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Propositional logic

The slides are partly taken from:

www.decision-procedures.org/slides/

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 2/1



Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic

Normal forms

Enumeration and deduction

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15



Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic

Normal forms

Enumeration and deduction

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15



Syntax of propositional logic

Abstract syntax of well-formed propositional formulae:
e =a | (=¢) | (¢Ae)

where Prop is a set of (atomic) propositions (Boolean variables) and
a € Prop.
We write PropFormulae for the set of all propositional logic formulae.

Syntactic sugar:

1 = (a A -a)
T = (aV —a)
(o1 Vo ) =((men) A (me2))
(w1 = w2 )= (1) V)
(w1 < w2 )= (1= w2) Alp2 = ¢1))
(1 D w2 )= (1 (m92))
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Formulae

m Examples of well-formed formulae:
m (—a)
(=(=a))
(an(bAc))
(a—=(b—0))
m We omit parentheses whenever we may restore them through operator
precedence:

binds stronger

- ANV = &
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Semantics: Assignments

Structures for predicate logic:
m The domain is B = {0, 1}.
m The interpretation assigns Boolean values to the variables:
a : Prop — {0,1}
We call these special interpretations assignments and use V to denote the

set of all assignments.
Example: Prop = {a, b},a(a) = 0,(b) =1

Equivalently, we can see an assignment « as a set of variables (a € 2P*°P),
defining the variables from the set to be true and the others false.
Example: Prop = {a, b}, = {b}

An assignment can also be seen as being of type o € {0, 1}F7°P, if we have
an order on the propositions.
Example: Prop = {a, b},a =01
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Only the projected assignment matters...

Let a1, 2 € V and ¢ € PropFormulae.
Let AP(y) be the atomic propositions in .
Clearly AP(y) C Prop.

Lemma: if a1|app) = a2|ap(y) , then
\ . .

(a1 satisfies ) iff  (ao satisfies @)

m We will assume, for simplicity, that Prop = AP(y).
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Semantics |: Truth tables

m Truth tables define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over
their structure.

m Convention: 0= false, 1= true

plal|l-p|lpAa|lpVaglp—=q|lpeq|p@q
olo[ 1] o 0 1 1 0
ol1| 1] o 1 1 0 1
1o o] o 1 0 0 1
110 1 1 1 1 0

Each possible assignment is covered by a line of the truth table.
« satisfies  iff in the line for o and the column for ¢ the entry is 1.

Q: How many binary operators can we define that have different semantics?
A: 16
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Semantics |: Example

m Let ¢ be defined as (aV (b — ¢)).

m Let a:{a,b,c} — {0,1} be an assignment with
a(a) =0, a(b) =0, and a(c) = 1.

m Q: Does « satisfy p?

m Al: Compute with truth table:

alblc|b—claVv(b—c)
0100 1 1
0j0]|1 1 1
0|10 0 0
0j1]|1 1 1
1100 1 1
1101 1 1
11110 0 1
17111 1 1

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 1 /1



Semantics Il: Satisfaction relation

Satisfaction relation: = C V' x PropFormulae
Instead of (o, p) € = we write a |= ¢ and say that

m « satisfies ¢ or
m ¢ holds for « or
m « is a model of .

= is defined recursively:

a Ep iff  a(p) = true

a e iff o =

aEeiNes  iff a Eerand a E opa
a EpiVer 0ff a Eprora Ep

a 1= iff a e implies a E @
a FEprer 0ff a Eeriff a |E e

Note: More elegant but semantically equivalent to truth tables.
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Semantics |I: Example

m Let ¢ be defined as (aV (b — ¢)).

m Let a:{a,b,c} — {0,1} be an assignment with
a(a) =0, a(b) =0, and a(c) = 1.

m Q: Does « satisfy ©?

