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Exercise 1

Please match each following LTL formulae ϕi to one of the given execution paths πj,
such that πj |= ϕi for all i ≤ i, j ≤ 6 and such that each ϕi is assigned a di�erent path.
(Note: You can assume that the paths continue in�nitely in the pattern of the last 2
nodes.)

ϕ1 : true UXa

ϕ2 : GXa

ϕ3 : a Ub

ϕ4 : a ∧ X b

ϕ5 : FGa

ϕ6 : (X b)Ua

π1 :

∅ ∅ b ∅ a ∅ ∅ ∅
. . .

π2 :

∅ a a a a a a a
. . .

π3 :

a a b a a a a a
. . .

π4 :

a b a b a b a b
. . .

π5 :

∅ b ∅ a a a a a
. . .

π6 :

∅ b a, b a a a a a
. . .



Solution:

ϕ1 |= π1, . . . , π6

ϕ2 |= π2

ϕ3 |= π3, π4

ϕ4 |= π4

ϕ5 |= π2, π3, π5, π6

ϕ6 |= π3, π4, π6

⇒ ϕi |= πi, i ∈ {1, . . . , 6}.



Exercise 2

Consider an elevator that services 4 �oors numbered 0 through 3. There is an elevator
door at each �oor with a call-button and an indicator light that signals whether or not
the call-button has been pushed. If the light is on then we say that the corresponding
�oor is requested. The request is served (and the corresponding light is switched o�)
when the elevator stays at the given �oor and the �oor door is open.

Present a set of atomic propositions - try to minimize the number of them - that are
needed to describe the following properties of the elevator system as LTL formulae and
give the corresponding LTL formulae:

(a) The doors are �safe�, i.e., a �oor door is never open if the elevator is not staying
there.

(b) Any requested �oor will eventually be served.

(c) Again and again the elevator stays at �oor 0.

(d) If the top �oor is requested then the elevator does not stop on any other �oor before
the top �oor is served.

(e) Eventually there will be a last request, i.e., there is a time point after which no
�oor is requested any more.

Is it also possible to give a CTL formula for each of the properties above?



Solution: We de�ne the following atomic propositions.

ei the elevator stays on the i-th �oor
di the door on the i-th �oor is open
ri there is a request on the i-th �oor

The LTL formulae for the properties above are given as below.

(a) Φa = G(
∧

i=0,1,2,3(¬ei → ¬di))

(b) Φb = G(
∧

i=0,1,2,3(ri → F(ei ∧ di)))

(c) Φc = GF e0

(d) Φd = G(r3 → X ((
∧

i=0,1,2 ¬ei) U (e3 ∧ d3)))

(e) Φe = FG(
∧

i=0,1,2,3(¬ri))

We also give the CTL formulae for the properties.

(a) Ψa = AG(
∧

i=0,1,2,3(¬ei → ¬di))

(b) Ψb = AG(
∧

i=0,1,2,3(ri → AF(ei ∧ di)))

(c) Ψc = AGAF e0

(d) Ψd = AG(r3 → AXA((
∧

i=0,1,2 ¬ei) U (e3 ∧ d3)))

(e) Not possible.



Exercise 3

The LTL formulae XFp and FXp are equivalent, since we have the following formal
proof: For any path π : s0s1 · · · of an LST S L ,

L, π |= XFp
⇔ π1 = s1s2 · · · |= Fp
⇔ ∃i ≥ 1.si |= p

⇔ ∃i ≥ 1.si−1 |= Xp
⇔ ∃i ≥ 0.si |= Xp
⇔ π |= FXp

Is it also the case for the CTL formulae AXAFp and AFAXp ? If so, please give a
formal proof. Otherwise please present a counterexample.



Solution: The CTL formulae AXAFp and AFAXp are not equivalent. We give the
following counterexample (see Figure 1). All paths starting in the initial state satisfy

s0
{}

s1

{p}

s2

{}

s3

{}

s4

{p}

Figure 1: The transition system TS

the formula AXAFp, whereas the formula AFAXp is not satis�ed in the initial state.
The second formula essentially states that for all paths there exists one state, from
which all next states satisfy p. This formula holds for the state s3 and for the state s1
but does not hold in state s0, as not all successors of this state satisfy p.



Exercise 4

We only consider LST Ss with in�nite runs. Assume p, q ∈ AP. Are the CTL formula
ϕCTL : AG(p → AFq) and the LTL formula ϕLTL : G(p → Fq) equivalent (i.e.,
LST S, σ |= ϕCTL ⇔ σ |= ϕLTL for all states σ of LST S)?
(Note: LTL formulae can also be used to describe the properties of states.)



