Modeling and Analysis of Hybrid Systems 4. Rectangular automata

Prof. Dr. Erika Ábrahám

Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University

Szeged, Hungary, 27 September - 06 October 2017

Henzinger et al.: What's decidable about hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998

- The special class of timed automata with TCTL is decidable, thus model checking is possible.
- What about more expressive model classes for hybrid systems?

Two central problems for the analysis of hybrid automata:

- Safety: The problem to decide whether something "bad" can happend during the execution of a system.
- Liveness: The problem to decide whether there is always the possibility that something "good" will eventually happen during the execution of a system.

Both problems are decidable in certain special cases, and undecidable in certain general cases.

A particularly interesting class:

A particularly interesting class:

all conditions, effects, and flows are described by rectagular sets.

- A particularly interesting class:
 - all conditions, effects, and flows are described by rectagular sets.

- A set $\mathcal{R} \subset \mathbb{R}^n$ is rectangular if it is a cartesian product of (possibly unbounded) intervals, all of whose finite endpoints are rationals.
- The set of rectangular sets in \mathbb{R}^n is denoted \mathcal{R}^n .

A rectangular automaton A is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations *Loc*,
- finite set of real-valued variables $Var = \{x_1, \dots, x_n\}$,
- finite set of synchronization labels Lab,
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times \mathcal{R}^n \times \mathcal{R}^n \times 2^{\{1,\dots,n\}} \times Loc$,
- a flow function $Act: Loc \to \mathcal{R}^n$,
- an invariant function $Inv: Loc
 ightarrow \mathcal{R}^n$,
- initial states $Init : Loc \to \mathcal{R}^n$.

A rectangular automaton A is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations *Loc*,
- finite set of real-valued variables $Var = \{x_1, \dots, x_n\}$,
- finite set of synchronization labels Lab,
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times \mathcal{R}^n \times \mathcal{R}^n \times 2^{\{1,\dots,n\}} \times Loc$,
- a flow function $Act: Loc \to \mathcal{R}^n$,
- an invariant function $Inv: Loc
 ightarrow \mathcal{R}^n$,
- initial states $Init : Loc \to \mathcal{R}^n$.

States:
$$\sigma = (l, \vec{x}) \in (Loc \times \mathbb{R}^n)$$
 with $\vec{x} \in Inv(l)$

A rectangular automaton A is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations *Loc*,
- finite set of real-valued variables $Var = \{x_1, \dots, x_n\}$,
- finite set of synchronization labels Lab,
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times \mathcal{R}^n \times \mathcal{R}^n \times 2^{\{1,\dots,n\}} \times Loc$,
- a flow function $Act: Loc \to \mathcal{R}^n$,
- an invariant function $Inv : Loc \to \mathcal{R}^n$,
- initial states $Init : Loc \to \mathcal{R}^n$.

• States:
$$\sigma = (l, \vec{x}) \in (Loc \times \mathbb{R}^n)$$
 with $\vec{x} \in Inv(l)$

• State space: $\Sigma \subseteq Loc \times \mathbb{R}^n$ is the set of all states

A rectangular automaton A is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations *Loc*,
- finite set of real-valued variables $Var = \{x_1, \dots, x_n\}$,
- finite set of synchronization labels Lab,
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times \mathcal{R}^n \times \mathcal{R}^n \times 2^{\{1,\dots,n\}} \times Loc$,
- a flow function $Act: Loc \to \mathcal{R}^n$,
- an invariant function $Inv : Loc \to \mathcal{R}^n$,
- initial states $Init : Loc \to \mathcal{R}^n$.

States:
$$\sigma = (l, \vec{x}) \in (Loc \times \mathbb{R}^n)$$
 with $\vec{x} \in Inv(l)$

- State space: $\Sigma \subseteq Loc \times \mathbb{R}^n$ is the set of all states
- Is the state space rectangular?

- Flows: first time derivatives of the flow trajectories in location $l \in Loc$ are within Act(l)
- Jumps: e = (l, a, pre, post, jump, l') ∈ Edge may move control from location l to location l' starting from a valuation in pre, changing the value of each variable x_i to a nondeterministically chosen value from post_i (the projection of post to the *i*th dimension), such that the values of the variables x_i ∉ jump are unchanged.

