(STS :

s
X = x £ (O

Modeling and Analysis of Hybrid Systems

Mﬁ.—\rls-r
Prof. Dr. Erika Abraham
MW\

Informatik 2 - LuFG Theory of Hybrid Systems
RWTH Aachen University

Szeged, Hungary, 27 September - 06 October 2017

Abraham - Hybrid Systems 1/24

Henzinger et al.: What's decidable about hybrid automata?

Journal of Computer and System Sciences, 57:94-124, 1998

Abraham - Hybrid Systems 2 /24

m The special class of timed automata with TCTL is decidable, thus
model checking is possible.

m What about more expressive model classes for hybrid systems?

Abraham - Hybrid Systems 3/24

What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:

m Safety: The problem to decide whether something “bad” can happend
during the execution of a system.

m Liveness: The problem to decide whether there is always the possibility
that something “good” will eventually happen during the execution of
a system.

Both problems are decidable in certain special cases, and undecidable in
certain general cases.

Abraham - Hybrid Systems 4 /24

What is decidable about hybrid automata?

A particularly interesting class:

Abraham - Hybrid Systems 5 /24

What is decidable about hybrid automata?

A particularly interesting class:

m all conditions, effects, and flows are described by rectagular sets.

Abraham - Hybrid Systems 5 /24

What is decidable about hybrid automata?

A particularly interesting class:

m all conditions, effects, and flows are described by rectagular sets.

m A set R C R™ is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose finite endpoints are rationals.

m The set of rectangular sets if R is denoted R".

(-y \ w)h

Abraham - Hybrid Systems 5 /24

Rectangular automaton

A rectangular automaton A is a tuple H = (Loc, Var, Lab, Edge, Act, Inv, Init)
with

finite set of locations Loc, v Y
finite set of real-valued variables Var = {x1,...,z,}, ¢~ Uv:‘{ ek
finite set of synchronization labels Lab, ¢~ >

n

n

m

m finite set of edges Edge C Loc x Lab x|R™ x R x(2{1+mWx Loc,
m a flow function(ﬁ:t : Loc — R™,\ %‘&(_/

® an invariant function Inv : Loc — R", M st

m initial states Init : Loc — R™.

"

34 Tv—r-k* e

. fr’] (g C2dxCra), $x])

_

Abraham - Hybrid Systems 6 /24

Rectangular automaton

A rectangular automaton A is a tuple H = (Loc, Var, Lab, Edge, Act, Inv, Init)
with

m finite set of locations Loc,

m finite set of real-valued variables Var = {z1,...,z,},

m finite set of synchronization labels Lab,

m finite set of edges Fdge C Loc x Lab x R™ x R™ x 211} x Loc,
m a flow function Act : Loc — R",

m an invariant function nv : Loc — R",

m initial states /nit : Loc — R™.

m States: 0 = (I, %) € (Loc x R™) with Z € Inv(l)

Abraham - Hybrid Systems 6 /24

Rectangular automaton

A rectangular automaton A is a tuple H = (Loc, Var, Lab, Edge, Act, Inv, Init)
with

m finite set of locations Loc,

m finite set of real-valued variables Var = {z1,...,z,},

m finite set of synchronization labels Lab,

m finite set of edges Fdge C Loc x Lab x R™ x R™ x 211} x Loc,
m a flow function Act : Loc — R",

m an invariant function nv : Loc — R",

m initial states /nit : Loc — R™.

m States: 0 = (I, %) € (Loc x R™) with Z € Inv(l)

m State space: X C Loc x R™ is the set of all states

Abraham - Hybrid Systems 6 /24

Rectangular automaton

A rectangular automaton A is a tuple H = (Loc, Var, Lab, Edge, Act, Inv, Init)
with

m finite set of locations Loc,

m finite set of real-valued variables Var = {z1,...,z,},

m finite set of synchronization labels Lab,

m finite set of edges Fdge C Loc x Lab x R™ x R™ x 211} x Loc,
m a flow function Act : Loc — R", =

m an invariant function Inv : Loc — R", =>f]:':°"“‘“*—(&
m initial states Init : Loc — R™. S { J,C.-\l

= SaA (7)

m States: 0 = (I, %) € (Loc x R™) with Z € Inv(l)
m State space: X C Loc x R™ is the set of all states

m Is the state space rectangular?

Abraham - Hybrid Systems 6 /24

Rectangular automaton

m Flows: first time derivatives of the flow trajectories in location [€ Loc
are within Act(l) ,

m Jumps: e = (l,a,}@a@,'m I") € Edge may move control from
location [to location l’\starti—ﬁgf?rom a valuation in pre, changing the
value of each variable z; to a nondeterministically chosen value from
post; (the projection of post to the ith dimension), such that the
values of the variables z; ¢ jump are unchanged.

