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Organizational

email; abraham@cs.rwth-aachen.de
7 x 90 minutes lectures, 7 x 90 minutes exercises
agree on time and place

learning materials

written exam mid of November 2017
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Hybrid systems
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Wikipedia:

“A hybrid is the combination of two or more different things,
aimed at achieving a particular objective or goal.”
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A hybrid rose
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A hybrid car
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Hybrid in computer science

discrete
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Combined with the continuous part

— J m

Abraham - Hybrid Systems



Example: Bouncing ball

Ball falls from a given height, bounces at the ground, raises, falls again...
m vertical position of the ball
m velocity o
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Example: Thermostat

m Temperature z is controlled by switching a heater on and off

m z is regulated by a thermostat:

m 17°< z < 18° ~» “heater on”
m 22°< g < 23° ~~ “heater off”
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Example: Water tank system

m two constantly leaking tanks v1 and v
m hose w refills exactly one tank at one point in time

m w can switch between tanks instantaneously
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There are much more complex examples of hybrid systems, like e.g.
m automobiles, trains, etc.
m automated highway systems
m collision-avoidance and free flight for aircrafts
m digitally controlled chemical plants
m biological cell growth and division ...

In this course we learn how to model and analyse hybrid systems,
considering a sequence of modeling languages with increasing expressive
power.

labeled state transition systems
labeled transition systems

timed automata

]
]
m initialized rectangular automata
m linear hybrid automata |

]

linear hybrid automata Il

Abraham - Hybrid Systems 13 / 47



Labeled state transition systems
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Labeled state transition systems
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Labeled state transition systems

A labeled state transition system (LSTS) is a tuple
LSTS = (%, Lab, Edge, Init) with

a (possibly infinite) state set .,

E
m a label set Lab (for synchronisation, we do not use it in this course),
m a transition relation Fdge C ¥ x Lab x 3 and

m

a non-empty set of initial states Init C X.
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Labeled state transition systems

A labeled state transition system (LSTS) is a tuple
LSTS = (%, Lab, Edge, Init) with

a (possibly infinite) state set .,

E
m a label set Lab (for synchronisation, we do not use it in this course),
m a transition relation Fdge C ¥ x Lab x 3 and

m

a non-empty set of initial states Init C X.

Operational semantics:
(0,a,0") € Edge

a
g—0

m Path: 09 B 01 B oy.. ..
m Initial path: o9 8 o1 5 09... with og € Init.
m A state is called reachable iff there is an initial path leading to it.



Pedestrian light
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Pedestrian light
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Labeling

To be able to formalize properties of LSTSs, it is common to define
m a set of atomic propositions AP and

m a state labeling function L : ¥ — 247 assigning a set of atomic
propositions to each state.

The set L(o) consists of all propositions that are defined to hold in o.
These propositional labels on states should not be mixed up with the
synchronization labels on edges.
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Two traffic lights

Q)[ (redy, green,) ] [ (green,, green,) ]{danger}
g02< >stop2 o
—
Q)[ (redy, reds) ] [ (greeny, reds) ]Q)

Pt
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Two traffic lights
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Labeled transition systems
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Labeled transition systems
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Labeled transition systems

A labeled transition system (LTS) is a tuple
LTS = (Loc, Var, Lab, Edge, Init) with

m finite set of locations Loc,
m finite set of (typed) variables Var,
m finite set of synchronization labels Lab, 7 € Lab (stutter label)

m finite set of edges Edge C Loc x Lab x 2V° x Loc (including stutter
transitions (I, 7, i+, 1) for each location [ € Loc),

m initial states /nit C X.
with
m valuations v : Var — Domain, V is the set of valuations

m state 0 = (I,v) € Loc x V, ¥ is the set of states
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Semantics of LTS

Operational semantics has a single rule:
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LSTS semantics of LTS

Each LTS LTS = (Loc, Var, Lab, Edge, Init) induces a labeled state
transition system £LSTS = (3, Lab, Edge’, Init) with

m X = LocxV and
m Edge' = {(v,a,V) | v 3V}
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Semantics of the simple while-program

(La,p,l') € Edge (v,V') € p
(L) = (I,V))
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Modeling a simple while-program

method mult(int y, int z){

int x;
lo x := 0;
4
while( y > 0 ) {
L y =y
U3 X 1= xtz;
}
b}
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Temporal logics
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Temporal logics

