
Modeling and Analysis of Hybrid Systems

2.-3. Timed automata

Prof. Dr. Erika Ábrahám

Informatik 2 - LuFG Theory of Hybrid Systems

RWTH Aachen University

Szeged, Hungary, 27 September - 06 October 2017

Ábrahám - Hybrid Systems 1 / 61

Literature

Christel Baier and Joost-Pieter Katoen:
Principles of Model Checking

Ábrahám - Hybrid Systems 2 / 61

Contents

1 Motivation

2 Timed automata

3 Timed computation tree logic (TCTL)

4 TCTL model checking for timed automata

Ábrahám - Hybrid Systems 3 / 61

Motivation

Time-critical systems

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.
The �rst choice in modelling: discrete or continuous time?

Ábrahám - Hybrid Systems 4 / 61

Motivation

Time-critical systems

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.

The �rst choice in modelling: discrete or continuous time?

Ábrahám - Hybrid Systems 4 / 61

Motivation

Time-critical systems

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.
The �rst choice in modelling: discrete or continuous time?

Ábrahám - Hybrid Systems 4 / 61

Discrete-time systems

Advantages:

conceptually simple

each action lasts for a single time unit (tick)

action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:

leads to large transition systems

minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks

We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 61

Discrete-time systems

Advantages:

conceptually simple

each action lasts for a single time unit (tick)

action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:

leads to large transition systems

minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks

We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 61

Discrete-time systems

Advantages:

conceptually simple

each action lasts for a single time unit (tick)

action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:

leads to large transition systems

minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks

We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 61

Discrete-time systems

Advantages:

conceptually simple

each action lasts for a single time unit (tick)

action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:

leads to large transition systems

minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks

We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 61

Discrete-time systems

Advantages:

conceptually simple

each action lasts for a single time unit (tick)

action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:

leads to large transition systems

minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks

We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 61

Contents

1 Motivation

2 Timed automata

3 Timed computation tree logic (TCTL)

4 TCTL model checking for timed automata

Ábrahám - Hybrid Systems 6 / 61

Timed automata

Measure time: �nite set C of clocks x, y, z, . . .
Clocks increase their value implicitly as time progresses
All clocks proceed at rate 1

Limited clock access
Read access:
Atomic clock constraints:

acc ::= x < c | x ≤ c | x > c | x ≥ c
with c ∈ N (c ∈ Q) and x ∈ C.
Clock constraints:

g ::= acc | g ∧ g
Syntactic sugar: true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

ACC (C): set of atomic clock constraints over C
CC (C): set of clock constraints over C

Write access: Clock reset sets clock value to 0

Ábrahám - Hybrid Systems 7 / 61

Timed automata

Measure time: �nite set C of clocks x, y, z, . . .
Clocks increase their value implicitly as time progresses
All clocks proceed at rate 1
Limited clock access
Read access:
Atomic clock constraints:

acc ::= x < c | x ≤ c | x > c | x ≥ c
with c ∈ N (c ∈ Q) and x ∈ C.
Clock constraints:

g ::= acc | g ∧ g
Syntactic sugar: true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

ACC (C): set of atomic clock constraints over C
CC (C): set of clock constraints over C

Write access: Clock reset sets clock value to 0
Ábrahám - Hybrid Systems 7 / 61

Semantics of clock constraints

Given a set C of clocks, a clock valuation

ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

De�nition (Semantics of clock constraints)

For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC (C), let
|= ⊆ VC × CC (C) be de�ned by

ν |= x < c i� ν(x) < c
ν |= x ≤ c i� ν(x) ≤ c
ν |= x > c i� ν(x) > c
ν |= x ≥ c i� ν(x) ≥ c
ν |= g ∧ g′ i� ν |= g and ν |= g′

Ábrahám - Hybrid Systems 8 / 61

Semantics of clock constraints

Given a set C of clocks, a clock valuation ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

De�nition (Semantics of clock constraints)

For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC (C), let
|= ⊆ VC × CC (C) be de�ned by

ν |= x < c i� ν(x) < c
ν |= x ≤ c i� ν(x) ≤ c
ν |= x > c i� ν(x) > c
ν |= x ≥ c i� ν(x) ≥ c
ν |= g ∧ g′ i� ν |= g and ν |= g′

Ábrahám - Hybrid Systems 8 / 61

Semantics of clock constraints

Given a set C of clocks, a clock valuation ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

De�nition (Semantics of clock constraints)

For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC (C), let
|= ⊆ VC × CC (C) be de�ned by

ν |= x < c i� ν(x) < c
ν |= x ≤ c i� ν(x) ≤ c
ν |= x > c i� ν(x) > c
ν |= x ≥ c i� ν(x) ≥ c
ν |= g ∧ g′ i� ν |= g and ν |= g′

Ábrahám - Hybrid Systems 8 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with

(ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.

