
Examples for the Omega test

1 The m̂od operator

Before the Omega test can be applied, we need to eliminate all equations.
This is done using the special modulo operator m̂od defined as

a m̂od b = a− bba/b+ 1/2c .

The m̂od operator differs from the usual modulo in that the function values
of (· m̂od b) are from the interval [−b/2, b/2)] instead of [0, b). For example,

(· m̂od 4) defines

−4 m̂od 4 = −4− b−4/4 + 1/2c = 0

−3 m̂od 4 = −3− b−3/4 + 1/2c = 1

−2 m̂od 4 = −2− b−2/4 + 1/2c = −2

−1 m̂od 4 = −1− b−1/4 + 1/2c = −1

0 m̂od 4 = 0− b0/4 + 1/2c = 0

1 m̂od 4 = 1− b1/4 + 1/2c = 1

2 m̂od 4 = 2− b2/4 + 1/2c = −2

3 m̂od 4 = 3− b3/4 + 1/2c = −1

4 m̂od 4 = 4− b4/4 + 1/2c = 0

We use this m̂od operator to make the absolute value of coefficients in
equations smaller. Since the absolute values for the m̂od operator are
smaller than those defined by the standard modulo, m̂od is better suited
for this task.

2 First example for the elimination of equa-

tions

If our problem contains equations then we would like to use them for variable
elimination. If there is an equation in which one of the variables, say xi, has
a coefficient 1 or −1 then we can use this equation to eliminate xi. If there
are no such equations then we apply a procedure to generate new equations
with smaller coefficients until one of the coefficients get 1 or −1. Note that
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we cannot apply division to the equations, since it would result in non-integer
coefficients.
We determine an equation

∑n
i=1 aixi = b (ai and b are constants, xi are

variables) in which a coefficient ai 6= 0 with the smallest absolute value

appears. We apply (· m̂od (ai + 1)) to each variable coefficient on the left-
hand side of the equation. Thereby we modify the value of the left-hand side
by a multiple of (ai + 1). We apply (· m̂od (ai + 1)) also to the constant b on
the right-hand side and add the term (ai + 1)σ to it to get an equation with
reduced coefficients, where σ is a fresh variable. We add this new equation to
our problem and reply the procedure until there is a coefficient with absolute
value 1 in the new equation. In case the new equation satisfies this condition
we use it for variable elimination.
Assume the equation

4x+ 3y = 7 .

In this example the smallest coefficient is 3, therefore we apply (· m̂od 4) to
generate the new equation

(4 m̂od 4)x+ (3 m̂od 4)y = 4σ + (7 m̂od 4)
0 · x+−1 · y = 4σ + (−1)

y = −4σ + 1

We add y = −4σ+ 1 to our problem and use it to eliminate y in 4x+ 3y = 7:

4x+ 3(−4σ + 1) = 7
4x− 12σ + 3 = 7

4x− 12σ = 4
x− 3σ = 1

x = 3σ + 1

Our problem has now the single equation x = 3σ+1 which we use to eliminate
x in the empty set of remaining constraints. The result of the elimination
gives back the satisfaction of the problem.
We have a satisfying solution for each value of σ:

σ . . . −3 −2 −1 0 1 2 3 . . .
x . . . −8 −5 −2 1 4 7 10 . . .
y . . . 13 9 5 1 −3 −7 −11 . . .
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3 Second example for the elimination of equa-

tions

Assume now that we extend the problem from the previous section with the
requirement that x and y are non-negative:

4x+ 3y = 7

x ≥ 0

y ≥ 0

We start to solve the problem as above: we use the equation to generate a
new one y = −4σ + 1. We use this equation to eliminate y. For y > 0 this
gives us 4σ ≤ 1 from which we get by tightening σ ≤ 0. The problem is now
specified by

x = 3σ + 1

x ≥ 0

σ ≤ 0

The equation x = 3σ + 1 is suited to eliminate x:

3σ ≥ −1

σ ≤ 0

We get by tightening

σ ≥ 0

σ ≤ 0

We can directly see that the only solution is σ = 0, x = 1 and y = 1.

4 Example for the Omega test

Assume that we want to organize a game evening. We can arrange three
types of games. The number of players per game are 4, 2 and 5 for the first,
second respectively the third game type. We have to buy the games. A game
of the first, second resp. third type costs 5, 4 respectively 6 units of money.
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We want to invite 50 guests and try to find and appropriate number of games
of each type such that each guest can play in one of the games and we do
not need to invest more that 60 units of money to buy the games.
The problem can be formalized as

4g1 + 2g2 + 5g3 = 50 (1)

5g1 + 4g2 + 6g3 ≤ 60 (2)

g1 ≥ 0 (3)

g2 ≥ 0 (4)

g3 ≥ 0 (5)

(6)

where g1, g2 resp. g3 denote the number of games of the first, second resp.
third type.