Assume
m a labeled state transition system LSTS = (X, Lab, Edge, Init),
m a set of atomic propositions AP, and
m a labeling function L : ¥ — 247,
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Temporal logics

Assume
m a labeled state transition system LSTS = (X, Lab, Edge, Init),
m a set of atomic propositions AP, and

m a labeling function L : ¥ — 247,

How can we describe properties of this system?

m We need a well-suited logic.
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Propositional logic
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Propositional logic

m Abstract syntax:
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Propositional logic

m Abstract syntax:
p = al(pNg)|(-p)
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m Syntactic sugar: true, false,V,—, <>, ...

m Omit parentheses when no confusion
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Propositional logic

m Abstract syntax:
p = al (@A) | (-e)
with a € AP.
m Syntactic sugar: true, false,V,—, <>, ...
m Omit parentheses when no confusion

m Semantics (in the context of a state o € X):

oFa iff a€ L(o),
o= (o1 Ap2) iff o =p1 and o b= @,
o = () iff o W~ .
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Computation tree
® v

{a}
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Computation tree
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Temporal logics

In the computation tree, temporal logic formulas can describe
m a given path starting in a state (path formulae, “linear” properties) and

m quantified (universal/existential) properties over all paths starting in a
given state (state formulae, “branching” properties).

CTL*

LTL
(linear temporal logic)

CTL
(computation tree logic)
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Examples for path formulae

{a}
proposition a : . @ @ @ @

{b}

. . (o)1 1)
next  Ab: Q . A
{a}  fa}  A{a}  {B}

w i @@ @ @

1C2 S 7 S (0 S (L S (2

oy o @ @ O O O




Examples for state formulae
proposition a : .

a€ L(oy)

exists E ©F: ./W\rv\mrv\» P

forall A o': P

AP
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CTL* state formulae:

" u= a | (@A) | (m¢%) | (EpP)
with a € AP and ” are CTL* path formulae.
CTL* path formulae:

@ n= " (" AP [ () | (XeP) | (e U ")

where ¢® are CTL* state formulae.
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CTL* state formulae:
o u=a | (A% | (—¢?) | (EpP)
with a € AP and ” are CTL* path formulae.

CTL* path formulae:

pf = @t (@A) | (29?) [ (XeP) | (0P U @)
where ¢® are CTL* state formulae.
CTL* formulae are CTL* state formulae.

We sometimes omit parentheses, based on the order E > U > X > A > =
from strongest to weakest binding.
Syntactic sugar:

AP = —E-pP (“for all”, state formula)

FoP = trueUpP (“finally” or “eventually”, path formula)

Gl == = F—¢P (“globally” or “always”, path formula)



CTL* semantics

Assume L = (X, Lab, Edge, Init, L) to be a labeled state transition system
LSTS = (%, Lab, Edge, Init) along with a labeling function L : ¥ — 247,
where AP is a finite set of atomic propositions.
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L.m= o) and L7 = b

L, = P

L, = P
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CTL* semantics

Assume L = (X, Lab, Edge, Init, L) to be a labeled state transition system
LSTS = (%, Lab, Edge, Init) along with a labeling function L : ¥ — 247,
where AP is a finite set of atomic propositions.

For a path m =09 — 01 — ... of LSTS, let (i) denote o, and

let 7' denote o; — 041 — .. ..

LooE=a iff
L,oE=@iNes  iff
L,oE=-p® iff
L,o = EgP iff
L, 7= ¢° iff
LomE @) Nh  iff
L,m = —pP iff
L= XP iff
L.omlE=ol UL iff

a € L(o)

L0 =] and L, 0 = @5

Lo W ¢°

L,m = P for some pathm =0 — ... of LSTS
L,7(0) |= ¢

L.m= o) and L7 = b

L, = oP

L,ml = P

exists 0 < j with £, |= ¢} and

L, = forall0<i<j.

L = ¢° iff L£,00 = ¢® for all initial states o¢ of LSTS.
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The relation of LTL, CTL, and CTL*

CTL*

LTL
(linear temporal logic)

CTL
(computation tree logic)
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Linear Temporal Logic (LTL) is suited to argue about single (linear) paths
in the computation tree.

m Abstract syntax:
@ a= al @AP) | (9 | (@) | (7 U )

where a € AP.
m Syntactic sugar: F (“finally” or “eventually”), G (“globally”), etc.

m Again, we sometimes omit parentheses using the same binding order
as for CTL*.
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(i)
i
L,mE=a iff a € L(m(0)),
LomE=i Neh iff LomE e and L7 = @b,
L, = —¢P iff L,m P,

L, XeP iff 7l = P,
LomEolU b iff 35 >0 b AV0 <i< gl = ¢f.