A2: Compute with the satisfaction relation:
akE(aVv(b—0))
iff alEaoralk(b—c)
iff  «al=aor(albimplies a = c)
iff 0 or (0 implies 1)
iff Oorl
iff 1
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Semantics |ll: The algorithmic view

m Using the satisfaction relation we can define an algorithm for the
problem to decide whether an assignment @ : AP — {0,1} is a
model of a propositional logic formula ¢ € PropFormulae:

return a(a);
if o= (—¢1) return not Eval(a, ¢1);

if ©=(p10p2)
return Eval(a, ¢1) [op] Eval(a, ¢2);

m Equivalent to the = relation, but from the algorithmic view.

m Q: Complexity? A: Polynomial (time and space).
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Semantics |Il: Example

m Recall our example
mp=(aVv(b—c))
m o:{ab,c}— {0,1} with a(a) =0, a(b) =0, and a(c) = 1.

m Eval(a, ¢) = Eval(a, a) or Eval(a, b — ¢) =
0 or (Eval(«, b) implies Eval(c, ¢)) =
0 or (0 implies 1) =
Oorl=
1

m Hence, a = ¢.

WS 14/15 15 /1
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Satisfying assignments

m Intuition: each formula specifies a set of assignments satisfying it.
m Remember: V denotes the set of all assignments.
m Function sat : PropFormulae — 2V
(a formula — set of its satisfying assignments)
m Recursive definition:

sat(a) = {a|a(a)=1}, a€Prop
sat(—1) = V\ sat(¢1)

sat(p1 A 2) = sat(e1) Nsat(ps)

sat(p1V p2) = sat(p1) Usat(p2)

sat(p1 = p2) = (V \ sat(p1)) U sat(e2)

m For ¢ € PropFormulae and a € V it holds that

a E o iff  « € sat(p)
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Satisfying assignments: Example

sat(aV (b — ¢)) =
sat(a) Usat(b — c) =
sat(a) U ((V \ sat(b)) U sat(c)) =
{a eV |aa)=1}U

{a€e V| alb)=0}U

{acV]alc)=1} =
{aeV|a(a)=1o0r a(b)=0or a(c) =1}
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Extensions of =

m We define = C 2" x PropFormulae by
Tl ¢ iff T Csat(y)

for formulae ¢ € PropFormulae and assignment sets T C 2V

Examples: {a e V]a(a)=a(c)=1}Fa Vv (b—¢)
{aeV]a(x)=1}Ex1 V x

m We define ): C 2PropFormu|ae % 2PropFormu|ae by

©Y1 ): ©2 iff sat(gol) - sat(<,92)

for formulae ¢1, @2 € PropFormulae.

Examples: aAnckEa VvV (b—¢)
x1Ex1 V x
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Short summary for propositional logic

m Syntax of propositional formulae ¢ € PropFormulae:

¢ = prop | (—p) | (¢ A )

m Semantics:
m Assignments o € V:
a : Prop — {0,1}
o € 2Prop
a € {0, 1}Frp

m Satisfaction relation:

E C V x PropFormulae , (eg., « Ep )
= C 2V x PropFormulae , (eg {a1,...,antFp )
E C PropFormulae x PropFormulae, (e.g., 1 Ep2)
sat : PropFormulae — 2V ,  (e.g., sat(y) )
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Semantic classification of formulae

m A formula ¢ is called valid if sat(¢) = V.
(Also called a tautology).

m A formula ¢ is called satisfiable if sat(p) # 0.

m A formula ¢ is called unsatisfiable if sat(¢) = 0.

(Also called a contradiction).

satisfiable unsatisfiable
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Some notations

m We can write:
m = ¢ when ¢ is valid
m [~ ¢ when ¢ is not valid
m [~ —p when ¢ is satisfiable

m = —p when ¢ is unsatisfiable
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B (x1 Ax2) = (x1V x2) is valid
B (x1Vx)—xg is satisfiable
B (x1 Axp) A—xg is unsatisfiable
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m Here are some valid formulae:
Eanlea

EFan0«0

= ——a < a (double-negation rule)
Ean(bvec)« (anb)Vv(anc)

m Some more (De Morgan rules):
m=-(aAb) < (-aV-b)
m=-(aVvb) < (-an-b)

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 14/15 24 /1



The satisfiability problem for propositional logic

m The satisfiability problem for propositional logic is as follows:
Given an input propositional formula , decide whether o is satisfiable.

m This problem is decidable but NP-complete.

m An algorithm that always terminates for each propositional logic
formula with the correct answer is called a decision procedure for
propositional logic.

