Modeling and Analysis of Hybrid Systems 1. Preliminaries

Prof. Dr. Erika Ábrahám

Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University

Szeged, Hungary, 27 September - 06 October 2017

- email: abraham@cs.rwth-aachen.de
- **7** x 90 minutes lectures, 7 x 90 minutes exercises
- agree on time and place
- learning materials
- written exam mid of November 2017

1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Temporal logics
- 5 CTL model checking

Wikipedia:

"A hybrid is the combination of two or more different things, aimed at achieving a particular objective or goal."

A hybrid rose

A hybrid car

Combined with the continuous part

Example: Bouncing ball

Ball falls from a given height, bounces at the ground, raises, falls again...

- vertical position of the ball x_1
- velocity x_2

Example: Bouncing ball

Ball falls from a given height, bounces at the ground, raises, falls again...

- vertical position of the ball x_1
- velocity x_2
- continuous changes of position between bounces
- discrete changes at bounce time

Example: Bouncing ball

Ball falls from a given height, bounces at the ground, raises, falls again...

- vertical position of the ball x_1
- velocity x_2
- continuous changes of position between bounces
- discrete changes at bounce time

Example: Thermostat

 \blacksquare Temperature x is controlled by switching a heater on and off

- x is regulated by a thermostat:
 - $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on"
 - $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"

Example: Thermostat

 \blacksquare Temperature x is controlled by switching a heater on and off

- x is regulated by a thermostat:
 - $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on"
 - $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"

Example: Water tank system

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly one tank at one point in time
- lacksim lacksim w can switch between tanks instantaneously

There are much more complex examples of hybrid systems, like e.g.

- automobiles, trains, etc.
- automated highway systems
- collision-avoidance and free flight for aircrafts
- digitally controlled chemical plants
- biological cell growth and division ...

In this course we learn how to model and analyse hybrid systems, considering a sequence of modeling languages with increasing expressive power.

- labeled state transition systems
- labeled transition systems
- timed automata
- initialized rectangular automata
- linear hybrid automata l
- linear hybrid automata II

1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Temporal logics
- 5 CTL model checking

Definition

Definition

- A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with
 - a (possibly infinite) state set Σ ,
 - a label set *Lab* (for synchronisation, we do not use it in this course),
 - a transition relation $Edge \subseteq \Sigma \times Lab \times \Sigma$ and
 - a non-empty set of initial states $Init \subseteq \Sigma$.

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- $lacksymbol{\bullet}$ a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- a non-empty set of initial states $Init \subseteq \Sigma$.

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- a non-empty set of initial states $Init \subseteq \Sigma$.

Operational semantics:

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

Path:

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- $lacksymbol{\bullet}$ a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- **a** non-empty set of initial states $Init \subseteq \Sigma$.

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

Path:
$$\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$$

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- $lacksymbol{\bullet}$ a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- a non-empty set of initial states $Init \subseteq \Sigma$.

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

Path:
$$\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$$

Initial path:

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- $lacksymbol{\bullet}$ a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- **a** non-empty set of initial states $Init \subseteq \Sigma$.

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

Path:
$$\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$$

Initial path: $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$.

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- $lacksymbol{\bullet}$ a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- **a** non-empty set of initial states $Init \subseteq \Sigma$.

$$(\sigma, a, \sigma') \in Edge$$
$$\sigma \xrightarrow{a} \sigma'$$

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- a (possibly infinite) state set Σ ,
- a label set *Lab* (for synchronisation, we do not use it in this course),
- $lacksymbol{\bullet}$ a transition relation $Edge \subseteq \Sigma imes Lab imes \Sigma$ and
- a non-empty set of initial states $Init \subseteq \Sigma$.

Operational semantics:

$$(\sigma, a, \sigma') \in Edge$$
$$\sigma \xrightarrow{a} \sigma'$$

Path: σ₀ ^{a₀}→ σ₁ ^{a₁}→ σ₂....
Initial path: σ₀ ^{a₀}→ σ₁ ^{a₁}→ σ₂... with σ₀ ∈ *Init*.
A state is called reachable iff there is an initial path leading to it.

To be able to formalize properties of LSTSs, it is common to define

- a set of atomic propositions AP and
- a state labeling function $L: \Sigma \to 2^{AP}$ assigning a set of atomic propositions to each state.

The set $L(\sigma)$ consists of all propositions that are defined to hold in σ . These propositional labels on states should not be mixed up with the synchronization labels on edges.

