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Some tools for hybrid automata reachability analysis

‘ Tool ‘ Characteristics

Ariadne non-linear ODEs; Taylor models, boxes; interval constraint propagation, deduction

C2D2 non-linear ODEs; guaranteed simulation

Cora non-linear ODEs; geometric representations; several algorithms, linear abstraction

dReach non-linear ODEs; logical representation; interval constraint propagation, d-reachability,
bounded model checking

Flow* non-linear ODEs; Taylor models; flowpipe construction

HSolver non-linear ODEs; logical representation; interval constraint propagation

HyCreate non-linear ODEs; boxes; flowpipe construction

HyPro linear ODEs; several representations; flowpipe construction

HyReach linear ODEs; support functions; flowpipe construction

HySon non-linear ODEs; guaranteed simulation

iISAT-ODE non-linear ODEs; logical representation; interval constraint propagation, bounded model
checking

KeYmaera differential dynamic logic; logical representation; theorem proving, computer algebra

NLTOOLBOX | non-linear ODEs; Bernstein expansion, hybridisation

SoapBox linear ODEs; symbolic orthogonal projections; flowpipe construction

SpaceEx linear ODEs; geometric and symbolic representations; flowpipe construction

We will learn how flowpipe-construction-based methods work. Flow™ and HyPro
were/are developed in our group. Besides them, most closely related is the SpaceEx tool.

Abraha

- Hybrid Systems 4 /26



Forward reachability computation

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:
R"Y = Init;
R:=;
while (R #£ (§){
R = RUR"™;
R := Reach(R"")\R;
h
return R
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Most well-known state set representations

Geometric objects:

m hyperrectangles [Moore et al., 2009]
oriented rectangular hulls [Stursberg et al., 2003]
convex polyhedra [Ziegler, 1995] [Chen at el, 2011]
orthogonal polyhedra [Bournez et al., 1999]
template polyhedra [Sankaranarayanan et al., 2008]
ellipsoids [Kurzhanski et al., 2000]
m zonotopes [Girard, 2005])

Other symbolic representations:

m support functions [Le Guernic et al., 2009]
m Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]
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Reminder: Polytopes

m Halfspace: set of points satisfying ¢! -z < 2
m Polyhedron: an intersection of finitely many halfspaces
m Polytope: a bounded polyhedron

representation union | intersection | Minkowski sum
V-representation by vertices | easy hard easy
‘H-representation by facets hard easy hard
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Reachability analysis for linear hybrid automata |
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Linear hybrid automata |

Linear hybrid automata of type | (LHA 1) are hybrid automata with the
following restrictions:

m All derivatives are defined by intervals.
m All invariants and jump guards are defined by polytopes.

m All jump resets are defined by linear transformations of the form
x:= Ax +0b.

Hybrid automata of this type have linear behaviour, i.e., when time passes
by in a location, the values of the variables evolve according to a linear
function. (To be more precise, each reachable state can be reached by such
a linear evolution.)
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Reminder: Minkowski sum

o 2 =
1Q

o 1 2 3 = 0 1 2 3 =
PeQ={p+q|pePandqecQ}
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Linear hybrid automata I: Time evolution
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Linear hybrid automata I: Time evolution
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Linear hybrid automata I: Time evolution
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Linear hybrid automata I: Discrete steps (jumps)

Example jump: ( I, 4<mz3 <5, =x2:€[2,4], ' )€ Edge
—_
G=Rx[4,5] R=Rx[2,4]
€2
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Linear hybrid automata I: Discrete steps (jumps)
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m Additionally, we intersect the result with the target location’s invariant.
m Computed via projection, Minkowski sum and intersection.
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Reachability analysis for linear hybrid automata Il
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Linear hybrid automata Il

Linear hybrid automata of type Il (LHA II) are hybrid automata with the
following restrictions:

m All derivatives are defined by linear ordinary differential equations
(ODEs) of the form
& = Ax + Bu ,

where & = (21,...,2,)7 are the (continuous) variables, A is a matrix
of dimension n x n, u = (u1,...,un,)" are disturbance/input/control
variables with rectangular domain U, and B is a matrix of dimension
n x m.

m All invariants and jump guards are defined by polytopes.

m All jump resets are defined by linear transformations of the form
x:= Az +b.
When time passes by in a location, the values of the continuous variables
evolve according to linear ODEs.
N.B.: Now the values follow non-linear functions!
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Approximating a flowpipe

Consider a dynamical system with state equation

&= f(x(t)).
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Approximating a flowpipe

Consider a dynamical system with state equation
&= f(z(t)).
We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [...].".

Abraham - Hybrid Systems 15 / 26



Approximating a flowpipe

Consider a dynamical system with state equation

&= f(z(t)).
We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [...].".

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state z( there is a unique
solution x(¢, x() to the state equation.
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Approximating a flowpipe

The set of reachable states at time ¢ from a set of initial states X is
defined as
Ri(Xo) = {x¢ | Jzo € Xo. & = x(t, x0)}.
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Approximating a flowpipe

The set of reachable states at time ¢ from a set of initial states X is
defined as
Ri(Xo) = {x¢ | Jzo € Xo. & = x(t, x0)}.