Goal: Design and implement such a decision procedure:

no

/
\

Satisfiability

o
Is  satisfiable? —— ™ " "~

yes

Note: A formula ¢ is valid iff = is unsatisfiable.
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Before we solve this problem...

m Suppose we can solve the satisfiability problem... how can this help us?

m There are numerous problems in the industry that are solved via the
satisfiability problem of propositional logic
m Logistics
Planning
Electronic Design Automation industry
Cryptography
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Example 1: Placement of wedding guests

m Three chairs in a row: 1,2,3

m We need to place Aunt, Sister and Father.
m Constraints:

m Aunt doesn't want to sit near Father
m Aunt doesn't want to sit in the left chair
m Sister doesn't want to sit to the right of Father

m Q: Can we satisfy these constraints?
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Example 1 (continued)

m Notation: Aunt = 1, Sister = 2, Father = 3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
Xp.c = 'person p is sited in chair ¢ for 1 < p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

((x1,1 Vx13) = =x32) A (x12 = (7x31 A —x33))
Aunt doesn't want to sit in the left chair:

TX1,1
Sister doesn't want to sit to the right of Father:

(x3,1 = 7x22) A (X32 = —x2.3)
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Example 1 (continued)

Each person is placed:
(x1,1Vxi2Vxi3) A(xe1Vxe2Vxa3)A(x31V x32V x33)
3 3
/\ \/ Xp,c
p=1lc=1
No person is placed in more than one chair:

3 3
/\ /\ (7Xp,c1 V Xp,c2)

cl=1c2=cl+1

A

3
p=1

At most one person per chair:

3 3 3
AN AR AN GRS

pl=1p2=pl+1lc=1
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Example 2: Assignment of frequencies

m n radio stations
m For each station assign one of k transmission frequencies, k < n.

m £ — set of pairs of stations, that are too close to have the same
frequency.

m Q: Can we assign to each station a frequency, such that no station
pairs from E have the same frequency?
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Example 2 (continued)

m Notation:
Xs f = 'station s is assigned frequency f" for 1 <s<n, 1 <f <k
m Constraints:
Every station is assigned at least one frequency:
n k
A (Vs
s=1 \f=1
Every station is assigned at most one frequency:
n k-1 k
/\ /\ /\ (_‘Xs,fl \ _‘Xs,f2)
s=1f1=1f2=F1+1
Close stations are not assigned the same frequency:
For each (s1,s2) € E,
k

/\ (_‘Xsl,f \ _‘Xs2,f)

f=1
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Example 3: Seminar topic assignment

n participants

n topics

Set of preferences E C {1,...,n} x {1,...,n}

(p, t) € E means: participant p would take topic t

m Q: Can we assign to each participant a topic which he/she is willing to
take?
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Example 3 (continued)

m Notation: x, ; = “participant p is assigned topic t"
m Constraints:
Each participant is assigned at least one topic:

Each participant is assigned at most one topic:

n

n—1 n
AN N CoaV-xe)

p=1t1=1 t2=t1+1

Each participant is willing to take his/her assigned topic:

n
AWANRE

P=1(p.t)¢E
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Example 3 (continued)

Each topic is assigned to at most one participant:

n n n
AN N oneVx)

t=1pl=1 p2=pl+1
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m Definition: A literal is either a variable or a negation of a variable.
m Example: ¢ = —=(aV —b)

Variables: AP(y) = {a, b}

Literals: /it(p) = {a, b}
m Note: Equivalent formulae can have different literals.

Example: ¢’ =—-aAb

Literals: lit(¢') = {—a, b}
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m Definition: a term is a conjunction of literals
m Example: (aA—bA <)

m Definition: a clause is a disjunction of literals
m Example: (aV —bV )
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Negation Normal Form (NNF)

m Definition: A formula is in Negation Normal Form (NNF) iff
(1) it contains only =, A and V as connectives and
(2) only variables are negated.