1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Temporal logics
- 5 CTL model checking

Definition

A labeled transition system (LTS) is a tuple $\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$ with

- finite set of locations *Loc*,
- finite set of (typed) variables Var,
- finite set of synchronization labels Lab, $au\in Lab$ (stutter label)
- finite set of edges $Edge \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions (l, τ, μ_{τ}, l) for each location $l \in Loc$),
- initial states $Init \subseteq \Sigma$.

with

- valuations $\nu: Var \rightarrow Domain, V$ is the set of valuations
- state $\sigma = (l, \nu) \in \underline{Loc} \times V$, Σ is the set of states

Operational semantics has a single rule:

Operational semantics has a single rule:

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \xrightarrow{a} (l', \nu')}$$
$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

■ Path:

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \xrightarrow{a} (l', \nu')}$$

• Path:
$$\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$$

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

Path:
$$\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$$

Initial path:

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

■ Path:
$$\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$$

■ Initial path: $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$.

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

Path: \$\sigma_0 \rightarrow 0_1 \rightarrow 0_2 \cdots ...\$
Initial path: \$\sigma_0 \rightarrow 0_1 \rightarrow \sigma_1 \rightarrow \sigma_2 \cdots ...\$ with \$\sigma_0 \in Init.\$
A state is called reachable iff

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

- Path: $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ Initial path: $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$.
- A state is called reachable iff there is an initial path leading to it.

Each LTS $\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$ induces a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge', Init)$ with

•
$$\Sigma = Loc \times V$$
 and
• $Edge' = \{(\nu, a, \nu') \mid \nu \xrightarrow{a} \nu'\}.$

Semantics of the simple while-program

Modeling a simple while-program

Modeling a simple while-program

1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Temporal logics

5 CTL model checking

Assume

- a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions *AP*, and
- a labeling function $L: \Sigma \to 2^{AP}$.

Assume

- a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init),$
- a set of atomic propositions AP, and
- a labeling function $L: \Sigma \to 2^{AP}$.
- How can we describe properties of this system?

Assume

- a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions AP, and
- a labeling function $L: \Sigma \to 2^{AP}$.
- How can we describe properties of this system?
- We need a well-suited logic.

Propositional logic

 $\varphi \ ::= \ a \mid (\varphi \wedge \varphi) \mid (\neg \varphi)$

with $a \in AP$.

- Syntactic sugar: *true*, *false*, \lor , \rightarrow , \leftrightarrow , ...
- Omit parentheses when no confusion

 $\varphi ::= a \mid (\varphi \land \varphi) \mid (\neg \varphi)$

with $a \in AP$.

- Syntactic sugar: *true*, *false*, \lor , \rightarrow , \leftrightarrow , ...
- Omit parentheses when no confusion
- Semantics (in the context of a state $\sigma \in \Sigma$):

 $\varphi ::= a \mid (\varphi \land \varphi) \mid (\neg \varphi)$

with $a \in AP$.

- Syntactic sugar: *true*, *false*, \lor , \rightarrow , \leftrightarrow , ...
- Omit parentheses when no confusion
- Semantics (in the context of a state $\sigma \in \Sigma$):

 $\begin{array}{ll} \sigma \models a & \text{iff} \quad a \in L(\sigma), \\ \sigma \models (\varphi_1 \land \varphi_2) & \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2, \\ \sigma \models (\neg \varphi) & \text{iff} \quad \sigma \not\models \varphi. \end{array}$

Computation tree

Computation tree

Temporal logics

In the computation tree, temporal logic formulas can describe

- a given path starting in a state (path formulae, "linear" properties) and
- quantified (universal/existential) properties over all paths starting in a given state (state formulae, "branching" properties).

Examples for path formulae

Examples for state formulae

CTL* syntax

CTL* state formulae:

 $\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

 $\varphi^p \quad ::= \quad \varphi^s \mid (\varphi^p \land \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$

where φ^s are CTL* state formulae.

$\mathsf{CTL}^* \text{ syntax}$

CTL* state formulae:

 $\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

 $\varphi^p \quad ::= \quad \varphi^s \mid (\varphi^p \land \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$

where φ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

$\mathsf{CTL}^* \text{ syntax}$

CTL* state formulae:

 $\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

 $\varphi^p \quad ::= \quad \varphi^s \mid (\varphi^p \land \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$

where φ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

We sometimes omit parentheses, based on the order $\mathbf{E} > \mathcal{U} > \mathcal{X} > \land > \neg$ from strongest to weakest binding.

