of measurement-driven simulation based on a scan of the mirror’s surface.

4https://github.com/JamesRandall/SimpleVoxelEngine
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Algorithm 2 Inserting a new leaf into an AABB tree by traversing it to find the best
location for the new leaf.

1: procedure insertLeaf(leaf)
2: current = rootNode;
3: while !current.isLeaf() do
4: left = node.left;
5: right = node.right;
6: combinedAABB = current.aabb.merge(leaf.aabb);
7: newParentCost = 2 * combinedAABB.area;
8: minPushDownCost = 2 * (combinedAABB.area - current.aabb.area);
9: costLeft = 0, costRight = 0;

10: if left.isLeaf() then
11: costLeft = leaf.aabb.merge(left.aabb).area + minPushDownCost;
12: else
13: newAABB = leaf.aabb.merge(left.aabb);
14: costLeft = newAABB - left.aabb.area + minPushDownCost;
15: end if
16: if right.isLeaf() then
17: costRight = leaf.aabb.merge(right.aabb).area + minPushDownCost;
18: else
19: newAABB = leaf.aabb.merge(right.aabb);
20: costRight = newAABB - right.aabb.area + minPushDownCost;
21: end if
22: if newParentCost < costLeft && newParentCost < costRight then
23: break;
24: end if
25: if costLeft < costRight then
26: treeNodeIndex = leftNodeIndex;
27: else
28: treeNodeIndex = rightNodeIndex;
29: end if
30: end while
31: treeNodeIndex = leafNode.parentNodeIndex;
32: fixUpwardsTree();
33: end procedure
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Algorithm 3 Iterative tree traversal that generates a list of collision candidates.
1: procedure collision(tree,ray)
2: stack = new Stack();
3: result = new Vector();
4: stack.push(tree.rootNode);
5: while !stack.empty() do
6: node = stack.pop();
7: if node.aabb.intersectsWith(ray) then
8: if node.isLeaf() then
9: result.append(node.object);

10: else
11: stack.push(node.left);
12: if node.right != null then
13: stack.push(node.right);
14: end if
15: end if
16: end if
17: end while
18: return result;
19: end procedure

4.6.1 Facet Canting

Canting is the process of adjusting the position of mirror facets to optimize the focal
point of the reflective area [17]. We usually differentiate between on-axis and off-axis
canting.
For on-axis canting, we assume that the sun vector and target vector are perpendicular
to the facet. From this point on, we adjust the position of each facet to optimize in
such a way that all facets individually hit the target on the receiver panel [5].
Off-axis canting also incorporates the position of the sun in the calculation of the facet
positions and we no longer assume that both vectors are perpendicular to the facet.
As a result, the position of each facet needs to be recalculated for each sun position.
The calculation itself is the same as for on-axis canting.
For Tilt-and-Roll heliostats with one facet, canting is not applicable. Large heliostats
with many facets can use canting to obtain improved energy output of the CRS [5].

4.6.2 Mirror Curvature

With increasing mirror size and distance between the heliostat and receiver, the mis-
alignment of the outer parts of a mirror results in optical losses. The rays reflected
by the outer part of a mirror miss the receiver, even though they are not shaded or
blocked by other heliostats. To reduce this unwanted effect, mirrors (or facets) can be
curved to have a focal point that correlates with the distance from the heliostat to the
receiver. [17]
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X Y Z Xn Yn Zn A
... ... ... ... ... ... ...

-0.812856 -0.606723 0.0057868 0.0101644 0.0058244 0.999931 10.7708
-0.812586 -0.269545 0.0046388 0.0096117 0.0022993 0.999951 4.37469
-0.812385 -0.276235 0.0046487 0.0096087 0.0024443 0.999950 15.3070
-0.812073 -0.286640 0.0046649 0.0096264 0.0025026 0.999950 15.3000
-0.811762 -0.297042 0.0046821 0.0096509 0.0025707 0.999950 15.2929

... ... ... ... ... ... ...