For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be

the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9) 0 10
(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9) 0 10
(reset x in ν) + 9 9 10
reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 61

Semantics of clock access

De�nition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we de�ne reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9) 0 10
(reset x in ν) + 9 9 10
reset {x, y} in ν 0 0

Ábrahám - Hybrid Systems 9 / 61

Timed automata

Timed automata extend labeled transition systems with the notion of time:

All variables are clocks c ∈ C.
States σ ∈ Σ = Loc × V are pairs of a location and a clock valuation.

While the control stays in a location, time passes by. Time can pass in
a location as long as its invariant, which is a clock constraint, is
satis�ed. During control stays in a location, the clock values evolve
with derivative 1.
Edges are de�ned by

source and target locations,
a label,
a guard: clock constraint specifying enabling,
a set of clocks to be reset to zero.

Note: guard g and reset R de�ne a transition relation
µ = {(ν, ν ′) ∈ V 2 | ν |= g ∧ ν ′ = reset R in ν}.

Ábrahám - Hybrid Systems 10 / 61

Timed automaton

De�nition (Syntax of timed automata)

A timed automaton T = (Loc, C,Lab,Edge, Inv , Init) is a tuple with

Loc is a �nite set of locations,

C is a �nite set of clocks,

Lab is a �nite set of synchronisation labels,

Edge ⊆ Loc × Lab × (C × 2C)× Loc is a �nite set of edges,

Inv : Loc → C is a function assigning an invariant to each location,

Init ⊆ Σ with ν(x) = 0 for all x ∈ C and all (l, ν) ∈ Init .

We call the variables in C clocks. We also use the notation l
a:g,R
↪→ l′ to

state that there exists an edge (l, a, (g,R), l′) ∈ Edge.

Note: (1) derivaties are not explicitly speci�ed (2) restricted logic for
constraints

Ábrahám - Hybrid Systems 11 / 61

Timed automaton

Analogously to Kripke structures, we can additionally de�ne

a set of atomic propositions AP and

a labelling function L : Loc → 2AP

to model further system properties.

Ábrahám - Hybrid Systems 12 / 61

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t > 0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) and ν0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 13 / 61

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t > 0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) and ν0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 13 / 61

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t > 0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) and ν0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 13 / 61

LSTS semantics of timed automata

Each timed automaton T = (Loc, C,Lab,Edge, Inv , Init) induces a
labeled state transition system LST S = (Σ,Lab′,Edge ′, Init) with

Σ = Loc × V ,

Lab′ = Lab ∪ R≥0
Edge ′ = {(σ, α, σ′) | σ α→ σ′}.

Ábrahám - Hybrid Systems 14 / 61

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 15 / 61

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 15 / 61

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 16 / 61

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 16 / 61

Example: Timed Automaton

q2

2 ≤ x ≤ 3, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 17 / 61

Example: Timed Automaton

q2

2 ≤ x ≤ 3, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 17 / 61

Example: Railroad Crossing

far near

y ≤ 5

past

y ≤ 5

reset(y)

approach

y > 2

enter

exit

up coming down

x ≤ 1

downgoing up

x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

0 1

z ≤ 1

23

z ≤ 1

reset(z)

approach

z
=

1

low
er

reset(z)

exit
ra
is
e

Ábrahám - Hybrid Systems 18 / 61

Example: Railroad Crossing

far near

y ≤ 5
past

y ≤ 5

reset(y)

approach

y > 2

enter

exit

up coming down

x ≤ 1

downgoing up

x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

0 1
z ≤ 1

23
z ≤ 1

reset(z)

approach

z
=

1

low
er

reset(z)

exit
ra
is
e

Ábrahám - Hybrid Systems 18 / 61

Time convergence, timelock, and Zenoness

Zeno of Elea
(ca.490 BC-ca.430 BC)

Aristotle
(384 BC-322 BC)

Paradox:
Achilles and the tortoise
(Achilles was the great Greek hero of Homer's

The Iliad.)

�In a race, the quickest runner can never overtake the slowest, since the
pursuer must �rst reach the point where the pursued started, so that the
slower must always hold a lead.� �Aristotle, Physics VI:9, 239b15

Not all paths of a timed automata represent realistic behaviour.

Three essential phenomena: time convergence, timelock, Zenoness.

Ábrahám - Hybrid Systems 19 / 61

Time convergence

De�nition

For a timed automaton T = (Loc, C,Lab,Edge, Inv , Init). we de�ne
ExecTime : (Lab ∪ R≥0)→ R≥0 with

ExecTime(a) = 0 for a ∈ Lab and

ExecTime(d) = d for d ∈ R≥0.
Furthermore, for ρ = s0

α0→ s1
α1→ s2

α2→ . . . we de�ne

ExecTime(ρ) =

∞∑
i=0

ExecTime(αi).

A path is time-divergent i� ExecTime(ρ) =∞, and time-convergent
otherwise.

Time-convergent paths are not realistic, and are not considered in the
semantics.
Note: their existence cannot be avoided (in general).