Examples:
m o1 = —(aV —b)is not in NNF
m oo =-aAbisin NNF
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Converting to NNF

m Every formula can be converted to NNF in linear time:
m Eliminate all connectives other than A, Vv, =
m Use De Morgan and double-negation rules to push negations to
operands

m Example: ¢ = =(a — —b)
m Eliminate "=’ : ¢ = =(-aV —b)
m Push negation using De Morgan: ¢ = (=—a A ——b)
m Use double-negation rule: ¢ = (a A b)
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Disjunctive Normal Form (DNF)

m Definition: A formula is said to be in Disjunctive Normal Form (DNF)
iff it is a disjunction of terms.

m In other words, it is a formula of the form

V(A

i
where [; ; is the j-th literal in the i-th term.
m Example:

p=(aN—-bAc)V(-and)V(b) isin DNF

m DNF is a special case of NNF.
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Converting to DNF

m Every formula can be converted to DNF in exponential time and
space:
Convert to NNF
Distribute disjunctions following the rule:

F 1A (p2Vps) (91 Ap2) V(01 A ps3)
m Example:
¢ =(aVb)A(-cVd)
=((avDb)A(—c))V((aVb)Ad)
=(aN—c)V(bA=c)V(and)V (bAd)

m Now consider ¢, = (a1 V bi) A (a2 V b2) A... A (an V bp).
m Q: How many clauses will the DNF have?
A: 27
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Satisfiability of DNF

m Q: Is the following DNF formula satisfiable?
(al N ax N\ ﬂal) V (82 VAN al) V (32 A —az A 33)

A: Yes, because the term as A ap is satisfiable.

m Q: What is the complexity of the satisfiability check of DNF formulae?
A: Linear (time and space).

m Q: Can there be any polynomial transformation into DNF?

m A: No, it would violate the NP-completeness of the problem.
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Conjunctive Normal Form (CNF)

m Definition: A formula is said to be in Conjunctive Normal Form (CNF)
iff it is a conjunction of clauses.

m In other words, it is a formula of the form
AV
i J

where [; ; is the j-th literal in the i-th clause.

m Example:

p=(aVvV-bVc)A(—aVd)A(b) isin CNF

m Also CNF is a special case of NNF.
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Converting to CNF

m Every formula can be converted to CNF in exponential time and
space:
Convert to NNF
Distribute disjunctions following the rule:

o1V (p2Ag3) € (01 Ve2) A(p1Vps)
m Consider the formula ¢ = (a1 A b1) V (a2 A b2).
Transformation: (a1 V a2) A (a1 V b2) A (b1 V a2) A (b1 V b2)
m Now consider ¢, = (a1 A b1) V(a2 A b2) V...V (an A bp).
Q: How many clauses does the resulting CNF have?
A: 2"
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Converting to CNF: Tseitin's encoding

m Every formula can be converted to CNF in linear time and space if
new variables are added.

m The original and the converted formulae are not equivalent but
equi-satisfiable.

m Consider the formula Parse tree:

p=(a—(bAc)) h1

m Associate a new auxiliary variable with each
gate.

m Add constraints that define these new variables. e 0 hy
m Finally, enforce the root node.
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Converting to CNF: Tseitin's encoding

m Need to satisfy: e hy
(hl < (a — /72))/\

(h2 — (b/\ C))/\
(h) e 0 h
OBNO

m Each gate encoding has a CNF representation with 3 or 4 clauses.
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Converting to CNF: Tseitin's encoding

m Need to satisfy:
(h1 > (a — hg)) VAN (h2 > (b A C)) VAN (hl)

m First: (hy VvV a) A (h1V —h2) A (=h1V—aV hy)
m Second: (—hy V b) A (=haV c) A (haV=bV —c)
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Converting to CNF: Tseitin's encoding

m Let's go back to
on=(aAy1) V(2 Ay2) V-V (xy Ayn)

m With Tseitin's encoding we need:
m n auxiliary variables hq, ..., h,.
m Each adds 3 constraints.
m Top clause: (hy V---V hy)

m Hence, we have
m 3n+1 clauses, instead of 2".
m 3n variables rather than 2n.
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Two classes of algorithms for validity

Q: Is ¢ satisfiable? (Is —¢ valid?)
Complexity: NP-Complete (Cook's theorem)

m Two classes of algorithms for finding out:

m Enumeration of possible solutions (Truth tables etc.)
m Deduction

More generally (beyond propositional logic):

m Enumeration is possible only in some logics.
m Deduction cannot necessarily be fully automated.
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The satisfiability problem

m Given a formula ¢, is ¢ satisfiable?
Enumeration the first:

Boolean SAT(¢){
result:=false
for all acV
result = result \V Eval(a, ¢);
return result;

}

Enumeration the second:
Use substitution to eliminate all variables one by one:

p iff @[0/a] v p[l/a]

m Q: What is the difference?
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Deduction requires axioms and inference rules

m Inference rules:

Antecedents
S —— (rule name)
Consequents

Meaning: If all antecedents hold then at least one of the consequents
can be derived.

m Examples:

a—b b—c

P (Trans)
a-o A 12 a (M.P.)
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Axioms

m Axioms are inference rules with no antecedents, e.g.,

a—(b—a) (HI)

m A proof system consists of a set of axioms and inference rules.
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m Let H be a proof system.

m [ 3 ¢ means: There is a proof of ¢ in system H whose premises are
included in T

m b is called the provability relation.
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m Let H be the proof system comprised of the rules Trans and M.P. that
we saw earlier:

a—b b—=c

1
PR (Trans)

a—b a

; (M.P.)

m Does the following relation hold?

a—b b—c, c—d d—e a Fy e
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Deductive proof: Example

a—b b—c (Trans) a—b a

P b (M.P.)

a—b b—c, c—d d—e a Fy e

1. a— b premise
2. b—c premise
3. a—c 1,2, Trans
4. ¢ —d premise
5. d —e premise
6. c—~e 4,5, Trans
7. a—e 3,6, Trans
8. a premise
9. e 7, 8, M.P.
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a—b b—c c—d d—e

\El’a n§/ \t‘ra n§/

a—cC c— €

\trans/

a—e a

\M.P/
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Soundness and completeness

m For a given proof system H,
m Soundness: Does F conclude “correct” conclusions from premises?
m Completeness: Can we conclude all true statements with #?
m Correct with respect to what?
With respect to the semantic definition of the logic. In the case of
propositional logic truth tables give us this.

WS 14/15 50 /1
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Soundness and completeness

m Let H be a proof system

Soundness of H : if by ¢ then | ¢
Completeness of H: if | = ¢ then bty o

m How to prove soundness and completeness?
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Example: Hilbert axiom system (H)

m Let H be (M.P.) together with the following axiom schemes:

a—(b—a) (H1)

I ED R CEDEICET) I

(-b— —a) —» (a— b) (H3)

m His sound and complete for propositional logic.
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Soundness and completeness

m To prove soundness of H, prove the soundness of its axioms and
inference rules (easy with truth-tables).
For example:

a|b|la—(b—a)
0101
0j1|1
11011
1111

m Completeness: harder, but possible.
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The resolution inference system

m The resolution inference rule for CNF:

(IVEV BV NV (=N .oV
(hv..VIaviv..VvI)

Resolution

m Example:

(avb) (—aVe)
(bVc)

m We first see some example proofs, before proving soundness and
completeness.
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Proof by resolution

mletp=(a1Vaz)A(-a1VaVas)A(-arVag) A(—arV—as)
m We want to prove ¢ — (a3)

(—\31 V 34) (—|81 V —|a4)
N ~

(31 V 83) (—|31)

as
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Resolution

m Resolution is a sound and complete inference system for CNF.

m If the input formula is unsatisfiable, there exists a proof of the empty
clause.
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Let o = (a1 V a3) A (—a1 V ax) A(—a1 V ag) A (—ay V —ag) A (—as3).

(a1 V as) (a1 V —ayg)

. /
(—a1) (a1V a3)

o~
\/
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Soundness and completeness of resolution

m Soundness is straightforward. Just prove by truth table that
E ((p1 vV a) A(p2 vV —a)) = (p1V p2).

m Completeness is a bit more involved.
Basic idea: Use resolution for variable elimination.

(aVpr)A...A(aVen)A
(maV )AL (maVm)A
R
-

(p1 V1) A A (01 V dm)A

('\Pn \ le) ARES (@n \ 77Dm)/\
R
where ; (i=1,...,n), ¢ (j=1,...,m), and R contains neither a
nor —a.
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