Table 1: Heliostat scan using a point cloud with normal vectors and representative area
for the respective point. The columns X, Y and Z contain the coordinates
of the respective point from where the ray should be generated. Xn, Yn
and Zn are the components of the normal vectors. Column A contains the
representative area in mm2.

Approximation for Simulation Mirror curvature can be configured in SunFlower by
defining the focal point(s) of mirrors in meters. The algorithm then chooses the focal
point that is closest to the actual distance between the heliostat and the receiver.
The process of ray generation (see Section 4) is modified to move each ray origin (the
center of the piece for which the ray is generated) to the corresponding position in the
circle that is drawn by the curvature.
We also need to adjust the normal vector of the piece as the reflective behavior of the
piece is changed by the curvature. In the end, we have a new origin and normal (thus,
also the reflection vector) of the ray and can begin to trace it as we would normally.
When configured correctly, this approximation uses a perfect curvature which is only
applicable to expensive, high-quality mirrors. The mirrors used by Tilt-and-Roll he-
liostats are more affordable and thus not built to the same quality standards. Using
curvature for these mirrors would result in inaccurate results. We address this problem
in the following section.

4.6.3 Measurement-Driven Simulation

As curvature cannot be applied well to mirrors of lower quality and we want to rep-
resent the actual mirror surface as best as possible to enable accurate simulations, we
introduce measurement-driven simulation.
We parse a scan of a mirror and use this scan to generate rays instead of generating
rays based on the shape of the facets. In Table 1 an excerpt of such a scan for the facet
of a Tilt-and-Roll heliostat is shown. The first three columns describe the coordinates
of the point in the heliostat coordinate system. The center of this coordinate system
is the mounting point of the heliostat. Columns Xn, Yn and Zn contain the three
components of the normal vector. The representative area of a ray is given in column
A. The unit of column A is square millimeters.
The existing implementation generates rays by discretizing each heliostat facet into
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Focal Point

Figure 16: Use case of a heliostat scan. The facet modeled using an irregular polygon
is shown in dark blue on the left. The focal point is given in the center
of the figure. We can now emulate the actual surface of the facet with the
data generated from a scan.

many smaller triangles which each generate a ray in the center of a piece (see Sec-
tion 4.4). To this end, we first project the coordinates of the piece (which is in the
facet coordinate system) to the heliostat coordinate system using the method described
in Section 3.3.
To also properly depict facet canting and not only mirror curvature, the scan data is
interpreted as rays for the entire heliostat and not just for one facet. To project each
ray’s origin to the global coordinate system, we need to project it from the heliostat
system.
Checks for shading & blocking remain based on the original heliostat shape as we
cannot make a direct connection from rays back to the heliostat shape. Thus, to use
measurement-driven simulation, a list of rays and a heliostat shape is required. A
validation of ray positions and directions is not possible as it is incompatible with the
idea of accurately modeling real-world deviations. This check would also be computa-
tionally expensive.
Until this point, we have introduced the optical model, two heliostat models and their
properties and described the challenges and implementations of ray tracing. In the
next section, we validate the correctness and run time of our implementation.

5 Validation
To validate our implementations, we consider the run time, system resources and
correctness. First, we use a small simulation consisting of two heliostats to verify the
model of a Tilt-and-Roll heliostat. Next, we inspect the amount of loop iterations
needed for accurate alignment using the new iterative tracking algorithm based on two
different break-conditions. Furthermore, we analyze the run time and RAM usage of
the analytic and Monte Carlo ray tracer. The properties of the power plants used in
Section 5.3, Section 5.4 and Section 5.5 are described in Table 2. Finally, we check the
result of these simulations for correctness.
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Parameter PS20 PS10 Gemasolar abengoaCRS
Number of heliostats 1255 624 2650 8600
Heliostat width 12.96 m 12.84 m 11 m 10.71 m
Heliostat height 9.69 m 9.45 m 10 m 12.95 m
Heliostat reflectance 88 % 88 % 93 % 91.96 %