Abraham - Hybrid Systems 7 /24

Operational semantics

|
Y Ack(e)d Cal) t2o Y F Iwle)

_el HxeUns., V) rak €3 ¢ v(=)+Lt
(=¢ s

(e)

t S wa

s (e, v')

v'e Jue’) Ve Jql)fzt;i:\(s)

(Cafy,r om e ctag V€8 g,

o e
(L) —> (V)
ari"“’("')6C&,Q-3‘S
> —_ “waw '
'\r;iv(?(x)ec\r‘(3g = m"" (N a
S :¢

Abraham - Hybrid Systems 8 /24

Operational semantics

(1, a, pre, post, jump,l') € Edge
Zepre T €post Vigjump. xi=x; &€ Inv(l)

Rule Discrete
0,2 = (I, 7)

Abraham - Hybrid Systems 8 /24

Operational semantics

(1, a, pre, post, jump,l') € Edge

Zepre T €post Vigjump. xi=x; &€ Inv(l)
Rule Discrete

(1,7) = (&)

t=0ANZ=2)V({Et>0A (T —2)/t € Act(l)) T’ € Inv(l)

(1,7) 5 (1,7

Rule Time

Abraham - Hybrid Systems 8 /24

Operational semantics

(1, a, pre, post, jump,l') € Edge

Zepre T €post Vigjump. xi=x; &€ Inv(l)
Rule Discrete

(1,7) = (&)

t=0ANZ=2)V({Et>0A (T —2)/t € Act(l)) T’ € Inv(l)

(1,7) 5 (1,7

Rule Time

Execution step: — = — U L
Path: o9 = 01 — 02... with o9 = (lg, o), Zo € Inv(lp)

Initial path: path o9 — o1 — o2... with a9 = (I, Zo), Zo € Init(lp)

Reachability of a state: exists an initial path leading to the state

Abraham - Hybrid Systems 8 /24

ANPSTR a I
e P

2 i adae / .
=t u\oQ.ou'“‘A-s K"\

fremak \~€%¥/

Example rectangular automaton

Abraham - Hybrid Systems 9 /24

m If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

m A timed automaton is a special rectangular automaton.

Abraham - Hybrid Systems 10 / 24

m If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

m A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.

Abraham - Hybrid Systems 10 / 24

Decidability

The reachability problem is decidable for initialized rectangular automata:

Abraham - Hybrid Systems 11 / 24

Decidability

The reachability problem is decidable for initialized rectangular automata:

Definition

A rectangular automaton A is initialized, if for every edge
(1, a, pre, post, jump,l’) of A, and every variable index i € {1,...,n} with
Act(l); # Act(l');, we have that i € jump.

The reachability problem becomes undecidable if one of the restrictions is
relaxed.

Abraham - Hybrid Systems 11 / 24

Initialized rectangular automaton

This rectangular automaton is initialized.

Abraham - Hybrid Systems 12 / 24

What we already know

A timed automaton is a special rectangular automaton such that
m [nit(l) is empty or a singleton for each [€ Loc,
m for each edge, post; is a single value for each i € jump and

m every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations [and
variables x.

Note: here we allow initialization and reset of clocks to any values.

What we know:

Abraham - Hybrid Systems 13 / 24

What we already know

A timed automaton is a special rectangular automaton such that
m [nit(l) is empty or a singleton for each [€ Loc,
m for each edge, post; is a single value for each i € jump and

m every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations [and
variables x.

Note: here we allow initialization and reset of clocks to any values.

What we know:

The reachability problem for timed automata is complete for PSPACE.

Abraham - Hybrid Systems 13 / 24

Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.

Abraham - Hybrid Systems 14 / 24

Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.

Timed automaton

/]\
Initialized stopwatch automaton
/]\
Initialized singular automaton
T

Initialized rectangular automaton

Abraham - Hybrid Systems 14 / 24

Decidability results

Timed automaton

/]\

Initialized stopwatch automaton

Abraham - Hybrid Systems 15 / 24

Initialized stopwatch automata

m A stopwatch is a variable with derivatives 0 or 1 only.

m A stopwatch automaton is as a timed automaton but allowing
stopwatch variables instead of clocks.

m Initialized stopwatch automata can be polynomially encoded by timed

automata.

Lemma

The reachability problem for initialized stopwatch automata is complete for
PSPACE.

However, the reachability problem for non-initialized stopwatch automata is
undecidable.

Abraham - Hybrid Systems 16 / 24

Abraham - Hybrid Systems 17 / 24

XeC &) EP 1L x n xey

. X =
Proof idea: = &
Assume that C'is an n-dimensional initialized stopwatch automaton. Le@
be the set of constants used in the definition of C, and le{ k)= x U {-}.