The set of reachable states, the flowpipe, from Xj in the time interval
10,77 is defined as

Rio,1(Xo) = Urejo,rRe(Xo)-

We describe a solution which approximates the flowpipe by a sequence of
convex polytopes.
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Problem statement for polyhedral approximation of flowpipes

Given
m a set X of initial states which is a polytope, and

m a final time 7,

compute a polyhedral approximation ﬁ[o_ﬂ (Xo) to the flowpipe Ry 11(Xo)
such that X
Rio,11(Xo) € Rio,77(Xo)-
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Flowpipe segmentation

Since a single convex polyhedron would strongly overapproximate the
flowpipe, we compute a sequence of convex polyhedra, each approximating
a flowpipe segment.

150
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Segmented flowpipe approximation

Let the time interval [0, 7] be divided into 0 < N € N time segments

[O,tl], [tl,tz], ceey [tN_l,T}

with #; =i -6 for § = L.
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Segmented flowpipe approximation

Let the time interval [0, 7] be divided into 0 < N € N time segments
[Ovtl]a [tla t2]a sty [tN—lv T}
with ¢; =i -6 for 6 = %.

We generate an approximation 7%17[2}()(0) for each flowpipe segment:

~

Rity,t2)(X0) C Rity,2)(Xo)-
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Segmented flowpipe approximation

Let the time interval [0, 7] be divided into 0 < N € N time segments

[Ovtl]a [tla t2]a sty [tN—lv T}

with ti:i-dforéz%.

We generate an approximation 7%17[2}()(0) for each flowpipe segment:
Rits 12)(X0) C Ryt 5](Xo0)-

The complete flowpipe approximation is the union of the approximation of
all N pipe segments:

Rior)(X0) S Rpm(Xo) = | Rp_r.0(X0)
k=1,..N
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Approaches

Next we discuss one possible approach for flowpipe approximation, but
there are different other techniques, too.
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Linear hybrid automata II: Time evolution
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Linear hybrid automata II: Time evolution

Assume & = Ax + Bu

The first flowpipe segment:
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Linear hybrid automata II: Time evolution

m Assume & = Az + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
m The first flowpipe segment:

m Reminder matrix exponential: eX = 2’;0 Xk—,k

7

convex hull of XU e4? X
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Linear hybrid automata II: Time evolution

m Assume & = Az + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
m The first flowpipe segment:

m Reminder matrix exponential: eX = 2’;0 Xk—,k

-
-
4

bloating with B to include non-linear behaviour
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Linear hybrid automata II: Time evolution

m Assume £ = Ax + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
m The first flowpipe segment:

. . . . X _ o0 Xk

m Reminder matrix exponential: e* = k=0 ET
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Linear hybrid automata II: Time evolution

m Assume £ = Ax + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
m The first flowpipe segment:

oo Xk
k=0 &I

convex hull of Xy U ((e4°Xy) @ By)
covers the behaviour R(g 5 under & = Az

m Reminder matrix exponential: eX =

-
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Linear hybrid automata II: Time evolution

Assume & = Ax + Bu

Compute polytopes Qq, €21, ..

The first flowpipe segment:

Reminder matrix exponential: eX =

=

disturbance!

Al
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Linear hybrid automata II: Time evolution
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Linear hybrid automata II: Time evolution

m Assume £ = Ax + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
m The first flowpipe segment:

o Xk

. . . . X _
m Reminder matrix exponential: e* =3/~ 5+

Oy = COnV(XO U ((GA(SX()) ® B @ Bg))
covers the behaviour Ry 5 under @ = Az + Bu
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Linear hybrid automata II: Time evolution

Assume & = Ax + Bu

The first flowpipe segment:
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Linear hybrid automata II: Time evolution

m Assume & = Az + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
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Linear hybrid automata II: Time evolution

m Assume & = Az + Bu

m Compute polytopes (2,21, . .. such that R;s (415 C
m The first flowpipe segment:

m Reminder matrix exponential: eX = 2’;0 Xk—,k

]

The remaining ones:

Ql = (BA(;Q()) ® BQ

covers the behaviour R5 5 under & = Az + Bu
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Linear hybrid automata Il: Discrete steps (jumps)

The same procedure as for LHA |, extended with possibilities for
aggregation and/or clustering.
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Linear hybrid automata Il: Discrete steps (jumps)

The same procedure as for LHA |, extended with possibilities for
aggregation and/or clustering.

Optionally

aggregation (convex hull ;)
(alternative: clustering)

_ 115

1D}
Iy
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Linear hybrid automata II: The global picture
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m Van der Pol equation:
.CfCl = X9
By = —0.2(2 — 1)y — z1.

m Intial set: Xy = {(z1,22) | 0.8 <z1 <1Azy=0}.
m Time: 7' = 10.
m Segments: 20
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Other geometries for approximation

m Van der Pol equation with a third variable being a clock.

m Approximation
with convex polyhedra and with oriented rectangular hull:
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Partitioning the initial set

Var der Pol system with initial set Xo = {(x1,22) | 5 < 1 <45Az9 = 0}.

! o1
005 X, : |
of , ni
-0.05 | ]
o1 |
X | -
oasf | .
o0zl 702
-0.25 :
1 / :
o 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 = . N ,
X |
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