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SMT solving

We want to extend propositional logic with theories.
For satisfiability checking, SAT-solving will be extended to
SAT-modulo-theories (SMT) solving.
SMT-LIB: language, benchmarks, tutorials, ...
SMT-COMP: performance and capabilities of tools
SMT Workshop: held annually
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Eager SMT solving

How can such an extension to SMT solving look like?
We will see two basically different approaches:

Eager SMT solving transforms logical formulas over some theories into
satisfiability-equivalent propositional logic formulas and applies SAT
solving. (“Eager” means theory first)
Lazy SMT solving uses a SAT solver to find solutions for the Boolean
skeleton of the formula, and a theory solver to check satisfiability in the
underlying theory. (“Lazy” means theory later)

Today we will have a closer look at the eager approach.
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Eager vs. Lazy SMT Solving
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Theories for Eager SMT Solving

All NP-complete problems can be transformed to equivalent
propositional SAT problems (with polynomial effort).
However, this is not always effective in praxis (the transformation
would sometimes solve the hardest part of the problem).
Some well-suited theories for eager SMT solving:

Equalities and uninterpreted functions
Finite-precision bit-vector arithmetic
Quantifier-free linear integer arithemtic (QF_LIA)
Restricted λ-calculus (e.g., arrays)
. . .
Combinations of the above theories
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Some Eager SMT Solver Implementations

UCLID: Proof-based abstraction-refinement [Bryant et al., TACAS’07]
STP: Solver for linear modular arithmetic to simplify the formula
[Ganesh&Dill, CAV’07]
Spear: Automatic parameter tuning for SAT
[Hutter et al., FMCAD’07]
Boolector: Rewrites, underapproximation, efficient SAT engine
[Brummayer&Biere, TACAS’09]
Beaver: Equality/constant propagation, logic optimization, special
rules for non-linear operations [Jha et al., CAV’09]
SONOLAR: Non-linear arithmetic [Brummayer et al., SMT’08]
SWORD: Fixed-size bit-vectors [Jung et al, SMTCOMP’09]
Layered eager approaches embedded in the lazy DPLL(T) framework:
CVC3 [Barrett et al.], MathSAT [Bruttomesso et al.],
Z3 [de Moura et al.]
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Equality logic with uninterpreted functions

We extend propositional logic with
equalities and
uninterpreted functions (UFs).

Syntax:
variables x over an arbitrary domain D,
constants c from the same domain D,
function symbols F for functions of the type Dn → D, and
equality as predicate symbol.
Terms: t := c | x | F (t, . . . , t)
Formulas: ϕ := t = t | (ϕ ∧ ϕ) | (¬ϕ)

Semantics: straightforward
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Motivation

Equality logic and propositional logic are both NP-complete.
Thus they model the same decision problems.
Why to study both?

Convenience of modeling
Efficiency
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Equality logic with uninterpreted functions

Notation and assumptions:

Formula with equalities: ϕE

Formula with equalities and uninterpreted functions: ϕUF

Same simplifications for parentheses as for propositional logic.
Input formulas are in NNF.
Input formulas are checked for satisfiability.
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Removing constants

Theorem
There is an algorithm that generates for an input formula ϕUF an
equisatisfiable output formula ϕUF′ without constants, in polynomial time.

Algorithm: Exercise

In the following we assume that the formulas do not contain constants.
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Motivation

Replacing functions by uninterpreted functions in a given formula is a
common technique to make reasoning easier.
It makes the formula weaker: |= ϕUF → ϕ

Ignore the semantics of the function, but:
Functional congruence: Instances of the same function return the
same value for equal arguments.
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From uninterpreted functions to equality logic

We lead back the problems of equality logic with uninterpreted functions to
those of equality logic without uninterpreted functions.

Two possible reductions:
Ackermann’s reduction
Bryant’s reduction
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Ackermann’s reduction

Given an input formula ϕUF of equality logic with uninterpreted functions,
transform the formula to a satisfiability-equivalent equality logic formula
ϕE of the form

ϕE := ϕflat ∧ ϕcong,

where ϕflat is a flattening of ϕUF, and ϕcong is a conjunction of constraints
for functional congruence.

For validity-equivalence check

ϕE := ϕcong → ϕflat.
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Ackermann’s reduction

Input: ϕUF with m instances of an uninterpreted function F .
Output: satisfiability-equivalent ϕE without any occurrences of F .