LSTS = ¢ iff m |= ¢P for all paths m of LST'S starting in an initial state.
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The relation of LTL, CTL, and CTL*

CTL*

LTL
(linear temporal logic)

CTL
(computation tree logic)
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Yno Efy o Xfal T
CTL state formulae: /A /’K

©° n= a| (P Ae) | (m¢®) | (E¢P) | (AgP)

with a € AP and P are CTL path formulae.

E X (oux (La-uc»
CTL path formulae: v

P = X S U o _
v O U E = X o
where ¢©° are CTL state formulae. X
CTL formulae are CTL state formulae. 1 E X a_
As before, we sometimes omit parentheses. (g
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i
LyokEa iff
L,o= @5 Ny iff
L,oE=—p* itf
Lo = EeP iff
L,oE=ApP iff

L= Xp* iff
Lml=eiUpy iff

(1)
a € L(o)
L,o =i and L,0 = ¢
Lo ¢°
L,m = ¢P for some pathm =0 — ... of LSTS
Ll forallm =09 — 01— ... withoy=o0
L,m(1) | ¢*

exists 0 < j with L, 7(j) = ¢5 and
L,m(i) = ¢f forall 0 <i < j.

L= ¢ iff L, 00 = ¢° for all initial states o of LSTS.



Computation tree
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The relation of LTL, CTL, and CTL*

cTL*

m The LTL formula FGa is not expressible in CTL.
m The CTL formula AFAGa is not expressible in LTL.
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CTL model checking
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CTL (explicit) model checking

Next learn a model checking algorithm to decide whether a labeled state
transition system satisfies a CTL formula.
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Next learn a model checking algorithm to decide whether a labeled state
transition system satisfies a CTL formula.

For £ = (X, Lab, Edge, Init, L) (being a labeled state transition system
(3, Lab, Edge, Init) with a labeling function L) and for a CTL formula v*,
CTL model checking labels the states of L recursively with the
sub-formulae of ¢® inside-out, such that exactly those states are labeled
with each sub-formula at which the given sub-formula holds.
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CTL (explicit) model checking

Next learn a model checking algorithm to decide whether a labeled state
transition system satisfies a CTL formula.

For £ = (X, Lab, Edge, Init, L) (being a labeled state transition system
(3, Lab, Edge, Init) with a labeling function L) and for a CTL formula v*,
CTL model checking labels the states of L recursively with the
sub-formulae of ¢® inside-out, such that exactly those states are labeled
with each sub-formula at which the given sub-formula holds.

m The labeling with atomic propositions a € AP is given by a labeling
function.

m Given the labelings for 1§ and 95, we label a state with )] A ¢35 iff the
state is labeled with both v§ and 3.

m Given the labeling for ¢)*, we label a state with —¢® iff the state is not
labeled with %.
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CTL (explicit) model checking

m Given the labeling for 1), we label a state with EX¢)* iff
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CTL (explicit) model checking

m Given the labeling for ¢°, we label a state with EX'¢)® iff there is a
successor state labeled with v)%.
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m label all with 5 labeled states additionally with E«; U/ ¢35, and

m label all states that have the label ¥)§ and have a successor state with
the label Ev§ U 5 also with Eu5 U 1§ iteratively until a fixed point
is reached.
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m Given the labeling for ¢°, we label a state with EX'¢)® iff there is a
successor state labeled with °.
m Given the labeling for ¢)§ and 3, for E¢)f U 5 we
m label all with 5 labeled states additionally with E«; U/ ¢35, and
m label all states that have the label ¥)§ and have a successor state with
the label Ev§ U 5 also with Eu5 U 1§ iteratively until a fixed point
is reached.
m Given the labeling for ¢°, we label a state with A X'+)® iff all successor
states are labeled with °.
m Given the labeling for 9§ and 3, for Ay§ U 15 we

m label all with 3 labeled states additionally with A} U )5, and

m label all states that have the label 15 and all of their successor states
have the label A5 U 15 also with Ay U 15 iteratively until a fixed
point is reached.
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