Receiver shape Cylindric
cavity

Cylindric
cavity

External
cylindrical

External
cylindrical

Receiver panels 4 4 18 16
Receiver panel width 3.445 m 3.445 m 1.476 m 3.158 m
Receiver height 12 m 12 m 16 m 18.5 m
Receiver top height 165 m 115 m 126.5 m 229.5 m
Sun error (Gaussian) 2.35 mrad 2.35 mrad 2.35 mrad 2.35 mrad
Slope error 1 mrad 2.6 mrad 2.6 mrad 2.6 mrad
Tracking error 1 mrad 1.3 mrad 1.3 mrad 1.3 mrad

Table 2: Properties of power plants used for validation. Adapted from [1].
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z
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(a) 3D representation of the validation test us-
ing one receiver and two heliostats.

x

y

sun

(b) Top-down view of the setup. The shading
effect of the green heliostat is visible.

Figure 17: Setup of the simulation used for validation test of ray tracer using one
receiver (red) and two heliostats (green and blue). The green heliostat
shades about half of the blue heliostat’s reflective area. The sun originates
from behind the receiver. Tower shading is disabled.
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Figure 18: Receiver flux map with
a resolution of 100 ×
100 pieces. The col-
ors indicate the amount
of flux per piece that
was reflected by the he-
liostats. The lighter the
color, the less flux was
captured at the respec-
tive piece.

Parameter Value
Ray tracer Analytic
Accuracy 10000 rays / m2

Rec. dimensions 10 m × 10 m
Rec. discretization 100 × 100

Heliostat polygon

(2.580324 m, −2.4 m),
(3.2 m, −0.89016 m),

(3.2 m, 2.4 m),
(−3.2 m, 2.4 m),

(−3.2 m, −0.89016 m),
(−2.580324 m, −2.4 m)

Positions (10.0 m, 2.0 m, 0 m)
(15.0 m, −2.0 m, 0 m)

Table 3: Configuration parameters for the
blocking and shading validation.
Receiver is abbreviated to Rec.

5.1 Blocking and Shading Validation using a Flux Map
To validate the correctness of the discretization of irregular polygons of the ray tracer,
we want to verify that each heliostat correctly reflects sun rays and that the shape of
the heliostat is correctly represented. In addition, we need to make sure that heliostats
provide shading and blocking for other heliostats. For this, we use a small power plant
consisting of one big receiver and two heliostats. The layout can be seen in Figure 17.
The red rectangle represents a flat receiver with dimensions of 10 m by 10 m and a
discretization of 100 by 100 pieces. The blue and green polygons are Tilt-and-Roll
heliostats. The total width of each heliostat is 6.4 m and the height is 4.8 m. Both
heliostats track the center of the receiver panel and have the same elevation. An
overview of configuration parameters can be seen in Table 3.
To facilitate a clearer understanding of the reflective behavior and shading and blocking
effects, the simulation is configured to position the sun behind the receiver and to
disable tower shading. The number of rays was configured to 10000 per square meter.
Such a high precision is only possible due to the low amount of heliostats as we would
otherwise be limited by the simulation’s memory footprint.
Because about half of the dark blue heliostat is shaded (and blocked) by the green
heliostat, we expect that about half of the rays reflected by the dark blue heliostat to
not reach the receiver panel. In Figure 18, we can see the flux map of the receiver.

30



Rather than calculating the total flux that is captured by the receiver panel, the flux
map uses the pieces retrieved from discretization to calculate the flux that is absorbed
by each individual piece. As a result, we can see which parts of the receiver capture
the most flux. The expected effect can be seen in Figure 18 as the right half of the
flux map has received less flux than the left half. The shape of the polygons of the
facets is also apparent. The darker the color of a piece on the flux map, the more flux
is received.
If we now move one heliostat three meters further away from the other heliostat, the
flux map will be uniform and not show any reduced flux collection as no shading and
blocking effects will occur.
Next, we will analyze the run time of the iterative tracking algorithm for Tilt-and-Roll
heliostats.