For each (k1,...,ky) € K™, let oy, 1, : R® — R" be defined by)

Oékh.”,kn(f> = gj’such that Yi = X5 if k; = —, and yi = k; if k; 75 —. $
We define an n-dimensional timed automaton D with locations
Locp = Loco x K™. Each state o = ((I, k1, ..., ky), %) of D represents

the state a (o) = (I, g, k, (Z)) of C. We extend « to state sets the
natural way.

Intuitively, if the ith stopwatch of C is running (slope 1), then its value is
tracked by the value of the ith clock of D; if the ith stopwatch is halted
(slope 0) at value k € k, then this value is remembered by the current
location of D.

Abraham - Hybrid Systems 17 / 24

Proof idea(continued):

The other components of D are derived from C as follows: Varp = Varg,
LCLbD = L&b(j, ACtD(l) = H?:l[l’ 1], and

Invp(l ki, ... kn) = oy, e, (Inve(1)).

For the initial states, assume a location [with stopwatch derivatives
dy,...,d, (note: each d; is either 1 or 0). If Initc(l) is empty then
Initp(l,-) are all empty. Otherwise, Init(l) contains a single value
T1,...,%n. Let k] be — if d; =1 and z; otherwise. Then

Initp(L, Ky, ..., kl) = Indt(l) and Initp(l,-) is empty for all other cases.
Edges: exercise.

We have:

m Each state o of C' is time-abstract bisimilar to the state «(o) of D.
m The reachable set of Reach(C) of C'is a(Reach(D)).

Abraham - Hybrid Systems 18 / 24

Decidability results

Timed automaton

/I\

Initialized stopwatch automaton

T [% =]
Initialized singular automaton

Abraham - Hybrid Systems

19 / 24

Initialized singular automata

m A variable x; is a finite-slope variable if flow(l); is a singleton in all
locations .

m A singular automaton is as a stopwatch automaton but allowing
finite-slope variables instead of stopwatches.
Tinite-Siope variables In

m Initialized singular automata can be polynomially encoded by
initialized stopwatch automata.

Lemma

The reachability problem for initialized singular automata is complete for
PSPACE.

Abraham - Hybrid Systems 20 / 24

Proof idea:

X £ to

'\\\\401 g‘orW&Mm z
>
d - -
X =1
— X3 N
X =0 X ¢ F(((.vﬁ>=(e.v)

v (%) =¢(x) N f’e.;ez@‘%
v'() = YD AP, x)

Abraham - Hybrid Systems 21 /24

Proof idea: Let B be an n-dimensional initialized singular automaton and
let /;; denote the derivative of the ith variable in location [€ Locp of B
(i.e., ACtB(l) = Hlnzl[kl,i» kl,i])-
Let furthermore’ Bri=1/ki]if k;; # 0 and B;; = 1 otherwise.
For each location | € Locp of B we define a function 3, : R®™ — R™ by
setting B(z1,...,2,) = ((6171 “T1y. .., Bin - Tn). Bi can be viewed as a
rescaling of the state space, and can be extended naturally to regions
(AL [os,01]) = T [Bu(v). Ai(1)]) and states (3((1,2) = (1. Bi(a).
We define an n-dimensional initialized stopwatch automaton C, such that
all regions in the automaton B occur accordingly rescaled in C'. The
components of C' are the same as B except the invariants
Inve(l) = Bi(Invp(l)), the activities Act (1) = Bi(Actp(l)), the initial
regions Initc(l) = Bi(Initp(l)), and for each edge
e = (I, a, pre, post, jump,l') € Edgep in B there is a corresponding edge
e’ = (I, a, Bi(pre), By (post), jump,l') € Edges in C.
We have:

m Each state o of B is time-abstract bisimilar to the state 3(o) of C.

m The reachable set of Reach(B) of B is f(Reach(C)).

Decidability results

Timed automaton

/]\
Initialized stopwatch automaton .
T x = a_
Initialized singular automaton);N:C;
T i
Initialized rectangular automaton Xelab)
xela bl
x = Ca S)

Abraham - Hybrid Systems 22 /24

Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.

Abraham - Hybrid Systems 23 /24

Ce)(glo
¢ /
— T ena\ e

Proof idea: x = (0,43 w) .

-

’V(Q»("h m))‘ LerCEXus o

‘e

‘L:'& c

X(Q. XBI *¢£X£X«3

<
6-"(‘:/0/«10()
X
@

Xu'= (o

X(r-'so D)
> @Eero " Xe£o o
Xk‘~= Xl N xuwslo

Abraham - Hybrid Systems 24 /24

Proof idea: An n-dimensional initialized rectangular automaton A can be
translated into a 2n-dimensional initialized singular automaton B, such
that B contains all reachability information about A.

The translation is similar to the subset construction for determinizing finite
automata.

The idea is to replace each variable ¢ of A by two finite-slope variables ¢;
and ¢,: the variable ¢; tracks the least possible value of ¢, and ¢, tracks
the greatest possible value of c.

Abraham - Hybrid Systems 24 /24