Ábrahám - Hybrid Systems 20 / 61

Timelock

De�nition

For a state σ ∈ Σ let Pathsdiv(σ) be the set of time-divergent paths
starting in σ.
A state σ ∈ Σ has a timelock i� Pathsdiv(σ) = ∅.
A timed automaton has a timelock i� at least one of its reachable states
has a timelock.
If a timed automaton does not have a timelock then it is called
timelock-free.

Timelocks are modelling �aws and should be avoided.

Ábrahám - Hybrid Systems 21 / 61

Zenoness

De�nition

An in�nite path π is Zeno i� it is time-convergent and in�nitely many
discrete actions are executed within π.
A timed automaton is non-Zeno i� no Zeno path starts in an initial state.

Zeno paths represent non-realisable behaviour, since their execution
would require in�nitely fast processors.

Though Zeno paths are modelling �aws, they are not always easy to
avoid.

To check whether a timed automaton is non-Zeno is algorithmically
di�cult.

Instead, su�cient conditions are considered that are simple to check,
e.g., by static analysis.

Ábrahám - Hybrid Systems 22 / 61

Checking non-Zenoness

Theorem (Su�cient condition for non-Zenoness)

Let T be a timed automaton with clocks C such that for every control cycle

l0
a1:g1,R1
↪→ l1

a2:g2,R2
↪→ l2 . . .

an:gn,Rn
↪→ ln = l0

in T there exists a clock x ∈ C such that

x ∈ Ri for some 1 ≤ i ≤ n, and
for all valuations ν ∈ V there exist some 1 ≤ j ≤ n and d ∈ N>0 with

ν(x) < d implies (ν 6|= Inv(lj) or ν 6|= gj).

Then T is non-Zeno.

Ábrahám - Hybrid Systems 23 / 61

Checking non-Zenoness

Theorem (Su�cient condition for non-Zenoness)

Let T be a timed automaton with clocks C such that for every control cycle

l0
a1:g1,R1
↪→ l1

a2:g2,R2
↪→ l2 . . .

an:gn,Rn
↪→ ln = l0

in T there exists a clock x ∈ C such that

x ∈ Ri for some 1 ≤ i ≤ n, and
for all valuations ν ∈ V there exist some 1 ≤ j ≤ n and d ∈ N>0 with

ν(x) < d implies (ν 6|= Inv(lj) or ν 6|= gj).

Then T is non-Zeno.

Ábrahám - Hybrid Systems 23 / 61

Contents

1 Motivation

2 Timed automata

3 Timed computation tree logic (TCTL)

4 TCTL model checking for timed automata

Ábrahám - Hybrid Systems 24 / 61

TCTL

How to describe the behaviour of timed automata?

Logic: TCTL, a real-time variant of CTL

Syntax:

State formulae

ψ ::= true | a | g | ψ ∧ ψ | ¬ψ | Eϕ | Aϕ

Path formulae:
ϕ ::= ψ UJ ψ

with J ⊆ R≥0 is an interval with integer bounds (open right bound
may be ∞).

Note: no next-time operator

Ábrahám - Hybrid Systems 25 / 61

TCTL syntax

Syntactic sugar:
FJψ := true UJ ψ
EGJψ := ¬AFJ¬ψ
AGJψ := ¬EFJ¬ψ

ψ1 U ψ1 := ψ1 U [0,∞) ψ2

Fψ := F [0,∞)ψ

Gψ := G[0,∞)ψ

Ábrahám - Hybrid Systems 26 / 61

TCTL semantics

De�nition (TCTL continuous semantics)

Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Loc → 2AP a state labelling function.The
function |= assigns a truth value to each TCTL state and path formulae as
follows:

σ |= true

σ |= a i� a ∈ L(σ)
σ |= g i� σ |= g
σ |= ¬ψ i� σ 6|= ψ
σ |= ψ1 ∧ ψ2 i� σ |= ψ1 and σ |= ψ2

σ |= Eϕ i� π |= ϕ for some π ∈ Pathsdiv(σ)
σ |= Aϕ i� π |= ϕ for all π ∈ Pathsdiv(σ).

where σ ∈ Σ, a ∈ AP , g ∈ ACC (C), ψ, ψ1 and ψ2 are TCTL state
formulae, and ϕ is a TCTL path formula.

Ábrahám - Hybrid Systems 27 / 61

TCTL semantics

Meaning of U : a time-divergent path satis�es ψ1 UJ ψ2 whenever at
some time point in J property ψ2 holds and at all previous time instants ψ1

is satis�ed.

Ábrahám - Hybrid Systems 28 / 61

TCTL semantics

De�nition (TCTL continuous semantics)

For a time-divergent path π = (`0, ν0)
α0→ (`1, ν1)

α1→ . . . we de�ne
π |= ψ1 UJ ψ2 i�

∃i ≥ 0. (`i, νi + d) |= ψ2 for some d ∈ [0, di] with

(

i−1∑
k=0

dk) + d ∈ J, and

∀j ≤ i. (`j , νj + d′) |= ψ1 for any d′ ∈ [0, dj] with

(

j−1∑
k=0

dk) + d′ ≤ (

i−1∑
k=0

dk) + d

where di = ExecTime(αi).

