
Satisfiability Checking
Lazy SMT-Solving for Equality Logic

Prof. Dr. Erika Ábrahám

RWTH Aachen University
Informatik 2

LuFG Theory of Hybrid Systems

WS 14/15

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 1 / 12

Reminder: Equality logic with uninterpreted functions

We extend the propositional logic with
equalities and
uninterpreted functions (UFs).

Syntax:
variables x over an arbitrary domain D,
constants c from the same domain D,
function symbols F for functions of the type Dn → D, and
equality as predicate symbol.
Terms: t := c | x | F (t, . . . , t)
Formulas: ϕ := t = t | (ϕ ∧ ϕ) | (¬ϕ)

Semantics: straightforward

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 2 / 12

Full lazy SMT-solving

SAT-solver

ϕ

(In)equation set Explanation

Theory solver

UNSAT

SAT

Boolean abstraction

satisfiable

unsatisfiable

unsatisfiable

satisfiable

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 3 / 12

First: Conjunction of equalities without UF

Input: A conjunction ϕ of equalities and disequalities without UF

Algorithm

1 Define an equivalence class for each variable in ϕ.
2 For each equality x = y in ϕ: merge the equivalence classes of x and

y .
3 For each disequality x 6= y in ϕ:

if x is in the same class as y , return ’UNSAT’.
4 Return ’SAT’.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 4 / 12

Example

ϕE : x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1

Equivalence class 1 Equivalence class 2

x1 , x2 , x3 x4,
x5

SAT

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 5 / 12

Next: Add uninterpreted functions

How do they relate?
x = y , F (x) = F (y): |= (x = y) → (F (x) = F (y))
x = y , F (x) 6= F (y): conjunction unsatisfiable
x 6= y , F (x) = F (y): unrelated (conjunction satisfiable)
x 6= y , F (x) 6= F (y): |= (F (x) 6= F (y)) → (x 6= y)

x = y , F (G (x)) = F (G (y)): |= (x = y) → (F (G (x)) = F (G (y)))

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 6 / 12

Next: Add uninterpreted functions

ϕE : x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x2)

Equivalence class 1

Equivalence class 2

Equivalence class 3

Equivalence class 4

x1 , x2 , x3

F (x1)

x4 , x5

F (x2)

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 7 / 12

Next: Compute the congruence closure

ϕE : x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x2)

Congruence closure:

If all the arguments of two function applications are in the same class,
merge the classes of the applications!

Equivalence class 1 Equivalence class 2 Equivalence class 3

x1 , x2 , x3

F (x1),F (x2)
x4 , x5

UNSAT

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 8 / 12

Input: A conjunction ϕ of equalities and disequalities with UFs of type
D → D

Algorithm

1 C := {{t} | t occurs as subexpression in an (in)equation in ϕ};
2 for each equality t = t ′ in ϕ with [t] 6= [t ′]

C := (C \ {[t], [t ′]}) ∪ {[t] ∪ [t ′]};
while exists F (t),F (t ′) in ϕ with [t] = [t ′] and [F (t)] 6= [F (t ′)]
C := (C \ {[F (t)], [F (t ′)]}) ∪ {[F (t)] ∪ [F (t ′)]};

3 for each inequality t 6= t ′ in ϕ

if [t] = [t ′] return "UNSAT";
4 return "SAT";

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 9 / 12

Less lazy SMT-solving

SAT-solver

ϕ

(In)equation set Explanation

Theory solver

UNSAT

SAT

Boolean abstraction

partial solution

unsat or partial sat

unsatisfiable

complete sat

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 10 / 12

Requirements on the theory solver

Needed for lass lazy SMT solving:
1 Incrementality: In less lazy solving we extend the set of constraints.

The solver should make use of the previous satisfiability check for the
check of the extended set.

2 (Preferably minimal) infeasible subsets: Compute a reason for
unsatisfaction

3 Backtracking: The theory solver should be able to remove constraints
in inverse chronological order.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 11 / 12

Requirements on the theory solver

Solution:
1 Incrementality:

When a new equation is added, update the equivalence relation and
check the previously added inequalities for satisfiability.
When a new inequation is added, check its satisfiability under the
current equivalence relation.

2 (Preferably minimal) infeasible subsets: A conflict appears when an
inequation a 6= b cannot be true together with the current equalities;
build the set of this inequation a 6= b and (a minimal number of)
equations that imply a = b by transitivity.

3 Backtracking: Remember computation history.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 12 / 12

