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Convex polyhedra

Abraham - Hybrid Systems 2 /18



(Convex) polyhedra and polytopes
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(Convex) polyhedra and polytopes

Notation: In this lecture we use column-vector-notation, i.e., £ € R% is a
column vector, whereas 7 is a row vector.
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(Convex) polyhedra and polytopes

Notation: In this lecture we use column-vector-notation, i.e., £ € R% is a

column vector, whereas 7 is a row vector.

Definition (Polyhedron, polytope)

A polyhedron in R? is the solution set to a finite number n € N>q of linear
inequalities a;” - x < b; ,i=1,...,n, with
real coefficients a; € RY, real-valued variables £ = (z1,...,24)" and

b; € R. A bounded polyhedron is called a polytope.
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(Convex) polyhedra and polytopes

Definition (Reminder: convex sets)

A set S C R% is convex if
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(Convex) polyhedra and polytopes

Definition (Reminder: convex sets)

A set S C R% is convex if

Ve,y e S VA€ [0,]]CR. Az + (1 - Ny eS.

b

Polyhedra are convex sets. Proof? AN
-y - ") V=1
@ v, ¢b £ b
2 (s - A)xl) < b
X &y, + (L% 6

——

N+ M=NYRT £ A6 4105, =6
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(Convex) polyhedra and polytopes

Definition (Reminder: convex sets)

A set S C R% is convex if

Ve,y e S VA€ [0,]]CR. Az + (1 - Ny eS.

Polyhedra are convex sets. Proof?

Depending on the form of the representation we distinguish between
Q
m 7{-polytopes and —_y} - A :'. Zeu,
_polvt ATA
m V-polytopes —_

AX <

e
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‘H-polytopes

Definition (Closed halfspace)

A d-dimensional closed halfspace is a set H = {x € R? | a” -z < b} for
some a € R?, called the normal of the halfspace, and some b € R.
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‘H-polytopes

Definition (Closed halfspace)

A d-dimensional closed halfspace is a set H = {x € R? | a” -z < b} for
some a € R?, called the normal of the halfspace, and some b € R.

Definition (#-polyhedron, H-polytope)

A d-dimensional H-polyhedron P = (_; H; is the intersection of finitely
many closed halfspaces. A bounded H-polyhedron is called an #-polytope.

The facets of a d-dimensional H-polytope are@ — l}dimensional
‘H-polytopes.
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‘H-polytopes

An H-polytope

P = ﬂ?—[z = m{weRdlaiT-a:gbi}
i=1 i=1
can also be written in the form 2 x “6 ¢ 3
P ={x c R?| Az < b}. x -3q e

We call (A,b) the H-representation of the polytope. (.?_ X )
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‘H-polytopes

An H-polytope

n

n
P = ﬂ?—[z = m{weRdlaiT-a:gbi}
i=1 i=1
can also be written in the form

P ={x c R?| Az < b}.

We call (A,b) the H-representation of the polytope.
m Each row of A is the normal vector to the ith facet of the polytope.
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‘H-polytopes

An H-polytope
P = ﬂ?—[z = m{weRdlaiT-a:gbi}
i=1 i=1
can also be written in the form
P ={x c R?| Az < b}.

We call (A,b) the H-representation of the polytope.
m Each row of A is the normal vector to the ith facet of the polytope.

m An H-polytope P has a finite number of vertices V().
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Convex hull of a finite set of points

AN
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Convex hull of a finite set of points
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V-polytopes

Definition (Convex hull)

Given a set V C R, the convex hull conv(V) of V is the smallest convex
set that contains V.
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Definition (Convex hull)
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V-polytopes
Definition (Convex hull)

Given a set V C R, the convex hull conv(V) of V is the smallest convex
set that contains V.

For a finite set V = {wy,...,v,} C RY, its convex hull can be computed by

conv(V)={z € R"|3x1,... ., M € [0,1] CR. > N\ =1AD Aw; ==z},
=1 =1

Definition (V-polytope)

A V-polytope P = conv(V) is the convex hull of a finite set V. R, We
call V' the V-representation of the polytope.

