TA Abstraction

inil. RA : -> TA

Forward read Bacsward reach :

LHAI : Exact via logical encoding of state sch and transition relation LHAII : $\dot{x} = Ax + Bn$ (logical encodig : dRead tere : state set representation : geometrical objects

Shelt set upktudation :
() Storacge of stale set
() Operations
Here : Example polytopes
() H- or U-representation
() H- or U-representation
() E, conv(.U.), N, lin. Transform.
Neiner wish sum (), text for
$$\phi$$

U, E: P = conv(V)
 $= \{ \sum_{i} \lambda_{i} v_{i} \mid \lambda_{i} \in \mathbb{R}_{\geq 0}; \sum_{i} \lambda_{i} = 1 \}$ (A, b)
($\exists \lambda_{1}, \dots, \lambda_{m}$) $\sum_{i} \lambda_{i} v_{i} = x \land \sum_{i} \lambda_{i} = 1 \land \lambda_{a}, \dots, \lambda_{m} \ge 0$
Dext (P)

Modeling and Analysis of Hybrid Systems Convex polyhedra

Prof. Dr. Erika Ábrahám

Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University

Szeged, Hungary, 27 September - 06 October 2017

1 Convex polyhedra

2 Operations on convex polyhedra

Notation: In this lecture we use column-vector-notation, i.e., $\boldsymbol{x} \in \mathbb{R}^d$ is a column vector, whereas \boldsymbol{x}^T is a row vector.

Notation: In this lecture we use column-vector-notation, i.e., $\pmb{x} \in \mathbb{R}^d$ is a column vector, whereas \pmb{x}^T is a row vector.

Definition (Polyhedron, polytope)

A polyhedron in \mathbb{R}^d is

Notation: In this lecture we use column-vector-notation, i.e., $\pmb{x} \in \mathbb{R}^d$ is a column vector, whereas \pmb{x}^T is a row vector.

Definition (Polyhedron, polytope)

Notation: In this lecture we use column-vector-notation, i.e., $\pmb{x} \in \mathbb{R}^d$ is a column vector, whereas \pmb{x}^T is a row vector.

Definition (Polyhedron, polytope)

Notation: In this lecture we use column-vector-notation, i.e., $\pmb{x} \in \mathbb{R}^d$ is a column vector, whereas \pmb{x}^T is a row vector.

Definition (Polyhedron, polytope)

Notation: In this lecture we use column-vector-notation, i.e., $\pmb{x} \in \mathbb{R}^d$ is a column vector, whereas \pmb{x}^T is a row vector.

Definition (Polyhedron, polytope)

Notation: In this lecture we use column-vector-notation, i.e., $\pmb{x} \in \mathbb{R}^d$ is a column vector, whereas \pmb{x}^T is a row vector.

Definition (Polyhedron, polytope)

A set $S\subseteq \mathbb{R}^d$ is convex if

A set $S\subseteq \mathbb{R}^d$ is convex if

 $\forall \boldsymbol{x}, \boldsymbol{y} \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in S.$

A set $S \subseteq \mathbb{R}^d$ is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in S.$$

Polyhedra are convex sets. Proof? $\overrightarrow{a} \times \overrightarrow{x_1} \leq b$ $\overrightarrow{a} \times \overrightarrow{z} \leq b$ $\overrightarrow{a} (\overrightarrow{x_1} + (\cancel{a} - \cancel{a}) \times \overrightarrow{z}) \leq b$ $\overrightarrow{a} \times \overrightarrow{x_1} + (\cancel{a} - \cancel{a}) \times \overrightarrow{z} \leq b$ $\overrightarrow{a} \times \overrightarrow{x_1} + (\cancel{a} - \cancel{a}) \times \overrightarrow{z} \leq b$ $\overrightarrow{a} \times \overrightarrow{x_1} + (\cancel{a} - \cancel{a}) \times \overrightarrow{z} \leq b$ $\overrightarrow{a} \times \overrightarrow{x_1} + (\cancel{a} - \cancel{a}) \times \overrightarrow{z} \leq b$

A set $S\subseteq \mathbb{R}^d$ is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in S.$$

Polyhedra are convex sets. Proof?

Depending on the form of the representation we distinguish between

Definition (Closed halfspace)

A *d*-dimensional closed halfspace is a set $\mathcal{H} = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \boldsymbol{a}^T \cdot \boldsymbol{x} \leq b \}$ for some $\boldsymbol{a} \in \mathbb{R}^d$, called the normal of the halfspace, and some $b \in \mathbb{R}$.

Definition (Closed halfspace)

A *d*-dimensional closed halfspace is a set $\mathcal{H} = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \boldsymbol{a}^T \cdot \boldsymbol{x} \leq b \}$ for some $\boldsymbol{a} \in \mathbb{R}^d$, called the normal of the halfspace, and some $b \in \mathbb{R}$.