Algorithm

1 Assign indices to the F -instances.
2 ϕflat := T (ϕUF) where T replaces each occurrence Fi of F by a fresh

Boolean variable fi .
3 ϕcong :=

∧m−1
i=1

∧m
j=i+1(T (arg(Fi )) = T (arg(Fj)))→ fi = fj

4 Return ϕflat ∧ ϕcong.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 19 / 51



Ackermann’s reduction: Example

ϕUF := (x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

ϕflat := (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)

ϕcong := ((x1 = x2) → (f1 = f2)) ∧
((x1 = x3) → (f1 = f3)) ∧
((x2 = x3) → (f2 = f3))

ϕE := ϕflat ∧ ϕcong
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Ackermann’s reduction: Example

int power3 (int in){
int out = in;
for (int i=0; i<2; i++)

out = out * in;
return out;

}
int power3_b (int in){

return ((in * in) * in);
}

ϕ1 := out0 = in ∧ out1 = out0 ∗ in ∧ out2 = out1 ∗ in
ϕ2 := outb = (in ∗ in) ∗ in
ϕ3 := (ϕ1 ∧ ϕ2)→ (out2 = outb)
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Ackermann’s reduction: Example

ϕ3 := (out0 = in ∧ out1 = out0 ∗ in ∧
out2 = out1 ∗ in ∧ outb = (in ∗ in) ∗ in)→
(out2 = outb)

ϕUF := (out0 = in ∧ out1 = G (out0, in) ∧
out2 = G (out1, in) ∧ outb = G (G (in, in), in))→
(out2 = outb)
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Ackermann’s reduction: Example

ϕUF := (out0 = in ∧ out1 = G (out0, in) ∧ out2 = G (out1, in) ∧
outb = G (G (in, in), in))→ (out2 = outb)

ϕflat := (out0 = in ∧ out1 = G1 ∧ out2 = G2 ∧
outb = G4)→ (out2 = outb) with

ϕcong := ((out0 = out1 ∧ in = in) → G1 = G2)∧
((out0 = in ∧ in = in) → G1 = G3)∧
((out0 = G3 ∧ in = in) → G1 = G4)∧
((out1 = in ∧ in = in → G2 = G3)∧
((out1 = G3 ∧ in = in) → G2 = G4)∧
((in = G3 ∧ in = in) → G3 = G4)
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Bryant’s reduction

Case expression:

F ∗i = case x1 = xi : f1
x2 = xi : f2
. . .
xi−1 = xi : fi−1
true : fi

where xi is the argument arg(Fi ) of Fi for all i .
Semantics:

i∨
j=1

(( j−1∧
k=1

(xk 6= xi )

)
∧ (xj = xi ) ∧ (F ∗i = fj)

)
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Bryant’s reduction

Input: ϕUF with m instances of an uninterpreted function F .
Output: satisfiability-equivalent ϕE without any occurrences of F .

Algorithm

1 Assign indices to the F -instances.
2 Return T ∗(ϕUF) where T ∗ replaces each Fi (arg(Fi )) by

case T ∗(arg(F1)) = T ∗(arg(Fi )) : f1
. . .
T ∗(arg(Fi−1)) = T ∗(arg(Fi )) : fi−1
true : fi
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Bryant’s reduction: Example

int power3 (int in){
int out = in;
for (int i=0; i<2; i++)

out = out * in;
return out;

}
int power3_b (int in){

return ((in * in) * in);
}

ϕ1 := out0 = in ∧ out1 = out0 ∗ in ∧ out2 = out1 ∗ in
ϕ2 := outb = (in ∗ in) ∗ in
ϕ3 := (ϕ1 ∧ ϕ2)→ (out2 = outb)
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Bryant’s reduction: Example

ϕ3 := (out0 = in ∧ out1 = out0 ∗ in ∧
out2 = out1 ∗ in ∧ outb = (in ∗ in) ∗ in)→
(out2 = outb)

ϕUF := (out0 = in ∧ out1 = G (out0, in) ∧
out2 = G (out1, in) ∧ outb = G (G (in, in), in))→
(out2 = outb)
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Bryant’s reduction: Example

ϕUF := (out0 = in ∧ out1 = G (out0, in) ∧ out2 = G (out1, in) ∧
outb = G (G (in, in), in))→ (out2 = outb)

ϕE := (out0 = in ∧ out1 = G ∗1 ∧ out2 = G ∗2 ∧
outb = G ∗4 )→ (out2 = outb) with

G ∗1 = g1
G ∗2 = case out0 = out1 ∧ in = in : g1

true : g2
G ∗3 = case out0 = in ∧ in = in : g1

out1 = in ∧ in = in : g2
true : g3

G ∗4 = case out0 = G ∗3 ∧ in = in : g1
out1 = G ∗3 ∧ in = in : g2
in = G ∗3 ∧ in = in : g3
true : g4
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E-graphs

ϕE : x = y ∧ y = z ∧ z 6= x

The equality predicates: {x = y , y = z , z 6= x}
Break into two sets:

E= = {x = y , y = z}, E 6= = {z 6= x}

The equality graph (E-graph) GE (ϕE ) = 〈V ,E=,E 6=〉

y

x z
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The E-graph and Boolean structure in ϕE

ϕE
1 : x = y ∧ y = z ∧ z 6= x unsatisfiable

ϕE
2 : (x = y ∧ y = z) ∨ z 6= x satisfiable!

Their E-graph is the same:

y

x z

=⇒ The graph GE (ϕE ) represents an abstraction of ϕE .
It ignores the Boolean structure of ϕE .
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Equality and disequality paths

y

x z

Definition (Equality Path)

A path that uses E= edges is an equality path. We write x =∗ z .

