
Theory of Hybrid Systems
Prof. Dr. Erika Ábrahám

RWTH Aachen University, Informatik 2 · D-52056 Aachen · GERMANY
http://ths.rwth-aachen.de/

Modeling and Analysis of Hybrid Systems

Series 2/3

Exercise 1

Consider the following six timed automata:

(a)
x ≤ 2{a}

y ≤ 2{b}

{c}

x ≤ 2 : reset(y)

y ≤ 2

(b)
x ≤ 2{a}

{b}

{c}

x ≤ 2 : reset(y)

y ≤ 2

(c)
{a}

y ≤ 2{b}

{c}

x ≤ 2 : reset(y)

y ≤ 2

(d)
{a}

{b}

{c}

x ≤ 2 : reset(y)

y ≤ 2

(e)
x ≤ 2{a}

y ≤ 3{b}

{c}

x ≤ 2 : reset(y)

y ≤ 3

(f)
x ≤ 3{a}

y ≤ 3{b}

{c}

x ≤ 3 : reset(y)

y ≤ 3

Give for each automaton a TCTL formula that distinguishes it from all other ones. It
is only allowed to use the atomic propositions a, b and c and clock constraints.

Solution:

http://ths.rwth-aachen.de/

(a) AF≤4c

(b) AFEGb

(c) (EGa) ∧ (¬EFEGb)

(d) (EGa) ∧ (EFEGb)

(e) (AF≤5c) ∧ (EG(4,5)¬c)

(f) (AF≤6c) ∧ (EG(5,6)¬c)

Exercise 2

The �clacks� are a visual telegraph tower system operated by the �Grant Trunk Com-
pany� of Ankh-Morpork (cf. Terry Pratchett: �Going postal�). It consists of a network
of semaphore towers located about 20 miles from each other spread all over Discworld.
Each tower has 6 semaphores which can show either a black panel or a white panel.
Each tower is operated by a �clacks operator�, whose task it is to watch his predecessing
tower and in case there is a message it has to forward the message to the successor tower
and after that send back an acknowledgement to the predecessor.

• For each tower, the time till the �rst incoming message and between two incoming
messages from the predecessor is between 7 and 12 minutes.

• As it is very boring to sit and wait for a message, after 10 minutes of concentrated
waiting the operator can get distracted, and then he or she is distracted for at least
2 and at most 3 minutes. When the operator is distracted, incoming messages
will be lost. When the operator is not distracted, incoming messages will be
successfully received.

• The operator needs between 1 and 2 minutes to forward a successfully received
message.

• After forwarding, the operator needs another 3 to 5 minutes to send back an
acknowledgement to the predecessor.

A timed automaton modelling one clacks-tower is given below, the set of atomic propo-
sitions is AP= {wait , rec, fwd , ack , dist}:

x ≤ 12
x := 0
y := 0

{wait}

x ≤ 2

{rec}

x ≤ 5

{fwd}

x = 0

{ack}

y ≤ 13

{dist}

x ≥ 7
reset(x)

x ≥ 1
reset(x)

x ≥ 3
reset(x)

reset(y)

y ≥ 10
y ≥ 12
reset(y)

7 ≤ x ≤ 12
reset(x)

Please give suitable TCTL-formulas, which formalize the following statements:

a) Each successfully received message is acknowledged within 2 minutes. (To assure
that the acknowledgment is for the given received message, state that the waiting
state is avoided between reception and acknowledgement.)

b) It cannot happen that all messages get lost.

c) It is possible that a message gets lost within the �rst 10 minutes.

Which of the above formulas holds for the modelled system? Please give reasons for
your answer.

Solution:

a) AG(rec → (A(¬wait) U≤2 ack))

b) AFrec

c) EF≤10(dist ∧ x = 0)

The �rst formula is not satis�ed, as there is a path, where it takes 7 minutes from
reception till acknowledgement.

The second formula does not hold, because it can happen periodically that the operator
gets distracted after 10 minutes, a messages arrives (and gets lost) 1 minute later, and
the operator goes back to the waiting state 1 further minute later.

Formula c) holds, because a message can get lost at time point 10, directly (without
time delay) after the operator got distracted at time point 10.

Exercise 3

Please give a timed automaton for the following system. You can use as many clocks
as you want, but you are restricted to use 4 locations, which are distinguished by the
atomic propositions AP= {ferryleft , ferryright , process_cargo, travel}.

A river can be crossed by taking a ferry which has the following properties:

• Initially the ferry is on the left side of the river (ferryleft).

• Initially and after each unloading, the ferry waits 1-2 minutes for a new customer
(ferryleft/ferryright).

• Once a customer arrives, the ferry is loaded (process_cargo), it crosses the river
(travel), and it is unloaded (process_cargo).

• Loading, crossing and unloading take exactly 10 minutes each.

Hint: You can encode certain properties by a clever usage of di�erent clocks, resets and

guards.