4.1 Eliminating the equations

We have one equation without any coefficient 1 or −1. Therefore we use
our coefficient reduction technique to generate a new equation. The smallest
coefficient is 2 thus we apply · m̂od 3:

(4 m̂od 3)g1 + (2 m̂od 3)g2 + (5 m̂od 3)g3 = 3σ + (50 m̂od 3)

(4− 3b4/3 + 1/2c)g1
+(2− 3b2/3 + 1/2c)g2
+(5− 3b5/3 + 1/2c)g3 = 3σ + (50− 3b50/3 + 1/2c)

1 · g1 + (−1) · g2 + (−1) · g3 = 3σ + (−1)

g2 = g1 − g3 − 3σ + 1

We add this equation to our problem and use it to eliminate g2, resulting in
the problem

g1 ≥ 0

g1 − g3 − 3σ ≥ −1

g3 ≥ 0

g3 = −2g1 + 2σ + 16

9g1 + 2g3 − 12σ ≤ 56
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Next we eliminate g3 using the only equation. This gives us

g1 ≥ 0

3g1 − 5σ ≥ 15

−g1 + σ ≥ −8

5g1 − 8σ ≤ 24

Now we have only inequations and we can start with the real shadow of the
Omega test.

4.2 Real shadow

We first eliminate g1. We have two lower bounds

0 ≤ g1

5σ + 15 ≤ 3g1

and two upper bounds

g1 ≤ σ + 8

5g1 ≤ 8σ + 24

For the first lower and first upper bound we get

0 ≤ σ + 8
⇔ −8 ≤ σ

For the second lower and the first upper bound

5σ + 15 ≤ 3σ + 24
⇔ 2σ ≤ 9
⇔ σ ≤ 4

For the first lower and the second upper bound

0 ≤ 8σ + 24
⇔ −24 ≤ 8σ
⇔ −3 ≤ σ

Finally, for the second lower and second upper bound

25σ + 75 ≤ 24σ + 72
⇔ σ ≤ −3

These constraints define the interval [−3,−3] for σ which contains the integer
−3, thus the real shadow returns without any conflict.
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4.3 Dark shadow

Reminder: We can eliminate a variable x by introducing for each lower-
upper-bound pair

β ≤ bx, cx ≤ γ

a new constraint
bγ − cβ ≤ (c− 1)(b− 1).

Afterwards we can discard all constraints containing x.
We start eliminating the variable g1, which is constrained by the two lower
bounds

0 ≤ g1

5σ + 15 ≤ 3g1

and two upper bounds

g1 ≤ σ + 8

5g1 ≤ 8σ + 24.

For the first lower bound and the first upper bound we get

1 · (σ + 8)− 1 · 0 ≥ (1− 1)(1− 1)
⇔ σ + 8 ≥ 0
⇔ σ ≥ −8.

For the second lower bound and the second upper bound we get

3 · (8σ + 24)− 5 · (5σ + 15) ≥ (5− 1)(3− 1)
⇔ 24σ + 72− 25σ − 75 ≥ 8
⇔ −σ ≥ 11
⇔ σ ≤ −11.

We get the conflict −8 ≤ σ ≤ −11 and know that the dark shadow contains
no integer solution for g1. Hence, we continue with the gray shadow.

4.4 Gray shadow

Reminder: For a lower-upper-bound pair β ≤ bx and cx ≤ γ try all possible
values i with bx = β + i, 0 ≤ i ≤ cb−c−b

c
. For each of these values we extend

the constraint set with the equation bx = β+ i and check it for satisfiability.
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We first eliminate g1. The lower bounds on g1 are

0 ≤ g1

5σ + 15 ≤ 3g1

and the upper bounds on g1 are

g1 ≤ σ + 8

5g1 ≤ 8σ + 24.