Solution: Let π(s) contain those in�nite paths of LST S that start in s and π(s, s′)
contain those �nite paths starting in s and ending in s′.

The CTL formula AG(p→ AFq) is equivalent to the LTL formula G(p→ Fq), since

LST S, s0 |=LTL G(p→ Fq)
⇔For all paths π = s0, s1, . . . : LST S, π |=LTL G(p→ Fq)
⇔For all paths π = s0, s1, . . . and for all i ≥ 0 : If LST S, π(i) |= p then there exists a

j ≥ i such that LST S, π(j) |= q

⇔For all paths π = s0, . . . , s where LST S, s |= p then for all paths π′ starting in s

there exists a j ≥ 0 such that LST S, π′(j) |= q

⇔For all paths π = s0, s1, . . . , si, . . . with si |= p then LST S, π(si) |= AFq
⇔LST S, s0 |= AG(p→ AFq).



Exercise 5

Assume the following transition system TS:

S0

S1

S3 S4S2

∅

∅

{c} {c}{c}

Decide whether TS |= Φ where Φ = EFAGc. Please sketch the main steps of the CTL
model-checking algorithm.



Solution: In the lecture, we only taught the model-checking algorithm for the
operators ¬, ∧, E(· U ·) and A(· U ·). Therefore, we need to rewrite the formula Φ as

follows:

Φ = EF AG c = E(true U (AG c)) = E(true U (¬EF ¬c)) = E(true U (¬ E(true U ¬c)))

We present the main steps of checking TS |= Φ.

S0

S1

S3 S4S2

∅

∅

Ψ1 Ψ1Ψ1

Ψ1 = c

Step 1

S0

S1

S3 S4S2

Ψ2

Ψ2

Ψ1 Ψ1Ψ1

Ψ2 = ¬Ψ1

Step 2

S0

S1

S3 S4S2

Ψ2,Ψ3

Ψ2,Ψ3

Ψ1 Ψ1Ψ1

Ψ3 = E(true U Ψ2)

Step 3

S0

S1

S3 S4S2

Ψ2,Ψ3

Ψ2,Ψ3

Ψ1,Ψ4 Ψ1,Ψ4Ψ1,Ψ4

Ψ4 = ¬Ψ3

Step 4



S0

S1

S3 S4S2

Ψ2,Ψ3

Ψ2,Ψ3

Ψ1,Ψ4,Φ Ψ1,Ψ4,ΦΨ1,Ψ4,Φ

Φ = E(true U Ψ4)

Step 5

S0

S1

S3 S4S2

Ψ2,Ψ3

Ψ2,Ψ3,Φ

Ψ1,Ψ4,Φ Ψ1,Ψ4,ΦΨ1,Ψ4,Φ

Φ = E(true U Ψ4)

Step 6

S0

S1

S3 S4S2

Ψ2,Ψ3,Φ

Ψ2,Ψ3,Φ

Ψ1,Ψ4,Φ Ψ1,Ψ4,ΦΨ1,Ψ4,Φ

Φ = E(true U Ψ4)

Step 7



Exercise 6

Assume the following transition system TS:

s0 s1 {b}

s2s3

{b}

s4 {a}

Decide whether TS |= Φ where Φ = AGAFa. Please sketch the main steps of the CTL
model-checking algorithm. (Note: To eliminate syntactic sugar, you can use

AFϕ ≡ Atrue U ϕ and AGϕ ≡ ¬EF¬ϕ.)



Solution:

First of all, we eliminate the syntactic sugar operators:

Φ = AGAFa = AGA(true Ua) = ¬EF¬(A(true Ua)))

s0

∅
s1 ∅

s2

∅

s3

∅

s4 {ψ1}

(a) Step 1: ψ1 = a

s0

∅
s1 {ψ2}

s2

∅

s3

∅

s4 {ψ1, ψ2}

(b) Step 2: ψ2 = A true U ψ1

s0

{ψ3}

s1 {ψ2}

s2

{ψ3}

s3

{ψ3}

s4 {ψ1, ψ2}

(a) Step 3: ψ3 = ¬ψ2

s0

{ψ3, ψ4}

s1 {ψ2}

s2

{ψ3, ψ4}

s3

{ψ3, ψ4}

s4 {ψ1, ψ2}

(b) Step 4: ψ4 = EFψ3

s0

{ψ3, ψ4}

s1 {ψ2, ψ5}

s2

{ψ3, ψ4}

s3

{ψ3, ψ4}

s4 {ψ1, ψ2, ψ5}

Figure 4: Step 5: Φ = ψ5 = ¬ψ4