5.2 Run Time of Tilt-and-Roll Heliostat Tracking Algorithm
The tracking algorithm for Tilt-and-Roll heliostats is iterative and terminates if the
epsilon is small enough. Thus, we need to validate the amount of iterations needed to
reach such a small epsilon. In this section, we will test the epsilon definitions introduced
in Section 3.5. The first epsilon 󰂃p describes the distance between center points of two
iterations. The second epsilon 󰂃a represents the angle between the normal vectors of
two iterations.

Test Layout For this test, we use the ranges [0°, 1°, . . . , 90°] for the altitude and
[0°, 1°, . . . , 180°] for the azimuth of the sun. The algorithm is tested on each pair of
(azimuth, altitude) resulting in 91 · 181 = 16471 different sun positions. For each
position, we use the new tracking algorithm to determine 󰂃p and 󰂃a. Figure 19 and
Figure 20 show the development of 󰂃p and 󰂃a respectively. The absolute values and
their standard deviation are shown in Table 4.

Results for Distance of Centers In Figure 19, we can see a plot with the iterations
and corresponding epsilon 󰂃p in relation. The x-axis denotes the iteration starting with
0 up to 10. The y-axis shows the mean value of the 󰂃p (of all sun positions) for each
iteration step. The scale of the y-axis is logarithmic with base 10. There are no values
shown for iterations 7, 8, 9 and 10 as they are all zero and cannot be represented on
a logarithmic scale. For each point in the plot, the lines above and below the point
show the standard deviation of the respective iteration.
The algorithm starts with the mounting point as the current center. In the first
iteration, we calculate the actual center of the mirror. The height of the mirror is
1.2 m, thus the center is at half of the height from the mounting point resulting in a
fixed distance (and epsilon) of 1.2 m / 2 = 0.6 m for the first iteration, independent of
the sun position. This can be seen in Figure 19 at iteration = 1. After the second
iteration, this distance has dropped to a value of about 2 cm with a standard deviation
of approximately 0.41 cm. With the third iteration, the mean has dropped to 0.22 mm
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Figure 19: Effect of multiple iterations on the size of 󰂃p. The epsilon is based on
the distance between the previous and current center points between iter-
ations. After the third iteration, the improvement is negligible and below
the acceptable tracking error. Iterations 7 through 10 show no improvement
whatsoever and are thus absent from the figure. The scale of the y-axis is
logarithmic with base 10.
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Figure 20: Effect of multiple iterations on the size of 󰂃a. The epsilon 󰂃a is based on
the angle of the current and previous normal vector between iterations.
After the third iteration, the improvement is negligible and the acceptable
tracking error is reached. The scale of the y-axis is logarithmic with base
10.

and the standard deviation has reached 0.15 mm. This value continues to drop until
iteration 6 after that the mean is so close to zero that it can no longer be represented
by a 64-bit floating point number. The standard deviation also continuously shrinks
with each iteration.

Results for Angle of Normal Vectors In Figure 20, a plot of iterations considering
the angle between the current and previous normal vector is presented. The x-axis
shows the iteration count. The y-axis denotes mean values of 󰂃a (of all sun positions)
in mrad. The scale of the y-axis is logarithmic with base 10. The line below and above
each point describes the standard deviation over all tested sun positions.
After the first iteration, the angle is at about 470 mrad which is well above the usual
tracking error of a regular heliostat. The standard deviation of this iteration is approx-
imately 270 mrad. The angle in the second iteration shrinks to about 31 mrad with a
standard deviation of 4.45 mrad. This is still not good enough for accurate tracking.
With the third iteration, the angle is at 0.47 mrad and has a standard deviation of
0.166 mrad. A regular heliostat has a tracking error of about 1 mrad. This makes
three iterations good enough to achieve an accurate normal vector for ray tracing.
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Iteration Value 󰂃p (cm) SD of 󰂃p (cm) Value 󰂃a (mrad) SD of 󰂃a (mrad)
1 60.00000 0.000000 472.331526 270.951350
2 1.985698 0.407506 31.614425 4.457986
3 0.021949 0.015337 0.473576 0.165788
4 0.000006 0.000423 0.006308 0.006224
5 0.000000 0.000012 0.000110 0.000174
6 0.000000 0.000000 0.000002 0.000005
7 0.000000 0.000000 0.000001 0.000003
8 0.000000 0.000000 0.000001 0.000004
9 0.000000 0.000000 0.000001 0.000004