$\mathsf{CTL}^* \text{ syntax}$

CTL* state formulae:

 $\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

 $\varphi^p \quad ::= \quad \varphi^s \mid (\varphi^p \land \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$

where φ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

We sometimes omit parentheses, based on the order $\mathbf{E}>\mathcal{U}>\mathcal{X}>\wedge>\neg$ from strongest to weakest binding.

Syntactic sugar:

$$\begin{split} \mathbf{A}\varphi^p &:= \neg \mathbf{E} \neg \varphi^p \text{ ("for all", state formula)} \\ \mathcal{F}\varphi^p &:= true\, \mathcal{U}\varphi^p \text{ ("finally" or "eventually", path formula)} \\ \mathcal{G}\varphi^p &:= \neg \mathcal{F} \neg \varphi^p \text{ ("globally" or "always", path formula)} \end{split}$$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions.

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^i denote $\sigma_i \rightarrow \sigma_{i+1} \rightarrow \ldots$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

 $\mathcal{L}, \sigma \models a$ iff

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions.

For a path $\pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \rightarrow \sigma_{i+1} \rightarrow \ldots$

 $\mathcal{L}, \sigma \models a$ iff $a \in L(\sigma)$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^i denote $\sigma_i o \sigma_{i+1} o \ldots$

$\mathcal{L}, \sigma \models a$	iff	$a \in L(\sigma)$
$\mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s$	iff	

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions.

For a path $\pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \rightarrow \sigma_{i+1} \rightarrow \ldots$

 $\begin{array}{ll} \mathcal{L},\sigma\models a & \text{iff} \quad a\in L(\sigma) \\ \mathcal{L},\sigma\models\varphi_1^s\wedge\varphi_2^s & \text{iff} \quad \mathcal{L},\sigma\models\varphi_1^s \text{ and } \mathcal{L},\sigma\models\varphi_2^s \end{array}$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^i denote $\sigma_i o \sigma_{i+1} o \ldots$

 $\begin{array}{ll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \end{array}$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

$\mathcal{L}, \sigma \models a$	iff	$a \in L(\sigma)$
$\mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s$	iff	$\mathcal{L},\sigma\modelsarphi_1^s$ and $\mathcal{L},\sigma\modelsarphi_2^s$
$\mathcal{L}, \sigma \models \neg \varphi^s$	iff	$\mathcal{L}, \sigma eq \varphi^s$
$\mathcal{L}, \sigma \models \mathbf{E} \varphi^p$	iff	$\mathcal{L}, \pi \models \varphi^p$ for some path $\pi = \sigma \rightarrow \dots$ of \mathcal{LSTS}
$\mathcal{L},\pi\models\varphi^s$	iff	$\mathcal{L}, \pi(0) \models \varphi^s$

$$\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \end{array}$$

$$\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E} \varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi_1^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \end{array}$$

$$\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p \end{array}$$

$$\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p \\ \mathcal{L}, \pi \models \mathcal{X}\varphi^p & \text{iff} \end{array}$$

$$\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p \\ \mathcal{L}, \pi \models \mathcal{X}\varphi^p & \text{iff} \quad \mathcal{L}, \pi^1 \models \varphi^p \end{array}$$

$$\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \\ \mathcal{L}, \pi \models \varphi_1^p \mathcal{U} \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi^1 \models \varphi^p \\ \end{array}$$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

 $\begin{array}{lll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E} \varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \pi \models \varphi_1^s & \text{iff} \quad \mathcal{L}, \pi(0) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p \\ \mathcal{L}, \pi \models \varphi_1^p \mathcal{U} \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi^1 \models \varphi^p \\ \mathcal{L}, \pi \models \varphi_1^p \mathcal{U} \varphi_2^p & \text{iff} \quad exists \ 0 \leq j \text{ with } \mathcal{L}, \pi^j \models \varphi_2^p \text{ and} \\ \mathcal{L}, \pi^i \models \varphi_1^p \text{ for all } 0 \leq i < j. \end{array}$

