
Reachability Analysis Techniques for Hybrid Systems
7. Linear hybrid automata II

Prof. Dr. Erika Ábrahám

Informatik 2 - LuFG Theory of Hybrid Systems
RWTH Aachen University

Vienna, Austria, 02 - 10 March 2020

Ábrahám - Hybrid Systems 1 / 26

Contents

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata I

3 Reachability analysis for linear hybrid automata II

Ábrahám - Hybrid Systems 2 / 26

Contents

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata I

3 Reachability analysis for linear hybrid automata II

Ábrahám - Hybrid Systems 3 / 26

Some tools for hybrid automata reachability analysis

Tool Characteristics
Ariadne non-linear ODEs; Taylor models, boxes; interval constraint propagation, deduction
C2D2 non-linear ODEs; guaranteed simulation
Cora non-linear ODEs; geometric representations; several algorithms, linear abstraction
dReach non-linear ODEs; logical representation; interval constraint propagation, δ-reachability,

bounded model checking
Flow∗ non-linear ODEs; Taylor models; flowpipe construction
HSolver non-linear ODEs; logical representation; interval constraint propagation
HyCreate non-linear ODEs; boxes; flowpipe construction

HyPro linear ODEs; several representations; flowpipe construction
HyReach linear ODEs; support functions; flowpipe construction
HySon non-linear ODEs; guaranteed simulation
iSAT-ODE non-linear ODEs; logical representation; interval constraint propagation, bounded model

checking
KeYmaera differential dynamic logic; logical representation; theorem proving, computer algebra
NLTOOLBOX non-linear ODEs; Bernstein expansion, hybridisation
SoapBox linear ODEs; symbolic orthogonal projections; flowpipe construction

SpaceEx linear ODEs; geometric and symbolic representations; flowpipe construction

We will learn how flowpipe-construction-based methods work. Flow∗ and HyPro
were/are developed in our group. Besides them, most closely related is the SpaceEx tool.

Ábrahám - Hybrid Systems 4 / 26

Forward reachability computation

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪Rnew;
Rnew := Reach(Rnew)\R;

};
return R

Ábrahám - Hybrid Systems 5 / 26

Most well-known state set representations

Geometric objects:
hyperrectangles [Moore et al., 2009]
oriented rectangular hulls [Stursberg et al., 2003]
convex polyhedra [Ziegler, 1995] [Chen at el, 2011]
orthogonal polyhedra [Bournez et al., 1999]
template polyhedra [Sankaranarayanan et al., 2008]
ellipsoids [Kurzhanski et al., 2000]
zonotopes [Girard, 2005])

Other symbolic representations:
support functions [Le Guernic et al., 2009]
Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]

Ábrahám - Hybrid Systems 6 / 26

Reminder: Polytopes

Halfspace: set of points satisfying cT · x ≤ z
Polyhedron: an intersection of finitely many halfspaces
Polytope: a bounded polyhedron

representation union intersection Minkowski sum
V-representation by vertices easy hard easy
H-representation by facets hard easy hard

Ábrahám - Hybrid Systems 7 / 26

Contents

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata I

3 Reachability analysis for linear hybrid automata II

Ábrahám - Hybrid Systems 8 / 26

Linear hybrid automata I

Linear hybrid automata of type I (LHA I) are hybrid automata with the
following restrictions:

All derivatives are defined by intervals.
All invariants and jump guards are defined by polytopes.
All jump resets are defined by linear transformations of the form
x := Ax+ b.

Hybrid automata of this type have linear behaviour, i.e., when time passes
by in a location, the values of the variables evolve according to a linear
function. (To be more precise, each reachable state can be reached by such
a linear evolution.)

Ábrahám - Hybrid Systems 9 / 26

Reminder: Minkowski sum

x1

x2

1 2 3

1

2

3

0

P

⊕

x1

x2

1 2 3

1

2

3

0

Q =

x1

x2

1 2 3

1

2

3

0

P ⊕Q

P ⊕Q = {p+ q | p ∈ P and q ∈ Q}

Ábrahám - Hybrid Systems 10 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)

X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)

X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)

X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)

X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Time evolution

x1

x2

0

initial state set X0

ẋ1

ẋ2

0

derivatives Q

cone(Q)

x1

x2

0

(X0 ⊕ cone(Q)) ∩ Inv(`)

X0 ⊕ cone(Q)

Ábrahám - Hybrid Systems 11 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G(P ∩G) ↓x1((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G(P ∩G) ↓x1((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G

(P ∩G) ↓x1((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G

(P ∩G) ↓x1

((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G(P ∩G) ↓x1

((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G(P ∩G) ↓x1((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G(P ∩G) ↓x1((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Linear hybrid automata I: Discrete steps (jumps)

Example jump: (l, 4 ≤ x2 ≤ 5︸ ︷︷ ︸
G≡R×[4,5]

, x2 :∈ [2, 4]︸ ︷︷ ︸
R≡R×[2,4]

, l′) ∈ Edge

`

x1

x2

0

P

5

4

`′

x1

x2

0

P ∩G(P ∩G) ↓x1((P ∩G) ↓x1)× R

2

4
(((P ∩G) ↓x1)× R) ∩R

Additionally, we intersect the result with the target location’s invariant.
Computed via projection, Minkowski sum and intersection.