Definition (\mathcal{H} -polyhedron, \mathcal{H} -polytope)

A *d*-dimensional \mathcal{H} -polyhedron $P = \bigcap_{i=1}^{n} \mathcal{H}_i$ is the intersection of finitely many closed halfspaces. A bounded \mathcal{H} -polyhedron is called an \mathcal{H} -polytope.

The facets of a d-dimensional $\mathcal H$ -polytope are(d-1)dimensional $\mathcal H$ -polytopes.

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ \boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{a_{i}}^{T} \cdot \boldsymbol{x} \leq b_{i} \}$$

can also be written in the form

$$P = \{ \boldsymbol{x} \in \mathbb{R}^d \mid A\boldsymbol{x} \leq \boldsymbol{b} \}.$$

We call (A, \boldsymbol{b}) the \mathcal{H} -representation of the polytope.

 $\begin{array}{c} 2x + y \leq 3 \\ x - 3y \leq 5 \end{array}$

 $\begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} \times \\ \eta \end{pmatrix} \leq \begin{pmatrix} 3 \\ \eta \end{pmatrix}$

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ \boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{a_{i}}^{T} \cdot \boldsymbol{x} \leq b_{i} \}$$

can also be written in the form

$$P = \{ \boldsymbol{x} \in \mathbb{R}^d \mid A\boldsymbol{x} \leq \boldsymbol{b} \}.$$

We call (A, \boldsymbol{b}) the \mathcal{H} -representation of the polytope.

• Each row of A is the normal vector to the *i*th facet of the polytope.

An \mathcal{H} -polytope

$$P \quad = \quad \bigcap_{i=1}^{n} \mathcal{H}_{i} \quad = \quad \bigcap_{i=1}^{n} \{ \boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{a_{i}}^{T} \cdot \boldsymbol{x} \leq b_{i} \}$$

can also be written in the form

$$P = \{ \boldsymbol{x} \in \mathbb{R}^d \mid A\boldsymbol{x} \leq \boldsymbol{b} \}.$$

We call (A, \mathbf{b}) the \mathcal{H} -representation of the polytope.

- Each row of A is the normal vector to the *i*th facet of the polytope.
- An \mathcal{H} -polytope P has a finite number of vertices V(P).

Convex hull of a finite set of points

Convex hull of a finite set of points

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{ \pmb{v_1}, \dots, \pmb{v_n} \} \subseteq \mathbb{R}^d$, its convex hull can be computed by

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{ \pmb{v_1}, \dots, \pmb{v_n} \} \subseteq \mathbb{R}^d$, its convex hull can be computed by

$$conv(V) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \}.$$

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{ \pmb{v_1}, \dots, \pmb{v_n} \} \subseteq \mathbb{R}^d$, its convex hull can be computed by

$$conv(V) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \}.$$

Definition (\mathcal{V} -polytope)

A \mathcal{V} -polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V} -representation of the polytope.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{ \pmb{v_1}, \dots, \pmb{v_n} \} \subseteq \mathbb{R}^d$, its convex hull can be computed by

$$conv(V) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \}.$$

Definition (\mathcal{V} -polytope)

A \mathcal{V} -polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V} -representation of the polytope.

Note that all \mathcal{V} -polytopes are bounded.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{ \pmb{v_1}, \dots, \pmb{v_n} \} \subseteq \mathbb{R}^d$, its convex hull can be computed by

$$conv(V) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \}.$$

Definition (\mathcal{V} -polytope)

A \mathcal{V} -polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V} -representation of the polytope.

Note that all \mathcal{V} -polytopes are bounded. Unbounded polyhedra can be represented by extending convex hulls with conical hulls.

Ábrahám - Hybrid Systems

Conical hull of a finite set of points

Conical hull of a finite set of points

Conical hull of a finite set of points

Definition (Conical hull)

If $U = \{u_1, \dots, u_n\}$ is a finite set of points in \mathbb{R}^d , the conical hull of U is defined by

$$cone(U) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in \mathbb{R}_{\geq 0}. \ \boldsymbol{x} = \sum_{i=1}^n \lambda_i \boldsymbol{u_i} \}.$$
(1)

Definition (Conical hull)

If $U = \{u_1, \dots, u_n\}$ is a finite set of points in \mathbb{R}^d , the conical hull of U is defined by

$$cone(U) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in \mathbb{R}_{\geq 0}. \ \boldsymbol{x} = \sum_{i=1}^n \lambda_i \boldsymbol{u_i} \}.$$
(1)

Each polyhedra $P\subseteq \mathbb{R}^d$ can be represented by two finite sets $V,U\subseteq \mathbb{R}^d$ such that

$$P = conv(V) \oplus cone(U) = \{ \boldsymbol{v} + \boldsymbol{u} \mid \boldsymbol{v} \in conv(V), \ \boldsymbol{u} \in cone(U) \} ,$$

where \oplus is called the Minkowski sum. $A \oplus B = \{a + b \mid a \in A, b \in B\}$ If U is empty then P is bounded (e.g., a polytope). In the following we consider, for simplicity, only bounded \mathcal{V} -polytopes.