$$(l, a, \textit{pre, post, jump, l'}) \in Edge$$
$$\vec{x} \in \textit{pre} \quad \vec{x}' \in \textit{post} \quad \forall i \notin \textit{jump, x}'_i = x_i \quad \vec{x}' \in Inv(l')$$
Rule Discrete

$$(l, \vec{x}) \stackrel{a}{\to} (l', \vec{x}')$$

$$\begin{array}{c} (l, a, \textit{pre}, \textit{post}, \textit{jump}, l') \in Edge\\ \hline \vec{x} \in \textit{pre} \quad \vec{x'} \in \textit{post} \quad \forall i \notin \textit{jump}. \ x'_i = x_i \quad \vec{x'} \in Inv(l')\\ \hline (l, \vec{x}) \xrightarrow{a} (l', \vec{x'}) \\ \hline (t = 0 \land \vec{x} = \vec{x'}) \lor (t > 0 \land (\vec{x'} - \vec{x})/t \in Act(l)) \quad \vec{x'} \in Inv(l)\\ \hline (l, \vec{x}) \xrightarrow{t} (l, \vec{x'}) \end{array} \qquad \text{Rule} \text{ }_{\text{Time}} \end{array}$$

$$(l, a, pre, post, jump, l') \in Edge$$

$$\vec{x} \in pre \quad \vec{x}' \in post \quad \forall i \notin jump. \ x'_i = x_i \quad \vec{x}' \in Inv(l')$$

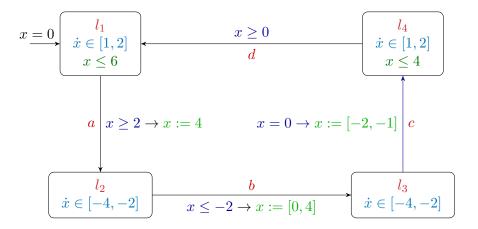
$$(l, \vec{x}) \xrightarrow{a} (l', \vec{x}')$$
Rule Discrete

$$\frac{(t=0 \wedge \vec{x}=\vec{x}') \vee (t>0 \wedge (\vec{x}'-\vec{x})/t \in Act(l)) \quad \vec{x}' \in Inv(l)}{(l,\vec{x}) \xrightarrow{t} (l,\vec{x}')} \quad \text{Rule}_{\text{Time}}$$

• Execution step:
$$\rightarrow = \stackrel{a}{\rightarrow} \cup \stackrel{t}{\rightarrow}$$

- Path: $\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \dots$ with $\sigma_0 = (l_0, \vec{x}_0), \ \vec{x}_0 \in Inv(l_0)$
- Initial path: path $\sigma_0 \to \sigma_1 \to \sigma_2 \dots$ with $\sigma_0 = (l_0, \vec{x}_0), \ \vec{x}_0 \in Init(l_0)$
- Reachability of a state: exists an initial path leading to the state

Example rectangular automaton



- If we replace rectangular sets with linear sets, we obtain linear hybrid automata, a super-class of rectangular automata.
- A timed automaton is a special rectangular automaton.

- If we replace rectangular sets with linear sets, we obtain linear hybrid automata, a super-class of rectangular automata.
- A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.

The reachability problem is decidable for initialized rectangular automata:

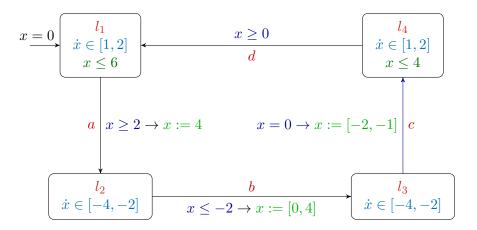
The reachability problem is decidable for initialized rectangular automata:

Definition

A rectangular automaton A is initialized, if for every edge (l, a, pre, post, jump, l') of A, and every variable index $i \in \{1, \ldots, n\}$ with $Act(l)_i \neq Act(l')_i$, we have that $i \in jump$.

The reachability problem becomes undecidable if one of the restrictions is relaxed.

Initialized rectangular automaton



This rectangular automaton is initialized.

A timed automaton is a special rectangular automaton such that

- Init(l) is empty or a singleton for each $l \in Loc$,
- for each edge, \textit{post}_i is a single value for each $i \in \textit{jump}$ and
- every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations l and variables x.

Note: here we allow initialization and reset of clocks to any values.

What we know:

A timed automaton is a special rectangular automaton such that

- Init(l) is empty or a singleton for each $l \in Loc$,
- for each edge, \textit{post}_i is a single value for each $i \in \textit{jump}$ and
- every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations l and variables x.

Note: here we allow initialization and reset of clocks to any values.

What we know:

Lemma

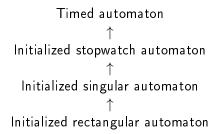
The reachability problem for timed automata is complete for PSPACE.

Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.

Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.



Timed automaton ↑ Initialized stopwatch automaton

- A stopwatch is a variable with derivatives 0 or 1 only.
- A stopwatch automaton is as a timed automaton but allowing stopwatch variables instead of clocks.
- Initialized stopwatch automata can be polynomially encoded by timed automata.

Lemma

The reachability problem for initialized stopwatch automata is complete for *PSPACE*.

However, the reachability problem for non-initialized stopwatch automata is undecidable.