10 0.000000 0.000000 0.000001 0.000004

Table 4: Values of 󰂃p and 󰂃a for each iteration rounded to the sixth decimal place.
After the third iteration, the improvement is negligible. The unit of 󰂃p is cm
and the unit of 󰂃a is mrad. SD denotes the standard deviation for 󰂃p and 󰂃a

respectively.

5.3 Run Time of Simulation
In this section, we validate the run time of the simulation. The GPU implementation
is not finished in time for this thesis, thus it is excluded from the comparison.
Our test is based on five power plants. We sample 10 iterations per test to rule out any
fluctuations. All tests are run on a Debian 12 system with an AMD 5900x (12 cores,
24 threads at 3.7 GHz) CPU and 32 GiB of DDR4 3200 MHz RAM. The properties of
the power plants being tested are shown in Table 2.

Analytic Ray Tracer During the development of the new features introduced in this
thesis, we were able to speed up the calculation of shading & blocking candidates and
improve the performance of ray generation and tracing. The discretization and AABB
tree construction have become more complex and compute-intensive. This is reflected
in the run time of the simulation. A summary can be seen in Figure 21. There we can
observe that the performance of the new implementation is worse in most cases. Only
the run time of the large abengoaCRS power plant is improved. Especially smaller
power plants suffer from the more complex AABB tree creation overhead. In these
power plants, fewer blocking & shading checks occur which are thus outweighed by the
increased run time of the AABB tree creation.

Monte Carlo Ray Tracer The Monte Carlo ray tracer suffers from the same perfor-
mance degradation as the analytic ray tracer. This can be seen in Figure 22. Power
plants with large amounts of heliostats like abengoaCRS and Gemasolar only see a
small increase in run time. The run time of other, smaller power plants, can double in
some cases.
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Figure 21: Before and after comparison of the analytic CPU ray tracer using 5 power
plants and 10 rays/m2. The before state is marked in blue. The after
state is hatched and colored in orange. In most cases, the run time is
increased. The run time of large CRS like abengoaCRS and Gemasolar
see less impact of the more compute-intensive AABB tree creation as they
contain more heliostats. Thus, AABB tree creations are less represented
and more shading & blocking checks have to take place.
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Figure 22: Before and after comparison of the Monte Carlo CPU ray tracer using 5
power plants, 10 rays/m2 and a ray multiplier of 10. The before state is
marked in blue. The after state is hatched and colored in orange. The
run time of large CRS like abengoaCRS and Gemasolar see less impact of
the more compute-intensive AABB tree creation as they contain more he-
liostats. Thus, AABB tree creations are less represented and more shading
& blocking checks have to take place.
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Figure 23: Maximum RAM usage of simulations on different power plants using the
analytic (marked in orange) and Monte Carlo (denoted in dark blue) ray
tracer with 10 rays/m2 and a ray multiplier of 10. Numbers were obtained
using the GNU time utility.

5.4 RAM Usage of Simulation
As the accuracy of simulations increases and the number of heliostats being modeled
grows, so does the memory requirement. Consequently, reducing RAM utilization
becomes increasingly crucial. For this test, we measure the maximum RAM usage of
the analytic and Monte Carlo ray tracer. Measurements were taken using the GNU
time utility5. In Figure 23, we can see a reduction of RAM usage for all power plants
on all ray tracers. The dark blue bars show the reduction using the Monte Carlo ray
tracer while the hatched orange bars represent the reduction using the analytic ray
tracer. Table 5 shows the absolute values and the difference for each power plant and
ray tracer. Especially for the big abgengoaCRS power plant, we were able to save
almost 1.5 GB in both ray tracers. This equates to savings of around 14 %. PS10 and
PS20 also see a reduction of around 7 %. With Gemasolar the saving is less at around
1.3 %. In general, the memory usage is reduced across both ray tracers.