Definition (Disequality Path)

A path that uses edges from E= and exactly one edge from E 6= is a
disequality path. We write x 6=∗ z .
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Contradictory cycles

y

x z

Definition (Contradictory Cycle)

A cycle with one disequality edge is a contradictory cycle.

Theorem
For every two nodes x , y on a contradictory cycle the following holds:

x =∗ y
x 6=∗ y
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Contradictory cycles

y

x z

Definition
A subgraph of E is called satisfiable iff the conjunction of the predicates
represented by its edges is satisfiable.

Theorem
A subgraph is unsatisfiable iff it contains a contradictory cycle.
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Simple cycles

Question: What is a simple cycle?

Theorem
Every contradictory cycle is either simple, or contains a simple
contradictory cycle.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 36 / 51



Simplifying the E-graph of ϕE

Let S be the set of edges that are not part of any contradictory cycle.

Theorem
Replacing

all equations in ϕE that correspond to solid edges in S with false, and
all equations in ϕE that correspond to dashed edges in S with true

preserves satisfiability.
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Simplifying the E-graph: Example

x1

x2

x3

x4

true

fa
ls
e

true

(x1 = x2 ∨ x1 = x4) ∧
(x1 6= x3 ∨ x2 = x3)

(x1 = x2 ∨ true ) ∧
(x1 6= x3 ∨ x2 = x3)

(x1 6= x3 ∨ x2 = x3)

¬false ∨ true
→ Satisfiable!
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Bryant & Velev 2000: The Sparse method

Goal: Transform equality logic to propositional logic

Step 1: Replace all equalities in the formula by Boolean variables

ϕE ↔ x1 = x2 ∧ x2 = x3 ∧ x1 6= x3
ϕsk ↔ e1 ∧ e2 ∧ ¬e3

x1

x2

x3

e1

e2

e 3

This is called the propositional skeleton
This is an over-approximation
Transitivity of equality is lost!
→ must add transitivity constraints!
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Adding transitivity constraints

ϕE ↔ x1 = x2 ∧ x2 = x3 ∧ x1 6= x3
ϕsk ↔ e1 ∧ e2 ∧ ¬e3

x1

x2

x3

e1

e2

e 3

Step 2: For each cycle in the equality graph: add a transitivity constraint

ϕtrans = (e1 ∧ e2 → e3)∧
(e1 ∧ e3 → e2)∧
(e3 ∧ e2 → e1)

Step 3: Check ϕsk ∧ ϕtrans

Question: Complexity?
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Optimizations

There can be an exponential number of cycles, so let’s try to improve this
idea.

Theorem
It is sufficient to constrain simple cycles only.

Only two simple cycles here.

Question: Complexity?
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Optimizations

Still, there may be an exponential number of simple cycles.

Theorem
It is sufficient to constrain chord-free simple cycles.

Question: How many simple cycles?
Question: How many chord-free simple cycles?

Question: Complexity?
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Optimizations

Still, there may be an exponential number of chord-free simple cycles...

· · ·· · ·

Solution: make graph ’chordal’ by adding edges!

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 44 / 51



Making the E-graph chordal

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?
A: Iteratively connect the neighbors of the vertices.
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Making the E-graph chordal

Once the graph is chordal, we only need to constrain the triangles.

Note that this procedure adds not more than a polynomial number of
edges, and results in a polynomial number of constraints.
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Exploiting the polarity

So far we did not consider the polarity of the edges.
Claim: in the following graph, ϕtrans = e2 ∧ e3 → e1 is sufficient.

e1

e2

e3

This works because of the monotonicity of NNF.
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Equality logic to propositional logic

Input: Equality logic formula ϕE

Output: satisfiability-equivalent propositional logic formula ϕE

Algorithm

1 Construct ϕsk by replacing each equality ti = tj in ϕE by a fresh
Boolean variable ei ,j .

2 Construct the E-graph GE (ϕE ) for ϕE .
3 Make GE (ϕE ) chordal.
4 ϕtrans = true.
5 For each triangle (ei ,j , ej ,k , ek,i ) in GE (ϕE ):

ϕtrans := ϕtrans ∧ (ei ,j ∧ ej ,k)→ ek,i
∧ (ei ,j ∧ ei ,k)→ ej ,k
∧ (ei ,k ∧ ej ,k)→ ei ,j

6 Return ϕsk ∧ ϕtrans.
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Finite-precision bit-vector arithmetic

“Bit blasting”:
Model bit-level operations (functions and predicates) by Boolean
circuits
Use Tseitin’s encoding to generate propositional SAT encoding
Use a SAT solver to check satisfiability
Convert back the propositional solution to the theory

Effective solution for many applications.
Example: Bounded model checking for C programs (CBMC)
[Clarke, Kroening, Lerda, TACAS’04]
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Slides...

...from the Decision Procedures website.
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