Modeling and Analysis of Hybrid Systems 7. Linear hybrid automata II

Prof. Dr. Erika Ábrahám

Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University

Szeged, Hungary, 27 September - 06 October 2017

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata 1

3 Reachability analysis for linear hybrid automata II

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata 1

3 Reachability analysis for linear hybrid automata II

Some tools for hybrid automata reachability analysis

ΤοοΙ	Characteristics			
Ariadne	non-linear ODEs; Taylor models, boxes; interval constraint propagation, deduction			
C2D2	non-linear ODEs; guaranteed simulation			
Cora	non-linear ODEs; geometric representations; several algorithms, linear abstraction			
dReach	non-linear ODEs; logical representation; interval constraint propagation, δ -reachability,			
	bounded model checking			
Flow*	non-linear ODEs; Taylor models; flowpipe construction			
HSolver	non-linear ODEs; logical representation; interval constraint propagation			
HyCreate	non-linear ODEs; boxes; flowpipe construction			
HyPro	linear ODEs; several representations; flowpipe construction			
HyReach	linear ODEs; support functions; flowpipe construction			
HySon	non-linear ODEs; guaranteed simulation			
iSAT-ODE	non-linear ODEs; logical representation; interval constraint propagation, bounded model			
	checking			
KeYmaera	differential dynamic logic; logical representation; theorem proving, computer algebra			
NLTOOLBOX	non-linear ODEs; Bernstein expansion, hybridisation			
SoapBox	linear ODEs; symbolic orthogonal projections; flowpipe construction			
SpaceEx	linear ODEs; geometric and symbolic representations; flowpipe construction			

We will learn how flowpipe-construction-based methods work. Flow^{*} and HyPro were/are developed in our group. Besides them, most closely related is the SpaceEx tool.

Input: Set Init of initial states. Output: Set R of reachable states.

Algorithm:

$$R^{\text{new}} := \text{lnit};$$

$$R := \emptyset;$$
while $(R^{\text{new}} \neq \emptyset)$ {
$$R := R \cup R^{\text{new}};$$

$$R^{\text{new}} := \text{Reach}(R^{\text{new}}) \setminus R;$$
};
return R

Geometric objects:

- hyperrectangles [Moore et al., 2009]
- oriented rectangular hulls [Stursberg et al., 2003]
- Convex polyhedral [Ziegler, 1995] [Chen at el, 2011]
- orthogonal polyhedra [Bournez et al., 1999]
- template polyhedra [Sankaranarayanan et al., 2008]
- ellipsoids [Kurzhanski et al., 2000]
- zonotopes [Girard, 2005])
- Other symbolic representations:
 - support functions [Le Guernic et al., 2009]
 - Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]

Reminder: Polytopes

- \blacksquare Halfspace: set of points satisfying $c^T \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

representation	union	intersection	Minkowski sum
$\mathcal V$ -representation by vertices	easy	hard	easy
${\mathcal H} extsf{-representation}$ by $facets$	hard	easy	hard

Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata 1

3 Reachability analysis for linear hybrid automata II

Linear hybrid automata of type I (LHA I) are hybrid automata with the following restrictions:

- All derivatives are defined by intervals. also polytopes but ×
- All invariants and jump guards are defined by polytopes.
- All jump resets are defined by linear transformations of the form x := Ax + b.

Hybrid automata of this type have linear behaviour, i.e., when time passes by in a location, the values of the variables evolve according to a linear function. (To be more precise, each reachable state can be reached by such a linear evolution.)

Reminder: Minkowski sum

Additionally, we intersect the result with the target location's invariant.

Computed via projection, Minkowski sum and intersection.

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata 1

3 Reachability analysis for linear hybrid automata II

Linear hybrid automata of type II (LHA II) are hybrid automata with the following restrictions:

All derivatives are defined by linear ordinary differential equations (ODEs) of the form $\dot{x} = A \times + b$

(UDEs) of the form $\dot{x} = Ax + Bu$, $\dot{x} = A \times + b$ where $x = (x_1, \dots, x_n)^T$ are the (continuous) variables, A is a matrix of dimension $n \times n$, $u = (u_1, \dots, u_m)^T$ are disturbance/input/control variables with rectangular domain U, and B is a matrix of dimension $n \times m$.

- All invariants and jump guards are defined by polytopes.
- All jump resets are defined by linear transformations of the form x := Ax + b.

When time passes by in a location, the values of the continuous variables evolve according to linear ODEs.

N.B.: Now the values follow non-linear functions!

Approximating a flowpipe

Consider a dynamical system with state equation

 $\dot{x} = f(x(t)).$

Approximating a flowpipe

Consider a dynamical system with state equation

 $\dot{x} = f(x(t)).$

We assume f to be Lipschitz continuous.

Approximating a flowpipe

Consider a dynamical system with state equation

 $\dot{x} = f(x(t)).$

We assume f to be Lipschitz continuous.

Wikipedia: "Intuitively, a Lipschitz continuous function is limited in how fast it can change: for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is no greater than a definite real number [...].".

Consider a dynamical system with state equation

 $\dot{x} = f(x(t)).$

We assume f to be Lipschitz continuous.

Wikipedia: "Intuitively, a Lipschitz continuous function is limited in how fast it can change: for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is no greater than a definite real number [...].".

Lipschitz continuity implies the existence and uniqueness of the solution to an initial value problem, i.e., for every initial state x_0 there is a unique solution $x(t, x_0)$ to the state equation.

