Satisfiability Checking

Lazy SMT-Solving for Equality Logic

Prof. Dr. Erika Abraham

RWTH Aachen University
Informatik 2
LuFG Theory of Hybrid Systems

WS 14/15

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15

Reminder: Equality logic with uninterpreted functions

We extend the propositional logic with
m equalities and
m uninterpreted functions (UFs).
Syntax:
m variables x over an arbitrary domain D,
m constants ¢ from the same domain D,
m function symbols F for functions of the type D" — D, and
m equality as predicate symbol.
Terms: t = | x | F(t,...,t)
Formulas: ¢ = t=t | (A p) | (=)

Semantics: straightforward

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15

Full lazy SMT-solving

Boolean abstraction

tisfiabl
SAT-solver e=dUSHabIe (yNSAT

satisfiable

(In)equation set] [Explanation]

\‘ unsatisfiable
Th I AT
[eory sover | satisfiable

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 3/12

First: Conjunction of equalities without UF

Input: A conjunction ¢ of equalities and disequalities without UF

Algorithm

Define an equivalence class for each variable in .

For each equality x = y in ¢: merge the equivalence classes of x and
y.

For each disequality x # y in ¢:
if x is in the same class as y, return "UNSAT'.

Return 'SAT'.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 4 /12

Yo Xx1=XxAXa=x3AX4 = X5\ X5 FE X|

Equivalence class 1 Equivalence class 2

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15

Next: Add uninterpreted functions

How do they relate?
m x=y, F(x) = Fy):
x =y, F(x) # F(y):
x #y, F(x) = F(y): unrelated (conjunction satisfiable)
(¥):

x7#y, F(x) # Fy): = (F(x) # F(y)) = (x #)

= (x=y) = (F(x) = F(y))

conjunction unsatisfiable

x =y, F(G(x)) = F(G(y)): |= (x =y) = (F(G(x)) = F(G(¥)))

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 6 /12

Next: Add uninterpreted functions

et o x1=xAxx=x3Ax4 =x5 Axs #x1 A F(x1) # F(x)

Equivalence class 4

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 7/ 12

Next: Compute the congruence closure

<pE: x1=xAx2o=x3 \xa =x5 ANxs # x1 N\ F(x1) # F(x2)

Congruence closure:

If all the arguments of two function applications are in the same class,
merge the classes of the applications!

Equivalence class 1 Equivalence class 2 Equivalence class 3

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 8 /12

Input: A conjunction ¢ of equalities and disequalities with UFs of type
D—D

Algorithm

C := {{t} | t occurs as subexpression in an (in)equation in ¢};
for each equality t =t/ in ¢ with [t] # [t]
C = (C\A{[t] [¢T}) Ll V]
while exists F(t), F(t') in ¢ with [t] = [¢/] and [F(t)] # [F(t")]
C:= (C\A{IF(OL[F()]}) U A{IF@®]U[F()]};
for each inequality t # t' in
if [t] =[t'] return "UNSAT";
return "SAT":

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15

Less lazy SMT-solving

Boolean abstraction

isfiabl
unsatisfiable UNSAT

. . SAT-solver
partial solution

(In)equation set] [Explanation]

unsat or partial sat

Theory solver SAT
[Y J complete sat

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 10 / 12

Requirements on the theory solver

Needed for lass lazy SMT solving:

Incrementality: In less lazy solving we extend the set of constraints.
The solver should make use of the previous satisfiability check for the
check of the extended set.

(Preferably minimal) infeasible subsets: Compute a reason for
unsatisfaction

Backtracking: The theory solver should be able to remove constraints
in inverse chronological order.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 11 / 12

Requirements on the theory solver

Solution:
Incrementality:

m When a new equation is added, update the equivalence relation and
check the previously added inequalities for satisfiability.

m When a new inequation is added, check its satisfiability under the
current equivalence relation.

(Preferably minimal) infeasible subsets: A conflict appears when an
inequation a # b cannot be true together with the current equalities;
build the set of this inequation a # b and (a minimal number of)
equations that imply a = b by transitivity.

Backtracking: Remember computation history.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 12 / 12