For the first lower bound and the first upper bound we get

g1 = i, 0 ≤ i ≤ −1

5

resulting in an empty set of cases.
For the first lower bound and the second upper bound we get

3g1 = 5σ + 15 + i, 0 ≤ i ≤
⌊

5 · 3− 5− 3

5

⌋
= 1

resulting in the following cases:

i) 3g1 = 5σ + 15

ii) 3g1 = 5σ + 16

Considering the first case we extend the system to

g1 ≥ 0

3g1 − 5σ ≥ 15

−g1 + σ ≥ −8

5g1 − 8σ ≤ 24

3g1 − 5σ = 15

We use the equation 3g1 = 5σ + 15 to eliminate g1. The smallest coefficient
occuring is 3, therefore we apply (· m̂od 4):

(3 m̂od 4)g1 − (5 m̂od 4)σ = (15 m̂od 4) + 4σ2

⇔ (−1)g1 − (1)σ = (−1) + 4σ2

⇔ g1 = −σ − 4σ2 + 1

and substitute g1 by −σ − 4σ2 + 1 in all constraints.
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1. In g1 ≥ 0:
−σ − 4σ2 + 1 ≥ 0

⇔ σ + 4σ2 ≤ 1

2. In 3g1 − 5σ ≥ 15:

3(−σ − 4σ2 + 1)− 5σ ≥ 15
−8σ − 12σ2 ≥ 12

⇔ 2σ + 3σ2 ≤ −3

3. In −g1 + σ ≥ −8:

−(−σ − 4σ2 + 1) + σ ≥ −8
2σ + 4σ2 ≥ −7

4. In 5g1 − 8σ ≤ 24:

5(−σ − 4σ2 + 1)− 8σ ≤ 24
−13σ − 20σ2 ≤ 19

13σ + 20σ2 ≥ −19

5. In 3g1 − 5σ = 15:

3(−σ − 4σ2 + 1) = 5σ + 15
−8σ − 12σ2 = 12

2σ + 3σ2 = −3

Thus, we still have a equation, but with a smaller greates coefficient than
the equation we have just used to eliminate g1. We continue with the new
equation 2σ+3σ2 = −3 to eliminate the variable with the smallest coefficient,
i.e. σ. Note, that we eventually get rid of the equation. The smallest
coefficient occuring now is 2, therefore we apply (· m̂od 3):

(−2 m̂od 3)σ − (3 m̂od 3)σ = (3 m̂od 3) + 3σ3

⇔ (1)g1 − (0)σ = (0) + 3σ3

⇔ σ = 3σ3

and substitute σ by 3σ3 in all constraints.
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1. In σ + 4σ2 ≤ 1:
−3σ3 − 4σ2 + 1 ≥ 0

⇔ 3σ3 + 4σ2 ≤ 1

2. In 2σ + 3σ2 ≤ −3:
6σ3 + 3σ2 ≤ −3

⇔ 2σ3 + σ2 ≤ −1

3. In 2σ + 4σ2 ≥ −7:
6σ3 + 4σ2 ≥ −7

4. In 13σ + 20σ2 ≥ −19:

39σ3 + 20σ2 ≥ −19

5. In 2σ + 3σ2 = −3:

6σ3 + 3σ2 = −3
⇔ σ2 = −2σ3 − 1

Now, we eliminate σ2 using σ2 = −2σ3 − 1 and get

1. In 3σ3 + 4σ2 ≤ 1:
3σ3 − 8σ2 ≤ 5

⇔ σ3 ≥ −1

2. In 2σ3 + σ2 ≤ −1:

−2σ3 + 2σ3 + 1 ≥ 1
⇔ 1 ≥ 1

3. In 6σ3 + 4σ2 ≥ −7:

6σ3 + 4(−2σ3 − 1) ≥ −7
⇔ −2σ3 ≥ −3
⇔ σ3 ≤ 1

4. In 39σ3 + 20σ2 ≥ −19:

39σ3 + 20(−2σ3 − 1) ≥ −19
⇔ −σ3 ≥ 1
⇔ σ3 ≤ −1
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5. In 2σ3 + σ2 = −1:

2σ3 − 2σ3 − 1 = −1
⇔ −1 = −1

So σ3 = −1 is a solution. Using the equations we can find a satisfying
assignment as follows. From σ2 = −2σ3 − 1 we get σ2 = 1, from σ = 3σ3 we
get σ = −3, from g1 = −σ − 4σ2 + 1 we get

g1 = 0,

from g3 = −2g1 + 2σ + 16 we get

g3 = 10,

and from g2 = g1 − g3 − 3σ + 1 we get

g2 = 0.

Considering the original problem

4g1 + 2g2 + 5g3 = 50

5g1 + 4g2 + 6g3 ≤ 60

g1 ≥ 0

g2 ≥ 0

g3 ≥ 0

you can see that it is indeed a satisfying assignment.
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