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(Convex) polyhedra and polytopes

Notation: In this lecture we use column-vector-notation, i.e., xxx ∈ Rd is a
column vector, whereas xxxT is a row vector.

De�nition (Polyhedron, polytope)

A polyhedron in Rd is the solution set to a �nite number n ∈ N≥0 of linear
inequalities aiaiaiT · xxx ≤ bi (i.e., ai1x1 + . . .+ ainxn ≤ bi), i = 1, . . . , n, with
real coe�cients aiaiai ∈ Rd, real-valued variables xxx = (x1, . . . , xd)

T and
bi ∈ R. A bounded polyhedron is called a polytope.

x1 + 2x2 ≤ 12

−3x1 + 2x2 ≤ 1

x1 ≤ 7

x1

x2

0
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(Convex) polyhedra and polytopes

De�nition (Reminder: convex sets)

A set S ⊆ Rd is convex if

∀xxx,yyy ∈ S. ∀λ ∈ [0, 1] ⊆ R. λxxx+ (1− λ)yyy ∈ S.

Polyhedra are convex sets. Proof?

Depending on the form of the representation we distinguish between

H-polytopes and
V-polytopes
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H-polytopes

De�nition (Closed halfspace)

A d-dimensional closed halfspace is a set H = {xxx ∈ Rd | aaaT · xxx ≤ b} for
some aaa ∈ Rd, called the normal of the halfspace, and some b ∈ R.

De�nition (H-polyhedron, H-polytope)

A d-dimensional H-polyhedron P =
⋂n

i=1Hi is the intersection of �nitely
many closed halfspaces. A bounded H-polyhedron is called an H-polytope.

The facets of a d-dimensional H-polytope are d− 1-dimensional
H-polytopes.
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H-polytopes

An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{xxx ∈ Rd | aiaiaiT · xxx ≤ bi}

can also be written in the form

P = {xxx ∈ Rd | Axxx ≤ bbb}.

We call (A,bbb) the H-representation of the polytope.

Each row of A is the normal vector to the ith facet of the polytope.

An H-polytope P has a �nite number of vertices V (P ).
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Convex hull of a �nite set of points

x1

x2

0
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V-polytopes

De�nition (Convex hull)

Given a set V ⊆ Rd, the convex hull conv(V ) of V is the smallest convex
set that contains V .

For a �nite set V = {v1v1v1, . . . , vnvnvn} ⊆ Rd, its convex hull can be computed by

conv(V ) = {xxx ∈ Rd | ∃λ1, . . . , λn ∈ [0, 1] ⊆ R.
n∑

i=1

λi = 1∧
n∑

i=1

λivivivi = xxx}.

De�nition (V-polytope)
A V-polytope P = conv(V ) is the convex hull of a �nite set V ⊂ Rd. We
call V the V-representation of the polytope.

Note that all V-polytopes are bounded.
Unbounded polyhedra can be represented by extending convex hulls with
conical hulls.
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Conical hull of a �nite set of points

x1

x2

0
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Conical hull of a �nite set of points

De�nition (Conical hull)

If U = {u1u1u1, . . . ,ununun} is a �nite set of points in Rd, the conical hull of U is
de�ned by

cone(U) = {xxx ∈ Rd | ∃λ1, . . . , λn ∈ R≥0. xxx =

n∑
i=1

λiuiuiui}. (1)

Each polyhedra P ⊆ Rd can be represented by two �nite sets V,U ⊆ Rd

such that

P = conv(V )⊕ cone(U) = {vvv + uuu | vvv ∈ conv(V ), uuu ∈ cone(U)} ,

where ⊕ is called the Minkowski sum.
If U is empty then P is bounded (e.g., a polytope).
In the following we consider, for simplicity, only bounded V-polytopes.
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Motzkin's theorem

For each H-polytope, the convex hull of its vertices de�nes the same
set in the form of a V-polytope, and vice versa,

each set de�ned as a V-polytope can be also given as an H-polytope
by computing the halfspaces de�ned by its facets.

The translations between the H- and the V-representations of polytopes
can be exponential in the state space dimension d.
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1 Convex polyhedra

2 Operations on convex polyhedra
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Operations

If we represent reachable sets of hybrid automata by polytopes, we need
some operations like

membership computation (xxx ∈ P )
linear transformation (A · P )
Minkowski sum (P1 ⊕ P2)

intersection (P1 ∩ P2)

(convex hull of the) union of two polytopes (conv(P1 ∪ P2))

test for emptiness (P = ∅?)
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Membership ppp ∈ P

Membership for ppp ∈ Rd:

H-polytope de�ned by Axxx ≤ zzz:
just substitute ppp for xxx to check if the inequation holds.

V-polytope de�ned by the vertex set V :
check satis�ability of

∃λ1, . . . , λn ∈ [0, 1] ⊆ R.
n∑

i=1

λi = 1 ∧
n∑

i=1

λivivivi = xxx .

Alternatively: convert the V-polytope into an H-polytope by
computing its facets.
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Intersection P1 ∩ P2

Intersection for two polytopes P1 and P2:

H-polytopes de�ned by A1xxx ≤ b1b1b1 and A2xxx ≤ b2b2b2:

the resulting H-polytope is de�ned by

(
A1

A2

)
xxx ≤

(
b1b1b1
b2b2b2

)
.

V-polytopes de�ned by V1 and V2:
Convert P1 and P2 to H-polytopes and convert the result back to a
V-polytope.
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Union P1 ∪ P2

Note that the union of two convex polytopes is in general not a convex
polytope.

→ take the convex hull of the union.

V-polytopes de�ned by V1 and V2:
V-representation V1 ∪ V2.
H-polytopes de�ned by A1xxx ≤ b1b1b1 and A2xxx ≤ b2b2b2:
convert to V-polytopes and compute back the result.
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Operation complexity overview

�easy�: doable in polynomial complexity
�hard�: no polynomial algorithm is known

x ∈ P A · P P1 ⊕ P2 P1 ∩ P2 P1 ∪ P2

V-polytope easy easy − − −
H-polytope easy hard − − −

V-polytope and V-polytope − − easy hard easy
H-polytope and H-polytope − − hard easy hard
V-polytope and H-polytope − − hard hard hard

It is in general also hard to translate a V-polytope to an H-polytope or vice
versa.
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