Note that all V-polytopes are bounded.
Unbounded polyhedra can be represented by extending convex hulls with
conical hulls.
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Conical hull of a finite set of points
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Conical hull of a finite set of points

Definition (Conical hull)

If U= {u1,...,un} is a finite set of points in RY, the conical hull of U is
defined by

n
cone(U) = {x e R | IN,..., \n ERzo-iﬂ:Z)\iW}- (1)
i=1
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Conical hull of a finite set of points

Definition (Conical hull)

If U= {u1,...,un} is a finite set of points in RY, the conical hull of U is
defined by

n
cone(U) = {x e R | IN,..., \n ERzo-iﬂ:Z)\iui}- (1)
i=1

Each polyhedra P C R? can be represented by two finite sets V,U C R?
such that

P = conv(V) @ cone(U) ={v+u | v € conv(V), u € cone(U)} ,

where @ is called the Minkowski sum. A ®b = 2 arb \ aeh, Qe'ﬂ]
If U is empty then P is bounded (e.g., a polytope).
In the following we consider, for simplicity, only bounded V-polytopes.
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Motzkin's theorem

m For each H-polytope, the convex hull of its vertices defines the same
set in the form of a V-polytope, and vice versa,

m each set defined as a V-polytope can be also given as an H-polytope
by computing the halfspaces defined by its facets.

The translations between the - and the V-representations of polytopes
can be exponential in the state space dimension d.
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Operations on convex polyhedra
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If we represent reachable sets of hybrid automata by polytopes, we need
some operations like

m membership computation (z € P)
linear transformation (A - P)
Minkowski sum (P & P5)
intersection (Py N P)

(convex hull of the) union of two polytopes (conv(P; U Ps))
test for emptiness (P = (7)
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Membership p € P

Membership for p € R%:
m 7H-polytope defined by Az < z:
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n n
N, LA €0 CR DY N =1AY Avi=x .
i=1 i=1
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Membership p € P

Membership for p € R%:

m 7H-polytope defined by Az < z:
just substitute p for & to check if the inequation holds.

m V-polytope defined by the vertex set V:
check satisfiability of

n n
N, LA €0 CR DY N =1AY Avi=x .
i=1 i=1
Alternatively: convert the V-polytope into an H-polytope by

computing its facets. —> posﬁu‘a exps unhed  oupl.
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Intersection P N P

Intersection for two polytopes P; and Ps:
m H-polytopes defined by A1z < by and Az < bs:

(GIo)
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Intersection P N P

Intersection for two polytopes P; and Ps:
m H-polytopes defined by A1z < by and Az < bs:

the resulting #H-polytope is defined by ( ﬁl >a: < < 2; )
2

m V-polytopes defined by V; and Vs:
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Intersection P N P

Intersection for two polytopes P; and Ps:

m H-polytopes defined by A1z < by and Az < bs:

the resulting #H-polytope is defined by ( ﬁl >a: < < 21 )
2 2

m V-polytopes defined by V; and Vs:

Convert P; and P, to H-polytopes and convert the result back to a
V-polytope.
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Note that the union of two convex polytopes is in general not a convex
polytope.
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Note that the union of two convex polytopes is in general not a convex
polytope.
— take the convex hull of the union.
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Note that the union of two convex polytopes is in general not a convex
polytope.
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m V-polytopes defined by Vi and Vs:
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Note that the union of two convex polytopes is in general not a convex
polytope.
— take the convex hull of the union.
m V-polytopes defined by Vi and Vs:
V-representation V; U V5.

m 7-polytopes defined by Ayz < by and Apz < by: L

,
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Note that the union of two convex polytopes is in general not a convex
polytope.
— take the convex hull of the union.
m V-polytopes defined by Vi and Vs:
V-representation V; U V5.
m H-polytopes defined by A1z < by and Az < be:
convert to V-polytopes and compute back the result.
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Operation complexity overview

“easy”: doable in polynomial complexity
“hard”: no polynomial algorithm is known

lool a
/

v v
T€EP|A-P|PLoP | PANP 4P UDR) =9
V-polytope easy | easy — — — e
‘H-polytope easy hard — — — e
V-polytope and V-polytope easy hard easy -
‘H-polytope and H-polytope — — hard easy hard -
V-polytope and H-polytope — — hard hard hard | =—

It is in general also hard to translate a V-polytope to an H-polytope or vice

Versa.
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