Ábrahám - Hybrid Systems 29 / 61

Satisfaction set

De�nition

For a timed automaton T with clocks C and locations Loc, and a TCTL
state formula ψ the satisfaction set Sat(ψ) is de�ned by

Sat(ψ) = {σ ∈ Σ | σ |= ψ}.

T satis�es ψ i� ψ holds in all initial states:

T |= ψ i� ∀l0 ∈ Init . (l0, ν0) |= ψ

where ν0(x) = 0 for all x ∈ C.

Ábrahám - Hybrid Systems 30 / 61

TCTL vs. CTL

TCTL formulae with intervals [0,∞) may be considered as CTL
formulae

However, there is a di�erence due to time-convergent paths

TCTL ranges over time-divergent paths, whereas CTL over all paths!

Ábrahám - Hybrid Systems 31 / 61

Contents

1 Motivation

2 Timed automata

3 Timed computation tree logic (TCTL)

4 TCTL model checking for timed automata

Ábrahám - Hybrid Systems 32 / 61

Basic method: Abstraction

Given: a concrete system
(here: a timed automaton)
Goal: reduce the size of the system by abstraction
(here: reduce the in�nite state space to a �nite one)
Result: abstract system
(here: region transition system)

Behaviorally equivalent abstraction: If we see both the concrete and
the abstract system as black boxes and make experiments with them,
we cannot distinguish between their observable behavior.
Two systems P and P ′ have the same observable behaviour i� for
each context C we have that JC[P]K = JC[P ′]K.
(C[P]: the composition of C and P , J·K: (global) semantics)
E.g., for programs it could mean the same input-output behaviour.
For model checking we require that they satisfy the same formulas of
the underlying logic.
(here: TCTL)

Ábrahám - Hybrid Systems 33 / 61

Basic method: Abstraction

Given: a concrete system
(here: a timed automaton)
Goal: reduce the size of the system by abstraction
(here: reduce the in�nite state space to a �nite one)
Result: abstract system
(here: region transition system)
Behaviorally equivalent abstraction: If we see both the concrete and
the abstract system as black boxes and make experiments with them,
we cannot distinguish between their observable behavior.

Two systems P and P ′ have the same observable behaviour i� for
each context C we have that JC[P]K = JC[P ′]K.
(C[P]: the composition of C and P , J·K: (global) semantics)
E.g., for programs it could mean the same input-output behaviour.
For model checking we require that they satisfy the same formulas of
the underlying logic.
(here: TCTL)

Ábrahám - Hybrid Systems 33 / 61

Basic method: Abstraction

Given: a concrete system
(here: a timed automaton)
Goal: reduce the size of the system by abstraction
(here: reduce the in�nite state space to a �nite one)
Result: abstract system
(here: region transition system)
Behaviorally equivalent abstraction: If we see both the concrete and
the abstract system as black boxes and make experiments with them,
we cannot distinguish between their observable behavior.
Two systems P and P ′ have the same observable behaviour i� for
each context C we have that JC[P]K = JC[P ′]K.
(C[P]: the composition of C and P , J·K: (global) semantics)
E.g., for programs it could mean the same input-output behaviour.
For model checking we require that they satisfy the same formulas of
the underlying logic.
(here: TCTL)

Ábrahám - Hybrid Systems 33 / 61

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a �nite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ i� RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 34 / 61

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a �nite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ i� RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 35 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i�

reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i�

reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ result from T by adding a fresh clock z which never gets reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) i�

reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 i� reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 i� reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

Ábrahám - Hybrid Systems 36 / 61

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a �nite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ i� RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 37 / 61

Keywords:

Finite abstraction

Equivalence relation, equivalence classes

Bisimulation

And what does it mean in our context?

Ábrahám - Hybrid Systems 38 / 61

2. Finite state space abstraction

We search for an equivalence relation ∼= on states, such that equivalent
states satisfy the same (sub)formulae ψ′ occurring in the timed automaton
T or in the speci�cation ψ:

σ ∼= σ′ ⇒
(
σ |= ψ′ iff σ′ |= ψ′

)
.

We strive for a �nite number of equivalence classes.

De�nition

Let LST S = (Σ,Lab,Edge, Init) be a labeled state transition system, AP
a set of atomic propositions, and L : Σ→ 2AP a labeling function for
LST S over AP .
A bisimulation for LST S and L is an equivalence relation ≈⊆ Σ× Σ such
that for all σ1 ≈ σ2

1 L(σ1) = L(σ2)

2 for all σ′1 ∈ Σ with σ1
a→ σ′1 there exists σ′2 ∈ Σ such that σ2

a→ σ′2
and σ′1 ≈ σ′2.

Ábrahám - Hybrid Systems 39 / 61

2. Finite state space abstraction

We search for an equivalence relation ∼= on states, such that equivalent
states satisfy the same (sub)formulae ψ′ occurring in the timed automaton
T or in the speci�cation ψ:

σ ∼= σ′ ⇒
(
σ |= ψ′ iff σ′ |= ψ′

)
.