- For each *H*-polytope, the convex hull of its vertices defines the same set in the form of a *V*-polytope, and vice versa,
- each set defined as a V-polytope can be also given as an H-polytope by computing the halfspaces defined by its facets.

The translations between the \mathcal{H} - and the \mathcal{V} -representations of polytopes can be exponential in the state space dimension d.

1 Convex polyhedra

2 Operations on convex polyhedra

If we represent reachable sets of hybrid automata by polytopes, we need some operations like

- membership computation ($m{x} \in P$)
- linear transformation $(A \cdot P)$
- Minkowski sum $(P_1 \oplus P_2)$
- intersection $(P_1 \cap P_2)$

- (convex hull of the) union of two polytopes ($\mathit{conv}(P_1 \cup P_2)$)
- test for emptiness ($P = \emptyset$?)

Membership $p \in P$

Membership for
$$p \in \mathbb{R}^d$$
:
 $V : Set of vertices V : $\vec{p} = \sum_{i=1}^{n} \lambda_i \vec{v}_i$
 $point \vec{p}$
 $\mathcal{H} : (A, \vec{b})$
 $point \vec{p}$
 $A \vec{p} \neq \vec{b}$
 $b = c + i \vec{v}_i$
 $h = c + i \vec$$

Membership $\pmb{p} \in P$

Membership for $\boldsymbol{p} \in \mathbb{R}^d$:

• \mathcal{H} -polytope defined by $A \boldsymbol{x} \leq \boldsymbol{z}$:

• \mathcal{H} -polytope defined by $Ax \leq z$: just substitute p for x to check if the inequation holds.

- \mathcal{H} -polytope defined by $Ax \leq z$: just substitute p for x to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*:

- \mathcal{H} -polytope defined by $Ax \leq z$: just substitute p for x to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \ .$$

- \mathcal{H} -polytope defined by $Ax \leq z$: just substitute p for x to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \ .$$

Alternatively:

- \mathcal{H} -polytope defined by $Ax \leq z$: just substitute p for x to check if the inequation holds.
- *V*-polytope defined by the vertex set V: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i \boldsymbol{v_i} = \boldsymbol{x} \ .$$

Alternatively: convert the V-polytope into an H-polytope by computing its facets. \rightarrow possibly exponential coupl.

Intersection for two polytopes P_1 and P_2 :

• \mathcal{H} -polytopes defined by $A_1 \boldsymbol{x} \leq \boldsymbol{b_1}$ and $A_2 \boldsymbol{x} \leq \boldsymbol{b_2}$:

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $A_1 \boldsymbol{x} \leq \boldsymbol{b_1}$ and $A_2 \boldsymbol{x} \leq \boldsymbol{b_2}$: the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \boldsymbol{x} \leq \begin{pmatrix} \boldsymbol{b_1} \\ \boldsymbol{b_2} \end{pmatrix}$.
- \mathcal{V} -polytopes defined by V_1 and V_2 :

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $A_1 \boldsymbol{x} \leq \boldsymbol{b_1}$ and $A_2 \boldsymbol{x} \leq \boldsymbol{b_2}$: the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \boldsymbol{x} \leq \begin{pmatrix} \boldsymbol{b_1} \\ \boldsymbol{b_2} \end{pmatrix}$.
- V-polytopes defined by V₁ and V₂: Convert P₁ and P₂ to H-polytopes and convert the result back to a V-polytope.

 \rightarrow take the convex hull of the union.

ightarrow take the convex hull of the union.

• \mathcal{V} -polytopes defined by V_1 and V_2 :

ightarrow take the convex hull of the union.

• \mathcal{V} -polytopes defined by V_1 and V_2 : \mathcal{V} -representation $V_1 \cup V_2$.

• \mathcal{H} -polytopes defined by $A_1 \boldsymbol{x} \leq \boldsymbol{b_1}$ and $A_2 \boldsymbol{x} \leq \boldsymbol{b_2}$:

ightarrow take the convex hull of the union.

- \mathcal{V} -polytopes defined by V_1 and V_2 : \mathcal{V} -representation $V_1 \cup V_2$.
- *H*-polytopes defined by A₁*x* ≤ b₁ and A₂*x* ≤ b₂: convert to *V*-polytopes and compute back the result.