Proof idea:

Proof idea:

Assume that C is an n-dimensional initialized stopwatch automaton. Let κ be the set of constants used in the definition of C, and let $\kappa_{-} = \kappa \cup \{-\}$. For each $(k_1, \ldots, k_n) \in \kappa_{-}^n$, let $\alpha_{k_1,\ldots,k_n} : \mathbb{R}^n \to \mathbb{R}^n$ be defined by $\alpha_{k_1,\ldots,k_n}(\vec{x}) = \vec{y}$ such that $y_i = x_i$ if $k_i = -$, and $y_i = k_i$ if $k_i \neq -$. We define an n-dimensional timed automaton D with locations $Loc_D = Loc_C \times \kappa_{-}^n$. Each state $\sigma = ((l, k_1, \ldots, k_n), \vec{x})$ of D represents the state $\alpha(\sigma) = (l, \alpha_{k_1,\ldots,k_n}(\vec{x}))$ of C. We extend α to state sets the natural way.

Intuitively, if the *i*th stopwatch of C is running (slope 1), then its value is tracked by the value of the *i*th clock of D; if the *i*th stopwatch is halted (slope 0) at value $k \in \kappa$, then this value is remembered by the current location of D.

Proof idea(continued):

The other components of D are derived from C as follows: $Var_D = Var_C$, $Lab_D = Lab_C$, $Act_D(l) = \prod_{i=1}^n [1, 1]$, and $Inv_D(l, k_1, \ldots, k_n) = \alpha_{k_1, \ldots, k_n} (Inv_C(l))$. For the initial states, assume a location l with stopwatch derivatives d_1, \ldots, d_n (note: each d_i is either 1 or 0). If $Init_C(l)$ is empty then $Init_D(l, \cdot)$ are all empty. Otherwise, Init(l) contains a single value x_1, \ldots, x_n . Let k'_i be - if $d_i = 1$ and x_i otherwise. Then $Init_D(l, k'_1, \ldots, k'_n) = Init(l)$ and $Init_D(l, \cdot)$ is empty for all other cases. Edges: exercise. We have:

• Each state σ of C is time-abstract bisimilar to the state $\alpha(\sigma)$ of D.

• The reachable set of Reach(C) of C is $\alpha(Reach(D))$.

- A variable x_i is a finite-slope variable if $flow(l)_i$ is a singleton in all locations l.
- A singular automaton is as a stopwatch automaton but allowing finite-slope variables instead of stopwatches.
- Initialized singular automata can be polynomially encoded by initialized stopwatch automata.

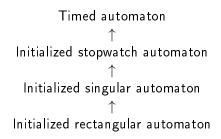
Lemma

The reachability problem for initialized singular automata is complete for *PSPACE*.

Proof idea:

Proof idea: Let B be an n-dimensional initialized singular automaton and let $k_{l,i}$ denote the derivative of the *i*th variable in location $l \in Loc_B$ of B (i.e., $Act_B(l) = \prod_{i=1}^n [k_{l,i}, k_{l,i}]$). Let furthermore $\beta_{l,i} = 1/k_{l,i}$ if $k_{l,i} \neq 0$ and $\beta_{l,i} = 1$ otherwise. For each location $l \in Loc_B$ of B we define a function $\beta_l : \mathbb{R}^n \to \mathbb{R}^n$ by setting $\beta_l(x_1,\ldots,x_n) = (\beta_{l,1} \cdot x_1,\ldots,\beta_{l,n} \cdot x_n)$. β_l can be viewed as a rescaling of the state space, and can be extended naturally to regions $(\beta_l(\prod_{i=1}^n [v_i, v_i']) = \prod_{i=1}^n [\beta_l(v_i), \beta_l(v_i')])$ and states $(\beta((l, x)) = (l, \beta_l(x))).$ We define an n-dimensional initialized stopwatch automaton C, such that all regions in the automaton B occur accordingly rescaled in C. The components of C are the same as B except the invariants $Inv_{C}(l) = \beta_{l}(Inv_{B}(l))$, the activities $Act_{C}(l) = \beta_{l}(Act_{B}(l))$, the initial regions $Init_{C}(l) = \beta_{l}(Init_{B}(l))$, and for each edge $e = (l, a, pre, post, jump, l') \in Edge_B$ in B there is a corresponding edge $e' = (l, a, \beta_l(pre), \beta_{l'}(post), jump, l') \in Edge_C$ in C. We have:

- Each state σ of B is time-abstract bisimilar to the state $\beta(\sigma)$ of C.
- The reachable set of Reach(B) of B is $\beta(Reach(C))$.



Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.

Proof idea:

Proof idea: An *n*-dimensional initialized rectangular automaton A can be translated into a 2n-dimensional initialized singular automaton B, such that B contains all reachability information about A.

The translation is similar to the subset construction for determinizing finite automata.

The idea is to replace each variable c of A by two finite-slope variables c_l and c_u : the variable c_l tracks the least possible value of c_i and c_u tracks the greatest possible value of c_i .