37



Power Plant RAM Usage (prev) RAM Usage (current) Savings
Monte Carlo

abengoaCRS 10629.64 MB 9146.61 MB 1483.03 MB
Gemasolar 2947.86 MB 2909.2 MB 38.66 MB

PS10 743.2 MB 691.62 MB 51.58 MB
PS20 1480.84 MB 1372.56 MB 108.28 MB

Analytic
abengoaCRS 10452.48 MB 8966.92 MB 1485.56 MB
Gemasolar 2872.34 MB 2835.24 MB 37.1 MB

PS10 728.19 MB 673.04 MB 55.15 MB
PS20 1445.6 MB 1338.96 MB 106.64 MB

Table 5: RAM usage of different power plants using the analytic and Monte Carlo ray
tracer. The usage is decreased in all cases. Lower usage enables the simulation
of bigger power plants with higher accuracy.
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Figure 24: Difference of optical power for each power plant in per mille. Simulations
were run using the analytic ray tracer with different accuracy levels. All
values are in relation to the ideal optical power determined using 100 rays
per square meter.
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5.5 Correctness of Simulation
To verify the correctness of the new implementation of the simulation, we consider the
total optical power of select power plants. For each power plant, we run multiple annual
simulations and obtain the total optical power collected by the receiver. As these
simulations incorporate a lot of variables, the result can be used well to compare the
accuracy and validity of our implementation. The simulations differ in the configured
accuracy. We consider 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60 and 70 rays per square meter
for each individual power plant. An overview of the deviation of all power plants in
relation to the ideal result can be seen in Figure 24. The ideal result is obtained by
an annual simulation with 100 rays per square meter. With an increasing number of
rays, the total optical power converges exponentially towards the ideal value. After
50 rays per square meter, the improvement is negligible. All tested power plants
reliably improve the accuracy with more rays. This result validates the correctness
and accuracy of our implementation.

5https://www.gnu.org/software/time/
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6 Conclusion and Outlook
In this thesis, we extended the existing modeling capabilities to enable the simulation
of Tilt-and-Roll heliostats. A facet of a heliostat can now be defined as an irregular
polygon, delivering immense flexibility in the development of new facet shapes even
beyond Tilt-and-Roll heliostats. Miscellaneous objects like (servo) motors or mount-
ing equipment as part of the heliostat’s model can also now be considered during
simulation. Due to the different rotational properties of Tilt-and-Roll heliostats, the
previously used tracking algorithm for azimuth-elevation tracking heliostats cannot be
used for Tilt-and-Roll heliostats. We defined an iterative approach for a novel tracking
algorithm which can properly align Tilt-and-Roll heliostats with the sun and receiver.
Its run time and accuracy were validated. The existing AABB tree implementation
was overhauled to work with the new facet shapes and layouts of Tilt-and-Roll he-
liostats and also to increase flexibility in development of future heliostat models. To
improve the simulation of inexpensive mirror material and complex canting concepts,
we introduced measurement-driven simulation. There, we use a scan of a heliostat
surface to accurately model real world production deficiencies.
With these features implemented, mCRS using Tilt-and-Roll heliostat can now be
simulated without limiting the ability to simulate existing azimuth-elevation tracking
heliostats.
The correctness and accuracy of the newly implemented features was validated. We
were able to achieve a noticeable decrease in RAM usage. The run time only slightly
increased for large power plants while up to doubling for smaller power plants. The
novel tracking algorithm enables accurate alignment using only three iterations.
To improve the run time of the new features, the AABB tree needs to be optimized
further. This can potentially be done by using different construction methods de-
pending on the situation. The receiver has a fixed discretization structure and thus a
bottom-up construction approach could be beneficial.
Other requirements for mCRS power plants also need to be considered for accurate
simulation of such power plants. This includes the simulation of miscellaneous objects
in the scene that result in additional shading and blocking effects. These objects could
be buildings or trees.
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