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

 $\mathcal{L}, \sigma \models a$ iff $a \in L(\sigma)$ $\mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s$ iff $\mathcal{L}, \sigma \models \varphi_1^s$ and $\mathcal{L}, \sigma \models \varphi_2^s$ $\mathcal{L}, \sigma \models \neg \varphi^s$ iff $\mathcal{L}, \sigma \not\models \varphi^s$ $\mathcal{L}, \sigma \models \mathbf{E}\varphi^p$ iff $\mathcal{L}, \pi \models \varphi^p$ for some path $\pi = \sigma \to \dots$ of \mathcal{LSTS} $\mathcal{L}, \pi \models \varphi^s$ iff $\mathcal{L}, \pi(0) \models \varphi^s$ $\mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p$ iff $\mathcal{L}, \pi \models \varphi_1^p$ and $\mathcal{L}, \pi \models \varphi_2^p$ $\mathcal{L}, \pi \models \neg \varphi^p \qquad \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p$ $\mathcal{L}, \pi \models \mathcal{X} \varphi^p$ iff $\mathcal{L}, \pi^1 \models \varphi^p$ $\mathcal{L}, \pi \models \varphi_1^p \ \mathcal{U} \ \varphi_2^p$ iff exists $0 \le j$ with $\mathcal{L}, \pi^j \models \varphi_2^p$ and $\mathcal{L}, \pi^i \models \varphi_1^p$ for all $0 \le i \le j$.

 $\mathcal{L}\models \varphi^s$ iff

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

 $\mathcal{L}, \sigma \models a$ iff $a \in L(\sigma)$ $\mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s$ iff $\mathcal{L}, \sigma \models \varphi_1^s$ and $\mathcal{L}, \sigma \models \varphi_2^s$ $\mathcal{L}, \sigma \models \neg \varphi^s$ iff $\mathcal{L}, \sigma \not\models \varphi^s$ $\mathcal{L}, \sigma \models \mathbf{E}\varphi^p$ iff $\mathcal{L}, \pi \models \varphi^p$ for some path $\pi = \sigma \to \dots$ of \mathcal{LSTS} $\mathcal{L}, \pi \models \varphi^s$ iff $\mathcal{L}, \pi(0) \models \varphi^s$ $\mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p$ iff $\mathcal{L}, \pi \models \varphi_1^p$ and $\mathcal{L}, \pi \models \varphi_2^p$ $\mathcal{L}, \pi \models \neg \varphi^p \qquad \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p$ $\mathcal{L}, \pi \models \mathcal{X} \varphi^p$ iff $\mathcal{L}, \pi^1 \models \varphi^p$ $\mathcal{L}, \pi \models \varphi_1^p \ \mathcal{U} \ \varphi_2^p$ iff exists $0 \le j$ with $\mathcal{L}, \pi^j \models \varphi_2^p$ and $\mathcal{L}, \pi^i \models \varphi_1^p$ for all $0 \le i \le j$.

 $\mathcal{L} \models \varphi^s$ iff $\mathcal{L}, \sigma_0 \models \varphi^s$ for all initial states σ_0 of \mathcal{LSTS} .

Computation tree

Computation tree

The relation of LTL, CTL, and CTL*

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the computation tree.

Abstract syntax:

 $\varphi^p \quad ::= \quad a \mid (\varphi^p \land \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$

where $a \in AP$.

- Syntactic sugar: \mathcal{F} ("finally" or "eventually"), \mathcal{G} ("globally"), etc.
- Again, we sometimes omit parentheses using the same binding order as for CTL*.

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and

let π^{i} denote $\sigma_{i} \rightarrow \sigma_{i+1} \rightarrow \ldots$

$$\begin{array}{lll} \mathcal{L}, \pi \models a & \text{iff} \quad a \in L(\pi(0)), \\ \mathcal{L}, \pi \models \varphi_1^p \land \varphi_2^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p, \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} \quad \mathcal{L}, \pi \not\models \varphi^p, \\ \mathcal{L}, \pi \models \mathcal{X} \varphi^p & \text{iff} \quad \pi^1 \models \varphi^p, \\ \mathcal{L}, \pi \models \varphi_1^p \ \mathcal{U} \ \varphi_2^p & \text{iff} \quad \exists j \ge 0.\pi^j \models \varphi_2^p \land \forall 0 \le i < j.\pi^i \models \varphi_1^p. \end{array}$$

 $\mathcal{LSTS} \models \varphi^p$ iff $\pi \models \varphi^p$ for all paths π of \mathcal{LSTS} starting in an initial state.

Computation tree

Computation tree

The relation of LTL, CTL, and CTL*

7/n E/A (* ×/2 7/n

 $E \times (a \land (b \rightarrow c))$

ΕΊΧα

٦ΕΧα

CTL state formulae:

 $\varphi^s \quad ::= \quad a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p) \mid (\mathbf{A} \varphi^p)$

with $a \in AP$ and φ^p are CTL path formulae. CTL path formulae:

$$\varphi^p \quad ::= \quad \mathcal{X}\varphi^s \mid \varphi^s \ \mathcal{U} \ \varphi^s$$

where φ^s are CTL state formulae.

