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Motivation

The special class of timed automata with TCTL is decidable, thus
model checking is possible.

What about more expressive model classes for hybrid systems?
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What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:

Safety: The problem to decide whether something �bad� can happend
during the execution of a system.

Liveness: The problem to decide whether there is always the possibility
that something �good� will eventually happen during the execution of
a system.

Both problems are decidable in certain special cases, and undecidable in
certain general cases.
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What is decidable about hybrid automata?

A particularly interesting class:

all conditions, e�ects, and �ows are described by rectagular sets.

De�nition

A set R ⊂ Rn is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose �nite endpoints are rationals.

The set of rectangular sets in Rn is denoted Rn.
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Rectangular automaton

De�nition

A rectangular automaton A is a tuple H = (Loc,Var ,Lab,Edge,Act , Inv , Init)
with

�nite set of locations Loc,
�nite set of real-valued variables Var = {x1, . . . , xn},
�nite set of synchronization labels Lab,
�nite set of edges Edge ⊆ Loc × Lab ×Rn ×Rn × 2{1,...,n} × Loc,
a �ow function Act : Loc → Rn,

an invariant function Inv : Loc → Rn,

initial states Init : Loc → Rn.

States: σ = (l, ~x) ∈ (Loc × Rn) with ~x ∈ Inv(l)

State space: Σ ⊆ Loc × Rn is the set of all states

Is the state space rectangular?
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Rectangular automaton

Flows: �rst time derivatives of the �ow trajectories in location l ∈ Loc
are within Act(l)

Jumps: e = (l, a, pre, post , jump, l′) ∈ Edge may move control from
location l to location l′ starting from a valuation in pre, changing the
value of each variable xi to a nondeterministically chosen value from
post i (the projection of post to the ith dimension), such that the
values of the variables xi /∈ jump are unchanged.
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Operational semantics

(l, a, pre, post, jump, l′) ∈ Edge

~x ∈ pre ~x′ ∈ post ∀i /∈ jump. x′i = xi ~x′ ∈ Inv(l′)

(l, ~x)
a→ (l′, ~x′)

Rule Discrete

(t = 0 ∧ ~x = ~x′) ∨ (t > 0 ∧ (~x′ − ~x)/t ∈ Act(l)) ~x′ ∈ Inv(l)

(l, ~x)
t→ (l, ~x′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Init(l0)

Reachability of a state: exists an initial path leading to the state
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Example rectangular automaton

l1
ẋ ∈ [1, 2]
x ≤ 6

x = 0
l4

ẋ ∈ [1, 2]
x ≤ 4

l3
ẋ ∈ [−4,−2]

l2
ẋ ∈ [−4,−2]

d

x ≥ 0

cx = 0→ x := [−2,−1]

b

x ≤ −2→ x := [0, 4]

a x ≥ 2→ x := 4
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Remarks

If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.
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Decidability

The reachability problem is decidable for initialized rectangular automata:

De�nition

A rectangular automaton A is initialized, if for every edge
(l, a, pre, post , jump, l′) of A, and every variable index i ∈ {1, . . . , n} with
Act(l)i 6= Act(l′)i, we have that i ∈ jump.

The reachability problem becomes undecidable if one of the restrictions is
relaxed.
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Initialized rectangular automaton

l1
ẋ ∈ [1, 2]
x ≤ 6

x = 0
l4

ẋ ∈ [1, 2]
x ≤ 4

l3
ẋ ∈ [−4,−2]

l2
ẋ ∈ [−4,−2]

d

x ≥ 0

cx = 0→ x := [−2,−1]

b

x ≤ −2→ x := [0, 4]

a x ≥ 2→ x := 4

This rectangular automaton is initialized.
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What we already know

A timed automaton is a special rectangular automaton such that

Init(l) is empty or a singleton for each l ∈ Loc,

for each edge, posti is a single value for each i ∈ jump and

every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations l and
variables x.

Note: here we allow initialization and reset of clocks to any values.

What we know:

Lemma

The reachability problem for timed automata is complete for PSPACE.
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Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete

for PSPACE.

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton
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Decidability results

Timed automaton
↑

Initialized stopwatch automaton
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Initialized stopwatch automata

A stopwatch is a variable with derivatives 0 or 1 only.

A stopwatch automaton is as a timed automaton but allowing
stopwatch variables instead of clocks.