The set of reachable states at time t from a set of initial states X_0 is defined as

$$\mathcal{R}_t(X_0) = \{ x_t \mid \exists x_0 \in X_0. \ x_t = x(t, x_0) \}.$$
The set of reachable states at time t from a set of initial states X_0 is defined as

$$\mathcal{R}_t(X_0) = \{ x_t \mid \exists x_0 \in X_0. \ x_t = x(t, x_0) \}.$$

The set of reachable states, the flowpipe, from X_0 in the time interval [0,T] is defined as

 $\mathcal{R}_{[0,T]}(X_0) = \bigcup_{t \in [0,T]} \mathcal{R}_t(X_0).$

The set of reachable states at time t from a set of initial states X_0 is defined as

$$\mathcal{R}_t(X_0) = \{ x_t \mid \exists x_0 \in X_0. \ x_t = x(t, x_0) \}.$$

The set of reachable states, the flowpipe, from X_0 in the time interval [0,T] is defined as

$$\mathcal{R}_{[0,T]}(X_0) = \bigcup_{t \in [0,T]} \mathcal{R}_t(X_0).$$

We describe a solution which approximates the flowpipe by a sequence of convex polytopes.

Problem statement for polyhedral approximation of flowpipes

Given

- a set X_0 of initial states which is a polytope, and
- \blacksquare a final time T,

compute a polyhedral approximation $\hat{\mathcal{R}}_{[0,T]}(X_0)$ to the flowpipe $\mathcal{R}_{[0,T]}(X_0)$ such that

 $\mathcal{R}_{[0,T]}(X_0) \subseteq \hat{\mathcal{R}}_{[0,T]}(X_0).$

Since a single convex polyhedron would strongly overapproximate the flowpipe, we compute a sequence of convex polyhedra, each approximating a flowpipe segment.

Segmented flowpipe approximation

Let the time interval [0,T] be divided into $0 < N \in \mathbb{N}$ time segments

 $[0, t_1], [t_1, t_2], \ldots, [t_{N-1}, T]$

with $t_i = i \cdot \delta$ for $\delta = \frac{T}{N}$.

Segmented flowpipe approximation

Let the time interval [0,T] be divided into $0 < N \in \mathbb{N}$ time segments

 $[0, t_1], [t_1, t_2], \ldots, [t_{N-1}, T]$

with $t_i = i \cdot \delta$ for $\delta = \frac{T}{N}$.

We generate an approximation $\hat{\mathcal{R}}_{[t_1,t_2]}(X_0)$ for each flowpipe segment:

 $\mathcal{R}_{[t_1,t_2]}(X_0) \subseteq \hat{\mathcal{R}}_{[t_1,t_2]}(X_0).$

Segmented flowpipe approximation

Let the time interval [0,T] be divided into $0 < N \in \mathbb{N}$ time segments

 $[0, t_1], [t_1, t_2], \ldots, [t_{N-1}, T]$

with $t_i = i \cdot \delta$ for $\delta = \frac{T}{N}$.

We generate an approximation $\hat{\mathcal{R}}_{[t_1,t_2]}(X_0)$ for each flowpipe segment:

$$\mathcal{R}_{[t_1,t_2]}(X_0) \subseteq \hat{\mathcal{R}}_{[t_1,t_2]}(X_0).$$

The complete flowpipe approximation is the union of the approximation of all N pipe segments:

$$\mathcal{R}_{[0,T]}(X_0) \subseteq \hat{\mathcal{R}}_{[0,T]}(X_0) = \bigcup_{k=1,\dots,N} \hat{\mathcal{R}}_{[t_{k-1},t_k]}(X_0)$$

Next we discuss one possible approach for flowpipe approximation, but there are different other techniques, too.

• Assume $\dot{x} = Ax + Bu$

• Assume $\dot{x} = Ax + Bu$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta, (i+1)\delta]} \subseteq \Omega_i$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:

 X_0

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

convex hull of $X_0 \cup e^{A\delta}X_0$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

bloating with B_1 to include non-linear behaviour

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

convex hull of $X_0 \cup ((e^{A\delta}X_0) \oplus B_1)$ covers the behaviour $\mathcal{R}_{[0,\delta]}$ under $\dot{x} = Ax$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

disturbance!

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

bloating with B_2

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

 $\Omega_0 = \operatorname{conv}(X_0 \cup ((e^{A\delta}X_0) \oplus B_1 \oplus B_2))$ covers the behaviour $\mathcal{R}_{[0,\delta]}$ under $\dot{x} = Ax + Bu$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume $\dot{x} = Ax + Bu$
- Compute polytopes $\Omega_0, \Omega_1, \ldots$ such that $\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \Omega_i$
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

The same procedure as for LHA I, extended with possibilities for aggregation and/or clustering.

Optionally aggregation (convex hull V_1) (alternative: clustering)

Example

Ir Τ

Van der Pol equation:

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 & & \\ \dot{x}_2 &=& -0.2(x_1^2-1)x_2-x_1. \end{array}$$

= Intial set: $X_0 = \{(x_1,x_2) \mid 0.8 \leq x_1 \leq 1 \wedge x_2 = 0\}.$
= Time: $T = 10.$
= Segments: 20

Other geometries for approximation

- Van der Pol equation with a third variable being a clock.
- Approximation

with convex polyhedra and

with oriented rectangular hull:

Partitioning the initial set

Var der Pol system with initial set $X_0 = \{(x_1, x_2) \mid 5 \le x_1 \le 45 \land x_2 = 0\}$.

Ábrahám - Hybrid Systems