We strive for a �nite number of equivalence classes.

De�nition

Let LST S = (Σ,Lab,Edge, Init) be a labeled state transition system, AP
a set of atomic propositions, and L : Σ→ 2AP a labeling function for
LST S over AP .
A bisimulation for LST S and L is an equivalence relation ≈⊆ Σ× Σ such
that for all σ1 ≈ σ2

1 L(σ1) = L(σ2)

2 for all σ′1 ∈ Σ with σ1
a→ σ′1 there exists σ′2 ∈ Σ such that σ2

a→ σ′2
and σ′1 ≈ σ′2.

Ábrahám - Hybrid Systems 39 / 61

Time abstract bisimulation

De�nition

Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Loc → 2AP a labeling function for T over AP .
A time abstract bisimulation for T and L is an equivalence relation
≈⊆ Σ× Σ such that for all σ1, σ2 ∈ Σ satisfying σ1 ≈ σ2

L(σ1) = L(σ2)

for all σ′1 ∈ Σ with σ1
a→ σ′1 there is a σ′2 ∈ Σ such that σ2

a→ σ′2 and
σ′1 ≈ σ′2
for all σ′1 ∈ Σ with σ1

t1→ σ′1 there is a σ′2 ∈ Σ such that σ2
t2→ σ′2 and

σ′1 ≈ σ′2.

Time-abstract bisimulation is su�cient for CTL-equivalence (i.e., two
states are in the same equivalence class i� they satisfy the same CTL
properties), but not yet su�cient for TCTL-equivalence (as we will see).

Ábrahám - Hybrid Systems 40 / 61

Time abstract bisimulation

De�nition

Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Loc → 2AP a labeling function for T over AP .
A time abstract bisimulation for T and L is an equivalence relation
≈⊆ Σ× Σ such that for all σ1, σ2 ∈ Σ satisfying σ1 ≈ σ2

L(σ1) = L(σ2)

for all σ′1 ∈ Σ with σ1
a→ σ′1 there is a σ′2 ∈ Σ such that σ2

a→ σ′2 and
σ′1 ≈ σ′2
for all σ′1 ∈ Σ with σ1

t1→ σ′1 there is a σ′2 ∈ Σ such that σ2
t2→ σ′2 and

σ′1 ≈ σ′2.

Time-abstract bisimulation is su�cient for CTL-equivalence (i.e., two
states are in the same equivalence class i� they satisfy the same CTL
properties), but not yet su�cient for TCTL-equivalence (as we will see).

Ábrahám - Hybrid Systems 40 / 61

Bisimulation

Lemma

Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton with state space
Σ = Loc × V , AP a set of atomic propositions, and L : Loc → 2AP a labeling
function for T over AP . Assume furthermore a time-abstract bisimulation
≈⊆ Σ× Σ for T and L.
Then for all σ, σ′ ∈ Σ with σ ≈ σ′ we have that for each path

π : σ
α1→ σ1

α2→ σ2
α3→ . . .

of T there exists a path

π′ : σ′
α′

1→ σ′1
α′

2→ σ′2
α′

3→ . . .

of T such that for all i

σi ≈ σ′i (implying L(σi) = L(σ′i),

αi = α′i if αi ∈ Lab and

αi, α
′
i ∈ R≥0 otherwise.

Ábrahám - Hybrid Systems 41 / 61

2. Finite state space abstraction

How could a time-abstract bisimulation for a timed automaton look like?

Since, in general, the atomic propositions assigned to di�erent locations in
T are di�erent, only states (l, ν) and (l′, ν ′) satisfying l = l′ should be
equivalent.

Ábrahám - Hybrid Systems 42 / 61

2. Finite state space abstraction

How could a time-abstract bisimulation for a timed automaton look like?

Since, in general, the atomic propositions assigned to di�erent locations in
T are di�erent,

only states (l, ν) and (l′, ν ′) satisfying l = l′ should be
equivalent.

Ábrahám - Hybrid Systems 42 / 61

2. Finite state space abstraction

How could a time-abstract bisimulation for a timed automaton look like?

Since, in general, the atomic propositions assigned to di�erent locations in
T are di�erent, only states (l, ν) and (l′, ν ′) satisfying l = l′ should be
equivalent.

Ábrahám - Hybrid Systems 42 / 61

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.

