Modeling and Analysis of Hybrid Systems

Series 6

Exercise 1

A n-dimensional box \mathcal{B} can be defined as a vector of intervals:

$$
\mathcal{B}=I_{0} \times \ldots \times I_{n}, I_{i} \in \mathbb{I}
$$

where each interval is defined as $I_{i}=\left[l_{i}, u_{i}\right], l_{i} \leq u_{i}, u_{i} \in \mathbb{R} \cup\{\infty\}, l_{i} \in \mathbb{R} \cup\{-\infty\}$ such that $x \in I \Leftrightarrow l_{i} \leq x \leq u_{i}$.
Please give a suitable definition for the operations
a) union,
b) intersection,
c) test for membership.

Solution:

We denote $I_{a_{i}}$ as the i-th interval of a given box \mathcal{A} and its bounds as $a_{l_{i}}$ and $a_{u_{i}}$.
a) The union of two boxes \mathcal{A} and \mathcal{B} is defined as the smallest box containing the convex hull of both boxes, as boxes (and convex objects in general) are not closed under the operation union. As the dimensions are independent, the operation can be performed component-wise:

$$
\begin{aligned}
\mathcal{A} \cup \mathcal{B} & =\operatorname{conv}\left(I_{a_{0}}, I_{b_{0}}\right) \times \ldots \times \operatorname{conv}\left(I_{a_{n}}, I_{b_{n}}\right) \\
& =\left[\min \left(a_{l_{0}}, b_{l_{0}}\right), \max \left(a_{u_{0}}, b_{u_{0}}\right)\right] \times \ldots \times\left[\min \left(a_{l_{n}}, b_{l_{n}}\right), \max \left(a_{u_{n}}, b_{u_{n}}\right)\right] .
\end{aligned}
$$

b) As the union, the intersection of two boxes \mathcal{A} and \mathcal{B} can also be defined componentwise:

$$
\mathcal{A} \cap \mathcal{B}=\left(I_{a_{0}} \cap I_{b_{0}}\right) \times \ldots \times\left(I_{a_{n}} \cap I_{b_{n}}\right)
$$

where the intersection of two intervals I_{a}, I_{b} is defined as

$$
I_{a} \cap I_{b}= \begin{cases}{\left[l_{b}, u_{a}\right]} & \text { for } u_{b} \leq u_{a} \leq l_{b} \\ {\left[l_{a}, u_{b}\right]} & \text { for } u_{a} \geq u_{b} \geq l_{a} \\ {\left[l_{a}, u_{a}\right]} & \text { for } l_{b} \leq l_{a} \leq u_{a} \leq u_{b} \\ {\left[l_{b}, u_{b}\right]} & \text { for } l_{a} \leq l_{b} \leq u_{b} \leq u_{a} \\ \emptyset \quad \text { else }\end{cases}
$$

c) The test for membership for a point $p \in \mathbb{R}^{n}$ and a box \mathcal{A} can as well be performed component-wise such that:

$$
\begin{aligned}
p \in \mathcal{A} & \Leftrightarrow p_{i} \in I_{a_{i}}, 0 \leq i \leq n \\
& \Leftrightarrow a_{l_{i}} \leq p_{i} \leq a_{u_{i}}, 0 \leq i \leq n
\end{aligned}
$$

Exercise 2

In the lecture we presented bounded \mathcal{V}-polytopes. Please perform the following operations on the given set representations. For each task, please give the vertices of the resulting polytope and a sketch in the provided canvas.
a) Given a \mathcal{V}-polytope $\mathcal{P}=\operatorname{cHull}\left(\left\{\binom{1}{1},\binom{3}{1},\binom{4}{2},\binom{3}{4},\binom{1}{2}\right\}\right)$ as shown below. Please compute the resulting polytope \mathcal{P}^{\prime} after a linear transformation $A x+b$ with

$$
A=\left(\begin{array}{cc}
0.5 & 2 \\
1 & 0.25
\end{array}\right), b=\binom{-1}{1}
$$