Solution:

We require 2 clocks in total, one monitoring the time passed inside the locations (x)
and one (y), which allows us to encode which way the ferry crosses the river.

x ≤ 2
x = 0
y = 0

{ferryleft}

x ≤ 10

{process_cargo}

x ≤ 2

{ferryright}

x ≤ 10

{travel}

x ≥ 1
reset(x)

x = 10∧
y ∈ [62, 64]

reset(x), reset(y)

x ≥ 1
reset(x)

x = 10∧
y ∈ [31, 32]

reset(x)
x = 10
reset(x)

x = 10 ∧
y ∈ [11; 12]

reset(x)

x = 10 ∧
y ∈ [42; 44]

reset(x)

Exercise 4

Consider the following timed automaton T :

l0

x ≤ 1
x := 0

{p}

l1

∅

x > 0

x = 1
reset(x)

Please perform the TCTL model checking algorithm as presented in the lecture on T
and verify T |= ϕ, where ϕ = AF≤2p.

a) Construct ϕ̂ by eliminating timing parameters from ϕ. Use the name y for the
auxiliary clock.

b) Construct a RTS R, such that T |=TCTL ϕ i� R |=CTL ϕ̂. As R will become big,
use the prepared grid below to sketch the RTS (by adding the required transitions)
as follows:

• represents a state, where the location is l0.

• represents a state, where the location is l1.

• The position of a state in the grid remarks, which clock region the state repre-
sents.

• Please draw only the reachable fragment of R.

y

x
x = 0 0 < x < 1 x = 1 x > 1

y = 0

0 < y < 1

y = 1

1 < y < 2

y = 2

y > 2

c) Apply CTL model checking to verify R |=CTL ϕ̂. You can color states in your
previously created RTS to indicate that a certain subformula holds in the respective
state.

Solution:

a) We add an additional clock y to T , such that T ′:

l0

x ≤ 1

x := 0
y := 0

{p}

l1

∅

x > 0

x = 1
reset(x)

Removing syntactic sugar from ϕ yields ϕ = A(true U≤2 p) and �nally removing
time parameters yields ϕ̂ = A(true U ((y ≤ 2) ∧ p))).

b) The RTS R is speci�ed as follows:

y

x
x = 0 0 < x < 1 x = 1 x > 1

y = 0

0 < y < 1

y = 1

1 < y < 2

y = 2

y > 2

c) Model checking R |=CTL ϕ̂
Step 1: ψ1 = (y ≤ 2) ∧ p

y

x
x = 0 0 < x < 1 x = 1 x > 1

y = 0

0 < y < 1

y = 1

1 < y < 2

y = 2

y > 2

Model checking R |=CTL ϕ̂
Step 2: ψ2 = A(true U ψ1)

y

x
x = 0 0 < x < 1 x = 1 x > 1

y = 0

0 < y < 1

y = 1

1 < y < 2

y = 2

y > 2

As for all initial states σ = (l, ν) ∈ R with ν(y) = 0 it holds that σ |= ϕ̂, we conclude
R |=CTL ϕ̂, and thus T |=TCTL ϕ.

Exercise 5

Consider the TCTL formula Φ = AFp and the following timed automaton T :

`0
x ≤ 2

∅

`1

{p}

x := 0 a : x ≤ 1

(a) Does T |= Φ hold, i.e., does T satisfy the TCTL formula Φ in its initial state?

(b) Please determine RTS (T ,Φ). It is su�cient to present the reachable fragment.
Note that the TCTL formula Φ has no time bounds, therefore you do not need to
introduce any auxiliary clock z.

(c) Does T have a path leading to a time-lock? If so, how can we recognize it on
RTS (T ,Φ)?

(d) Please apply the CTL model checking algorithm presented in the lecture to deter-
mine whether RTS (T ,Φ) |= Φ̂, i.e., whether RTS (T ,Φ) satis�es Φ̂ = AFp in its
initial state. Does it hold that

T |= Φ iff RTS (T ,Φ) |= Φ̂ ?

If not, why?

Solution:

(a) Yes, because all time-divergent paths of T eventually reach l1, where p holds.

(b)

l0
x = 0

∅

l0
0 < x < 1

∅

l0
x = 1

∅

l0
1 < x < 2

∅

l0
x = 2

∅

τ τ τ τ

l1
x = 0

{p}

Φ

l1
0 < x < 1

{p}

Φ

l1
x = 1

{p}

Φ

l1
1 < x < 2

{p}

Φ

l1
x = 2

{p}

Φ

τ τ τ τ

l1
x > 2

{p}

Φ

a a a

τ

τ

s0 s1 s2 s3 s4

s5 s6 s7 s8 s9

s10

(c) Yes, T has time-lock paths. Clearly, s0 → s1 → s2 → s3 → s4 is a �nite path

of RTS (T , true), it re�ects the time-lock path (l0, ν)
2−→ (l0, ν

′) with ν(x) = 0 and
ν ′(x) = 2. For this Zeno-free model, we can see it on the deadlock state s4 without
any outgoing transition.

(d) They are given by the nodes labeled with Φ in RTS (T , true). The two model
checking results do not coincide, because the timed automaton T is not timelock-
free.