Notation:

Integer part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

Only states (l, ν) and (l, ν′) with equal integer part bν(x)c = bν′(x)c for each
clock x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g.
c = bν(x)c > bν′(x)c = c′ and assume that T has an edge with source location l,
guard x ≥ c, and that the invariant in both source and target locations is true.
Then the edge is enabled in (l, ν) but not in (l, ν′).)
Only states (l, ν) and (l, ν′) with frac(ν(x)) = 0 i� frac(ν′(x)) = 0 for all clocks
x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g. ν(x) = c ∈ N, implying
frac(ν(x)) = 0. If frac(ν′(x)) 6= 0 then ν(x) 6= c. Now if T has an edge with
source location l and guard x = c, and if the invariant in both source and target
locations is true, then the edge is enabled in (l, ν) but not in (l, ν′).)
I.e., only states (l, ν) and (l, ν′) satisfying

bν(x)c = bν′(x)c and (frac(ν(x)) = 0 ↔ frac(ν′(x)) = 0)

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 43 / 61

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.
Notation:

Integer part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

Only states (l, ν) and (l, ν′) with equal integer part bν(x)c = bν′(x)c for each
clock x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g.
c = bν(x)c > bν′(x)c = c′ and assume that T has an edge with source location l,
guard x ≥ c, and that the invariant in both source and target locations is true.
Then the edge is enabled in (l, ν) but not in (l, ν′).)
Only states (l, ν) and (l, ν′) with frac(ν(x)) = 0 i� frac(ν′(x)) = 0 for all clocks
x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g. ν(x) = c ∈ N, implying
frac(ν(x)) = 0. If frac(ν′(x)) 6= 0 then ν(x) 6= c. Now if T has an edge with
source location l and guard x = c, and if the invariant in both source and target
locations is true, then the edge is enabled in (l, ν) but not in (l, ν′).)
I.e., only states (l, ν) and (l, ν′) satisfying

bν(x)c = bν′(x)c and (frac(ν(x)) = 0 ↔ frac(ν′(x)) = 0)

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 43 / 61

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.
Notation:

Integer part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

Only states (l, ν) and (l, ν′) with equal integer part bν(x)c = bν′(x)c for each
clock x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g.
c = bν(x)c > bν′(x)c = c′ and assume that T has an edge with source location l,
guard x ≥ c, and that the invariant in both source and target locations is true.
Then the edge is enabled in (l, ν) but not in (l, ν′).)

Only states (l, ν) and (l, ν′) with frac(ν(x)) = 0 i� frac(ν′(x)) = 0 for all clocks
x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g. ν(x) = c ∈ N, implying
frac(ν(x)) = 0. If frac(ν′(x)) 6= 0 then ν(x) 6= c. Now if T has an edge with
source location l and guard x = c, and if the invariant in both source and target
locations is true, then the edge is enabled in (l, ν) but not in (l, ν′).)
I.e., only states (l, ν) and (l, ν′) satisfying

bν(x)c = bν′(x)c and (frac(ν(x)) = 0 ↔ frac(ν′(x)) = 0)

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 43 / 61

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.
Notation:

Integer part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

Only states (l, ν) and (l, ν′) with equal integer part bν(x)c = bν′(x)c for each
clock x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g.
c = bν(x)c > bν′(x)c = c′ and assume that T has an edge with source location l,
guard x ≥ c, and that the invariant in both source and target locations is true.
Then the edge is enabled in (l, ν) but not in (l, ν′).)
Only states (l, ν) and (l, ν′) with frac(ν(x)) = 0 i� frac(ν′(x)) = 0 for all clocks
x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g. ν(x) = c ∈ N, implying
frac(ν(x)) = 0. If frac(ν′(x)) 6= 0 then ν(x) 6= c. Now if T has an edge with
source location l and guard x = c, and if the invariant in both source and target
locations is true, then the edge is enabled in (l, ν) but not in (l, ν′).)

I.e., only states (l, ν) and (l, ν′) satisfying

bν(x)c = bν′(x)c and (frac(ν(x)) = 0 ↔ frac(ν′(x)) = 0)

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 43 / 61

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.
Notation:

Integer part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

Only states (l, ν) and (l, ν′) with equal integer part bν(x)c = bν′(x)c for each
clock x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g.
c = bν(x)c > bν′(x)c = c′ and assume that T has an edge with source location l,
guard x ≥ c, and that the invariant in both source and target locations is true.
Then the edge is enabled in (l, ν) but not in (l, ν′).)
Only states (l, ν) and (l, ν′) with frac(ν(x)) = 0 i� frac(ν′(x)) = 0 for all clocks
x ∈ C can be equivalent for arbitrary T . (Assume w.l.o.g. ν(x) = c ∈ N, implying
frac(ν(x)) = 0. If frac(ν′(x)) 6= 0 then ν(x) 6= c. Now if T has an edge with
source location l and guard x = c, and if the invariant in both source and target
locations is true, then the edge is enabled in (l, ν) but not in (l, ν′).)
I.e., only states (l, ν) and (l, ν′) satisfying

bν(x)c = bν′(x)c and (frac(ν(x)) = 0 ↔ frac(ν′(x)) = 0)

for all x ∈ C should be equivalent.
Ábrahám - Hybrid Systems 43 / 61

2. Finite state space abstraction

Problem: It would generate in�nitely many equivalence classes!

Solution: Require equivalence not in general but only for a given T .