Solution: The resulting polytope is

$$
\mathcal{P}^{\prime}=\text { cHull }\left(\left\{\binom{1.5}{2.25},\binom{2.5}{4.25},\binom{5}{5.5},\binom{8.5}{5},\binom{3.5}{2.5}\right\}\right) .
$$

b) Given the \mathcal{V}-polytopes

$$
\begin{aligned}
& \mathcal{A}=\operatorname{cHull}\left(\left\{\binom{2}{1},\binom{3}{1},\binom{4}{2},\binom{4}{3},\binom{3}{4},\binom{2}{4},\binom{1}{3},\binom{1}{2}\right\}\right) \text { and } \\
& \mathcal{B}=\operatorname{cHull}\left(\left\{\binom{4}{0.5},\binom{5}{0.5},\binom{4.5}{1.5}\right\}\right)
\end{aligned}
$$

the as shown below. Please compute the resulting polytope \mathcal{P}^{\prime} after a Minkowski sum of both polytopes, i.e. compute $\mathcal{P}^{\prime}=\mathcal{A} \oplus \mathcal{B}$.

Solution: The resulting polytope is
$\mathcal{P}^{\prime}=$ cHull $\left(\left\{\binom{6}{1.5},\binom{8}{1.5},\binom{9}{2.5},\binom{9}{3.5},\binom{8.5}{4.5},\binom{7.5}{5.5},\binom{6.5}{5.5}\right.\right.$, $\left.\left.\binom{5.5}{4.5},\binom{5}{3.5},\binom{5}{2.5}\right\}\right)$.

Exercise 3

An \mathcal{H}-polytope is represented by a set of linear inequalities (constraints). Could you design an (abstract) algorithm to remove the redundant inequalities for an \mathcal{H}-polytope? Similarly, could you give an (abstract) algorithm to remove the redundant vertices for a \mathcal{V}-polytope.

Solution:

(1) We use the following method to check whether a constraint $L_{i}: c_{i}^{T} x \leq z_{i}$ is redundant in $S=\left\{L_{1}, \ldots, L_{n}\right\}$.
We compute the following linear program

$$
z=\max \left(c_{i}^{T} x\right) \quad \text { subject to } \quad c_{k}^{T} x \leq z_{k} \text { for } 1 \leq k \leq n \wedge k \neq i
$$

The constraint L_{i} is redundant in S if and only if $z \leq z_{i}$.
Assume the \mathcal{H}-polytope P is represented by the constraint set S_{P}. We use the introduced method to check every constraint in S_{P} and remove the redundant ones.
(2) The work of removing redundant vertices is similar. We use the following method to check whether a vertex v_{i} is redundant in the set $V=v_{1}, \ldots, v_{n}$. We check the following linear feasibility problem

$$
\begin{array}{r}
\text { find } \quad \text { all } \lambda_{j} \geq 0 \text { where } 1 \leq j \leq n \text { and } j \neq i \\
\text { subject to } \quad v_{i}=\sum_{1 \leq j \leq n, j \neq i} \lambda_{j} v_{j} \wedge \sum_{1 \leq j \leq n, j \neq i} \lambda_{j}=1
\end{array}
$$

The vertex v_{i} is redundant in V if and only if the above problem is feasible. Assume the \mathcal{V}-polytope P is represented by the vertex set V_{P}. We use the introduced method to check every vertex in V_{P} and remove the redundant ones.

Exercise 4

a) A 2-dimensional polyhedron P is defined by the following linear inequalities.

$$
\left\{\begin{aligned}
-x & \leq 0 \\
x+2 y & \leq 6 \\
-x-y & \leq-2 \\
x-y & \leq 3 \\
-y & \leq 0
\end{aligned}\right.
$$

Please give the vertices of P.
b) Given a 2-dimensional rectangle R which is defined by the convex hull of the points $(0,0),(0,1),(1,1),(1,0)$. Please give the vertices of the convex hull of R and P (given in the previous exercise), and the linear inequalities which define it.

Solution:

a) The given inequalities form the following polytope:

Figure 1: The polyhedron P
b) We use the vertices from the previous exercise and the given vertices to compute the convex hull: The vertices of the convex hull are $(0,0),(0,3),(4,1),(3,0)$, and

Figure 2: The convex hull of P and R
$\operatorname{conv}(P, R)$ can be defined by the inequalities

$$
-x \leq 0,-y \leq 0, x+2 y \leq 6, x-y \leq 3
$$

Exercise 5

Why is the choice of the state set representation crucial?

Solution:

The choice of the used state set representation has a strong impact on the computational time and space required for the reachability analysis. On the other hand it also has an effect on the overappoximation error we introduce by the abstraction. In general this is a trade of between complexity and precision.