CTL formulae are CTL state formulae.

As before, we sometimes omit parentheses.

Assume $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ along with a labeling function $L : \Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions. For a path $\pi = \sigma_0 \to \sigma_1 \to \ldots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \ldots$

 $\begin{array}{ll} \mathcal{L}, \sigma \models a & \text{iff} \quad a \in L(\sigma) \\ \mathcal{L}, \sigma \models \varphi_1^s \land \varphi_2^s & \text{iff} \quad \mathcal{L}, \sigma \models \varphi_1^s \text{ and } \mathcal{L}, \sigma \models \varphi_2^s \\ \mathcal{L}, \sigma \models \neg \varphi^s & \text{iff} \quad \mathcal{L}, \sigma \not\models \varphi^s \\ \mathcal{L}, \sigma \models \mathbf{E}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for some path } \pi = \sigma \rightarrow \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L}, \sigma \models \mathbf{A}\varphi^p & \text{iff} \quad \mathcal{L}, \pi \models \varphi^p \text{ for all } \pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \dots \text{ with } \sigma_0 = \sigma \\ \mathcal{L}, \pi \models \varphi_1^s \mathcal{U} \varphi_2^s & \text{iff} \quad \mathcal{L}, \pi(1) \models \varphi^s \\ \mathcal{L}, \pi \models \varphi_1^s \mathcal{U} \varphi_2^s & \text{iff} \quad exists \ 0 \leq j \text{ with } \mathcal{L}, \pi(j) \models \varphi_2^s \text{ and} \\ \mathcal{L}, \pi(i) \models \varphi_1^s \text{ for all } 0 \leq i < j. \end{array}$

 $\mathcal{L} \models \varphi^s$ iff $\mathcal{L}, \sigma_0 \models \varphi^s$ for all initial states σ_0 of \mathcal{LSTS} .

Computation tree

Computation tree

The relation of LTL, CTL, and CTL*

The LTL formula *FGa* is not expressible in CTL.
The CTL formula *AFAGa* is not expressible in LTL.

1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Temporal logics

5 CTL model checking

For $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ (being a labeled state transition system $(\Sigma, Lab, Edge, Init)$ with a labeling function L) and for a CTL formula ψ^s , CTL model checking labels the states of \mathcal{L} recursively with the sub-formulae of ψ^s inside-out, such that exactly those states are labeled with each sub-formula at which the given sub-formula holds.

• The labeling with atomic propositions $a \in AP$ is given by

For $\mathcal{L} = (\Sigma, Lab, Edge, Init, L)$ (being a labeled state transition system $(\Sigma, Lab, Edge, Init)$ with a labeling function L) and for a CTL formula ψ^s , CTL model checking labels the states of \mathcal{L} recursively with the sub-formulae of ψ^s inside-out, such that exactly those states are labeled with each sub-formula at which the given sub-formula holds.

• The labeling with atomic propositions $a \in AP$ is given by a labeling function.

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- \blacksquare Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .
- Given the labeling for ψ^s , we label a state with $\neg\psi^s$ iff

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .
- Given the labeling for ψ^s , we label a state with $\neg \psi^s$ iff the state is not labeled with ψ^s .
Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff

Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we
 - label all with ψ_2^s labeled states additionally with ${f E} \psi_1^s \; {\cal U} \; \psi_2^s$, and

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we
 - lacksquare label all with ψ_2^s labeled states additionally with ${f E} \psi_1^s \; {\cal U} \; \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_1^s$ iteratively until a fixed point is reached.

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \; \mathcal{U} \; \psi_2^s$ we
 - lacksquare label all with ψ_2^s labeled states additionally with ${f E} \psi_1^s \; {\cal U} \; \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A} \mathcal{X} \psi^s$ iff

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{A}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{A}\psi_1^s \,\mathcal{U} \,\psi_2^s$ we
 - label all with ψ_2^s labeled states additionally with $\mathbf{A}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and

- Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , for $\mathbf{A}\psi_1^s \; \mathcal{U} \; \psi_2^s$ we
 - lacksquare label all with ψ^s_2 labeled states additionally with ${f A}\psi^s_1~{\cal U}~\psi^s_2$, and
 - label all states that have the label ψ_1^s and all of their successor states have the label $\mathbf{A}\psi_1^s \ \mathcal{U} \ \psi_2^s$ also with $\mathbf{A}\psi_1^s \ \mathcal{U} \ \psi_2^s$ iteratively until a fixed point is reached.