Let cx be the largest constant to which a clock x is compared in either T
or in ψ. Then there is no observation which could distinguish between the
x-values in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨
(bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 ↔ frac(ν ′(x)) = 0))

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 44 / 61

2. Finite state space abstraction

Problem: It would generate in�nitely many equivalence classes!
Solution: Require equivalence not in general but only for a given T .

Let cx be the largest constant to which a clock x is compared in either T
or in ψ. Then there is no observation which could distinguish between the
x-values in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨
(bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 ↔ frac(ν ′(x)) = 0))

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 44 / 61

2. Finite state space abstraction

Problem: It would generate in�nitely many equivalence classes!
Solution: Require equivalence not in general but only for a given T .

Let cx be the largest constant to which a clock x is compared in either T
or in ψ. Then there is no observation which could distinguish between the
x-values in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.

I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨
(bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 ↔ frac(ν ′(x)) = 0))

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 44 / 61

2. Finite state space abstraction

Problem: It would generate in�nitely many equivalence classes!
Solution: Require equivalence not in general but only for a given T .

Let cx be the largest constant to which a clock x is compared in either T
or in ψ. Then there is no observation which could distinguish between the
x-values in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨
(bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 ↔ frac(ν ′(x)) = 0))

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 44 / 61

2. Finite state space abstraction

Problem: It would generate in�nitely many equivalence classes!
Solution: Require equivalence not in general but only for a given T .

Let cx be the largest constant to which a clock x is compared in either T
or in ψ. Then there is no observation which could distinguish between the
x-values in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨
(bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 ↔ frac(ν ′(x)) = 0))

for all x ∈ C should be equivalent.

Ábrahám - Hybrid Systems 44 / 61

2. Finite state space abstraction

x

y

0

1

2

0 1 2 3

2 < x < 3
1 < y < 2

x = 3
y = 2

x = 3
0 < y < 1

cy = 2
cx = 3

Ábrahám - Hybrid Systems 45 / 61

2. Finite state space abstraction

As the following example illustrates, we must make a further re�nement of
the abstraction, since it does not distinguish between states satisfying
di�erent formulae.

. . .

. . .

y ≤ 1

. . .

. . .

x ≥ 2

x

y

0

1

2

0 1 2 3

Ábrahám - Hybrid Systems 46 / 61

2. Finite state space abstraction

What we need is a re�nement taking the order of the fractional parts of the
clock values into account. However, again only for values below the largest
constants to which the clocks get compared.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨ (ν(y) > cy ∧ ν ′(y) > cy) ∨
(frac(ν(x)) < frac(ν(y)) ↔ frac(ν ′(x)) < frac(ν ′(y)) ∧

frac(ν(x)) = frac(ν(y)) ↔ frac(ν ′(x)) = frac(ν ′(y)) ∧
frac(ν(x)) > frac(ν(y)) ↔ frac(ν ′(x)) > frac(ν ′(y)))

for all x, y ∈ C should be equivalent.
Because of symmetry the following is su�cient:

(ν(x) > cx ∧ ν ′(x) > cx) ∨ (ν(y) > cy ∧ ν ′(y) > cy) ∨
(frac(ν(x)) ≤ frac(ν(y)) ↔ frac(ν ′(x)) ≤ frac(ν ′(y)))

for all x, y ∈ C.
Ábrahám - Hybrid Systems 47 / 61

2. Finite state space abstraction

x

y

0
0

1

2

1 2 3 4

cx = 4
cy = 2

�nite index

Ábrahám - Hybrid Systems 48 / 61

2. Finite state space abstraction

De�nition

Assume a timed automaton T = (Loc, C,Lab,Edge, Inv , Init) and a
TCTL formula ψ, both over a clock set C, and for each x ∈ C let cx be the
largest constant to which x is compared to in T and ψ. We de�ne the
clock equivalence relation ∼=⊆ Σ× Σ for T and ψ by (l, ν) ∼= (l′, ν ′) i�
l = l′ and

for all x ∈ C, either ν(x) > cx ∧ ν ′(x) > cx or

bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 ↔ frac(ν ′(x)) = 0)

for all x, y ∈ C if ν(x), ν ′(x) ≤ cx and ν(y), ν ′(y) ≤ cy then

frac(ν(x)) ≤ frac(ν(y)) ↔ frac(ν ′(x)) ≤ frac(ν ′(y)).

The clock region of an evaluation ν ∈ V is the set [ν] = {ν ′ ∈ V | ν ∼= ν ′}.
The clock region of a state σ = (l, ν) ∈ Σ is the set
[σ] = {(l, ν ′) ∈ Σ | ν ∼= ν ′}.

Ábrahám - Hybrid Systems 49 / 61

2. Finite state space abstraction

Lemma

Assume a timed automaton T = (Loc, C,Lab,Edge, Inv , Init), a �nite set

AP of atomic propositions, a labeling function L : Loc → 2AP and a

TCTL formula ψ over C.

Let LST S = (Σ,Lab′,Edge ′, Init) be the labeled state transition system

induced by T .