Ábrahám - Hybrid Systems 12 / 26

Contents

1 Reachability analysis algorithms and tools

2 Reachability analysis for linear hybrid automata I

3 Reachability analysis for linear hybrid automata II

Ábrahám - Hybrid Systems 13 / 26

Linear hybrid automata II

Linear hybrid automata of type II (LHA II) are hybrid automata with the
following restrictions:

All derivatives are defined by linear ordinary differential equations
(ODEs) of the form

ẋ = Ax+Bu ,

where x = (x1, . . . , xn)T are the (continuous) variables, A is a matrix
of dimension n× n, u = (u1, . . . , um)T are disturbance/input/control
variables with rectangular domain U , and B is a matrix of dimension
n×m.
All invariants and jump guards are defined by polytopes.
All jump resets are defined by linear transformations of the form
x := Ax+ b.

When time passes by in a location, the values of the continuous variables
evolve according to linear ODEs.
N.B.: Now the values follow non-linear functions!

Ábrahám - Hybrid Systems 14 / 26

Approximating a flowpipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . .].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 15 / 26

Approximating a flowpipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . .].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 15 / 26

Approximating a flowpipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . .].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 15 / 26

Approximating a flowpipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . .].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 15 / 26

Approximating a flowpipe

The set of reachable states at time t from a set of initial states X0 is
defined as

Rt(X0) = {xt | ∃x0 ∈ X0. xt = x(t, x0)}.

The set of reachable states, the flowpipe, from X0 in the time interval
[0, T] is defined as

R[0,T](X0) = ∪t∈[0,T]Rt(X0).

We describe a solution which approximates the flowpipe by a sequence of
convex polytopes.

Ábrahám - Hybrid Systems 16 / 26

Approximating a flowpipe

The set of reachable states at time t from a set of initial states X0 is
defined as

Rt(X0) = {xt | ∃x0 ∈ X0. xt = x(t, x0)}.

The set of reachable states, the flowpipe, from X0 in the time interval
[0, T] is defined as

R[0,T](X0) = ∪t∈[0,T]Rt(X0).

We describe a solution which approximates the flowpipe by a sequence of
convex polytopes.

Ábrahám - Hybrid Systems 16 / 26

Approximating a flowpipe

The set of reachable states at time t from a set of initial states X0 is
defined as

Rt(X0) = {xt | ∃x0 ∈ X0. xt = x(t, x0)}.

The set of reachable states, the flowpipe, from X0 in the time interval
[0, T] is defined as

R[0,T](X0) = ∪t∈[0,T]Rt(X0).

We describe a solution which approximates the flowpipe by a sequence of
convex polytopes.

Ábrahám - Hybrid Systems 16 / 26

Problem statement for polyhedral approximation of flowpipes

Given
a set X0 of initial states which is a polytope, and
a final time T ,

compute a polyhedral approximation R̂[0,T](X0) to the flowpipe R[0,T](X0)
such that

R[0,T](X0) ⊆ R̂[0,T](X0).

Ábrahám - Hybrid Systems 17 / 26

Flowpipe segmentation

Since a single convex polyhedron would strongly overapproximate the
flowpipe, we compute a sequence of convex polyhedra, each approximating
a flowpipe segment.

Ábrahám - Hybrid Systems 18 / 26

Segmented flowpipe approximation

Let the time interval [0, T] be divided into 0 < N ∈ N time segments

[0, t1], [t1, t2], . . . , [tN−1, T]

with ti = i · δ for δ = T
N .

We generate an approximation R̂[t1,t2](X0) for each flowpipe segment:

R[t1,t2](X0) ⊆ R̂[t1,t2](X0).

The complete flowpipe approximation is the union of the approximation of
all N pipe segments:

R[0,T](X0) ⊆ R̂[0,T](X0) =
⋃

k=1,...,N

R̂[tk−1,tk](X0)

Ábrahám - Hybrid Systems 19 / 26

Segmented flowpipe approximation

Let the time interval [0, T] be divided into 0 < N ∈ N time segments

[0, t1], [t1, t2], . . . , [tN−1, T]

with ti = i · δ for δ = T
N .

We generate an approximation R̂[t1,t2](X0) for each flowpipe segment:

R[t1,t2](X0) ⊆ R̂[t1,t2](X0).

The complete flowpipe approximation is the union of the approximation of
all N pipe segments:

R[0,T](X0) ⊆ R̂[0,T](X0) =
⋃

k=1,...,N

R̂[tk−1,tk](X0)

Ábrahám - Hybrid Systems 19 / 26

Segmented flowpipe approximation

Let the time interval [0, T] be divided into 0 < N ∈ N time segments

[0, t1], [t1, t2], . . . , [tN−1, T]

with ti = i · δ for δ = T
N .