 $P = \phi^2$ constant H: (A,G) JZ AZ = 5 polynom al A. P linear transformation V: {A·r | rev} H: (A', B) -> V -> A. V -> HA. v a axa a

diver transformation :

$$\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 1 \\ \lambda \end{pmatrix} = \begin{pmatrix} 1 \\ \lambda \end{pmatrix}$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ \lambda \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$R_{x} = \begin{pmatrix} \cos x & -\sin x \\ \sin x \end{pmatrix}$$

$$R_{90} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$R_{90} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$2 \cdot R_{g_0} = \begin{pmatrix} 0 - 2 \\ 2 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 2 \cdot l_{g_0} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

$$\begin{array}{c} \begin{array}{c} & \text{Kumha} & \text{Assume} & \text{V}_{A} \in \left[\text{V}_{A,1} | \cdots | \text{V}_{A,k} \right] \\ & \text{V}_{B} = \left\{ \text{U}_{B,1} | \cdots | \text{V}_{B,k} \right\} \end{array} \\ \hline \\ & \text{Then} \\ & \text{conv} (\text{V}_{A}) \bigoplus \text{conv} (\text{V}_{B}) = \text{conv} (\text{V}_{A} \bigoplus \text{V}_{B}) \\ \hline \\ & \text{Proof} \\ & \text{Proof} \\ \hline \\ & \text{Proof} \\ & \text{Proof} \\ \hline \\ & \text{Proof} \\ & \text{vechave} \\ & \text{x-E } \sum_{i=1}^{2} \lambda_{i,i} (\text{U}_{A,i} + \text{U}_{B,i}) \\ & \text{vechave} \\ & \text{x-E } \sum_{i=1}^{2} \lambda_{i,i} (\text{U}_{A,i} + \text{U}_{B,i}) \\ & \text{e} \left(\sum_{i=1}^{2} \lambda_{i,i} (\text{U}_{A,i}) + \left(\sum_{i=1}^{2} \beta_{i} \text{U}_{B,i} \right) (\text{V}_{B,i}) \right) \\ & \text{e} \left(\sum_{i=1}^{2} \lambda_{i,i} (\text{U}_{A,i}) + \left(\sum_{i=1}^{2} \beta_{i} \text{U}_{B,i} \right) \in \text{conv} (\text{V}_{A}) \bigoplus \text{conv} (\text{U}_{B}) \\ & \text{e} \left(\sum_{i=1}^{2} \lambda_{i,i} (\text{U}_{A,i}) + \left(\sum_{j=1}^{2} \beta_{j} \text{U}_{B,i} \right) \right) \in \text{conv} (\text{V}_{A}) \bigoplus \text{conv} (\text{U}_{B}) \\ & \text{(Note:} \sum_{i=1}^{2} \alpha_{i} = \sum_{i=1}^{2} \beta_{i} = 1 \\ & \text{oud} \quad \text{x } \in \text{conv} (\text{U}_{A}) \bigoplus \text{conv} (\text{U}_{B}) . \text{Then there easist some} \quad \sum_{i=1}^{2} \alpha_{i} = 1 \\ & \text{oud} \quad \sum_{i=1}^{2} \beta_{i} (\text{V}_{A,i}) + \left(\sum_{i=1}^{2} \beta_{i} \text{V}_{B,i} \right) = \left(\sum_{i=1}^{2} (\sum_{i=1}^{2} \beta_{i}) \alpha_{i} \text{U}_{A,i} \right) + \left(\sum_{i=1}^{2} \beta_{i} \text{U}_{B,i} \right) \\ & = \sum_{i=1}^{2} \sum_{i=1}^{2} \alpha_{i} \beta_{i} (\text{V}_{A,i}) + \left(\sum_{i=1}^{2} \beta_{i} \text{U}_{B,i} \right) \in \text{conv} (\text{V}_{A} \oplus \text{V}_{B}) . \\ \end{array}$$

Operation complexity overview

"easy": doable in polynomial ("hard": no polynomial algorith	complexi im is kno v	ty – own		€	s=129	
	$x \in P$	$A \cdot P$	$P_1 \oplus P_2$	$P_1 \cap P_2$ ($P_1 \cup P_2$	= \$?
$\mathcal V$ -polytope	ea sy	easy	_	_	-	e
\mathcal{H} -polytope	ea sy	hard	_	_	_	e
$\mathcal V$ -polytope and $\mathcal V$ -polytope	-	_	easy	hard	ea sy	-
$\mathcal H$ -polytope and $\mathcal H$ -polytope	-	—	hard	easy	hard	-
$\mathcal V$ -polytope and $\mathcal H$ -polytope	-	—	hard	hard	hard	-

It is in general also hard to translate a \mathcal{V} -polytope to an \mathcal{H} -polytope or vice versa.

by livedor transformation :

initial state set P, $\dot{x} = Ax$ at time $\delta > 0$ supter reaches states $\frac{1}{e^{A\delta}} \cdot P_{T}$ Matrix exponential