Let AP ′ = AP ∪ACC (T) ∪ACC (ψ) and L′ : Σ→ 2AP ′
with

L′((l, ν)) = L(l) ∪ {g ∈ ACC (T) ∪ACC (ψ) | ν |= g}.

Then the clock equivalence relation ∼=⊆ Σ× Σ for T and ψ is a

bisimulation for LST S and L′.

Ábrahám - Hybrid Systems 50 / 61

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a �nite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ i� RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 51 / 61

3. The abstract transition system

We have de�ned regions as abstract states,
now we connect them by abstract transitions.

Two kinds of transitions:
time and discrete

Ábrahám - Hybrid Systems 52 / 61

3. The abstract transition system

De�nition

The clock region r∞ = {ν ∈ V | ∀x ∈ C. ν(x) > cx} is called unbounded.
Let r, r′ be two clock regions. The region r′ is the successor clock region of
r, denoted by r′ = succ(r), if either

r = r′ = r∞, or

r 6= r∞, r 6= r′, and for all ν ∈ r:

∃d ∈ R>0. (ν + d ∈ r′ ∧ ∀0 ≤ d′ ≤ d. ν + d′ ∈ (r ∪ r′).

The successor state region is de�ned as succ((l, r)) = (l, succ(r)).

Ábrahám - Hybrid Systems 53 / 61

x

z

0

1

2

0 1 21

2

3

4

5

6

7

8

9

10

1112

l α :x ≥ 2, reset(x)

EF (0,2] (x = 0)

1 2 3 4 5 6

τ τ τ τ τ τ

7 8 9 10 11

12

τ τ τ τ α
α

τ
α

τ

Ábrahám - Hybrid Systems 54 / 61

x

z

0

1

2

0 1 21

2

3

4

5

6

7

8

9

10

1112

l α :x ≥ 2, reset(x)

EF (0,2] (x = 0)

1 2 3 4 5 6

τ τ τ τ τ τ

7 8 9 10 11

12

τ τ τ τ α
α

τ
α

τ

Ábrahám - Hybrid Systems 54 / 61

l x ≥ 2 : α, reset(x)

l

x = 0

z = 0

fr(x) = fr(z)

l

0 < x < 1

0 < z < 1

fr(x) = fr(z)

l

x = 1

z = 1

fr(x) = fr(z)

l

1 < x < 2

1 < z < 2

fr(x) = fr(z)

l

x = 2

z = 2

fr(x) = fr(z)

l

x > 2

z > 2

τ τ τ τ τ

τ

l

x = 0

z = 2

fr(x) = fr(z)

l

0 < x < 1

z > 2

l

x = 1

z > 2

l

1 < x < 2

z > 2

l

x = 2

z > 2

l

x = 0

z > 2

τ τ τ τ α

α
τ

α

τ

Ábrahám - Hybrid Systems 55 / 61

3. The abstract transition system

De�nition

Let T = (Loc, C,Lab,Edge, Inv , Init) be a non-zeno timelock-free timed
automaton with an atomic proposition set AP and a labeling function L,
and let ψ̂ be a time-unbounded TCTL formula over C and AP .
The region transition system of T for ψ̂ is a labeled state transition system
RTS (T , ψ) = (Σ′,Lab,Edge ′, Init ′) with atomic propositions AP ′ and a
labeling function L′ such that

Σ′ = {(l, [ν]) | (l, ν) ∈ Σ ∧ ν ∈ Inv(l)}
Init ′ = {(l, [ν]) ∈ Σ′ | (l, ν) ∈ Init}
AP ′ = AP ∪ACC (T) ∪ACC (ψ̂)

L′((l, [ν])) = L(l) ∪ {g ∈ AP ′\AP | ν |= g}
and

Ábrahám - Hybrid Systems 56 / 61

3. The abstract transition system

De�nition

(l, ν)
a→ (l′, ν ′)

(l, [ν])
a→ (l′, [ν ′])

Rule Discrete

succ(r) |= Inv(l)

(l, r)
t→ (l, succ(r))

Rule Time

Ábrahám - Hybrid Systems 57 / 61

3. The abstract transition system

Lemma

For non-zeno timelock-free T and π = s0 → s1 → . . . an initial, in�nite

path of T :
if π is time-convergent, then there is an index j and a state region

(l, r) such that si ∈ (l, r) for all i ≥ j.
if there is a state region (l, r) with r 6= r∞ and an index j such that

si ∈ (l, r) for all i ≥ j then π is time-convergent.

Lemma

For a non-zeno timelock-free timed automaton T and a TCLT formula ψ:

T |=TCTL ψ iff RTS (T , ψ̂) |=CTL ψ̂

Ábrahám - Hybrid Systems 58 / 61

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a �nite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ i� RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 59 / 61

TCTL model checking

The procedure is quite similar to CTL model checking for �nite automata.

One di�erence:

Handling nested time bounds in TCTL formulae

Ábrahám - Hybrid Systems 60 / 61

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a �nite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ i� RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 61 / 61

	Motivation
	Timed automata
	Timed computation tree logic (TCTL)
	TCTL model checking for timed automata