We generate an approximation R̂[t1,t2](X0) for each flowpipe segment:

R[t1,t2](X0) ⊆ R̂[t1,t2](X0).

The complete flowpipe approximation is the union of the approximation of
all N pipe segments:

R[0,T](X0) ⊆ R̂[0,T](X0) =
⋃

k=1,...,N

R̂[tk−1,tk](X0)

Ábrahám - Hybrid Systems 19 / 26

Approaches

Next we discuss one possible approach for flowpipe approximation, but
there are different other techniques, too.

Ábrahám - Hybrid Systems 20 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:
Reminder matrix exponential: eX =

∑∞
k=0

Xk

k!

The remaining ones:

R[0,δ]

R[δ,2δ]

R[2δ,3δ]

Ω0

Ω1

Ω2

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:
Reminder matrix exponential: eX =

∑∞
k=0

Xk

k!

The remaining ones:

R[0,δ]

R[δ,2δ]

R[2δ,3δ]

Ω0

Ω1

Ω2

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu
Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:
Reminder matrix exponential: eX =

∑∞
k=0

Xk

k!

The remaining ones:

R[0,δ]

R[δ,2δ]

R[2δ,3δ]

Ω0

Ω1

Ω2

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0

bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0

bloating with B1 to include non-linear behaviour

(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour

(eAδX0)⊕B1

convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1

convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!

bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!

bloating with B2

(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2

(eAδX0)⊕B1 ⊕B2

Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2

Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bu

covers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bu

covers the behaviour R[δ,2δ] under ẋ = Ax

disturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0

Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Ax

disturbance!

bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0

Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!

bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0

Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0

Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute polytopes Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

Reminder matrix exponential: eX =
∑∞
k=0

Xk

k!

The remaining ones:

t0 δ 2δ

X0

eAδX0

convex hull of X0 ∪ eAδX0bloating with B1 to include non-linear behaviour(eAδX0)⊕B1convex hull of X0 ∪ ((eAδX0)⊕B1)
covers the behaviour R[0,δ] under ẋ = Ax

disturbance!bloating with B2(eAδX0)⊕B1 ⊕B2Ω0 = conv(X0 ∪ ((eAδX0)⊕B1 ⊕B2))
covers the behaviour R[0,δ] under ẋ = Ax+Bucovers the behaviour R[δ,2δ] under ẋ = Axdisturbance!bloating with B2

Ω1 = (eAδΩ0)⊕B2

covers the behaviour R[δ,2δ] under ẋ = Ax+Bu

Ω0

Ω0

eAδΩ0

Ω1

Ábrahám - Hybrid Systems 21 / 26

Linear hybrid automata II: Discrete steps (jumps)

The same procedure as for LHA I, extended with possibilities for
aggregation and/or clustering.

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

Optionally
aggregation (convex hull V1)

(alternative: clustering)

Ábrahám - Hybrid Systems 22 / 26

Linear hybrid automata II: Discrete steps (jumps)

The same procedure as for LHA I, extended with possibilities for
aggregation and/or clustering.

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

Optionally
aggregation (convex hull V1)

(alternative: clustering)

Ábrahám - Hybrid Systems 22 / 26

Linear hybrid automata II: Discrete steps (jumps)

The same procedure as for LHA I, extended with possibilities for
aggregation and/or clustering.

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

Optionally
aggregation (convex hull V1)

(alternative: clustering)

Ábrahám - Hybrid Systems 22 / 26

Linear hybrid automata II: Discrete steps (jumps)

The same procedure as for LHA I, extended with possibilities for
aggregation and/or clustering.

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

Optionally
aggregation (convex hull V1)

(alternative: clustering)

Ábrahám - Hybrid Systems 22 / 26

Linear hybrid automata II: Discrete steps (jumps)

The same procedure as for LHA I, extended with possibilities for
aggregation and/or clustering.

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

Optionally
aggregation (convex hull V1)

(alternative: clustering)

Ábrahám - Hybrid Systems 22 / 26

Linear hybrid automata II: Discrete steps (jumps)

The same procedure as for LHA I, extended with possibilities for
aggregation and/or clustering.

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

Optionally
aggregation (convex hull V1)

(alternative: clustering)

Ábrahám - Hybrid Systems 22 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 23 / 26

Example

Van der Pol equation:

ẋ1 = x2

ẋ2 = −0.2(x21 − 1)x2 − x1.

Intial set: X0 = {(x1, x2) | 0.8 ≤ x1 ≤ 1 ∧ x2 = 0}.
Time: T = 10.
Segments: 20

Ábrahám - Hybrid Systems 24 / 26

Other geometries for approximation

Van der Pol equation with a third variable being a clock.
Approximation

with convex polyhedra and with oriented rectangular hull:

Ábrahám - Hybrid Systems 25 / 26

Partitioning the initial set

Var der Pol system with initial set X0 = {(x1, x2) | 5 ≤ x1 ≤ 45∧ x2 = 0}.

Ábrahám - Hybrid Systems 26 / 26

	Reachability analysis algorithms and tools
	Reachability analysis for linear hybrid automata I
	Reachability analysis for linear hybrid automata II