Initialized stopwatch automata can be polynomially encoded by timed
automata.

Lemma

The reachability problem for initialized stopwatch automata is complete for

PSPACE.

However, the reachability problem for non-initialized stopwatch automata is
undecidable.
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Proof idea:

Assume that C is an n-dimensional initialized stopwatch automaton. Let κ
be the set of constants used in the de�nition of C, and let κ− = κ ∪ {−}.
For each (k1, . . . , kn) ∈ κn−, let αk1,...,kn : Rn → Rn be de�ned by
αk1,...,kn(~x) = ~y such that yi = xi if ki = −, and yi = ki if ki 6= −.
We de�ne an n-dimensional timed automaton D with locations
LocD = LocC × κn−. Each state σ = ((l, k1, . . . , kn), ~x) of D represents
the state α(σ) = (l, αk1,...,kn(~x)) of C. We extend α to state sets the
natural way.
Intuitively, if the ith stopwatch of C is running (slope 1), then its value is
tracked by the value of the ith clock of D; if the ith stopwatch is halted
(slope 0) at value k ∈ κ, then this value is remembered by the current
location of D.
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Proof idea( continued):

The other components of D are derived from C as follows: VarD = VarC ,
LabD = LabC , ActD(l) = Πn

i=1[1, 1], and
InvD(l, k1, . . . , kn) = αk1,...,kn(InvC(l)).
For the initial states, assume a location l with stopwatch derivatives
d1, . . . , dn (note: each di is either 1 or 0). If InitC(l) is empty then
InitD(l, ·) are all empty. Otherwise, Init(l) contains a single value
x1, . . . , xn. Let k′i be − if di = 1 and xi otherwise. Then
InitD(l, k′1, . . . , k

′
n) = Init(l) and InitD(l, ·) is empty for all other cases.

Edges: exercise.
We have:

Each state σ of C is time-abstract bisimilar to the state α(σ) of D.

The reachable set of Reach(C) of C is α(Reach(D)).
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Decidability results

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
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Initialized singular automata

A variable xi is a �nite-slope variable if flow(l)i is a singleton in all
locations l.

A singular automaton is as a stopwatch automaton but allowing
�nite-slope variables instead of stopwatches.

Initialized singular automata can be polynomially encoded by
initialized stopwatch automata.

Lemma

The reachability problem for initialized singular automata is complete for

PSPACE.
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Proof idea:

Let B be an n-dimensional initialized singular automaton and
let kl,i denote the derivative of the ith variable in location l ∈ LocB of B
(i.e., ActB(l) = Πn

i=1[kl,i, kl,i]).
Let furthermore βl,i = 1/kl,i if kl,i 6= 0 and βl,i = 1 otherwise.
For each location l ∈ LocB of B we de�ne a function βl : Rn → Rn by
setting βl(x1, . . . , xn) = (βl,1 · x1, . . . , βl,n · xn). βl can be viewed as a
rescaling of the state space, and can be extended naturally to regions
(βl(Πn

i=1[vi, v
′
i]) = Πn

i=1[βl(vi), βl(v
′
i)]) and states (β((l, x)) = (l, βl(x))).

We de�ne an n-dimensional initialized stopwatch automaton C, such that
all regions in the automaton B occur accordingly rescaled in C. The
components of C are the same as B except the invariants
InvC(l) = βl(InvB(l)), the activities ActC(l) = βl(ActB(l)), the initial
regions InitC(l) = βl(InitB(l)), and for each edge
e = (l, a, pre, post , jump, l′) ∈ EdgeB in B there is a corresponding edge
e′ = (l, a, βl(pre), βl′(post), jump, l′) ∈ EdgeC in C.
We have:

Each state σ of B is time-abstract bisimilar to the state β(σ) of C.

The reachable set of Reach(B) of B is β(Reach(C)).
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Decidability results

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton
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Lemma

The reachability problem for initialized rectangular automata is complete

for PSPACE.
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Proof idea:

An n-dimensional initialized rectangular automaton A can be
translated into a 2n-dimensional initialized singular automaton B, such
that B contains all reachability information about A.
The translation is similar to the subset construction for determinizing �nite
automata.
The idea is to replace each variable c of A by two �nite-slope variables cl
and cu: the variable cl tracks the least possible value of c, and cu tracks
the greatest possible value of c.
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